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Abstract
Hypergraphs are a powerful abstraction for rep-
resenting higher-order interactions between en-
tities of interest. To exploit these relationships
in making downstream predictions, a variety of
hypergraph neural network architectures have re-
cently been proposed, in large part building upon
precursors from the more traditional graph neu-
ral network (GNN) literature. Somewhat differ-
ently, in this paper we begin by presenting an
expressive family of parameterized, hypergraph-
regularized energy functions. We then demon-
strate how minimizers of these energies effec-
tively serve as node embeddings that, when paired
with a parameterized classifier, can be trained
end-to-end via a supervised bilevel optimization
process. Later, we draw parallels between the im-
plicit architecture of the predictive models emerg-
ing from the proposed bilevel hypergraph op-
timization, and existing GNN architectures in
common use. Empirically, we demonstrate state-
of-the-art results on various hypergraph node
classification benchmarks. Code is available at
https://github.com/yxzwang/PhenomNN.

1. Introduction
Hypergraphs represent a natural extension of graphs,
whereby each hyperedge can link an arbitrary number of hy-
pernodes (or nodes for short). This flexibility more directly
facilitates the modeling of higher-order relationships be-
tween entities (Chien et al., 2022; Benson et al., 2016; 2017)
leading to strong performance in diverse real-world situa-
tions (Agarwal et al., 2005; Li & Milenkovic, 2017; Feng
et al., 2019; Huang & Yang, 2021). Currently, hypergraph-
graph-based modeling techniques frequently rely, either
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implicitly or explicitly, on some type of expansion (e.g.,
clique, star), which effectively converts the hypergraph into
a regular graph with a new edge set and possibly additional
nodes as well. For example, one approach is to first extract
a particular expansion graph and then build a graph neural
network (GNN) model on top of it (Zhang et al., 2022).

We instead adopt a different starting point that both allows
us to incorporate multiple expansions if needed, but also
transparently explore the integrated role of each expansion
within a unified framework. To accomplish this, our high-
level strategy is to first define a family of parameterized
hypergraph energy functions, with regularization factors
that we later show closely align with popular existing expan-
sions. We then demonstrate how the minimizers of such en-
ergy functions can be treated as learnable node embeddings
and trained end-to-end via a bilevel optimization process.
Namely, the lower-level minimization process produces op-
timal features contigent on a given set of parameters, while
the higher-level process trains these parameters (and hence
the features they influence) w.r.t. downstream node classifi-
cation tasks.

To actualize this goal, after presenting related work in
Section 2, we provide relevant background and notation
w.r.t. hypergraphs in Section 3. The remainder of the pa-
per then presents our primary contributions, which can be
summarized as follows:

• We present a general class of hypergraph-regularized
energy functions in Section 4 and elucidate their rela-
tionship with traditional hypergraph expansions that
have been previously derived from spectral graph the-
ory.

• We demonstrate how minimizers of these energy func-
tions can serve as principled, trainable features for hy-
pergraph prediction tasks in Sections 5 and 6. And by
approximating the energy minimizers using provably-
convergence proximal gradient steps, the resulting ar-
chitecture borrows the same basic structure as certain
graph neural network layers that: (i) have been fine-
tuned to accommodate hypergraphs, and (ii) maintain
the inductive bias infused by the original energy func-
tion.

• The resulting framework, which we name Phe-
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nomNN for Purposeful Hyper-Edges iN Optimization
Motivated Neural Networks, is applied to a multitude
of hypergraph node classification benchmarks in Sec-
tion 7, achieving competitive or SOTA performance in
each case.

2. Related Work
Hypergraph Expansions/Neural Networks. Hypergraphs
are frequently transformed into graphs by expansion meth-
ods including the clique and star expansions. An extensive
spectral analysis study of of different hypergraph expansions
is provided in (Agarwal et al., 2006), but not from the van-
tage point of energy functions as is our focus. An alternative
line expansion (Yang et al., 2020) has also been proposed
that can be viewed in some sense as a hybrid combination
of clique and star expansions, although this involves the
creation of additional nodes, and there may be scalability
issues. In terms of predictive models, previous spectral-
based hypergraph neural networks are analogous to applying
GNNs on clique expansions, including HGNN (Feng et al.,
2019), HCHA (Bai et al., 2021), H-GNNs (Zhang et al.,
2022). Meanwhile, FastHyperGCN (Yadati et al., 2019)
and HyperGCN (Yadati et al., 2019) reduce a hyperedge
into a subgraph using Laplacian operators (Chan & Liang,
2020), which can be viewed as a modified form of clique
expansion. HGAT (Ding et al., 2020), HNHN (Dong et al.,
2020), HyperSAGE (Arya et al., 2020), UniGNN (Huang
& Yang, 2021), (Srinivasan et al., 2021), Set-based mod-
els (Chien et al., 2022), (Heydari & Livi, 2022), (Aponte
et al., 2022), HEAT (Georgiev et al., 2022) take into account
hyperedge features and use a message-passing framework,
which can be interpreted as GNNs applied to the star expan-
sion graph. And finally, (Wang et al., 2023) use gradient
diffusion processes to motivate a broad class of hypergraph
neural networks, although in the end there is not actually
any specific energy function that is being minimized by the
proposed model layers.

Graph Neural Networks from Unfolded Optimization. A
variety of recent work has demonstrated that robust GNN ar-
chitectures can be formed via graph propagation layers that
mirror the unfolded descent iterations of a graph-regularized
energy function (Chen & Eldar, 2021; Liu et al., 2021; Ma
et al., 2020; Pan et al., 2021; Yang et al., 2021; Zhang et al.,
2020; Zhu et al., 2021; Ahn et al., 2022). In doing so, the
node embeddings at each layer can be viewed as increasingly
refined approximations of an interpretable energy minimizer,
that may be designed, for example, to mitigate GNN over-
smoothing or perhaps inject robustness to spurious edges.
Furthermore, these learnable embeddings can be integrated
within a bilevel optimization framework (Wang et al., 2016)
for supervised training. While at a high level we adopt a
similar conceptual starting point, we nonetheless introduce
non-trivial adaptations that are particular to the hypergraph

domain, where this framework has not yet been extensively
explored, and provide hypergraph-specific insights along
the way.

3. Hypergraph Background and Notation
A hypergraph can be viewed as a higher-order form of graph
whereby edges can encompass more than two nodes. Specif-
ically, let G(V, E) denote a hypergraph, where V is a set
of n = |V| vertices and E is a set of m = |E| hyperedges.
In contrast to a traditional graph, each hyperedge ek ∈ E ,
can link an arbitrary number of nodes. The correspond-
ing hypergraph connectivity structure is conveniently rep-
resented in a binary incidence matrix B ∈ Rn×m, where
Bik = 1 if node vi ∈ ek, otherwise Bik = 0. We also use
DH ∈ Rm×m to denote the degree matrix of the hypergraph,
where mek ≜ DH [k, k] =

∑
iBik.

And finally, we define input features and embeddings for
both nodes and hyperedges. In this regard, X ∈ Rn×dx

represents a matrix of dx-dimensional initial/given node
features, while Y ∈ Rn×dy refers to the corresponding
node embeddings of size dy we seek to learn. Analogously,
U ∈ Rn×du and Z ∈ Rm×dz are the initial edge features
and learnable embeddings respectively. While here we have
presented the most general form, we henceforth just assume
d = dx = dy = dz = du for simplicity.

4. A Family of Hypergraph Energy Functions
Our goal is to pursue hypergraph-based energy functions
whose minima produce embeddings that will ultimately be
useful for downstream predictive tasks. In this section, we
first present an initial design of these functions followed
by adaptations for handling the situation where no edge
features U are available. We then show how in certain cir-
cumstances the proposed energy functions reduce to special
cases that align with hypergraph star and clique expansions,
before concluding with revised, simplified energy expres-
sions informed by these considerations.

4.1. Initial Energy Function Design and Motivation

We begin with the general form

ℓ(Y,Z;ψ) = g1(Y,X;ψ) + g2(Z,U ;ψ) + g3(Y, Z,G;ψ)
(1)

where g1(Y,X;ψ) and g2(Z,U ;ψ) are non-structural reg-
ularization factors over node and edge representations re-
spectively, while g3(Y, Z,G;ψ) explicitly incorporates hy-
pergraph structure. In all cases ψ represents parameters
that control the shape of the energy, with particular choices
that should be clear from the context (note that these pa-
rameters need not all be shared across terms; however, we
nonetheless lump them together for notational convenience).

For the non-structural terms in (1), a plausible design criteria
is to adopt functions that favor embeddings (either node or
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edge) that are similar to the corresponding input features or
some transformation thereof. Hence we select

g1(Y,X;ψ) =

n∑
i=1

∥yi − f(xi;Wx)∥22

g2(Z,U ;ψ) =

m∑
k=1

∥zk − f(uk;Wu)∥22, (2)

noting that both cases favor embeddings with minimal ℓ2
distance from the trainable base predictor, and by extension,
the initial features {X,U}. In practice, the function f can
be implemented as an MLP with node/edge weightsWx and
Wu respectively.

Turning to g3(Y, Z,G;ψ), our design is guided by the notion
that:

(i) Both node and edge embeddings should be individually
constrained to a shared subset of Rd, e.g., consistent
with most GNN architectures we may enforce non-
negative embeddings;

(ii) Nodes sharing an edge should be similar when pro-
jected into an appropriate space, and;

(iii) Nodes within an edge set should have similar embed-
dings to the edge embedding, again, when suitably
projected.

With these desiderata in mind, we adopt

g3(Y,Z,G;ψ) =
n∑

i=1

ϕ(yi) +

m∑
k=1

ϕ(zi)+

λ0

(a)︷ ︸︸ ︷∑
ek∈E

∑
i∈ek

∑
j∈ek

||yiH0 − yj ||22 +λ1

(b)︷ ︸︸ ︷∑
ek∈E

∑
i∈ek

||yiH1 − zk||22

(3)

For the first terms we choose ϕ : Rd → Rd
+ defined as

ϕ(p) ≜
∑d

j=1 I∞[pi < 0], where I∞ is an indicator func-
tion that assigns an infinite penalty to any pi < 0. This
ensures that all node and edge embedding must be non-
negative to achieve finite energy. Next, the term labeled
(a) in (3) directly addresses criteria (ii). We note that the
summation is over both indices i and j so that the symmetric
counterpart, where the roles of nodes vi and vj are switched,
is effectively included in the summation. And finally, cri-
teria (iii) is handled by the last term, labeled (b). Here
the node and edge embeddings play different roles and ex-
hibit a natural asymmetry.1 Incidentally, the projections H0

1 While we could consider adding an additional factor
||yi − zkH2||22 to this term, we found that in practice it was not
necessary.

and H1 can be viewed as compatibility matrices, initially
introduced for label or belief propagation (Eswaran et al.,
2017; Yamaguchi et al., 2016; Zhou et al., 2003) to provide
additional flexibility to the metric in which entities are com-
pared; for term (a) H0 facilitates the handling of nodes with
potentially heterophily relationships, while for term (b) H1

accommodates the comparison of fundamentally different
embedding types.

4.2. Handling a Lack of Edge Features

In some practical situations there may not be any initial hy-
peredge features U . In such cases we could potentially mod-
ify ℓ(Y, Z;ψ) accordingly in multiple different ways. First,
and perhaps simplest, we can simply remove g2(Z,U ;ψ)
from (1). We will explore the consequences of this op-
tion further in Section 4.3. But for tasks more related
to hyperedge classification, it may be desirable to main-
tain this term for additional flexibility. Hence as a second
option, we could instead create pseudo features Ũ with
ũk = AGG [{xi|i ∈ ek}] for all ek ∈ E for some aggrega-
tion function AGG. Or in a similar spirit, we could adopt
f(uk;Wu) ≡ AGG [{f(xi;Wx)|i ∈ ek}] such that aggre-
gation now takes place after the initial feature transforma-
tions.

4.3. Analysis of Simplified Special Cases

Because most hypergraph benchmarks for node classifica-
tion, and many real-world use cases, involve data devoid
of hyperedge features, in this section we more closely ex-
amine simplifications of (1) that arise when g2(Z,U ;ψ) is
removed. For analysis purposes, it is useful to first introduce
two representative hypergraph expansions, both of which
can be viewed as converting the original hypergraph to a
regular graph, which is tantamount to the assumption that
edges in these expanded graphs involve only pairs of nodes.

Clique Expansion. For the clique expansion (Zien et al.,
1999), we form the regular graph GC(V, EC), where the
node set V remains unchanged while the edge set EC is
such that, for all ek ∈ E , we have that {vi|i ∈ ek} forms a
complete subgraph of GC . We define LC , AC , and DC as
the corresponding Laplacian, adjacency matrix, and degree
matrix of GC respectively.

Star Expansion. In contrast, the star expansion (Zien et al.,
1999) involves creating the bipartite graph GS(VS , ES), with
revised node set VS = {v1, . . . , vn+m} and edge set ES de-
fined such that {vi, vn+k} ∈ ES iff Bik = 1. Conceptually,
the resulting graph is formed with a new node associated
with each hyperedge (from the original hypergraph), and
an edge connecting every such new node to the original
nodes within the corresponding hyperedges. Additionally,
LS = DS − AS is the revised Laplacian matrix, with DS

and AS the degree and adjacent matrices of the star expan-
sion graph.
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Unification. We now introduce simplifying assumptions to
link the proposed energy with the Laplacians of clique and
star expansions as follows:

Proposition 4.1. Suppose g2(Z,U ;ψ) is removed from (1),
H0 = H1 = I , and define Z∗ ≜ D−T

H BTY . It then follows
that

min
Z

ℓ(Y,Z;ψ) = g1(Y,X;ψ) +

n∑
i=1

ϕ(yi) (4)

+ 2λ0tr[Y TLCY ] + λ1tr

([
Y
Z∗

]T
LS

[
Y
Z∗

])

= g1(Y,X;ψ) +

n∑
i=1

ϕ(yi)

+ 2λ0tr[Y TLCY ] + λ1tr[Y T L̄SY ],

where L̄S ≜ D̄S − ĀS , with ĀS ≜ BD−1
H BT and D̄S a

diagonal matrix with nonzero elements formed as the corre-
sponding row-sums of ĀS . Moreover, if G is me-uniform,2

then under the same assumptions

min
Z

ℓ(Y,Z;ψ) = g1(Y,X;ψ)+

n∑
i=1

ϕ(yi)+βtr[Y TLCY ],

(5)
where β ≜ 2λ0 +

λ1

me
.

All proofs are deferred to Appendix C. This last result
demonstrates that, under the stated assumptions, the graph-
dependent portion of the original hypergraph energy, after
optimizing away the influence of Z, can be reduced to a
weighted quadratic penalty involving the graph Laplacian of
the clique expansion. Moreover, this factor further resolves
as

tr[Y TLCY ] =
1

2

∑
ek∈E

∑
i∈ek

∑
j∈ek

||yi − yj ||22. (6)

Of course in more general settings, for example when
H0 ̸= H1 ̸= I , or when ϕ(p) ̸=

∑d
j=1 I∞[pi < 0], this

equivalence will not generally hold.

4.4. Revised Hypergraph Energy Functions

The analysis from the previous sections motivates two prac-
tical, revised forms of our original energy from (1), which
we will later use for all of our empirical evaluations. For
convenience, we define

ℓ(Y ;ψ) ≜ ℓ(Y,Z = Z∗;ψ). (7)

2 An me-uniform hypergraph is such that every hyperedge joins
exactly me nodes. Hence a regular graph is by default a 2-uniform
hypergraph.

Then the first, more general variant, we adopt is

ℓ(Y ;ψ = {W,H0, H1})

= ||Y − f(X;W )||2F +
∑
i

ϕ(yi)+

λ0

(a)︷ ︸︸ ︷
tr

[
(Y H0)

TDCY H0 − 2(Y H0)
TACY + Y TDCY

]
+

λ1

(b)︷ ︸︸ ︷
tr

[
(Y H1)

T D̄SY H1 − 2(Y H1)
TBZ∗ + Z∗TDHZ

∗

]
,

(8)

where D̄S is defined as in Proposition 4.1. Moreover, to
ease later exposition, we have overloaded the definition of
f such that ∥Y − f(X;W )∥2F ≡

∑n
i=1 ∥yi − f(xi;W )∥22.

And secondly, as a less complex alternative we have

ℓ(Y ;ψ = {W, I, I}) = (9)

||Y − f(X;W )||2F +
∑
i

ϕ(yi) + tr[Y T (λ0LC + λ1L̄S)Y ].

5. Hypergraph Node Classification via Bilevel
Optimization

We now demonstrate how the optimal embeddings obtained
by minimizing the energy functions from the previous sec-
tion can be applied to our ultimate goal of hypergraph node
classification. For this purpose, define

Y ∗(ψ) = argmin
Y

ℓ(Y ;ψ), (10)

noting that the solution depends explicitly on the parameters
ψ governing the shape of the energy. We may then con-
sider treating Y ∗(ψ), which is obtainable from the above
optimization process, as features to be applied to a discrimi-
native node classification loss D that can be subsequently
minimized via a second, meta-level optimization step.3 In
aggregate we arrive at the bilevel optimization problem

ℓ(θ, ψ) ≜
n′∑
i=1

D(h[y∗i (ψ); θ], τi), (11)

where D is chosen as an classification-friendly cross-entropy
function, y∗i (ψ) is the i-th row of Y ∗(ψ), and τi ∈ Rc is
the ground-truth label of node i to be approximated by
some differentiable node-wise function h : Rd → Rc with
3 Because our emphasis is hypergraph node classification, we will
not explicitly use any analogous hyperedge embeddings for the
meta-level optimization; however, they nonetheless still play a
vital role given that they are co-adapted with the node embeddings
during the lower-level optimization per the discussion from the
previous section.
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trainable parameters θ. We have also implicitly assumed
that the first n′ nodes of G are labeled. Intuitively, (11)
involves training a classifier h, with input features y∗i (ψ), to
predict labels τi.

At this point, assuming ∂Y ∗(ψ)/∂ψ is somehow com-
putable, then ℓ(ψ, θ) can be efficiently trained over all pa-
rameters, including ψ from the lower level optimization.
However, directly computing ∂Y ∗(ψ)/∂ψ is not generally
feasible. Instead, in the remainder of this section we will
derive approximate embeddings Ŷ (ψ) ≈ Y ∗(ψ) whereby
∂Ŷ (ψ)/∂ψ can be computed efficiently. And as will be
assessed in greater detail later, the computational steps we
derive to produce Ŷ (ψ) will mirror the layers of canonical
graph neural network architectures. It is because of this asso-
ciation that we refer to our overall model as PhenomNN, for
Purposeful Hyper-Edges iN Optimization Motivated Neural
Networks as mentioned in the introduction.

5.1. Deriving Proximal Gradient Descent Steps

To efficiently deploy proximal gradient descent (PGD)
(Parikh et al., 2014), we first must split our loss into a
smooth, differentiable part, and a non-smooth but separable
part. Hence we adopt the decomposition

ℓ(Y ;ψ) = ℓ̄(Y ;ψ) +
∑
i

ϕ(yi), (12)

where ℓ̄(Y ;ψ) is defined by exclusion upon examining the
original form of ℓ(Y ;ψ). The relevant proximal operator is

proxϕ(V ) ≜ argmin
Y

1

2
||V − Y ||2F +

∑
i

ϕ(yi)

= max(0, V ), (13)

where the max operator is assumed to apply elementwise.
Subsequent PGD iterations for minimizing (12) are then
computed as

Ȳ (t+1) = Y (t) − αΩ∇Y (t) ℓ̄(Y (t);ψ) (14)

Y (t+1) = max(0, Ȳ (t+1)), (15)

where α is a step-size parameter and Ω is a positive-definite
pre-conditioner to be defined later. Incidentally, as will
become apparent shortly, (14) will occupy the role of a
pre-activation hypergraph neural network layer, while (15)
provides a ReLU nonlinearity. A related association was
previously noted within the context of traditional GNNs
(Yang et al., 2021). We now examine two different choices
for Ω and ψ that correspond with the general form from (8)
and the simplified alternative from (9).

General Form. To compute (14), we consider term (a) and
(b) from (8) separately. Beginning with (a), the correspond-
ing gradient is

2DCY − 2ỸC , (16)

where ỸC ≜ ACY (H0 +HT
0 ) −DCY H0H

T
0 . Similarly,

for (b) the gradient is given by

2BD−1
H DH(BD−1

H )TY − 2ỸS , (17)

where ỸS ≜ (B(BD−1
H )TY HT

1 + BD−1
H BTY H1) −

D̄SY H1H
T
1 . Additionally, given that

BD−1
H DH(BD−1

H )T = B(BD−1
H )T = BD−1

H BT = ĀS ,
we can reduce (17) to

2ĀSY − 2ỸS , (18)

since now ỸS = ĀSY (H1 +HT
1 )− D̄SY H1H

T
1 . Combin-

ing terms, the gradient for ℓ̄(Y ;ψ) is

ℓ̄(Y ;ψ)

∂Y
= 2λ0(DCY − ỸC) + 2λ1(ĀSY − ỸS)

+2Y − 2f (X;W ) , (19)

and (14) becomes

Ȳ (t+1) = Y (t) − α

[
λ0(DCY

(t) − Ỹ
(t)
C )

+λ1(ĀSY
(t) − Ỹ

(t)
S ) + Y (t) − f (X;W )

]
, (20)

where α/2 is the step size. The coefficient Ω̄ before Y (t) is

Ω̄ ≜ λ0DC + λ1ĀS + I. (21)

Applying Jacobi preconditioning (Axelsson, 1996) often
aids convergence by helping to normalize the scales across
different dimensions. One natural candidate for the precon-
ditioner is

(
diag[Ω̄]

)−1
; however, we use the more spartan

Ω = D̃−1 where D̃ ≜ λ0DC + λ1D̄S + I . After rescal-
ing and applying (15), the composite PhenomNN update is
given by

Y (t+1) = ReLU

(
(1− α)Y (t) + αD̃−1

[
f (X;W )

+ λ0Ỹ
(t)
C + λ1(L̄SY

(t) + Ỹ
(t)
S )

])
, (22)

where L̄S = D̄S − ĀS as in Proposition 4.1. This respre-
sents the general form of PhenomNN.

Simplified Alternative. Regarding the simplified energy
from (9), the relevant gradient is

∂ℓ̄(Y ;ψ =W, I, I)

∂Y
= 2(λ0LC + λ1L̄S)Y+

2Y − 2f (X;W ) , (23)
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leading to the revised update

Ȳ (t+1) = Y (t) − α
[
Ω̃Y (t) − f (X;W )

]
,

with Ω̃ ≜ λ0LC + λ1L̄S + I (24)

and step size α/2 as before. And again, we can apply
preconditioning, in this case rescaling each gradient step by

Ω =
(

diag[Ω̃]
)−1

=
(
λ0DC + λ1D̄S + I

)−1
= D̃−1. So

the final/composite update formula, including (15), becomes

Y (t+1) = ReLU
(
(1− α)Y (t)+

αD̃−1
[
(λ0AC + λ1ĀS)Y

(t) + f (X;W )
] )
. (25)

We henceforth refer to this variant as PhenomNNsimple.

5.2. Overall Algorithm

The overall algorithm for PhenomNN is demonstrated in
Algorithm 1.

Algorithm 1 PhenomNN Algorithm for Hypergraph Node
Classification.

Input: Hypergraph incidence matrix B, node features X ,
number of layers T , training epochs E, and node labels
τ = {τi}.
for e = 0 to E − 1 do

Set initial projection Y (0) = f(X;W ), where f is the
trainable base model.
for t = 0 to T − 1 do
Y (t+1) = Update(Y (t)), where Update is
computed via (22) for PhenomNN or (25) for
PhenomNNsimple.

end for
Compute loss ℓ(θ, ψ) =

∑
i D(h[y

(T )
i ; θ], τi) from

(11), where ψ = {W,H0, H1} for PhenomNN and
ψ = {W, I, I} for PhenomNNsimple, noting that each
y
(T )
i is a trainable function of ψ by design.

Backpropagate over all parameters ψ, θ using opti-
mizer (Adam, SGD, etc.)

end for

5.3. Convergence Analysis

We now consider the convergence of the iterations (22) and
(25) introduced in the previous section. First, for the more
general form we have the following:

Proposition 5.1. The PhenomNN updates from (22) are
guaranteed to monotonically converge to the unique global
minimum of ℓ(Y ;ψ) on the condition that

α <
1 + λ0dCmin + λ1dSmin

1 + λ0dCmin + σmax
, (26)

where dCmin is the minimum diagonal element of I ⊗DC ,
dSmin is the minimum diagonal element of I ⊗ D̄S and
σmax is the max eigenvalue of (Q− P + λ1I ⊗ ĀS) with

Q ≜ λ0H
T
0 H0 ⊗DC + λ1H

T
1 H1 ⊗ D̄S , (27)

P ≜ λ0(H0 +HT
0 )⊗AC + λ1(H1 +HT

1 )⊗ ĀS . (28)

And for the restricted case where ψ = {W, I, I}, the con-
vergence conditions simplify as follows:

Corollary 5.2. The PhenomNNsimple updates from (25) are
guaranteed to monotonically converge to the unique global
minimum of ℓ(Y ;ψ = {W, I, I}) on the condition that

α <
1 + λ0dCmin + λ1dSmin

1 + λ0dCmin + λ1dSmin − σmin
, (29)

where σmin is the min eigenvalue of (λ0AC + λ1ĀS).

5.4. Complexity Analysis

Analytically, PhenomNNsimple has a time complexity given
byO(|E|Td+ |V|Pd2), where |E| is edge number, |V| is the
node number, T is the number of layers/iterations, d is the
hidden size, and P is the number of MLP layers in f(·;W ).
In contrast, for PhenomNN this complexity increases to
O(|E|Td + |V|(T + P )d2), which is roughly the same as
a standard GCN model. In fact, the widely-used graph
convolution networks (GCN) (Kipf & Welling, 2016) have
equivalent complexity to PhenomNN up to the factor of P
which is generally small (e.g., P = 1 for PhenomNN in our
experiments, while for a GCN P = 0). In this way then,
PhenomNNsimple is actually somewhat cheaper than a GCN
when T > P . Additionally, we include complementary
empirical results related to time and space complexity in
Section 7.

6. Connections with Existing GNN Layers
As mentioned in Section 4.3, the clique and star expansions
can be invoked to transform hypergraphs into homogeneous
and bipartite graphs respectively (where the latter is a special
case of a heterogeneous graph). In this section we examine
how the layer-wise structure of two of the most popular
GNN models, namely GCN (Kipf & Welling, 2016) men-
tioned previously, and relational graph convolution networks
(RGCN) (Schlichtkrull et al., 2018), relate to PhenomNN
and simplifications thereof.

6.1. Homogeneous Graphs and GCN

Using the so-called message-passing form of expression,
the embedding update for the i-th node of the t-th GCN
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layer can be written as

y
(t+1)
i = σ

∑
j∈Ni

1

cij
W (t)y

(t)
j

 (30)

where σ is an activation function like ReLU, W (t) are
weights, cij ≜

√
|Ni||Nj | and Ni refers to the set of neigh-

boring nodes in some input graph (note also that the graph
could have self-loops in which case i ∈ Ni). Interest-
ingly, follow-up work (Ma et al., 2020; Pan et al., 2021;
Yang et al., 2021; Zhang et al., 2020; Zhu et al., 2021) has
demonstrated that this same basic layer-wise structure can
be closely linked to iterative steps designed to minimize the
energy

ℓ(Y ) = ||Y − f(X;W )||2F + λtr[Y TLY ], (31)

where f is defined as before and L is the assumed graph
Laplacian matrix. One way to see this is to examine a
preconditioned gradient step along (31), which can be ex-
pressed as

Y (t+1) = (1− α)Y (t) + αD̃−1
0

[
λAY (t) + f (X;W )

]
,

(32)

with preconditioner D̃−1
0 = (λD + I)

−1, step-size parame-
ter α, graph adjacency matrix A, and corresponding degree
matrixD. Moreover, for a single node i, (32) can be reduced
to

y
(t+1)
i =

∑
j∈Ni

1

c̃i
y
(t)
j

+ f̃i(xi;W ), (33)

where c̃i is a scaling constant dependent on λ, the gradi-
ent step-size, and the preconditioner, while f̃i is merely f
similarly rescaled. If we add an additional penalty ϕ and sub-
sequent proximal operator step to introduce a non-linearity,
then this result is very similar to (30), although without the
weight matrix directly on each y(t)j but with an added skip
connection to the input layer.

Importantly for our purposes though, if the input graph is
chosen to be a hypergraph clique expansion, and we set
D = DC , A = AC , λ = λ0, and λ1 = 0, then we arrive at
a special case of PhenomNNsimple from (25). Of course one
might not naturally conceive of the more generalized form
that leads to PhenomNNsimple, and by extension PhenomNN,
without the interpretable grounding of the underlying hyper-
graph energy functions involved.

6.2. Heterogeneous Graphs and RGCN

For heterogeneous graphs applied to RGCN, the analogous
message-passing update for the i-th node in the t-th layer is

given by

y
(t+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
y
(t)
j W (t)

r + y
(t)
i W

(t)
0

 , (34)

where R is the set of edge types in a heterogeneous in-
put graph, N r

i is the set of neighbors with edge type r,
ci,r ≜ |N r

i |, and W (t)
r and W (t)

0 are weight/projection ma-
trices. In this context, the RGCN input could conceivably
be chosen as the bipartite graph produced by a given star ex-
pansion (e.g., such a graph could be assigned the edge types
“hypergraph node belongs to hyperedge" and “hyperedge
belongs to hypergraph node").

For comparison purposes, we can also re-express our general
PhenomNN model from (22), in the node-wise message-
passing form

y
(t+1)
i = σ

 ∑
j∈NC

i

y
(t)
j W

(t)
ij + y

(t)
i W

(t)
i + αD̃−1

ii f (xi;W )

 ,

(35)

where NC
i are neighbors in the clique (not star) expansion

graph (more on this below) and the weight matrices are char-
acterized by the special energy-function-dependent forms

W
(t)
ij ≜ αD̃−1

ii

[
λ0AC [i, j](H0 +HT

0 )+

λ1ĀS [i, j](H1 +HT
1 − I)

]
, (36)

W
(t)
i ≜ (1− α)I − αD̃−1

ii

[
λ0DC [i, i]H0H

T
0 +

λ1D̄S [i, i](H1H
T
1 − I)

]
. (37)

While the basic structures of (34) and (35) are similar, there
are several key differences:

• When RGCN is applied to the star expansion, neigh-
bors are defined by the resulting bipartite graph, and
nodes in the original hypergraph do not directly pass
messages to each other. In contrast, because within
PhenomNN we have optimized away the hyperedge
embeddings, the implicit graph that dictates neighbor-
hood structure is actually the clique expansion graph
as reflected in (35).

• The PhenomNN projection matrices have special struc-
ture infused from the energy function and optimization
over the edge embeddings. As such, unlike RGCN
node i receives messages from its connected neighbors
and itself, with projection matrices W (t)

ij and W (t)
i that

can vary from node to node and edge to edge. In con-
trast, RGCN has layer-wise (or analogously iteration-
wise) dependent weights.
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Table 1. Results on datasets from (Zhang et al., 2022): Mean accuracy (%) ± standard deviation results over 10 train-test splits. Boldfaced
letters are used to indicate the best mean accuracy and underline for the second. "-" means not reported in their paper so in average
ranking we just average over the ones that are available. OOM indicates out-of-memory.

Cora
(co-authorship)

DBLP
(co-authorship)

Cora
(co-citation)

Pubmed
(co-citation)

Citeseer
(co-citation)

NTU2012
(both features)

ModelNet40
(both features) Avg Ranking

MLP+HLR 59.8 ± 4.7 63.6 ± 4.7 61.0 ± 4.1 64.7 ± 3.1 56.1 ± 2.6 - - 13.6
FastHyperGCN 61.1 ± 8.2 68.1 ± 9.6 61.3 ± 10.3 65.7 ± 11.1 56.2 ± 8.1 - - 12.4

HyperGCN 63.9 ± 7.3 70.9 ± 8.3 62.5 ± 9.7 68.3 ± 9.5 57.3 ± 7.3 - - 10.8
HGNN 63.2 ± 3.1 68.1 ± 9.6 70.9 ± 2.9 66.8 ± 3.7 56.7 ± 3.8 83.54 ± 0.50 97.15 ± 0.14 9.4
HNHN 64.0 ± 2.4 84.4 ± 0.3 41.6 ± 3.1 41.9 ± 4.7 33.6 ± 2.1 - - 13.0
HGAT 65.4 ± 1.5 OOM 52.2 ± 3.5 46.3 ± 0.5 38.3 ± 1.5 84.05 ± 0.36 96.44 ± 0.15 12.0

HyperSAGE 72.4 ± 1.6 77.4 ± 3.8 69.3 ± 2.7 72.9 ± 1.3 61.8 ± 2.3 - - 8.6
UniGNN 75.3 ± 1.2 88.8 ± 0.2 70.1 ± 1.4 74.4 ± 1.0 63.6 ± 1.3 84.45 ± 0.40 96.69 ± 0.07 6.0

H-ChebNet 70.6 ± 2.1 87.9 ± 0.24 69.7 ± 2.0 74.3 ± 1.5 63.5 ± 1.3 83.16 ± 0.46 96.95 ± 0.09 8.0
H-APPNP 76.4 ± 0.8 89.4 ± 0.18 70.9 ± 0.7 75.3 ± 1.1 64.5 ± 1.4 83.57 ± 0.42 97.20 ± 0.14 4.6
H-SSGC 72.0 ± 1.2 88.6 ± 0.16 68.8 ± 2.1 74.5 ± 1.3 60.5 ± 1.7 84.13 ± 0.34 97.07 ± 0.07 7.6
H-GCN 74.8 ± 0.9 89.0 ± 0.19 69.5 ± 2.0 75.4 ± 1.2 62.7 ± 1.2 84.45 ± 0.40 97.28 ± 0.15 5.4

H-GCNII 76.2 ± 1.0 89.8 ± 0.20 72.5 ± 1.2 75.8 ± 1.1 64.5 ± 1.0 85.17 ± 0.36 97.75 ± 0.07 3.0

PhenomNNsimple 77.62 ± 1.30 89.74 ± 0.16 72.81 ± 1.67 76.20 ± 1.41 65.07 ± 1.08 85.39 ± 0.40 97.83 ± 0.09 1.9
PhenomNN 77.11 ± 0.45 89.81 ± 0.05 73.09 ± 0.65 78.12 ± 0.24 65.77 ± 0.45 85.40 ± 0.42 97.77 ± 0.11 1.3

• PhenomNN has an additional weighted skip connection
from the input base model f (xi;W ). While of course
RGCN could also be equipped with a similar term, this
would be accomplished in a post-hoc fashion, and not
tethered to an underlying energy function.

7. Hypernode Classification Experiments
In this section we evaluate PhenomNNsimple and PhenomNN
on various hypergraph benchmarks focusing on hypern-
ode classification and compare against previous SOTA ap-
proaches.

Datasets. Existing hypergraph benchmarks mainly fo-
cus on hypernode classification. We adopt five public
citation network datasets from (Zhang et al., 2022): Co-
authorship/Cora,Co-authorship/DBLP, Co-citaion/Cora, Co-
citaion/Pubmed, Co-citaion/Citeseer. These datasets and
splits are constructed by (Yadati et al., 2019) (https://
github.com/malllabiisc/HyperGCN). We also
adopt two other public visual object classification datasets:
Princeton ModelNet40 (Wu et al., 2015) and the Na-
tional Taiwan University (NTU) 3D model dataset (Chen
et al., 2003). We follow HGNN (Feng et al., 2019) to
preprocess the data by MVCNN (Su et al., 2015) and
GVCNN (Feng et al., 2018) and obtain the hypergraphs.
Additionally, we use the datasets provided by the public
code (https://github.com/iMoonLab/HGNN) as-
sociated with (Feng et al., 2019). Finally, (Chien et al., 2022)
construct a public hypergraph benchmark for hypernode
classification which includes ModelNet40∗, NTU2012∗,
Yelp (Yelp), House (Chodrow et al., 2021), Walmart (Am-
burg et al., 2020), and 20News (Dua & Graff, 2017).
ModelNet40∗ and NTU2012∗ have the same raw data as
ModelNet40 and NTU2012 mentioned before in (Zhang
et al., 2022) but different splits. All datasets from (Chien

et al., 2022) are downloaded from their code site (https:
//github.com/jianhao2016/AllSet).4

Baselines. For datasets from (Zhang et al., 2022), we adopt
the baselines from their paper which includes a multi-layer
perceptron with explicit hypergraph Laplacian regulariza-
tion (MLP+HLR), FastHyperGCN (Yadati et al., 2019), Hy-
perGCN (Yadati et al., 2019), HGNN (Feng et al., 2019),
HNHN (Dong et al., 2020), HGAT (Ding et al., 2020), Hy-
perSAGE (Arya et al., 2020), UniGNN (Huang & Yang,
2021), and various hypergraph GNNs (H-GNNs) (Zhang
et al., 2022) proposed by them. For datasets from (Chien
et al., 2022), we also select baselines from their paper in-
cluding an MLP, CE (Clique Expansion)+GCN, CE+GAT,
HNHN, HGNN, HCHA (Bai et al., 2021), HyperGCN,
UniGCNII (Huang & Yang, 2021), HAN (Wang et al.,
2019b) with full batch and mini-batch settings, and Allset-
Transformer and AllDeepSets (Chien et al., 2022).

Implementations. We use a one-layer MLP for f(X;W ).
Also, in practice we found that only using ReLU at the end
of propagation steps works well. Detailed hyperparameter
settings are deferred to Appendix D. We choose the hidden
dimension of our models to be the same or less than the
baselines in previous work. For results in Table 1, we con-
duct experiments on 10 different train-test splits and report
average accuracy of test samples following (Zhang et al.,
2022). For results in Table 2, we randomly split the data
into training/validation/test samples using (50%/25%/25%)
splitting percentages as in (Chien et al., 2022) and report
the average accuracy over ten random splits. All exper-
iments are implemented on RTX 3090 with Pytorch and

4 Note that we excluded a few datasets for the following reasons:
The Zoo dataset is very small; the Mushroom dataset is too easy;
the Citation datasets are similar to (Zhang et al., 2022), and since
we have ModelNet40* and NTU2012* for comparison of different
baselines from both papers, we did not select them.
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Table 2. Results using the benchmarks from (Chien et al., 2022): Mean accuracy (%) ± standard deviation. The number behind Walmart
and House is the feature noise standard deviation for each dataset, and for HAN∗, additional preprocessing of each dataset is required (see
(Chien et al., 2022) for more details). Boldfaced letters are used to indicate the best mean accuracy and underline is for the second. OOM
indicates out-of-memory.

NTU2012∗ ModelNet40∗ Yelp House(1) Walmart(1) House(0.6) Walmart(0.6) 20Newsgroups Avg Ranking

MLP 85.52 ± 1.49 96.14 ± 0.36 31.96 ± 0.44 67.93 ± 2.33 45.51 ± 0.24 81.53 ± 2.26 63.28 ± 0.37 81.42 ± 0.49 6.9
CEGCN 81.52 ± 1.43 89.92 ± 0.46 OOM 62.80 ± 2.61 54.44 ± 0.24 64.36 ± 2.41 59.78 ± 0.32 OOM 11.5
CEGAT 82.21 ± 1.23 92.52 ± 0.39 OOM 69.09 ± 3.00 51.14 ± 0.56 77.25 ± 2.53 59.47 ± 1.05 OOM 10.4
HNHN 89.11 ± 1.44 97.84 ± 0.25 31.65 ± 0.44 67.80 ± 2.59 47.18 ± 0.35 78.78 ± 1.88 65.80 ± 0.39 81.35 ± 0.61 7.1
HGNN 87.72 ± 1.35 95.44 ± 0.33 33.04 ± 0.62 61.39 ± 2.96 62.00 ± 0.24 66.16 ± 1.80 77.72 ± 0.21 80.33 ± 0.42 7.8
HCHA 87.48 ± 1.87 94.48 ± 0.28 30.99 ± 0.72 61.36 ± 2.53 62.45 ± 0.26 67.91 ± 2.26 77.12 ± 0.26 80.33 ± 0.80 8.8

HyperGCN 56.36 ± 4.86 75.89 ± 5.26 29.42 ± 1.54 48.31 ± 2.93 44.74 ± 2.81 78.22 ± 2.46 55.31 ± 0.30 81.05 ± 0.59 12
UniGCNII 89.30 ± 1.33 98.07 ± 0.23 31.70 ± 0.52 67.25 ± 2.57 54.45 ± 0.37 80.65 ± 1.96 72.08 ± 0.28 81.12 ± 0.67 6.2

HAN (full batch)∗ 83.58 ± 1.46 94.04 ± 0.41 OOM 71.05 ± 2.26 OOM 83.27 ± 1.62 OOM OOM 9.6
HAN (mini batch)∗ 80.77 ± 2.36 91.52 ± 0.96 26.05 ± 1.37 62.00 ± 9.06 48.57 ± 1.04 82.04 ± 2.68 63.10 ± 0.96 79.72 ± 0.62 10.4

AllDeepSets 88.09 ± 1.52 96.98 ± 0.26 30.36 ± 1.57 67.82 ± 2.40 64.55 ± 0.33 80.70 ± 1.59 78.46 ± 0.26 81.06 ± 0.54 5.6
AllSetTransformer 88.69 ± 1.24 98.20 ± 0.20 36.89 ± 0.51 69.33 ± 2.20 65.46 ± 0.25 83.14 ± 1.92 78.46 ± 0.40 81.38± 0.58 3.1
PhenomNNsimple 91.03 ± 1.04 98.66 ± 0.20 32.26 ± 0.40 71.77 ± 1.68 64.11 ± 0.49 86.96 ± 1.33 78.46 ± 0.32 81.74 ± 0.52 1.6

PhenomNN 90.62 ± 1.88 98.61 ± 0.17 31.92 ± 0.36 70.71 ± 2.35 62.98 ± 1.36 85.28 ± 2.30 78.26 ± 0.26 81.41 ± 0.49 3.1

DGL (Wang et al., 2019a).

Results. As shown in Table 1, our models achieve the best
performance and top ranking on all datasets from (Zhang
et al., 2022) compared to previous baselines. And in Table
2, our models achieve the first (PhenomNNsimple) and tied-
for-second (PhenomNN) overall performance ranking on
the benchmarks from (Chien et al., 2022).

Empirical evaluation of time and space complexity. In
practice, we find that PhenomNN is roughly 2× to 3×
slower than a GCN given the integration of two expansions
based on H0 and H1, which implies that the constant mul-
tiplying the theoretical complexity from above is at least
doubled as expected. Of course timing results will still vary
based on hardware and implementation details. As an exam-
ple, we measure the training time of GCN and our models
on the same hardware on Coauthorship-DBLP data with
hidden size 64 and 8 layers. We observe 0.047s/epoch for
GCN and 0.045s/epoch for PhenomNNsimple and 0.143s/e-
poch for PhenomNN under these conditions. In terms of the
space efficiency, our models are also analytically similar to
common GNNs. And under the same settings as above, the
memory consumption is 1665MB for GCN, 1895MB for
PhenomNNsimple, and 2424MB for PhenomNN.

Ablations. For space considerations, we defer ablations to
Appendix B; however, we nonetheless highlight some of
our findings here. For example, in Table 5 (Appendix B) we
demonstrate the effect of different hypergraph energy func-
tion terms, which are associated with different hypergraph
expansions per Proposition 4.1. In brief here, we explore
different selections of {λ0, λ1} ∈ {{0, 1}, {1, 0}, {1, 1}, }
which in effect modulate the inclusion of clique- and star-
like expansion factors. Results demonstrate that on most
datasets, the combination of both expansions, with their
complementary roles, is beneficial.

We also explore the tolerance of our model to different

hidden dimensions in Table 6. In brief, we fix other hy-
perparameters and obtain results across different hidden
dimensions with PhenomNNsimple for simplicity; results for
PhenomNN are similar. Overall, this ablation demonstrates
the stability of our approach across hidden dimension.

Additional comparisons and discussion. As suggested by
reviewers, we include additional discussion and comparison
with existing work in Appendix A due to the page limit.
This includes side-by-side evaluations with RGCN and the
model from (Wang et al., 2023) which was not yet published
at the time of our original submission.

8. Conclusion
While hypergraphs introduce compelling modeling flexibil-
ity, they still remain relatively under-explored in the GNN
literature. With the potential to better understand hyper-
graph properties and expand their utility, we have introduced
an expressive family of hypergraph energy functions and
fleshed out their connection with previous hypergraph ex-
pansions. We then leverage this perspective to design what
can be interpreted as hypergraph neural network layers that
are in one-to-one correspondence with proximal gradient
steps descending these energies. We also characterize the
similarities and differences of these layers w.r.t. popular
existing GNN architectures. In the end, the proposed frame-
work achieves competitive or SOTA performance on key
hypergraph node classification benchmarks.
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A. Additional Comparisons with Existing Work
A.1. Further Discussion

In terms of expressiveness and generalizability, the primary difference between the AllSet from (Chien et al., 2022) and
PhenomNN can be loosely distilled as follows: AllSet is explicitly designed for expanding per-layer expressive power
as much as possible by combining principles from Deep Sets and SetTransformers. But this complexity may reduce the
feasibility of exploring deeper models that spread information longer distances across a hypergraph, e.g., only a single
layer model is used for the experiments in (Chien et al., 2022). In contrast, PhenomNN is motivated by harnessing the
interpretable inductive biases that come from descending an explicit lower-level energy function, whose minima are trainable
by a higher-level downstream classification task. In this way, PhenomNN can in principle include an arbitrary number of
layers to pass information across the hypergraph, since additional layers merely iterate the embeddings closer to the energy
function minimum. Given these considerations, both AllSet and PhenomNN both have merits, and neither model fully
encompasses the other as a special case.

Another recently published work raised by reviewers (Wang et al., 2023) proposes a quite interesting model called ED-HNN
(for equivariant diffusion hypergraph neural network). This approach is complementary to our submission and different in at
least three key respects: First, although (Wang et al., 2023) use gradient diffusion processes to motivate a broad class of
GNN models, that are in some ways similar to AllSets from (Chien et al., 2022), in the end there is not actually any specific
energy function that is being minimized by their proposed Algorithm 1. Indeed there is no guarantee provided that each
layer of their method is reducing any specific graph-regularized quantity of interest, which is our primary focus.

Secondly, their incorporation of proximal operators is fundamentally different than ours. In ED-HNN, MLPs are used
to implicitly model the effect of arbitrary proximal operators within an iterative ADMM optimization scheme. However,
although conceptually understandable, a general MLP can model any function while proximal operators must obey very
stringent properties (e.g., in 1D they must be nondecreasing functions of the input argument). In contrast, we apply proximal
gradient descent to an explicit energy function with strict convergence guarantees. And last but not least, we consider an
energy function dependent on both node and hyperedge embeddings, while ED-HNN only considers node-wise embeddings
(that are regrouped within a penalty for each hyperedge).

A.2. Extra Empirical Results

ED-HNN comparisons. We include five new benchmarks for comparison from ED-HNN (Wang et al., 2023) suggested by
reviewers in Table 3 , where we observe that both models perform well relative to a wide variety of baselines.

Table 3. Extension datasets of Table 2 to be compared with ED-HNN. Results for ED-HNN are from (Wang et al., 2023), while results
for other baselines are from (Chien et al., 2022).

Cora Citeseer Pubmed Cora-CA DBLP-CA
MLP 75.17 ± 1.21 72.67 ± 1.56 87.47 ± 0.51 74.31 ± 1.89 84.83 ± 0.22
CECGN 76.17 ± 1.39 70.16 ± 1.31 86.45 ± 0.43 77.05 ± 1.26 88.00 ± 0.26
CEGAT 76.41 ± 1.53 70.63 ± 1.30 86.81 ± 0.42 76.16 ± 1.19 88.59 ± 0.29
HNHN 76.36 ± 1.92 72.64 ± 1.57 86.90 ± 0.30 77.19 ± 1.49 86.78 ± 0.29
HGNN 79.39 ± 1.36 72.45 ± 1.16 86.44 ± 0.44 82.64 ± 1.65 91.03 ± 0.20
HCHA 79.14 ± 1.02 72.42 ± 1.42 86.41 ± 0.36 82.55 ± 0.97 90.92 ± 0.22
HyperGCN 78.45 ± 1.26 71.28 ± 0.82 82.84 ± 8.67 79.48 ± 2.08 89.38 ± 0.25
UniGCNII 78.81 ± 1.05 73.05 ± 2.21 88.25 ± 0.40 83.60 ± 1.14 91.69 ± 0.19
HAN (full batch)∗ 80.18 ± 1.15 74.05 ± 1.43 86.21 ± 0.48 84.04 ± 1.02 90.89 ± 0.23
HAN (mini batch)∗ 79.70 ± 1.77 74.12 ± 1.52 85.32 ± 2.25 81.71 ± 1.73 90.17 ± 0.65
AllDeepSets 76.88 ± 1.80 70.83 ± 1.63 88.75 ± 0.33 81.97 ± 1.50 91.27 ± 0.27
AllSetTransformer 78.58 ± 1.47 73.08 ± 1.20 88.72 ± 0.37 83.63 ± 1.47 91.53 ± 0.23

ED-HNN 80.31 ± 1.35 73.70 ± 1.38 89.03 ± 0.53 83.97 ± 1.55 91.90 ± 0.19
PhenomNNsimple 81.98 ± 1.58 75.00 ± 0.58 88.25 ± 0.42 85.18 ± 0.97 91.91 ± 0.24
PhenomNN 82.29 ± 1.42 75.10 ± 1.59 88.07 ± 0.48 85.81 ± 0.90 91.91 ± 0.21
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RGCN comparisons. Although we already provide comparisons with the heterogeneous GNN model HAN in Table
2, given the connection between PhenomNN and RGCN models detailed in Section 6.2, it also makes sense to provide
further evaluations with the latter. To this end, Table 4 summarizes results comparing PhenomNN to heterogeneous graphs
applied to the star expansion. HAN results are reproduced from the main paper. Meanwhile, for the RGCN for hypergraphs
implementation, we use code from (Chien et al., 2022) which executes full-batch training that produces OOM for some
datasets. In any event, from the available results we observe that our models can outperform both RGCN and the related
heterogeneous GNN HAN models alike.

Table 4. Additional comparisons with heterogeneous GNN models applied to star expansions.
NTU2012∗ ModelNet40∗ Yelp House(1) Walmart(1) House(0.6) Walmart(0.6) 20Newsgroups

HAN (full batch)∗ 83.58 ± 1.46 94.04 ± 0.41 OOM 71.05 ± 2.26 OOM 83.27 ± 1.62 OOM OOM
HAN (mini batch)∗ 80.77 ± 2.36 91.52 ± 0.96 26.05 ± 1.37 62.00 ± 9.06 48.57 ± 1.04 82.04 ± 2.68 63.10 ± 0.96 79.72 ± 0.62
RGCN (full batch)∗ 86.74 ± 1.69 97.62 ± 0.32 OOM 66.38 ± 3.69 OOM 78.17 ± 2.74 OOM OOM

PhenomNNsimple 91.03 ± 1.04 98.66 ± 0.20 32.26 ± 0.40 71.77 ± 1.68 64.11 ± 0.49 86.96 ± 1.33 78.46 ± 0.32 81.74 ± 0.52
PhenomNN 90.62 ± 1.88 98.61 ± 0.17 31.92 ± 0.36 70.71 ± 2.35 62.98 ± 1.36 85.28 ± 2.30 78.26 ± 0.26 81.41 ± 0.49

B. Ablation Tables

Table 5. Results for ablations of hypergraph expansion combinations under the same settings as applied in the main paper. Boldfaced
letters indicate the best expansion compared with the same model.

Cora
(co-authorship)

DBLP
(co-authorship)

Cora
(co-citation)

Pubmed
(co-citation)

Citeseer
(co-citation)

NTU2012
(both features)

ModelNet40
(both features)

PhenomNNsimple-clique 77.06 ± 1.27 89.54 ± 0.05 72.37 ± 1.49 75.71 ± 1.04 64.92 ± 1.56 85.36 ± 0.36 97.81 ± 0.09
PhenomNNsimple-star 77.28 ± 1.27 89.54 ± 0.18 72.81 ± 1.67 76.20 ± 1.41 64.96 ± 1.13 85.31 ± 0.23 97.81 ± 0.08
PhenomNNsimple 77.62 ± 1.30 89.74 ± 0.16 72.81 ± 1.67 76.20 ± 1.41 65.07 ± 1.08 85.39 ± 0.40 97.83 ± 0.09
PhenomNN-clique 76.74 ± 0.41 89.56 ± 0.08 72.68 ± 0.63 77.94 ± 0.20 65.65 ± 0.34 85.15 ± 0.40 97.71 ± 0.15
PhenomNN-star 76.83 ± 0.52 89.52 ± 0.05 73.09 ± 0.65 77.52 ± 0.34 65.46 ± 0.46 85.25 ± 0.38 97.77 ± 0.11
PhenomNN 77.11 ± 0.45 89.81 ± 0.05 73.09 ± 0.65 78.12 ± 0.24 65.77 ± 0.45 85.40 ± 0.42 97.77 ± 0.11

NTU2012* ModelNet40* Yelp House(1) Walmart(1) House(0.6) Walmart(0.6) 20Newsgroups
PhenomNNsimple-clique 90.36 ± 1.80 98.64 ± 0.23 31.76 ± 0.42 70.93 ± 2.25 61.84 ± 0.66 86.40 ± 1.60 77.38 ± 0.17 81.74 ± 0.52
PhenomNNsimple-star 90.68 ± 1.38 98.50 ± 0.13 32.18 ± 0.41 71.21 ± 2.19 64.11 ± 0.49 86.26 ± 1.51 78.38 ± 0.21 81.47 ± 0.38
PhenomNNsimple 91.03 ± 1.04 98.66 ± 0.20 32.26 ± 0.40 71.77 ± 1.68 64.11 ± 0.49 86.96 ± 1.33 78.46 ± 0.32 81.74 ± 0.52
PhenomNN-clique 90.14 ± 1.26 98.55 ± 0.16 31.58 ± 0.53 70.37 ± 2.66 60.96 ± 0.37 85.00 ± 1.82 77.19 ± 0.25 81.07 ± 0.54
PhenomNN-star 90.38 ± 1.78 98.61 ± 0.17 31.92 ± 0.36 69.50 ± 2.34 63.82 ± 0.49 85.22 ± 1.67 78.26 ± 0.26 81.11 ± 0.36
PhenomNN 90.62 ± 1.88 98.61 ± 0.17 31.92 ± 0.36 70.71 ± 2.35 63.82 ± 0.49 85.22 ± 1.67 78.26 ± 0.26 81.41 ± 0.49

Table 6. Results with different hidden sizes of PhenomNNsimple. NTU2012*, ModelNet40*, House(1), and House(0.6) are four representa-
tive datasets from Table 2 in the main paper. The ’/’ symbol indicates that the result was not computed because this dimension is higher
than what’s used in our paper and previous works.

Model Hidden NTU2012* ModelNet40* House(1) House(0.6)

PhenomNNsimple

512 / 98.66 ± 0.20 71.77 ± 1.68 86.96 ± 1.33
256 91.03 ± 1.04 98.57 ± 0.14 69.38 ± 2.47 86.12 ± 2.11
128 89.46 ± 1.39 98.42 ± 0.15 68.60 ± 1.96 84.56 ± 1.42
64 89.96 ± 1.26 98.51 ± 0.21 68.66 ± 2.10 85.44 ± 1.46
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C. Proofs
C.1. Proof of Proposition 4.1

We first reproduce the proposition here for ease of comparison. Suppose g2(Z,U ;ψ) is removed from (1), H0 = H1 = I ,
and define Z∗ ≜ D−T

H BTY . It then follows that

minZ ℓ(Y, Z;ψ) = g1(Y,X;ψ) +
∑n

i=1 ϕ(yi) + 2λ0tr[Y TLCY ] + λ1tr

([
Y
Z∗

]T
LS

[
Y
Z∗

])
(38)

= g1(Y,X;ψ) +
∑n

i=1 ϕ(yi) + 2λ0tr[Y TLCY ] + λ1tr[Y T L̄SY ] (39)

Moreover, if G is me-uniform, then under the same assumptions

min
Z

ℓ(Y,Z;ψ) = g1(Y,X;ψ) +

n∑
i=1

ϕ(yi) + βtr[Y TLCY ], (40)

where β ≜ 2λ0 +
λ1

me
.

Proof. After removing g2(Z,U ;ψ) from ℓ(Y,Z;ψ) and setting H0 = H1 = I , we have

ℓ(Y,Z;ψ) = g1(Y,X;ψ) +

n∑
i=1

ϕ(yi) +

m∑
k=1

ϕ(zi) + λ0
∑
ek∈E

∑
i∈ek

∑
j∈ek

||yi − yj ||22 + λ1
∑
ek∈E

∑
i∈ek

||yi − zk||22 (41)

First we know ∑
ek∈E

∑
i∈ek

∑
j∈ek

||yi − yj ||22 = 2tr[Y TLCY ] (42)

from the definition of Laplacian LC . Then we solve Z∗ for minimizing (41). If there were no ϕ term, then it follows that
z∗k = MEAN(yi|i ∈ ek), because the mean function minimizes the sum of squared errors. However, because each yi is
forced to be positive by ϕ, the resulting mean will also be positive and therefore feasible as well. Therefore, the mean
estimator will remain optimal even if we include the ϕ term.

It can also be shown that the aforementioned mean estimator satisfies

Z∗ = D−T
H BTY, (43)

and hence ∑
ek∈E

∑
i∈ek

||yi − z∗k||22 = tr

([
Y
Z∗

]T
LS

[
Y
Z∗

])
(44)

from the definition of Laplacian LS . This expression then allows us to reproduce (38). Processing further, we have

∑
ek∈E

∑
i∈ek

||yi − z∗k||22 =
∑
ek∈E

∑
i∈ek

||yi −
∑

j∈ek
yj

mek

||22

=
∑
ek∈E

1

mek

∑
i∈ek

∑
j∈ek

||yi − yj ||22

= tr[Y T L̄SY ], (45)

which leads to (39).

Recall the definition of AC = BBT and ĀS = BD−1
H BT , so if G is me-uniform, it means all diagonal elements in DH is

me, so we have

ĀS = BD−1
H BT =

1

me
BBT =

1

me
AC . (46)
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From the definition of L̄S , we get

L̄S = D̄S − ĀS

=
1

me
DC − 1

me
AC

=
1

me
LC , (47)

which leads to (40).

C.2. Proof of Proposition 5.1

It is notable that the updating consists of two parts (14) and (15) using the proximal gradient descent we discussed before.
So the main point here is to prove the descent of (14) for ψ = {W,H0, H1} for Proposition 5.1 and ψ = {W, I, I} for
Corollary 5.2 respectively.

We first provide a basic mathematical result.

Lemma C.1. (Roth’s Column Lemma (Henderson & Searle, 1981)). For any three matrices X,Y and Z,

vec(XYZ) = (Z⊤ ⊗X)vec(Y) (48)

We now proceed with the proof of our result.

Proof. The gradient of ℓ̄(Y ;ψ) is as follows:

∇Y ℓ̄(Y ;ψ) = 2
(
λ0(DCY − ỸC) + λ1(ĀSY − ỸS) + Y − f (X;W )

)
, (49)

where ỸC = ACY (H0 +HT
0 )−DCY H0H

T
0 and ỸS = ĀSY (H0 +HT

0 )− D̄SY H0H
T
0 . We rewrite the equation in

∇Y ℓ̄(Y ;ψ)

2
= (I+ λ0DC + λ1ĀS)Y − f (X;W )

−λ0(ACY (H0 +HT
0 )−DCY H0H

T
0 )

−λ1(ĀSY (H0 +HT
0 )− D̄SY H0H

T
0 ), (50)

We do vectorization on both sides of (50) to obtain:

vec(∇Y ℓ̄(Y ;ψ))

2
= (I+ λ0I ⊗DC + λ1I ⊗ ĀS)vec(Y )− vec(f (X;W ))

−vec
(
λ0(ACY (H0 +HT

0 )−DCY H0H
T
0 )
)

−vec
(
λ1(ĀSY (H0 +HT

0 )− D̄SY H0H
T
0 )
)
, (51)

Here, using Roth’s Column Lemma C.1 to rewrite equation (51)

vec(∇Y ℓ̄(Y ;ψ))

2
= (I+ λ0I ⊗DC + λ1I ⊗ ĀS)vec(Y )− vec(f (X;W ))

−vec
(
λ0(H0 +HT

0 )⊗ACY
)
+ vec

(
λ0H

T
0 H0 ⊗DCY

)
−vec

(
λ1(H0 +HT

0 )⊗ ĀSY
)
+ vec

(
λ1H

T
0 H0 ⊗ D̄SY

)
, (52)

This is needed behind but for now we just leave it. Then we write the updating after pre-conditioning in

Ȳ (t+1) = Y (t) − αD̃−1∇Y (t) ℓ̄(Y ;ψ), (53)
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where D̃ = λ0DC + λ1D̄S + I .

Do vetorization on both sides turns (53) to :

vec(Ȳ (t+1)) = vec(Y (t))− αvec(D̃−1∇Y (t) ℓ̄(Y ;ψ)) (54)

= vec(Y (t))− αD̂−1vec(∇Y (t) ℓ̄(Y ;ψ)), (55)

where D̂−1 = I ⊗ D̃−1. Note that we apply Roth’s column lemma to (54) to derive (55).

From the property of strongly convex function ℓ(Y ;ψ), We know the following inequality holds for any Ȳ (t+1) and Y (t):

ℓ(Ȳ (t+1);ψ) ≤ ℓ(Y (t);ψ) + vec(∇Y (t) ℓ̄(Y ;ψ))⊤vec(Ȳ (t+1) − Y (t))

+
1

2
vec(Ȳ (t+1) − Y (t))⊤∇2

Y (t) ℓ̄(Y ;ψ)vec(Ȳ (t+1) − Y (t)), (56)

where ∇2
Y (t) ℓ̄(Y ;ψ) is a Hessian matrix whose elements are ∇2

Y (t) ℓ̄(Y ;ψ)ij =
∂ℓY (Y )

∂vec(Y )i∂vec(Y )j
|Y=Y (t) .

Applying the gradient descent update vec(Ȳ (t+1) − Y (t)) = −αD̂−1vec(∇Y (t) ℓ̄(Y ;ψ)), we get:

ℓ(Ȳ (t+1);ψ) ≤ ℓ(Y (t);ψ)− (D̂−1vec(∇Y (t) ℓ̄(Y ;ψ)))⊤(αD̂)(D̂−1vec(∇Y (t) ℓ̄(Y ;ψ)))

+ (D̂−1vec(∇Y (t) ℓ̄(Y ;ψ)))⊤(
α2

2
∇2

Y (t) ℓ̄(Y ;ψ))(D̂−1vec(∇Y (t) ℓ̄(Y ;ψ))). (57)

If αD̂ − α2

2 ∇2
Y (t) ℓ̄(Y ;ψ) ≻ 0 holds, then gradient descent will always decrease the loss, and furthermore, since ℓ(Y ;ψ)

is strongly convex, with proximal descent, it will monotonically decrease the loss until the unique global minimum. To
compute ∇2

Y (t) ℓ̄(Y ;ψ), we differentiate (52) and arrive at:

∇2
Y (t) ℓ̄(Y ;ψ) = 2(I+Q− P +D). (58)

where D = λ0I ⊗DC + λ1I ⊗ ĀS and Q and P is in Proposition 5.1. Returning to the above inequality, we can then
proceed as follows:

αD̂ − α2

2
(I+Q− P +D) = α(I+ λ0I ⊗DC + λ1I ⊗ D̄S)− α2(I+Q− P + λ0I ⊗DC + λ1I ⊗ ĀS)

= (α− α2)(I+ λ0I ⊗DC) + λ1I ⊗ αD̄S − α2(Q− P + λ1I ⊗ ĀS)

≻ [(α− α2)(1 + λ0dCmin) + αλ1dSmin]I− α2(Q− P + λ1I ⊗ ĀS). (59)

If α satisfies [(α−α2)(1+λ0dCmin)+αλ1dSmin]I−α2(Q−P +λ1I ⊗ ĀS) ≻ 0, then αD̂− α2

2 ∇2
Y (t) ℓ̄(Y ;ψ) ≻ 0 holds.

Therefore, a sufficient condition for convergence to the unique global optimum is:

(α− α2)(1 + λ0dCmin) + αλ1dSmin − α2σmax > 0. (60)

where σmax is the max eigenvalue of (Q− P + λ1I ⊗ ĀS) Consequently, to guarantee the aforementioned convergence we
arrive at the final inequality:

α <
1 + λ0dCmin + λ1dSmin

1 + λ0dCmin + σmax
. (61)

C.3. Proof for Corollary 5.2

This proof is more simpler because without compatibility matrix we don’t need vectorization here. For ψ = {W, I, I}, the
gradient becomes

∇Y ℓ̄(Y ;ψ) = 2(λ0LC + λ1L̄S)Y + 2Y − 2f (X;W ) , (62)

16



From Hypergraph Energy Functions to Hypergraph Neural Networks

The Hessian matrix is

∇2
Y (t) ℓ̄(Y ;ψ) = 2(λ0LC + λ1Ls + I). (63)

While all other conditions are similar, we rewrite (59) in

αD̂ − α2

2
∇2

Y (t) ℓ̄(Y ;ψ) = α(λ0DC + λ1D̄S + I)− α2(λ0LC + λ1L̄S + I)

= (α− α2)(λ0DC + λ1D̄S + I) + α2(λ0AC + λ1ĀS)

≻ (α− α2)(λ0dCmin + λ1dSmin + I) + α2(λ0AC + λ1ĀS) (64)

To make (α− α2)(λ0dCmin + λ1dSmin + I) + α2(λ0AC + λ1ĀS) ≻ 0 a sufficient condition is that

(α− α2)(λ0dCmin + λ1dSmin + 1) + α2σmin > 0 (65)

where σmin is the min eigenvalue of (λ0AC + λ1ĀS). That comes to

α <
λ0dCmin + λ1dSmin + 1

λ0dCmin + λ1dSmin + 1− σmin
. (66)

D. Hyperparameters
Here we present hyperparameters for reproducing results in Table 1, Table 2 in Table 7 and 8 . And for Table 5 the hyperpa-
rameters are in Table 9 and 10. Note that in the ablation for combination coefficients, we re-searched for hyperparameters
for each combination.

Table 7. PhenomNNsimple hyperparameters for Table 1 and 2.

Dataset lr dropout hidden λ0 λ1 α prop step

Coauthorship/Cora 0.01 0.7 64 20 80 0.1 16
Coauthorship/DBLP 0.005 0.6 64 100 100 0.1 16

Cocitation/Cora 0.005 0.7 64 0 20 1 16
Cocitation/PubMed 0.02 0.7 64 0 20 0.1 16
Cocitation/Citeseer 0.005 0.7 64 1 20 1 16

NTU2012 0.001 0.2 128 1 1 0.1 16
ModelNet40 0.0005 0.4 128 1 1 0.05 16

NTU2012* 0.01 0.2 256 50 20 0.05 16
ModelNet40* 0.01 0 512 50 1 0.05 16

Yelp 0.01 0.1 64 1 100 0.1 4
House(1) 0.1 0 512 50 20 1

70 or (λ0 + λ1)
−1 16

House(0.6) 0.1 0 512 1 1 0.05 16
Walmart(1) 0.01 0 256 0 50 1 16

Walmart(0.6) 0.1 0 256 1 20 1 16
20Newsgroups 0.01 0.2 64 0.1 0 1 7
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Table 8. PhenomNN hyperparameters for Table 1 and 2.

Dataset lr dropout hidden λ0 λ1 α prop step

Coauthorship/Cora 0.001 0.8 64 20 100 0.1 16
Coauthorship/DBLP 0.001 0.6 64 1 1 1 16

Cocitation/Cora 0.01 0.6 64 0 20 1 16
Cocitation/PubMed 0.01 0.6 64 1 1 1 16
Cocitation/Citeseer 0.001 0.8 64 50 50 0.1 16

NTU2012 0.001 0.2 64 20 80 0.05 16
ModelNet40 0.0005 0.2 64 0 20 0.05 16

NTU2012* 0.01 0.2 256 100 20 0.05 16
ModelNet40* 0.001 0.2 512 0 20 0.05 16

Yelp 0.01 0.2 64 0 1 0.01 4
House(1) 0.01 0.2 64 50 100 0.05 16

House(0.6) 0.01 0.2 512 0 1 0.05 16
Walmart(1) 0.001 0 256 0 50 1 16

Walmart(0.6) 0.01 0 256 0 50 1 16
20Newsgroups 0.01 0 64 0.1 0.1 1 8

Table 9. PhenomNNsimple hyperparameters for combination ablation. For every dataset, the first row is PhenomNNsimple-clique, the second
is PhenomNNsimple-star.

Dataset lr dropout hidden λ0 λ1 α prop step

Coauthorship/Cora 0.01 0.7 64 20 0 0.1 16
Coauthorship/Cora 0.01 0.7 64 0 50 0.1 16

Coauthorship/DBLP 0.005 0.6 64 20 0 0.1 16
Coauthorship/DBLP 0.01 0.6 64 0 100 0.1 16

Cocitation/Cora 0.005 0.6 64 20 0 1 16
Cocitation/Cora 0.005 0.7 64 0 20 1 16

Cocitation/PubMed 0.1 0.5 64 20 0 1 16
Cocitation/PubMed 0.02 0.7 64 0 20 0.1 16
Cocitation/Citeseer 0.01 0.7 64 20 0 1 16
Cocitation/Citeseer 0.005 0.7 64 0 20 1 16

NTU2012 0.001 0.2 128 20 0 0.05 16
NTU2012 0.001 0.2 128 0 100 0.1 16

ModelNet40 0.0005 0.4 128 20 0 0.05 16
ModelNet40 0.0005 0.4 128 0 20 0.05 16

NTU2012* 0.001 0 256 80 0 0.05 16
NTU2012* 0.01 0 256 0 1 0.1 16

ModelNet40* 0.01 0.2 512 100 0 0.05 16
ModelNet40* 0.01 0 512 0 80 0.05 16

Yelp 0.01 0 64 50 0 0.01 4
Yelp 0.01 0.1 64 0 100 0.1 4

House(1) 0.01 0 512 80 0 0.05 16
House(1) 0.01 0 512 0 1 0.05 16

House(0.6) 0.1 0 512 1 0 0.05 16
House(0.6) 0.1 0 512 0 80 0.05 16
Walmart(1) 0.01 0 256 50 0 1 16
Walmart(1) 0.01 0 256 0 50 1 16

Walmart(0.6) 0.1 0 256 20 0 1 16
Walmart(0.6) 0.01 0 256 0 20 1 16

20Newsgroups 0.01 0.2 64 0.1 0 1 7
20Newsgroups 0.01 0.2 64 0 0.1 1 7
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Table 10. PhenomNN hyperparameters for combination ablation. For every dataset, the first row is PhenomNN-clique, the second is
PhenomNN-star.

Dataset lr dropout hidden λ0 λ1 α prop step

Coauthorship/Cora 0.001 0.8 64 1 0 0.1 16
Coauthorship/Cora 0.001 0.8 64 0 80 0.1 16

Coauthorship/DBLP 0.01 0.6 64 1 0 1 16
Coauthorship/DBLP 0.01 0.6 64 0 20 1 16

Cocitation/Cora 0.01 0.6 64 50 0 0.1 16
Cocitation/Cora 0.01 0.6 64 0 20 1 16

Cocitation/PubMed 0.01 0.6 64 1 0 1 16
Cocitation/PubMed 0.001 0.8 64 0 1 1 16
Cocitation/Citeseer 0.001 0.8 64 80 0 0.05 16
Cocitation/Citeseer 0.001 0.8 64 0 20 1 16

NTU2012 0.001 0.2 64 1 0 0.05 16
NTU2012 0.001 0.2 64 0 100 0.1 16

ModelNet40 0.001 0.4 64 1 0 0.05 16
ModelNet40 0.0005 0.2 64 0 20 0.05 16

NTU2012* 0.01 0.2 256 1 0 0.05 16
NTU2012* 0.01 0.2 256 0 20 0.05 16

ModelNet40* 0.001 0.2 512 1 0 0.05 16
ModelNet40* 0.001 0.2 512 0 20 0.05 16

Yelp 0.01 0.2 64 1 0 0.01 4
Yelp 0.01 0.2 64 0 1 0.01 4

House(1) 0.01 0 512 1 0 0.05 16
House(1) 0.01 0.2 64 0 1 1 16

House(0.6) 0.01 0 64 1 0 0.05 16
House(0.6) 0.01 0.2 512 0 1 0.05 16
Walmart(1) 0.01 0 256 80 0 0.05 16
Walmart(1) 0.001 0 256 0 50 1 16

Walmart(0.6) 0.01 0 256 20 0 0.05 16
Walmart(0.6) 0.001 0 256 0 50 1 16

20Newsgroups 0.01 0 64 0.1 0 0.05 8
20Newsgroups 0.01 0 64 0 0.1 1 8
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