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ABSTRACT

Pre-training is prevalent in deep learning for vision and text data, acquiring knowl-
edge from other datasets to improve the downstream tasks. However, when it comes
to tabular data, the inherent heterogeneity in the attribute and label spaces among
datasets makes it hard to learn shareable knowledge and encode it in a model. We
propose Tabular data Pre-Training via Meta-representation (TABPTM), aiming to
pre-train a general tabular model over a set of heterogeneous datasets. The key is
to embed data instances from any dataset into a common feature space, in which
an instance is represented by its distance to a fixed number of nearest neighbors
and their labels. Such a meta-representation standardizes heterogeneous tasks into
homogeneous local prediction problems, enabling training a model to infer the label
(or the score to each possible label) of an input instance based on its neighborhood
information. As such, the pre-trained TABPTM can be directly applied to new
datasets without further fine-tuning, regardless of their diverse attributes and la-
bels. Extensive experiments on 72 tabular datasets validate TabPTM’s effectiveness
(with and without fine-tuning) in both tabular classification and regression tasks.

1 INTRODUCTION

Pre-training has been the driving force for recent advances in artificial intelligence (Devlin et al.,
2019; Liu et al., 2019; Kirillov et al., 2023; Dosovitskiy et al., 2021). Foundation models in vision
and language all benefit from pre-training, using abundant images and documents collected from
multiple sources (Zhou et al., 2023a; Oquab et al., 2023; Radford et al., 2021). Once trained, these
models demonstrate remarkable generalizability to new tasks, even without fine-tuning. Such a
success, however, has yet to be witnessed in tabular data, even though the data format is ubiquitous
in many real-world applications such as financial prediction (Cao & Tay, 2001), recommendation
system (Richardson et al., 2007), and healthcare (Ogunleye & Wang, 2020).

One fundamental challenge is the inherent heterogeneity in tabular data from different sources and
tasks. A tabular dataset is typically represented by a matrix, with rows corresponding to instances and
columns to attributes (features) (Borisov et al., 2022). Beyond this homogeneity, tabular datasets can
be quite different in their dimensionality (i.e., numbers of columns) and the semantic meaning of each
dimension, even if they are for the same application. For example, different healthcare datasets can
encode different granularities and aspects of patient information; even at the same feature entry (e.g.,
the d-th column), the meaning is not necessarily the same (e.g., “age” or “height”). This is drastically
different from vision and text data (of the same language), in which different data sources typically
share the same “vocabulary” (e.g., pixel, patch, or sub-word definition) and similar relationships
between vocabulary “elements” (e.g., nearby pixels usually have similar colors). The lack of shared
vocabulary and relationships in tabular data hampers the joint training of a model on multiple datasets,
let alone the direct application of the pre-trained model to new downstream tasks.

We thus hypothesize, to pre-train a useful model for tabular data, one must first
answer the question: What is the shareable vocabulary across datasets, and what
transferable knowledge could be learned from these datasets?

Some recent work addresses this by taking advantage of the semantic meanings of columns (i.e.,
attributes). By transforming a data instance into the textual form (e.g., “Age is 20, height is 170, ...”),
one could tackle tabular data using language models (Hegselmann et al., 2023; Wang & Sun, 2022;
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Figure 1: An illustration of TABPTM vs. other training strategies on tabular data. Left: the vanilla training and
prediction pipeline, where tabular models are trained on each dataset separately. Middle: pre-training of a joint
model on top of the learned dataset-specific token representations (of each attribute), in which the representation
must be re-trained for downstream datasets. Right: TABPTM unifies heterogeneous tabular datasets via the
meta-representation using neighborhood information, allowing pre-training a shareable model to predict labels
based on such information, even without fine-tuning it on downstream datasets.

Liu et al., 2022a; Wang et al., 2023). When the semantic meanings are inaccessible or ill-defined —
which is quite common in the real world, such as healthcare or measurement data — some approaches
attempt to learn dataset-specific token representation for each attribute to transform different datasets
into a shareable feature space (Iwata & Kumagai, 2020; Kumagai et al., 2022; Liu et al., 2022b;
Wydmanski et al., 2023; Zhu et al., 2023). However, for new downstream tasks, these approaches
must first re-train task-specific token representations before applying the pre-trained model.

Seeing the limitations of this line of approach, in this paper, we explore a novel direction to pre-train a
general model for tabular data. We take inspiration from traditional work in dimensionality reduction
and manifold learning and recent work in comparing different neural network representations to
answer the question about shareable vocabulary across heterogeneous tabular data. In multidimen-
sional scaling, regardless of what the original tabular datasets encode, as long as they lead to the same
pairwise distance matrix between instances, they can be embedded into the same, low-dimensional
tabular matrix (Davison & Sireci, 2000; Carroll & Arabie, 1998; Torgerson, 1952). Likewise, in
manifold learning, a high-dimensional dataset can be re-represented by a lower-dimensional one if
they encode the same neighborhood relationship (Weinberger et al., 2004; Yan et al., 2006; Van der
Maaten & Hinton, 2008; Hinton & Roweis, 2002). Such cross-instance relationships are also used in
recent work to analyze learned deep representations: two pre-trained neural networks encode similar
knowledge if their features lead to similar affinity matrices among data instances, even if they are
built upon different architectures (Kornblith et al., 2019; Huh et al., 2024). In short, the relationships
among instances within a dataset could effectively serve as the shareable vocabulary across different
tabular datasets, regardless of their dimensionality and semantic meanings.

What transferable knowledge can we learn on top of the shareable vocabulary, i.e., the relationship
among instances? We draw inspiration from the legendary nearest-neighbor based machine learning
algorithms (Boiman et al., 2008; Wang et al., 2019; Sánchez et al., 1997; Chaudhuri, 1996; Zhang
et al., 2006; Chao et al., 2013). The key insight in these approaches is that an instance’s relationship
to a particular label could be inferred from its relationship to the nearest neighbors (of that label).

Putting things together, we propose Tabular data Pre-Training via Meta-representation (TABPTM), a
general tabular model and pre-training approach over heterogeneous tabular datasets. TABPTM starts
with representing a tabular data instance (i.e., a row) by the local context of its nearest neighbors in
(the training set of) the dataset. In this paper, we meta-represent each instance by a fixed-dimensional
vector encoding the distances to a fixed number of nearest neighbors (ordered by distances) and their
labels, while other methods may apply. Such a “meta-representation” standardizes heterogeneous
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datasets, rendering instances into a unifying form of the same dimensionality and semantic meaning,
and transforms heterogeneous prediction tasks into homogeneous local prediction tasks. TABPTM
then trains a joint neural network on the meta-representations of a large number of datasets to
learn to map the meta-representation — the neighborhood information — of each instance to the
ground-truth label. Such an ability to predict the label of a given instance in the local context can
then be transferred to new downstream tasks. Specifically, the pre-trained model by TABPTM can be
directly applied to a downstream tabular dataset (represented by the meta-representation) without
further fine-tuning, albeit that fine-tuning could further boost the performance. (See Figure 1 for a
comparison of TABPTM with other existing strategies that train and deploy tabular models.)

We extensively validate TABPTM on 72 tabular datasets with various scenarios. The results demon-
strate TABPTM’s effectiveness in acquiring shareable knowledge over datasets to achieve promising
generalizability on new classification and regression tasks. Our contributions are two-folded:
• We utilize meta-representations to reduce attribute heterogeneity and enable the pre-training of a

general model over tabular datasets.
• Based on the meta-representations, the pre-trained TABPTM can directly generalize to new tabular

datasets without further training, and achieve state-of-the-art accuracy in many datasets after
fine-tuning, as evidenced by extensive experiments on both classification and regression tasks.

Remark. Our TABPTM is conceptually related to TabPFN (Hollmann et al., 2023), which aims
to learn a general in-context model for tabular classification datasets. Given a downstream dataset,
TabPFN inputs the (whole) training set and each test instance into the pre-trained model, using
the learned interactions between the test instances and the training ones to make predictions. Our
TABPTM is particularly advantageous in three aspects. First, unlike TabPFN, which generates
in-context tasks in every training step and feeds all the corresponding instances into the model at once,
TABPTM pre-meta-represents each instance, enabling smaller batch sizes in training (hence more
training-efficient). Second, a similar property applies to testing: TABPTM can pre-meta-represent
every test instance and input only the meta-representations of the test instances into the model, hence
more testing-efficient. Third, putting these two points together, Hollmann et al. (2023) claimed that
their approach applies only to small datasets (with fewer than a thousand instances), while TABPTM
can be trained on and applied to much larger tabular datasets.

2 RELATED WORK

This section outlines key methods related to our paper, with a more detailed discussion available in
the appendix. Tabular data is one of the most common data forms in many fields (Richardson et al.,
2007; Vanschoren et al., 2014; Hamidieh, 2018). Recent efforts have extended deep neural network
successes to the tabular domain (Cheng et al., 2016; Wang et al., 2017; Gorishniy et al., 2021; Huang
et al., 2020; Shwartz-Ziv & Armon, 2022; Grinsztajn et al., 2022), and explore the feasibility of
general discriminative models that can adapt to a broad array of downstream datasets. The potential
for in-distribution generalization of pre-trained tabular models has been demonstrated in contexts
such as multi-task learning (Argyriou et al., 2006; Zhang & Yang, 2022; Rubachev et al., 2022; Luetto
et al., 2023) and self-supervised learning (Ucar et al., 2021; Bahri et al., 2022), where data from
various sources are in a consistent format. Some recent approaches utilize the deep neural network
to pre-train a more generalizable tabular model, taking the difference in attributes and labels into
account. The main difficulty lies in the ambiguity of shareable vocabulary and transferable knowledge
across datasets. One representative kind of approach addresses this by harnessing the semantic
meanings of column names (i.e., attribute names) to transform instances into text, thereby leveraging
large language models to enhance classification capabilities across diverse datasets (Liu et al., 2022a;
Hegselmann et al., 2023; Zhang et al., 2023a; Wang et al., 2023). Concurrently, other researchers
have focused on learning shared components, such as attribute-agnostic transformations, to provide
effective initial weights for models adapting to new tasks (Iwata & Kumagai, 2020; Liu et al., 2022b;
Zhang et al., 2023b; Shen et al., 2023; Zhu et al., 2023). Hollmann et al. (2023) addressed dataset
heterogeneity by padding attributes across datasets into the same size and utilizing the contextual
learning capabilities of transformers for classification tasks. Our proposed TABPTM standardizes
heterogeneous datasets into a uniform format using meta-representation. This enables the effective
pre-training of a model that can be directly applied to or minimally fine-tuned for downstream datasets
without necessitating additional parameters.
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3 PRELIMINARY

Learning with a single tabular dataset. We denote a tabular classification dataset as D =
{(xi, yi)}Ni=1 which has N examples (rows in the table) and C classes. The label yi ∈ {1, . . . , C}
and its one-hot form is yi ∈ {0, 1}C . The same discussion could be extended to the regression
scenario where the label yi ∈ R. Each instance xi ∈ X is depicted by d attributes (columns).1 The
goal is to estimate the posterior probability given an instance, i.e., Pr(yi | xi,D), often implemented
by a model f mapping from X to the label set Y . The generalization ability of f is measured by the
prediction accuracy on an unseen instance sampled from the same distribution as D.

Pre-training across multiple tabular datasets. Tabular datasets could be collected from various
sources. Assume there are T datasets D = {D1, . . . ,DT }, in which the attribute and label spaces of
the t-th dataset are denoted by Xt and Yt. Due to the inherent heterogeneity across datasets, we define
the number of instances, attributes (i.e., the dimension of an instance), and classes in dataset Dt as
Nt, dt, and Ct, respectively. Unlike multi-task or multi-view learning, which assumes one of Xt and
Yt is homogeneous (i.e., identical) across all datasets, we consider heterogeneous datasets where
the meanings of attributes and classes vary from one dataset to another. Regarding pre-training a
model f over T heterogeneous datasets, we expect f to deal with different attribute and label sets and
generalize its discerning ability to an unseen downstream task Du. There are two primary challenges
to pre-train f . The first is to determine the shareable “vocabulary” across datasets so that f can
learn from D and be applied to any heterogeneous dataset. The second is to identify and encode the
“transferable knowledge” from D into f , enhancing the generalizability of f such that it can improve
an unseen downstream task.

There are two types of generalization. The first is the direct generalization, which means the learned
f is able to predict an unseen instance xu

∗ in task Du directly without additional training:

ŷu∗ = f(xu
∗ | Du) , (1)

where the label of xu
∗ could be inferred via the shareable knowledge learned on the pre-training

datasets. In addition, the learned f can act as the initialization to be updated by several steps of
gradient descent, minimizing the empirical risk over the target dataset Du. This fine-tuning strategy
learns the task-specific property by fitting to Du. Due to the heterogeneity of datasets, additional
parameters such as the feature tokenizer are introduced to adapt the model on downstream tasks (Zhu
et al., 2023), which requires special tuning methods. Our goal is to develop a versatile general model
f that can be either directly applied to a target task or fine-tuned without introducing new parameters.

4 METHOD

Given the inherent heterogeneity in attribute and label spaces across various tabular datasets, the
core idea behind TABPTM is to standardize these diverse datasets, enabling the application of a
joint deep neural network. We begin by drawing inspiration from neighborhood-based methods
and introduce the concept of meta-representation, which serves as the foundation for TABPTM’s
pre-training strategy. TABPTM applies to both classification and regression tasks, which is illustrated
in Figure 2.

4.1 MOTIVATION FROM NEIGHBORHOOD EMBEDDING

Accurate estimation of the posterior Pr(yi | xi,D) is crucial for all classification and regression
tasks (Murphy, 2022). Utilizing the balloon kernel density estimator (Terrell & Scott, 1992) with a
uniform class prior, we can transform this posterior density into a neighborhood estimation problem,
which calculates the probability via the relationship between xi and its K nearest neighbors in D:

Pr(yi = c | xi,D) =
1

K

∑
j∈NK(xi,D)

I[yj = c] . (2)

I[·] is the indicator function, and N (xi;D) denotes the set of K nearest neighbors of xi w.r.t. a
specified distance dist(xi,xj). Instead of considering all instances in N (xi;D) equally, a variant of

1We assume all attributes of an instance are numerical (continuous). If there exist categorical (discrete)
attributes, we transform them into the one-hot forms in advance.
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Figure 2: An illustration of the Meta-Representation (MR) for classification. MR transforms hetero-
geneous tabular datasets with different dimensions into a homogeneous form. A dataset has a set of
K-dimension MRs, one for each class. The prediction scores for different classes could be obtained
via MRs. We pre-train a joint model on MRs of different datasets and extend its generalization ability
to downstream datasets. The right figure shows the MR of an instance, containing distances from an
instance to the nearest neighbors of a certain class, characterizes the class membership patterns.

the estimator re-weights the influence of neighbors, allocating larger weight to closer neighbors and
potentially enhancing prediction accuracy (Bishop, 2006; Rasmussen & Williams, 2006):

Pr(yi | xi,D) = (softmax ([−dist(xi,x1), . . . ,−dist(xi,xK)]))
⊤
YK . (3)

YK ∈ {0, 1}K×C is the label matrix for NK(xi;D), with each row corresponding to the one-hot
label of xi. This formulation also extends to regression, and we will discuss details in Appendix B.

Equation 3 indicates that an instance’s relationship to a particular label c can be inferred from
its relationship to the nearest neighbors associated with that label. This provides a general way
to deal with heterogeneous datasets, as the relationships among instances serve as a shareable
vocabulary across datasets, independent of dimensionality or semantic meaning. Thus, we can use
these relationships to construct a meta-representation that encodes transferable knowledge.

4.2 META-REPRESENTATION OF AN INSTANCE

Vanilla meta-representation. We describe how to obtain the vanilla meta-representation for any
instance in a tabular classification dataset D with C classes, and later for the regression case. Based
on the label of each instance, we partition the same-class instances in D into C sets: Dy=c =
{(xi, yi) | yi = c} ,∀c = 1, . . . . , C. Given a class c, we calculate the distance between an instance
xi to instances in Dy=c (with |Dy=c| instances in total), and sort them in an ascending order:

{dist(xi,x1), . . . ,dist(xi,xj), . . . ,dist(xi,x|Dy=c|)}
s.t. dist(xi,x1) ≤ . . . ≤ dist(xi,xj) ≤ . . . ≤ dist(xi,x|Dy=c|) . (4)

We then select the K smallest distance values in the set, which constructs the local context with K
nearest neighbors for the instance xi. We define a mapping ϕc from xi to its meta-representation
ϕc(xi) ∈ R2K for the c-th class by:

ϕc(xi) = [(dist(xi,x1), ŷ1), . . . , (dist(xi,xj), ŷj), . . . (dist(xi,xK), ŷK)] . (5)

ϕc(xi) captures the neighborhood distribution of an instance, containing both the distance between
an instance to the neighbors and the corresponding labels of the neighbors. ŷj in Equation 5
provides auxiliary label information for xi, for example, the semantic vector of the label. In our
implementation, we set ŷj in a one-vs.-rest manner based on its true label yj , which means ŷj = 1 if
yj = c, or ŷj = −1 otherwise. This sparse implementation indicates the relationship between xj

and class c. In our experiments, we will demonstrate if we use richer supervision from a stronger
tabular model’s prediction, the quality of the meta-representation as well as the discriminative ability
of TABPTM can be further improved.

ϕc(xi) reveals the membership of xi to a particular class based on its neighborhood context. If an
instance resides within a high-density region of a class (akin to being near the class center), the
majority of values in ϕc(xi) would typically be small, indicating proximity to neighboring instances
of that class. Conversely, if only a few values in ϕc(xi) are small, while most are large, it indicates
that the instance xi unlikely belongs to class c. In sum, the heterogeneous tabular classification tasks
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become homogeneous prediction tasks over the local context when we take advantage of ϕc(xi). No
matter what value the original dimension d of xi is, ϕc(xi) has a fixed dimension with value K,
standardizing the vectors and facilitating pre-training over heterogeneous tabular datasets. We set
Φ(xi) = {ϕc(xi)}Cc=1 as the meta-representation for the instance xi given the dataset.

In the regression case, labels in D are scalars. We obtain the K nearest neighbors from the whole
dataset, and use the similar form as Equation 5, i.e.,

Φ(xi) =
[
(dist(xi,x1), y1), . . . , (dist(xi,xK), yK)

]
. (6)

This K-dimensional meta-representation in the regression scenario depicts the relationship between
xi to the neighbors.

Metric-based meta-representation. The distance measure dist(·, ·) in Equation 4 plays an important
role when making decisions via the relationship between a given instance and others (Schölkopf
et al., 2001; Schölkopf & Smola, 2002). Yet, in the presence of high-dimensional features (large
d), relying on all attributes becomes computationally challenging. Moreover, the distance might be
unduly influenced by redundant or noisy attributes. To address this, we implement a distance metric
over raw attributes, which ensures that our final meta-representation accurately captures both the
properties of individual instances and the dataset.

The main challenge lies in designing an adaptive metric compatible with heterogeneous tasks. In this
paper, we first formulate the distance measure in the following form (more distances are investigated
in Appendix D):

dist(xi,xj) =

(
d∑

l=1

wl · |xil − xjl|p
) 1

p

, (7)

where xil denote the l-th dimension of xi. We set p ∈ {1, 2} and wl > 0 is a weight for each
dimension. When wl = 1, the distance in Equation 7 degenerates to Euclidean distance (p = 2)
or Manhattan distance (p = 1). Given the training set D = {X,Y } of a dataset where X and Y
denote the instance matrix and label vector, respectively, we derive feature weights from the mutual
information shared between individual attributes and their labels

wl = normalize (MI(X:l, Y )) . (8)

X:l is the l-th column of X , i.e., the vector containing values of the l-th attribute of all instances.
MI(·, ·) calculates the mutual information between two sets, which measures the dependency between
an attribute and the labels (Brown et al., 2012). The larger the mutual information, the more important
an attribute is, so that we increase its weight in Equation 7. The normalize(·) normalizes input values
by dividing their cumulative sum. The experiments validate that integrating this distance metric in
meta-representation significantly enhances the model’s generalization ability.

Meta-representation in the few-shot scenario. The previously discussed meta-representation
assumes there are at least K neighbors in the set Dy=c. However, in some applications like few-
shot classification or the existence of minority class, Dy=c might only contain a limited number of
neighbors smaller than K. To address the data scarcity challenge, we pad the meta-representation
with its last value (the largest distance) (Yang & Gopal, 2012).

4.3 A PILOT STUDY ON META-REPRESENTATION

Based on the definition of meta-representation, we use classification as an example to show its
discriminative ability and demonstrate it is shareable across different datasets.

We consider two datasets, i.e., “breast-cancer-wisc” (binary) and “dermatology” (multi-class). For
each dataset, we calculate the meta-representation Φ(xi) for all classes in their datasets. We partition
the meta-representation for the target class (ϕyi(xi)), and the ones for non-target classes (ϕc ̸=yi(xi))
into two sets. We set K = 8. As shown in Figure 3, we use red/blue to denote the previous two types
of meta-representation, respectively, and use different shapes to differentiate datasets.

We have several observations. First, the meta-representation w.r.t target and non-target classes are
separated (as shown by the dotted line), which indicates it is possible to determine the target class
of an instance by discerning the target meta-representation. Then, the meta-representations for
different datasets are mixed, which means meta-representation is able to be a general strategy for

6
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Class A
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(a) breast-cancer-wisc (binary)

Class 1
Class 2

Class 5
Class 6

Class 3
Class 4

(b) dermatology (multi-class)

MR for Target Class
MR for Non-Target Class

圆形： breast-cancer-wisc
X： maternal_health_risk
蓝色：非target类metafeature
红色：target类的metafeature

(c) Joint Space with MR.

Figure 3: Pilot study of Meta-Representation (MR) over two datasets “breast-cancer-wisc” (binary,
denoted by “+”) and “dermatology” (multi-class, denoted by “◦”). We use colors to distinguish
between different classes. (a) and (b) display the unique characteristics of each dataset. In (c), we
homogenize the datasets using MR, with red to indicate the MR for the target class (ϕyi

(xi)) and
blue for non-target classes (ϕc̸=yi

(xi), those not matching the true label). MR effectively integrates
both datasets into a joint space where their classifications can be implemented by the dotted line.

extracting shareable knowledge across datasets. Moreover, different datasets have diverse patterns
w.r.t. their meta-representations. For example, the target-class meta-representations denoted by “+”
are clustered while those denoted by “◦” are not. Thus, joint training on multiple datasets to predict
via meta-representations is necessary.

4.4 MAKING PREDICTIONS VIA META-REPRESENTATION

Classification. Given a dataset D, we represent an instance xi with Φ(xi) = {ϕc(xi)}Cc=1. Based
on the meta-representation, we need to obtain the prediction score for each class in a classification
task. Define the score for each class as

[s(xi)1, . . . , s(xi)C ] = TΘ ([ϕ1(xi), . . . , ϕC(xi)]) . (9)

TΘ is a transformation that captures the class membership patterns from the meta-representation
for each class and then outputs the corresponding class-wise classification scores based on the local
neighborhood context. Θ denotes the learnable parameters in T. In TABPTM, we implement T with
Multi-Layer Perceptron (MLP), i.e.,

s(xi)c = MLP(ϕc(xi)), ∀c = 1, . . . , C . (10)

The parameters of MLP are shared for all classes, whose detailed architecture is described in Ap-
pendix C. When multiple types of distances are used, we concatenate them together at first and then
use Equation 10 to map the concatenated meta-representation vectors to a scalar.

Based on the scores, the predicted class for xi is

ŷi = argmax
c

{s(xi)1, . . . , s(xi)C} . (11)

The classification strategy based on meta-representation fits heterogeneous tasks with different
attributes and class spaces. The meta-representation-based classification enables the usage of a joint
model over heterogeneous tasks.

Regression. Meta-representation could be applied to the tabular regression tasks in a similar manner.
Since the label is a continuous value, we map the meta-representation to a scalar

s(xi) = TΘ (Φ(xi)) . (12)

TΘ captures the continuous values in the neighborhood and sets the prediction for xi as a weighted
combination of its neighbor’s labels. We also implement T with MLP with learnable parameter Θ.

4.5 PRE-TRAINING WITH META-REPRESENTATION

Based on the previous discussions, we pre-train a joint model, i.e., the transformation TΘ, over D,
whose parameters are shared across multiple seen tabular datasets.

min
Θ

T∑
t=1

Nt∑
i=1

ℓ
(
TΘ(Φ(x

t
i)), y

t
i

)
. (13)
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Table 1: Average RMSE on 18 downstream regression datasets. The best results are in bold, and the
second-best results are underlined. The value beside the dataset name denotes the scale of the results.
For example, ×10 means all results should be multiplied by 10. “OOM” means out-of-memory.

↓ TABPTM SVM KNN XGBoost MLP FT-T TabR SAINT TANGOS TabNet PTaRL XTab

SPP×10 .1648 .2080 .3240 .1550 .1960 .1430 .1790 .1970 .2040 .4670 .3610 .4740
HPP×107 .1074 .1070 .1130 .1060 .1110 .1050 .1100 .1060 .1130 .1400 .1100 .1580
STO .7355 .9510 .7950 .8910 .9410 .9880 .9660 .7810 .8030 1.060 1.180 4.920
CDA×103 .4956 .6980 .5490 .4910 .5910 .6610 .5970 .5380 .5890 .6350 .5560 .7440
PMS×102 .1534 .1600 .1600 .1630 .1520 .1630 .1730 .1720 .1540 .1670 .1630 .1720
GCB .4828 .4880 .5040 .4440 .4870 .4840 .4840 .4860 .4840 .4880 .4840 .5020
ADO×103 .7374 .7960 .7880 .7750 .7720 .7710 .7730 .7730 .7810 .8200 .7670 1.300
CAC .1322 .1350 .1470 .1430 .1340 .1350 .1450 OOM .1390 .1590 .1380 .1780
AVE×103 3.080 6.390 4.680 .6980 9.770 9.940 9.930 9.920 9.810 3.310 3.480 9.980
DBT×10−1 .6617 1.110 .7070 .7840 .8530 .7360 .6230 .6390 .6880 1.030 .9600 1.450
ASU×10−1 .9036 1.860 1.080 .8420 1.010 .9380 .9040 1.010 1.070 1.110 1.290 3.020
VNV×10−1 1.015 1.020 1.070 1.030 .9880 1.000 1.030 1.020 1.020 1.010 .9910 1.010
SFA×102 .1830 .1890 .2010 .1670 .2020 .1810 .1840 .2000 .2000 .2310 .2190 .1870
PNH×10 .3318 .3380 .3860 .3400 .3320 .3270 .3300 .3340 .3370 .3330 .3350 .3830
PUH×10−2 .7804 2.560 2.780 .9380 1.300 .7760 .6070 .8810 .8920 .9190 1.610 2.860
SFU×10−1 .2032 .3480 .2210 .2540 .2390 .2550 .2310 .1890 .2220 .2980 .3080 .3690
SHP .4318 .4930 .4840 .4290 .4460 .4390 .4320 .4530 .4510 .4340 .4340 .4400
SAC×10 .3983 .4010 .4170 .4330 .4470 .4490 .4510 .4510 .4510 .4920 .4320 .4380

rank 2.444 7.833 7.667 4.500 5.833 4.833 5.667 5.588 6.333 8.556 6.556 10.278

The transformation TΘ, pre-trained across T datasets, links the meta-representation to the final
score. The loss ℓ(·, ·) measures the discrepancy between a prediction and the label, and we set
it as cross-entropy for classification and mean square error for regression. Given a downstream
dataset Du, we first obtain the meta-representation for each instance. Then the learned TΘ could
be applied directly without further training, or acts as a good initialization for fine-tuning without
additional parameters. Appendix C provides more details of TABPTM, including the pre-training
and deployment workflows of TABPTM in Algorithm 1 and Algorithm 2, respectively.

In summary, we treat the relationships among instances as a form of shareable vocabulary. Meta-
representation leverages these relationships between an instance and its nearest neighbors, transform-
ing the tabular prediction task into inferring an instance’s label based on its relationship to neighbors
of that label. TABPTM not only standardizes heterogeneous datasets but also facilitates the learning
of transferable knowledge.

5 EXPERIMENTS

We validate TABPTM on 72 open-source real-world tabular datasets from various fields (36 for
classification and 36 for regression), including medical, software, and speech recognition. We analyze
TABPTM as well as meta-representation in subsection 5.2 and Appendix E.

5.1 SETUPS

Datasets. Each 36 datasets for classification/regression are split into two parts: one is used as seen
datasets for pre-training, and another part is used as downstream datasets. We show the results of
one partition in the main paper and the results we exchange two partitions in Appendix E. For each
dataset, we randomly sample 80% of them as the training set, and the remaining 20% instances are
used for test. In the training set, we randomly hold out 20% of training instances as the validation set.

Evaluation criteria. After pre-training on all seen datasets, we evaluate the classification accuracy
and root mean square error (RMSE) of the model on downstream datasets for classification and
regression tasks, respectively. We use “TABPTM” to denote the method that we use the pre-trained
weights as the initialization and fine-tune the model on a downstream dataset without introducing
additional learnable parameters. The variant making predictions directly without additional training
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Table 2: Average accuracy on 18 downstream classification datasets. The best results are shown in
bold, and the second-best results are underlined.

↑ TABPTM SVM XGBoost MLP FT-T TabR SAINT TANGOS TabNet TabPFN XTab DEN

BAA 59.40 53.10 55.40 54.10 53.80 55.60 55.50 54.70 54.60 54.60 49.30 45.90
BCC 85.30 86.50 86.80 85.70 86.50 85.80 87.10 86.40 86.00 78.90 85.00 80.10
BCP 82.00 75.00 84.70 79.00 83.20 87.30 83.00 76.30 82.30 74.00 77.70 75.00
BCW 97.50 97.10 97.10 96.60 95.80 97.10 95.90 88.40 96.90 95.10 97.30 97.10
BLO 78.00 74.70 76.90 77.70 77.90 77.80 75.40 78.20 77.20 76.40 75.70 71.20
BRC 67.10 55.20 69.00 62.60 65.90 66.80 67.50 67.00 67.00 66.70 65.60 63.40
CDH 75.20 75.10 75.10 75.20 75.30 74.20 75.00 75.20 75.00 75.00 86.70 70.20
DER 99.20 98.60 99.00 98.50 99.50 98.60 98.40 98.80 98.90 89.50 80.00 97.70
ECH 81.20 77.80 75.60 79.80 74.10 78.00 80.20 70.40 76.50 69.90 84.40 80.30
ECS 67.40 75.10 67.80 67.20 67.80 66.20 67.70 67.80 67.10 67.20 66.30 72.90
FCC 77.30 76.70 79.20 78.80 78.00 77.90 77.60 77.60 78.60 77.00 72.80 71.00
HEC 52.30 55.70 50.60 52.20 51.90 53.80 53.90 51.90 52.00 49.80 51.30 47.50
KC2 83.10 81.90 79.60 84.50 79.10 82.00 77.80 81.60 83.10 79.70 84.40 82.60
MHR 68.70 67.00 81.90 73.20 69.60 73.80 78.10 74.10 71.40 58.80 54.30 56.80
SAF 81.90 83.50 83.20 81.80 80.60 84.60 83.60 82.90 80.30 79.70 68.80 78.30
SEB 92.80 92.80 92.70 92.90 92.90 92.80 93.00 92.90 92.80 92.90 92.80 92.10
TSE 48.30 49.20 51.90 49.70 51.20 49.20 50.20 50.40 49.30 49.20 46.70 31.50
WAQ 91.10 89.80 89.40 89.40 88.70 88.80 89.60 89.60 89.20 88.40 88.00 88.20

rank 4.556 6.333 4.611 5.722 5.667 5.444 4.889 5.278 6.111 9.056 8.278 9.500

will be analyzed in the appendix. The average accuracy over 10 random seeds is reported (Gorishniy
et al., 2021). We also use the average rank over all datasets to compare the ability of different methods
following Delgado et al. (2014); McElfresh et al. (2023).

Comparison methods. We compare TABPTM with three types of methods. First are the classical
methods such as Support Vector Machine (SVM) and XGBoost (Chen & Guestrin, 2016). The
second part contains deep tabular models, such as Multi-Layer Perceptron (MLP) (Kadra et al., 2021),
FT-Transformer (FT-T) (Gorishniy et al., 2021), TabCaps (Chen et al., 2023a), and TabR Gorishniy
et al. (2024). The third part involves methods that make predictions with a pre-trained model, such as
XTab (Zhu et al., 2023), DEN (Liu et al., 2022b), and TabPFN (Hollmann et al., 2023).

Implementation details. We implement our model, i.e., TΘ with a three-layer MLP. During the
pre-training, we set the learning rate as 0.001 and randomly sample 1024 examples from a seen dataset
in each iteration. For the first two groups of comparison methods, we tune their hyper-parameters
and carry out early stopping on the corresponding validation set of a given dataset. For the last type
of comparison methods and ours, we use a model’s average accuracy/RMSE over all validation sets
of the seen datasets to tune the hyper-parameters. For TABPTM, we fine-tune the pre-trained weights
on a downstream dataset with a learning rate of 0.01 and 30 epochs. The model in the final epoch is
utilized for evaluation. We set K = 16 for regression and K = 128 for classification.

5.2 GENERALIZATION ABILITY OF THE PRE-TRAINED MODEL

Results on regression tasks. The average RMSE results are listed in Table 1. After pre-training on
18 regression datasets, TABPTM not only outperforms representative deep tabular models like TabR
but also outperforms the boosting method XGBoost. The deep tabular baseline MLP is trained over
raw features for each downstream dataset separately. Although our TABPTM also adopts the MLP
architecture, it is clear that the pre-trained model extracts the shareable knowledge across datasets and
with better generalization ability. XTab learns a joint transformer module during pre-training, and the
remaining parameters of a model are further fine-tuned for each downstream task. Our TABPTM
outperforms XTab on most datasets without introducing additional learnable parameters. In summary,
TABPTM provides an efficient and effective solution for tabular regression.

Results on classification tasks. The average comparison accuracy results are reported in Table 2.
Methods like XGBoost and XTab get good results on certain datasets, but our TABPTM obtains
good performance in general (with the best average rank). In summary, since the main computational
burden of TABPTM comes from the nearest neighbor search, MLP inference, and fine-tuning with
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Figure 4: Average RMSE or accuracy of few-shot regression over multiple trials. For each downstream
dataset, {5, 10, 20, 50} examples per class (shot) are randomly sampled as the training set.

Table 3: Comparison between variants of XGBoost and TABPTM on two regression datasets (STO
and ADO with RMSE criterion) and two classification datasets (BAA and BLO with accuracy results).
XGBoostMR denotes we train XGBoost on meta-representation. TABPTMS means we train the
top-layer model in TABPTM directly without leveraging the pre-trained model.

XGBoost XGBoostMR TABPTMS TABPTM

STO ↓ 0.8910 0.7809 0.7692 0.7355
ADO ↓ 775.0 749.1 758.3 737.4

BAA ↑ 55.40 57.91 56.82 59.40
BLO ↑ 76.90 77.70 76.40 78.00

a limited number of gradient descent, the overall inference time cost of TABPTM is very low. So
our TABPTM makes fast yet accurate predictions, which could be a good choice when the model
deployment efficiency is emphasized in some real-world applications.

5.3 ABLATION STUDIES

Few-Shot Learning Ability of TABPTM. We further investigate whether TABPTM also keeps its
superiority when the training set is very small, on both regression and classification tasks. In this
few-shot evaluation, we show the RMSE/accuracy change when the number of instances per class
(shot) increases in {5, 10, 20, 40}. We mainly compare with XGBoost, the few-shot tabular model
TabPFN (only works for classification tasks), and the pre-training tabular approach XTab. Due to the
limited number of training instances, we use their default hyper-parameters. The few-shot results of
four datasets are shown in Figure 4. Results indicate that TABPTM outperforms others in most cases,
verifying its few-shot generalization ability.

The Role of the Shared Top-Layer Model. We investigate whether the MLP learned in the
pre-training stage indeed encodes shareable knowledge and facilitates the downstream prediction
tasks. We consider two comparison variants. First, we train XGBoost on the meta-representation
of a given dataset, which is denoted by XGBoostMR. Then, we also train the top-layer MLP in
TABPTM directly without leveraging the pre-trained model, which is denoted by TABPTMS. The
results are listed in Table 3. We find XGBoostMR outperforms vanilla XGBoost, which means the
proposed meta-representation helps both classification and regression. By comparing TABPTM and
TABPTMS, we find TABPTM achieves better performance, which indicates the pre-trained top-layer
MLP indeed encodes shareable knowledge that helps the downstream tasks. The superiority of
TABPTM over XGBoostMR further validates its strong generalization ability. The additional ablation
studies discussed in subsection E.5 further validate that the pre-trained model successfully encodes
shareable knowledge, significantly enhancing downstream tabular prediction capabilities.

6 CONCLUSION

Considering the large amount of heterogeneous tabular datasets in many machine learning fields,
we explore a way to pre-train a general model and extend its classification or regression ability to
downstream datasets. We address the primary challenge of disparate attribute and label spaces across
datasets via meta-representation. Our pre-trained TabPTM can be directly applied to unseen datasets
or be fine-tuned without modifying the architecture. The model achieves competitive performance in
various scenarios, which validates its effectiveness.
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7 REPRODUCIBILITY STATEMENT

We use CPU: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz and GPU: 4 × NVIDIA RTX 6000
Ada Generation in our experiments. The code is available at https://anonymous.4open.
science/r/TabPTM-code/.
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There are five parts in the appendix:

• Appendix A: Additional related methods;

• Appendix B: Motivation of meta-representation from nearest neighbor model;

• Appendix C: More details and discussions of our TABPTM approach;

• Appendix D: Details of the experimental setups;

• Appendix E: Analysis of meta representation and additional ablation studies on TABPTM.

• Appendix F: Experimental results of main tables including standard deviation;

APPENDIX A ADDITIONAL RELATED METHODS

Learning with tabular data. Tabular data is one of the most common data forms in many
fields (Richardson et al., 2007; Vanschoren et al., 2014; Hamidieh, 2018), and a lot of classical
machine learning methods have been developed for tabular data, such as XGBoost (Chen & Guestrin,
2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018). Recently, researchers
have tried to extend the success of deep neural networks such as multi-layer perceptron (Gorishniy
et al., 2021), Transformer (Huang et al., 2020), and diffusion models (Kotelnikov et al., 2023) from
visual and textual domains to the tabular fields (Borisov et al., 2022). Attribute embeddings (Song
et al., 2019) and deep architectures have been designed (Guo et al., 2017; Katzir et al., 2021; Chen
et al., 2023b) for tabular data, and some simple baselines can achieve competitive results as the classi-
cal methods after carefully tuned (Kadra et al., 2021; Jeffares et al., 2023). Deep tabular models have
the flexibility for various scenarios and can be incorporated well with the classical methods (Cheng
et al., 2016; Wang et al., 2017; Shwartz-Ziv & Armon, 2022; Grinsztajn et al., 2022).

Reuse a heterogeneous tabular model. Instead of training a tabular model from scratch on a new
task, reusing a pre-trained model from a related task becomes a useful choice, especially when
efficiency is emphasized (Tommasi et al., 2014; Kuzborskij & Orabona, 2017; Aghbalou & Staerman,
2023). In addition to the distribution shift between the pre-trained and the target tasks, the changes in
their attribute spaces as well as the label spaces make the transfer of a tabular model challenging (Hou
& Zhou, 2018; Ye et al., 2021). Tabular model reuse across heterogeneous datasets usually relies on
some assumptions, e.g., the existence of a set of overlapped attributes between two datasets (Hou
et al., 2022; Levin et al., 2023; Onishi et al., 2023; Zhou et al., 2023b) and the column meanings (the
textual names of all attributes) (Wang & Sun, 2022).

Learning with multiple tabular datasets. One more step to take advantage of the ability of deep
neural networks on tabular fields is to pre-train a discriminative model on a large number of tabular
datasets and extend its ability to downstream tasks. The in-distribution generalization ability of a
pre-trained tabular model has been validated in multi-task learning (Argyriou et al., 2006; Zhang
& Yang, 2022; Rubachev et al., 2022; Luetto et al., 2023) and self-supervised learning (Ucar et al.,
2021; Bahri et al., 2022), where all datasets are collected in a homogeneous form. In multi-view
learning, a model is required to capture the consistent nature among heterogeneous views, but those
multiple views of an instance are paired and share the same label space (Xu et al., 2013). Some recent
approaches utilize the deep neural network to pre-train a more generalizable tabular model, taking
the difference in attributes and labels into account. One representative kind of approach assumes the
existence of attribute names along with a dataset so that each instance could be transformed into a
text, then a large language model could be applied to generalize the classification ability (Liu et al.,
2022a; Hegselmann et al., 2023; Zhang et al., 2023a; Wang et al., 2023). Another thread of method
learns shared components such as attribute-agnostic transformation across datasets, which provides a
good model initialization for partial parameters given a downstream task (Iwata & Kumagai, 2020;
Liu et al., 2022b; Zhang et al., 2023b; Shen et al., 2023; Zhu et al., 2023). We propose TabPTM
to transform all datasets into a uniform form with meta-representation to enable the pre-training.
Then, the pre-trained model could be applied directly to a downstream dataset, or fine-tuned without
introducing additional parameters.

Meta-Representation. The notion of meta-representation has been previously leveraged in multi-
label learning to express the relationship between an instance and a specific label, which facilitates
decoupling the label correlations (Yang & Gopal, 2012; Zhang & Wu, 2015). The meta-representation
is also used together with the raw tabular features to assist text classification (Canuto et al., 2014;
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2018). In this paper, we provide a more general form of meta-representation, which contains both
the distance values as well as the label information, working in both classification and regression
tasks. Moreover, we employ meta-representation as a pivotal tool to construct a pre-trained model
that can effectively operate across multiple heterogeneous tabular datasets. We also emphasize the
metric-based variant and the strategies to deal with few-shot scenarios when a deep neural network is
pre-trained over the meta-representations.

APPENDIX B META-REPRESENTATION FROM THE NEAREST NEIGHBOR
PERSPECTIVE

As mentioned in Equation 2 in subsection 4.1, we can formulate the problem of estimating the
posterior density Pr(yi | xi,D) in the nearest neighbor form, and then represent the estimator with
meta-representation.

Given an instance xi, KNN calculates the distance between xi and other instances in D, assume
the K nearest neighbors (those K nearest instances to xi based on a particular distance measure
dist(·, ·)) are N (xi;D) = {(x1, y1), . . . , (xK , yK)}. Then, the label yi of xi is predicted based on
those labels in the neighbor set N (xi;D). For classification task with C classes, we assume the
one-hot form of a certain label yk in N (xi;D) is yk ∈ {0, 1}C , then we have

ŷi = argmax
c

 ∑
(xk,yk)∈N (xi;D)

yk


c

, (14)

where the confidence of C classes is calculated by voting from the neighbors, and the label is predicted
by the elements with the largest confidence. While for the regression case, yk ∈ R, we have

ŷi =
1

K

∑
(xk,yk)∈N (xi;D)

yk . (15)

The prediction is the average of the labels of the neighbors. Thus, in both classification and regression
cases, the nearest neighbor model transforms the prediction task over the whole dataset D into a
prediction task based on the local context N (xi;D). The neighborhoods of different instances reveal
the property of an instance, and vary significantly.

Instead of considering all instances in the neighborhood equally, a variant of the nearest neighbor
model re-weights the influence of the neighbors, i.e., making the nearer neighbors have more weight
in the prediction Bishop (2006); Rasmussen & Williams (2006); Vinyals et al. (2016). Given a vector
whose elements are the normalized distance between xi and its neighbors:

ϕ̂(xi) = softmax ([−dist(xi,x1), . . . ,−dist(xi,xK)]) , (16)

with ϕ̂(xi) ∈ RK
+ , where the softmax operator softmax(·) makes the sum of weights equals one.

Thus, the prediction for classification in Equation 14 could be updated by

ŷi = argmax
c

(
ϕ̂(xi)

⊤YK

)
c
, (17)

where we define YK ∈ {0, 1}K×C as the set of one-hot labels in N (xi;D), and each row of YK ∈
{0, 1} is the one-hot label of an instance. In addition, define the label vector [y1, . . . , yK ] ∈ RK , the
weighted version of regression prediction in Equation 15 becomes

ŷi = ϕ̂(xi)
⊤[y1, . . . , yK ] . (18)

Based on the prediction of KNN in Equation 17 and Equation 18, the label of an instance is
determined by both the transformed distance vector ϕ̂(xi) to the neighbors and their corresponding
labels. Therefore, we set our meta-presentation as the concatenation of both the distance values and
labels, which captures instance and label distribution in a local context. We then learn a transformation
TΘ in Equation 12 to map the meta-representation to the label and optimize the joint model over
multiple heterogeneous tabular datasets.
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The distance metric in KNN determines the set of neighbors and influences the discriminative
ability Xing et al. (2002); Weinberger & Saul (2009). By learning a metric that pulls similar instances
together and pushes dissimilar ones away from each other, the classification and regression ability of
nearest neighbor models is improved Kulis (2013); Bellet et al. (2015). The learned distance metric
is directly related to the number of attributes (dimension), and several special strategies, such as
semantic mapping, are required to apply a learned metric from one dataset to another Zhang & Yeung
(2010); Kulis et al. (2011); Yang et al. (2011). Instead of learning a separate distance metric for each
tabular task, we use mutual information to select related features given a tabular task automatically
in Equation 7, which acts as an adaptive metric in TABPTM. The learned weights of TABPTM are
shared among different heterogeneous tasks.

APPENDIX C DETAILS AND DISCUSSIONS OF TABPTM

In this section, we describe the detailed architecture of TABPTM as well as the whole training flow.
Finally, we discuss the relationship between TABPTM and some related methods.

C.1 DETAILS OF THE SCORE TRANSFORMATION

In Equation 9, we utilize a transformation TΘ to map the meta-representation to the prediction score
of an instance, for all C classes or the regression score. The transformation could be implemented
via various kinds of deep neural networks.

We describe the detailed architectures of the deep model following (Gorishniy et al., 2021). Multi-
Layer Perceptron (MLP) contains several layers of non-linear blocks

MLP(x) = Linear(MLPBlock(. . . (MLPBlock(x)))) (19)
MLPBlock(x) = Dropout(ReLU(Linear(x))) . (20)

The Linear block means a fully connected layer with linear projection. In the classification scenario,
MLP maps the class-wise meta-representation ϕc(xi) to the prediction score s(xi)c (a scalar):

s(xi)c = MLP(ϕc(xi)), ∀c = 1, . . . , C . (21)

Although this is a one-to-one mapping from the class-specific meta-representation to the confidence
score, we validate its effectiveness in our experiments. In the regression scenario, a single MLP is
applied to all the inputs.

The mapping T could also be implemented with Residual Network (ResNet) (He et al., 2016) and
Transformer (Vaswani et al., 2017). For example, ResNet has the following architecture:

ResNet(x) = Prediction (ResNetBlock (. . . (ResNetBlock (Linear (x))))) (22)
ResNetBlock(x) = x+Dropout(Linear(Dropout(ReLU(Linear(BatchNorm(x)))))) (23)

Prediction(x) = Linear(ReLU(BatchNorm(x))) . (24)

Different from MLP, ResNet has a residual link from its input to the output, and Batch Normaliza-
tion (Ioffe & Szegedy, 2015) is introduced in the building block of ResNet.

We investigate several choices of T in our experiments. We find the simple MLP (e.g., with three
layers) is competitive in most cases. Applying more complicated ResNet and Transformer cannot
obtain obvious improvements. Therefore, we set T with MLP, and better architectures can be explored
in further research.

C.2 THE PRE-TRAINING AND DOWNSTREAM APPLICATION WORKFLOW

TABPTM is a classification/regression model based on the meta-representation. The meta-
representation transforms an instance into a K-dimensional form no matter how many dimensions it
originally had, and the meta-representation extractor does not contain any learnable parameters.

The pre-training objective in Equation 13 is constructed based on the loss function of various pre-
training tabular datasets (seen datasets). The indexes of nearest neighbors for each instance xi are
calculated at the beginning of the optimization and recorded for later use. We optimize Equation 13
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Algorithm 1 Pre-training on multiple heterogeneous tabular datasets.

Require: T tabular training set D = {D1, . . . ,DT }, the initialized model TΘ

1: for all iteration = 1,... do
2: Sample a dataset Dt from D
3: Sample a mini-batch with B instances {xt

i, y
t
i}Bi=1

4: for all (xt
i, y

t
i) do

5: Get metric-based meta-representation Φ(xt
i) based on nearest neighbors in Dt

6: Obtain the prediction score TΘ(Φ(x
t
i))

7: if classification then
8: Predict via ŷti = argmaxc TΘ(Φ(x

t
i)) = {s(xt

i)1, . . . , s(x
t
i)Ct}

9: else
10: Predict via ŷti = TΘ(Φ(x

t
i)) for regression

11: end if
12: Compute loss ℓ(ŷti , y

t
i)

13: end for
14: Accumulate B losses as Eq. 13
15: Update Θ with SGD
16: end for
17: Return: Pre-trained model Θ

in a stochastic manner. In particular, we randomly select a seen tabular dataset and randomly
sample a mini-batch from the dataset in each iteration. For each sampled instance, we calculate the
metric-based meta-representation based on its neighborhood. For classification, we make predictions
with Equation 11, while for regression, we obtain the predicted label directly from the mapped
results TΘ(Φ(xi)). The pre-training phase of TABPTM on multiple heterogeneous tabular datasets
is summarized in Algorithm 1.

The learned TABPTM could be deployed with the following two options.

Direct Generalization. Since all tabular instances could be transformed into the homogeneous Φ(xi)
regardless of its original dimension, the learned TABPTM can be applied to a downstream tabular
dataset directly. We use classification on a downstream dataset with unseen classes and attributes
as an example, and the results are also reported in our experiments. Given a new dataset Du and a
corresponding test instance xu

∗ , we calculate the meta-representation of xu
∗ w.r.t. each one of the

Cu unseen classes. The distances between xu
∗ to the nearest neighbors in Du and the labels of those

neighbors are utilized to obtain the meta-representation. We obtain Cu meta-representations with
K-dimension, one for each class. Then we apply the learned model TΘ over them to obtain the
Cu-dimension class confidence vector without additional training. The instance is classified as one of
the unseen classes by selecting the index with the maximum confidence. We summarize this workflow
in Algorithm 2. The direct deployment requires the search of nearest neighbors in the downstream
dataset, which is fast and could be accelerated by some off-the-shelf methods.

Fine-Tuned Generealization. Another choice is to use the pre-trained TABPTM as initialization
and fine-tune the weights over the downstream task Du. In other words, the following objective is
minimized with gradient descent for several steps

min
Θ

∑
(xu

i ,y
u
i )∼Du

ℓ(TΘ(x
u
i ), y

u
i ) . (25)

The optimization starts from the learned weights Θ from the pre-training stage. Additional learnable
parameters are usually added when fine-tuning a pre-trained tabular model Zhu et al. (2023), and
the size of parameters is related to the dimension and class number of a downstream tabular data.
In TABPTM, it is notable that no additional learnable parameters are required to be added in this
deployment stage, which makes the fine-tuning efficient and avoids using special hyper-parameters
for different sets of parameters.
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Algorithm 2 Apply the pre-trained model to the downstream tabular dataset.

Require: Tabular training set Du, test instance xu
∗ , the learned model TΘ

1: Compute the metric-based meta-representation Φ(xu
∗) for xu

∗
2: if classification then
3: The meta-representation Φ(xu

∗) = {(ϕc(x
u
∗))}

Cu
c=1

4: Obtain the prediction score {TΘ(ϕc(x
u
∗))}

Cu
c=1

5: Predict via ŷu∗ = argmaxc {s(xu
∗)1, . . . , s(x

u
∗)Cu

}
6: else
7: Predict via ŷu∗ = TΘ(ϕ(x

u
∗))

8: end if
9: Return: The predicted label of xu

∗

Table 4: The detailed statistics of all tabular datasets. “Abbr.” means the abbreviation of the name of
the tabular dataset. The C and N denote the class number and the instance number of the datasets.
There are two types of attributes with numerical and categorical values, and we denote their numbers
as “Num.” and “Cat.”, respectively.

Name Abbr. Task type C N Num. Cat. Name Abbr. Task type C N Num. Cat.
Another-Dataset-on-used-Fiat-500-(1538-rows) ADO regression 1 1538 6 0 Bank_Customer_Churn_Dataset BCC binclass 2 10000 6 4
archive2 ARC regression 1 1143 11 1 CDC_Diabetes_Health_Indicators CDH binclass 2 253680 7 14
archive_r56_Maths ARM regression 1 397 1 29 E-CommereShippingData ECS binclass 2 10999 6 4
archive_r56_Portuguese ARP regression 1 651 1 29 Fitness_Club_c FCC binclass 2 11000 10 5
airfoil_self_noise ASN regression 1 1503 5 0 banknote_authentication BAA binclass 2 1382 4 0
analcatdata_supreme ASU regression 1 4052 7 0 kc2 KC2 binclass 2 522 21 0
auction_verification AVE regression 1 2043 6 1 maternal_health_risk MHR multiclass 3 1014 6 0
Bias_correction_r BCR regression 1 7725 21 0 seismic+bumps SEB binclass 2 2584 14 5
communities_and_crime CAC regression 1 1994 102 0 sports_articles_for_objectivity_analysis SAF binclass 2 800 57 2
combined_cycle_power_plant CCP regression 1 9568 4 0 turiye_student_evaluation TSE multiclass 5 5820 30 2
concrete_compressive_strength CCS regression 1 1030 8 0 water_quality WAQ binclass 2 7996 20 0
1000-Cameras-Dataset CDA regression 1 1038 10 0 blood BLO binclass 2 748 4 0
Contaminant-detection CDI regression 1 2400 30 0 breast-cancer BRC binclass 2 286 9 0
dataset_sales DAT regression 1 10738 10 0 breast-cancer-wisc BCW binclass 2 699 9 0
debutanizer DBT regression 1 2394 7 0 breast-cancer-wisc-prog BCP binclass 2 198 33 0
3D_Estimation_using_RSSI_of_WLAN_dataset EUR regression 1 5760 6 0 dermatology DER multiclass 6 366 34 0
Goodreads-Computer-Books GCB regression 1 1234 5 0 echocardiogram ECH binclass 2 131 10 0
housing_price_prediction HPP regression 1 545 5 7 heart-cleveland HEC multiclass 5 303 13 0
Is-this-a-good-customer ITA regression 1 1723 9 4 Basketball_c BAS binclass 2 1340 11 0
Parkinson_Multiple_Sound_Recording PMS regression 1 1040 26 0 diabetes DIA binclass 2 202944 3 18
puma8NH PNH regression 1 8192 8 0 mice_protein_expression MIC multi-class 8 1080 77 0
puma32H PUH regression 1 8192 32 0 Wilt WIL binclass 2 4821 5 0
Student_Alcohol_Consumption SAC regression 1 395 13 17 bank_marketing BAN binclass 2 45211 7 7
Shop_Customer_Data SCA regression 1 2000 4 2 statlog_german_credit_data STA binclass 2 1000 7 13
stock_fardamento02 SFA regression 1 6277 5 1 company_bankruptcy_prediction COM binclass 2 6819 93 2
sulfur SFU regression 1 10081 6 0 drug_consumption DRU multiclass 7 1884 12 0
Shipping SHP regression 1 10999 5 4 dry_bean_dataset DRY multiclass 7 13611 16 0
shrutime SHR regression 1 10000 4 6 internet_firewall INT multiclass 4 65532 7 0
satellite_image SIM regression 1 6435 36 0 heart-hungarian HEA binclass 2 294 12 0
Student_Performance_Portuguese SPP regression 1 397 15 17 heart-va HEV multiclass 5 200 12 0
stock STO regression 1 950 9 0 breast-cancer-wisc-diag BRE binclass 2 569 30 0
svmguide3 SVM regression 1 1243 22 0 mammographic MAM binclass 2 961 5 0
VulNoneVul VNV regression 1 5692 16 0 parkinsons PAR binclass 2 195 22 0
wine+quality WQA regression 1 6497 11 0 post-operative POS multiclass 3 90 8 0
Wine_Quality_white WQW regression 1 4898 11 0 primary-tumor PRI multiclass 15 330 17 0
Waterstress WTS regression 1 1188 22 0 spect SPE binclass 2 265 22 0

APPENDIX D DETAILS OF EXPERIMENTAL SETUPS

D.1 DATASETS

We experiment with 72 tabular datasets, which contain 36 datasets for classification and 36 datasets
for regression. The statistics of all the datasets are listed in Table 4. We use C and N to denote the
class number and the instance number of the datasets. For a regression task, we set C = 1. There
are two types of attributes with numerical and categorical values, and we denote their numbers as
“Num.” and “Cat.”, respectively. The datasets are collected from UCI Machine Learning Repository 2

or OpenML 3.

We use the same protocol for classification and regression. Given 36 datasets, we randomly split
them into two sets, each with 18 datasets. The experiments in the main paper utilize the first 18
datasets to pre-train TABPTM, and set the remaining ones as downstream datasets. In other words,
we pre-train the model using 18 heterogeneous tabular datasets, and evaluate its generalization ability
on 18 datasets with different sizes. We also evaluate other configurations of the pre-training and

2https://archive.ics.uci.edu/
3https://www.openml.org/
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downstream split. For example, we use the 18 datasets in the second part to pre-train the model and
the first 18 ones as the downstream datasets. The additional results are reported in Table 7 and Table 8.

D.2 ADDITIONAL IMPLEMENTATION DETAILS

We compare our TABPTM with different types of methods and describe the detailed way we tune
their hyper-parameters in this subsection. We mainly follow the setups in (Gorishniy et al., 2021) to
determine the hyper-parameters.

Classical methods and deep tabular methods. Both classical tabular methods (SVM, XGBoost)
and standard deep methods (MLP) are trained for each dataset separately. We use the official
hyper-parameter search spaces for deep tabular methods (FT-T, TabCaps, and TabR). We tune
their hyper-parameters and carry out early stopping on the corresponding validation set of a given
dataset. All hyper-parameters are selected by Optuna library4 with Bayesian optimization over 30
trials Gorishniy et al. (2021). The best hyper-parameters are used and the average accuracy/RMSE
over 10 different random seeds is calculated.

Pre-training and fine-tuning approaches. For TabPFN, we utilize the best official checkpoint, then
we apply TabPFN on a downstream dataset with its in-context learning ability. For XTab, We reuse
the checkpoint with the highest number of training epochs from the official implementation, then we
perform evaluations on the target datasets using XTab’s light fine-tuning approach. For DEN, we
divide all pre-training datasets into binary and multiclass groups. Each group is then used to train
models on their corresponding downstream unseen datasets. We set the learning rate as 0.001 and
fine-tune the transform block on the downstream tasks.

TABPTM. We implement our TABPTM with a three-layer MLP. The combination of three distances,
namely Euclidean distance, Manhattan distance, and Bray-Curtis distance, are utilized. The influence
of distances are investigated in Appendix E. During the pre-training, we randomly sample 1024
examples from a seen dataset in each iteration. When we fine-tune TABPTM in Table 1 and Table 2,
we set the learning rate as 0.01 and fine-tune the whole model for 30 epochs. The model in the last
epoch is saved for evaluation.

APPENDIX E ADDITIONAL EXPERIMENTS AND ANALYSES

We analyze the properties of TABPTM from the following aspects.

E.1 DIRECT GENERALIZATION OF TABPTM

The learned TABPTM has the ability to make predictions directly given a downstream dataset. The
results of this variant, denoted by TABPTMD are included in Table 9 and Table 10. We find that
the direct generalization of the pre-trained TABPTM is competitive in some cases (e.g., on “ADO”,
“DER”, and “ECH”), but fine-tuning TABPTM is still necessary on most datasets. One possible reason
is that different classes in classification tasks are differentiated by their discrete labels, which makes
cross-dataset generalization more difficult when compared with the continuous labels in regression. In
addition, we only use sparse labels {1,−1} in meta-representation for classification, which increases
the difficulty of discovering the shared pattern from the local context.

E.2 ANALYSIS OF META REPRESENTATION

Richer supervision helps in classification. As we mentioned in Equation 5, an auxiliary label ŷj is
appended after the distance value to provide the label information in the meta-representation. We set
ŷj following a one-vs.-rest manner in our implementation, which differentiates those instances in the
neighborhood belonging to a certain class. We investigate whether richer supervision in ŷj helps the
classification task.

Given a binary downstream dataset Du, we first train XGBoost with default hyper-parameters
(denoted as “teacher”), whose predictions (scalars) on the training set instances are used as a kind of
richer supervision to set ŷj . We train TABPTM from scratch on the downstream dataset, denoted by

4https://optuna.org/
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Table 5: Average accuracy on four classification datasets in Table 2. We use XGBoost with default
hyper-parameters as the “teacher”, whose predictions on an instance are appended to the meta-
representation as enriched supervision. TABPTM variants trained on a given dataset from scratch
with vanilla and enriched supervision are denoted as TABPTMS and TABPTMrich.

Dataset TABPTM XGBoost Teacher TABPTMS TABPTMrich

ECS 67.40 67.80 66.90 64.00 67.20
BAA 59.40 55.40 53.80 45.50 54.20
SEB 92.80 92.70 92.60 92.80 92.70
SAF 81.90 83.20 81.00 78.00 80.20

TABPTMS. We also train TABPTM with the supervision-enriched meta-representation from scratch
on the downstream dataset, denoted by TABPTMrich. Finally, we include the results of the fine-tuned
TABPTM pre-trained from various heterogeneous datasets. The results are reported in Table 5.

XGBoost with default hyper-parameters performs better than the vanilla trained TABPTMS in most
cases, so we set it as the teacher. With supervision-enriched meta-representation, we find TABPTMrich

outperforms TABPTMS, which validates our assumptions that we can improve the discerning ability
of the model by introducing richer supervision into the meta-representation. However, TABPTMS

cannot achieve as good results as TABPTM, so by training a joint model on heterogeneous tabular
datasets, it indeed learns shareable experience to achieve more discriminative models.

Possible explanations of the better regression results. The a bit improvement of regression results
to the classification ones may result from the form of meta-representation and the sharing of prediction
experience in TABPTM.

Regression tasks may benefit more from the local context. The core idea of meta-representation is to
make predictions in a local context (based on the neighborhood of an instance). Then, the model’s
ability depends on the “locality” of the true hypothesis, i.e., whether the decision function of an
instance depends on its neighborhood or not. Since we may provide estimates of the regression
function or conditional expectation by specifying the nature of the local neighborhood Ormoneit
& Hastie (1999); Hastie et al. (2009); Kpotufe & Garg (2013), it is more probable to predict the
continuous label of a center instance based on the weighted labels of its neighbors. Therefore, making
predictions via meta-representation may help regression tasks.

More shareable knowledge in regression. As depicted in Figure 3, the strategy for inferring an
instance’s label from the distribution of distances to its neighbors is applicable across heterogeneous
tabular tasks. For classification tasks, if an instance resides within a high-density region of a class
(akin to being near the class center), the majority of values in the meta-representation would typically
be small, indicating close proximity to neighboring instances of that class. Conversely, if only a
few values in the meta-representation are small, while most are large, it indicates that the instance is
likely located at the boundary among classes. Such a kind of discerning strategy is more shareable in
regression tasks, which works in a way that determines the label via the weighted combination of its
neighbors. Therefore, using a pre-trained model (the top-layer MLP in TABPTM) can be generalized
to downstream tasks.

Rich label information in regression. In addition to the distance values between a given instance
and its nearest neighbors, we append the labels of the neighbors into the meta-representation. The
labels in regression tasks are continuous, and even if two instances are close to each other, they
may have different label values, which introduces rich information. In contrast, since the labels in
classification tasks are discrete, two close instances may have the same label and only differ in their
distance values in meta-representation. In summary, the labels in regression tasks may introduce
richer supervision. We validate this assumption in the previous experiments. We use the prediction of
a well-trained XGBoost as the label of an instance in meta-representation, which transforms the labels
in classification tasks into continuous ones. The experiments validate that the TABPTM equipped
with such continuous labels outperforms the original one, which explains the different results in
regression and classification to some extent.
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Figure 5: Average rank (the lower, the better) on 18 downstream datasets as in Table 1 and Table 2.
Different dimension values K of meta-representation are used to pre-train TABPTM.

The influence of the metric on meta-representation. We compare the results when we pre-train
TABPTM over the vanilla meta-representation and its metric-based variant for regression tasks. Since
different regression tasks have diverse label ranges, we compare the change of average rank with and
without the metric. TABPTM gets an average rank of 1.941 over the 18 datasets in Table 1, compared
with 12 methods in total. If the metric is not used, the average rank increases to 2.765 (the lower, the
better). The results clearly indicate that the distance metric filters out redundant and noisy attributes,
which is necessary to improve the generalization ability of TABPTM.

E.3 THE INFLUENCE OF THE DIMENSION OF THE META-REPRESENTATION

In Equation 5, we consider the nearest K neighbors in the training set of each class in classification
and K neighbors in the whole training set for regression. Then the size of the meta-representation
is related to K. We set K = 8 for regression and K = 128 for classification by default in
previous experiments. We pre-train TABPTM over meta-representations with different dimensions K
in Figure 5, where we show the change of average rank on 18 downstream datasets when comparing
4 values of K. We find different types of downstream datasets may prefer various dimension values.

E.4 THE INFLUENCE OF THE DISTANCES IN META-REPRESENTATION

In Equation 5, a certain distance is utilized to obtain the nearest neighbors in the training set to
construct the meta-representation. The indexes of instances, as well as the distance values, depend on
the choice of distances. We consider several distance measures (equipped with the adaptive metric
in Equation 7. The average rank on 18 downstream datasets as in Table 1 and Table 2 based on
different distances as well as their combinations are investigated. “Man” denotes Manhattan distance,
“Euc” denotes the Euclidean distance, “Bra” denotes Bray-Curtis distance, “CAN” denotes Canberra
distance, “COS” denotes cosine distance, and “CHE” denotes Chebyshev distance. “MEB” denotes
the combination of Manhattan, Euclidean, and Bray-Curtis distances. The results in Figure 6 show
the change of average rank on 18 downstream datasets when comparing seven distance choices. The
Manhattan distance works the best for regression, and the combination of three distances is the best
choice for classification. We set the latter one as the default distance choice in TABPTM.

E.5 THE INFLUENCE OF PRE-TRAINING SIZE

To investigate the impact of varying pre-training data size on the performance of TABPTM, we split
the 18 pre-training datasets into two groups: one containing 6 datasets (HEA, HEV, BRE, MAM,
PAR, POS) and another containing 12 datasets, which included the initial 6 plus PRI, SPE, DIA,
MIC, WIL, and BAN. All other experimental settings remained consistent with those in Table 2. We
also compared the performance of models trained directly on individual downstream datasets using
the same meta-representation. Hyper-parameters were optimized using the Optuna library, with 30
trials and a maximum of 200 training epochs. This approach is referred to as “TABPTMS”.

We randomly selected six datasets as downstream tasks, and their accuracy, along with the average
performance rank across the four configurations over 18 downstream datasets, is presented in Table 6.
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Table 6: The change of classification accuracy when we increase the size of the pre-training datasets.
In addition to three sizes of the pre-training datasets, we also list the results training TABPTM directly
on a downstream dataset, corresponding to TABPTMS. We list the accuracy of six randomly selected
datasets and the average rank of four variants over the 18 downstream datasets. By enlarging the
pre-training size, we find TABPTM has enhanced performance for TABPTM.

Dataset 6 datasets 12 datasets 18 datasets TABPTMS

BAA 51.10 52.50 59.40 55.40
BCP 71.80 73.80 82.00 77.00
BLO 71.80 75.10 78.00 76.90
ECH 72.20 73.30 81.20 72.60
ECS 65.70 66.10 67.40 67.30
KC2 79.00 78.70 83.10 78.70

avg. rank 3.667 2.833 1.000 2.333
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Figure 6: Average rank (the lower, the better) on 18 downstream datasets as in Table 1 and Table 2.
Different distances or their combinations are used to obtain the meta-representation. “Man” denotes
Manhattan distance, “Euc” denotes the Euclidean distance, “Bra” denotes Bray-Curtis distance,
“CAN” denotes Canberra distance, “COS” denotes cosine distance, and “CHE” denotes Chebyshev
distance. “MEB” denotes the combination of Manhattan, Euclidean, and Bray-Curtis distances.

The results indicate that pre-training on a larger and more diverse set of datasets enhances TABPTM’s
ability to learn transferable knowledge for tabular predictions. Even with only 30 epochs of fine-
tuning, TABPTM significantly outperformed models that were fully trained for 200 epochs on
downstream datasets.

E.6 RESULTS WITH OTHER PRE-TRAINING DATASETS

Recall that there are 36 tabular datasets for both classification and regression. We randomly select
18 of them as the pre-training datasets and 18 of them as the downstream ones. We exchange the
pre-training and downstream datasets in this subsection. The results are shown in Table 7 and Table 8.
The results validate the regression and classification ability of TABPTM variants.

APPENDIX F WHOLE EXPERIMENTAL RESULTS

The full results including average RMSE/accuracy and standard deviation of Table 1 and Table 2 are
listed in Table 9 and Table 10, respectively. The standard deviation of TABPTM also comes from the
estimation of mutual information when constructing the metric-based meta-representation.
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Table 7: Average RMSE on 18 downstream datasets (the lower, the better). We use another set of
18 datasets as the pre-training datasets w.r.t. Table 1. The best results are shown in bold, and the
second-best results are underlined. The value beside the dataset name denotes the scale of the results.

TABPTM SVM KNN XGBoost MLP FT-T TabR SAINT TANGOS TabNet PTaRL XTab

ARM×10 .4414 .4000 .4480 .4290 .4300 .4390 .4650 .4360 .4440 .4910 .4420 .4480
ARP×10 .3038 .2930 .3130 .2980 .2930 .2860 .3120 .2870 .2960 .3450 .3040 .3530
CCS×10 .8217 .6990 .9110 .5470 1.610 1.630 1.590 1.630 1.620 .7400 .7070 1.720
ARC×103 .3733 .3790 .3710 .3670 .3530 .4010 .3880 .3950 .3680 .4220 .3700 .4790
WTS .4649 .4970 .4680 .4750 .4430 .4470 .4710 .4690 .4430 .4750 .4500 .5030
SVM .7189 .7610 .7760 .7220 .6990 .7200 .7240 .8200 .6990 .7970 .7030 .8610
ASN×10 .2321 .3200 .2790 .1830 .2670 .1830 .1510 .1460 .2040 .2600 .3230 .6420
ITA .3152 .3320 .3420 .3110 .3130 .3200 .3160 .3160 .3180 .3230 .3200 .3210
SCA×102 .2854 .2960 .3140 .2870 .2860 .2860 .2870 .2870 .2860 .2910 .2850 .2890
CDI .2842 .3070 .3290 .2910 .2480 .2690 .2680 .2800 .2230 .3660 .2810 .4430
WQW .6879 .6940 .6430 .6670 .6880 .7060 .6860 .7080 .6850 .7450 .6980 .7930
EUR×10−2 .8943 43.70 6.760 .1380 26.40 8.040 .7840 4.290 11.40 17.80 33.90 53.30
SIM .6974 .8010 .7190 .7570 .7440 .7700 .7700 .6660 .6830 .8280 .7640 1.140
WQA .7172 .7290 .7020 .7010 .7200 .7240 .7080 .7420 .7230 .7510 .7280 .7930
BCR .8353 1.070 1.170 .9280 .8560 .8200 .5610 .7580 .7790 1.180 1.080 1.730
CCP×10 .3606 .4110 .3850 .3450 1.680 1.690 1.600 1.700 1.700 .4140 .4250 1.690
SHR .3243 .3420 .3480 .3210 .3220 .3170 .3170 .3260 .3240 .3260 .3190 .3400
DAT×10 .3993 .4410 .4590 .4020 .3960 .4200 .4200 .4180 .3960 .4020 .3990 .4300

avg. rank 4.667 8.000 7.611 3.944 4.278 5.722 5.500 6.222 4.500 9.167 6.000 11.111

Table 8: Average accuracy on 18 downstream datasets (the higher, the better). We use another set of
18 datasets as the pre-training datasets w.r.t. Table 2. The best results are shown in bold, and the
second-best results are underlined. “OOM” means out-of-memory.

dataset TABPTM SVM XGBoost MLP FT-T TabR SAINT TANGOS TabNet TabPFN XTab DEN

BAN 86.20 88.00 88.00 88.00 88.00 88.00 88.00 96.20 88.00 88.00 88.00 84.80
BAS 67.30 70.40 68.00 65.80 69.60 68.40 70.20 69.80 65.70 62.20 66.40 66.50
BRE 97.50 96.50 97.20 96.30 95.60 98.20 96.10 96.20 96.80 94.10 93.00 95.70
COM 96.50 96.50 96.60 96.20 96.30 96.40 96.20 OOM 96.30 96.30 96.40 96.10
DIA 76.20 77.60 75.50 74.50 77.20 75.90 76.00 75.90 73.90 69.60 70.10 67.90
DRU 40.20 41.40 40.30 39.90 40.80 41.40 39.50 40.60 40.20 40.30 40.40 40.10
DRY 92.90 92.90 93.10 93.10 93.00 92.70 93.10 93.10 93.10 92.50 92.30 91.80
HEA 81.70 84.70 77.60 82.10 80.60 80.90 83.30 77.40 81.90 68.00 79.30 78.30
HEV 34.50 30.00 38.70 30.00 27.20 30.70 24.50 28.50 29.50 24.30 33.00 32.30
INT 91.50 74.90 93.50 79.80 79.80 80.10 91.00 80.30 79.80 61.50 56.40 63.80
MAM 83.40 82.90 84.60 81.30 82.70 84.60 83.20 84.10 82.00 81.40 80.30 78.10
MIC 98.90 99.10 96.90 99.10 98.10 98.90 99.50 99.10 98.70 85.90 43.10 83.00
PAR 94.50 92.30 94.40 90.30 90.80 94.90 93.20 89.90 90.40 86.80 87.70 87.50
POS 84.80 55.60 83.30 78.90 59.30 83.30 70.40 71.50 75.20 43.30 74.40 73.40
PRI 50.90 48.50 54.60 47.10 44.10 51.20 54.40 48.00 47.30 34.60 30.00 22.20
SPE 72.60 73.60 71.40 68.70 70.80 71.30 71.60 69.40 68.10 59.60 70.70 68.90
STA 70.40 70.50 70.40 68.00 70.40 70.50 69.80 69.60 69.60 69.60 65.30 66.90
WIL 88.40 84.50 77.40 87.60 89.30 89.00 OOM 87.90 88.40 82.00 62.90 71.20

avg. rank 4.056 4.056 3.889 6.667 5.889 3.500 4.941 5.471 6.333 9.611 8.667 10.000
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Table 9: The whole results of Table 1: RMSE with standard deviation on 18 downstream datasets
(the lower, the better). The best results are shown in bold, and the second-best results are underlined.
The value beside the dataset name denotes the scale of the results. TABPTMD predicts directly
without additional training, while TABPTM is fine-tuned on the downstream dataset. “OOM” means
out-of-memory.

TABPTMD TABPTM SVM XGBoost MLP FT-T TabR SAINT TANGOS TabNet TabPFN XTab DEN

SPP×10 .2525 .1648 .2079 .3239 .1551 .1963 .1430 .1786 .1972 .2038 .4671 .3615 .4736
± 0.00 ± .001 ± 0.00 ± 0.00 ± .007 ± .013 ± .009 ± .005 ± .012 ± .005 ± .068 ± .135 ± .018

HPP×107 .1210 .1074 .1075 .1132 .1064 .1107 .1054 .1103 .1064 .1134 .1400 .1104 .1585
± .001 ± .002 ± 0.00 ± 0.00 ± .004 ± .002 ± .001 ± .002 ± .001 ± .002 ± .016 ± 0.00 ± .012

STO 2.974 .7355 .9513 .7948 .8907 .9408 .9883 .9659 .7809 .8032 1.057 1.184 4.922
± .001 ± .002 ± 0.00 ± 0.00 ± .047 ± .014 ± .020 ± .161 ± .015 ± .014 ± .063 ± .015 ± .352

CDA×103 .5567 .4956 .6976 .5489 .4914 .5908 .6613 .5966 .5381 .5893 .6351 .5561 .7441
± .014 ± .015 ± 0.00 ± 0.00 ± .053 ± .005 ± .125 ± .058 ± .076 ± .022 ± .051 ± .019 ± .051

PMS×102 .1601 .1534 .1603 .1603 .1629 .1524 .1633 .1727 .1720 .1543 .1673 .1630 .1717
± .001 ± .001 ± 0.00 ± 0.00 ± .002 ± .001 ± .007 ± .006 ± .009 ± .004 ± .005 ± .002 ± .002

GCB .5087 .4828 .4884 .5038 .4437 .4866 .4838 .4844 .4855 .4843 .4876 .4841 .5015
± .002 ± .001 ± 0.00 ± 0.00 ± .016 ± .001 ± 0.00 ± .001 ± .001 ± .001 ± .007 ± 0.00 ± .016

ADO×103 .7184 .7374 .7956 .7880 .7752 .7725 .7710 .7726 .7731 .7810 .8197 .7668 1.295
± .002 ± .002 ± 0.00 ± 0.00 ± .010 ± .004 ± .007 ± .001 ± .003 ± .008 ± .025 ± .006 ± .294

CAC .1341 .1322 .1348 .1467 .1433 .1337 .1350 .1452 OOM .1393 .1591 .1384 .1781
± 0.00 ± .001 ± 0.00 ± 0.00 ± .002 ± .001 ± .001 ± .006 ± .002 ± .010 ± .001 ± .019

AVE×103 3.816 3.080 6.394 4.678 .6983 9.765 9.942 9.933 9.920 9.811 3.314 3.484 9.982
± .007 ± .007 ± 0.00 ± 0.00 ± .124 ± .027 ± .146 ± .594 ± .070 ± .036 ± .236 ± .134 ± .184

DBT×10−1 .9609 .6617 1.107 .7065 .7841 .8534 .7356 .6233 .6385 .6884 1.034 .9602 1.446
± 34.5 ± 34.6 ± 0.00 ± 0.00 ± .029 ± .005 ± .018 ± .044 ± .017 ± .016 ± .037 ± .010 ± .035

ASU×10−1 2.452 .9036 1.862 1.078 .8418 1.013 .9379 .9037 1.010 1.071 1.109 1.293 3.016
± .012 ± .032 ± 0.00 ± 0.00 ± .038 ± .025 ± .015 ± .029 ± .042 ± .046 ± .085 ± .040 ± .905

VNV×10−1 1.071 1.015 1.020 1.071 1.032 .9879 1.004 1.031 1.020 1.019 1.007 .9910 1.007
± .016 ± .016 ± 0.00 ± 0.00 ± .012 ± .003 ± .010 ± .032 ± .008 ± .016 ± .011 ± .002 ± .004

SFA×102 .2505 .1830 .1888 .2012 .1672 .2024 .1806 .1843 .2003 .2001 .2312 .2192 .1872
± .013 ± .013 ± 0.00 ± 0.00 ± .016 ± .005 ± 0.00 ± .005 ± .015 ± .002 ± .027 ± .002 ± .003

PNH×10 .3893 .3318 .3375 .3862 .3404 .3324 .3265 .3296 .3344 .3366 .3326 .3346 .3832
± 0.00 ± 0.00 ± 0.00 ± 0.00 ± .002 ± .001 ± 0.00 ± 0.00 ± .003 ± .001 ± .004 ± .001 ± .009

PUH×10−2 1.515 .7804 2.557 2.776 .9376 1.299 .7762 .6072 .8815 .8925 .9189 1.612 2.855
± 266. ± 266. ± 0.00 ± 0.00 ± .070 ± .658 ± .003 ± .008 ± .020 ± .012 ± .068 ± .031 ± .100

SFU×10−1 .3174 .2032 .3479 .2206 .2545 .2395 .2555 .2307 .1891 .2218 .2976 .3084 .3686
± 21.5 ± 21.5 ± 0.00 ± 0.00 ± .021 ± .007 ± .065 ± .009 ± .032 ± .033 ± .019 ± .003 ± .006

SHP .4391 .4318 .4930 .4841 .4292 .4464 .4393 .4318 OOM .4514 .4341 .4341 .4402
± .007 ± .001 ± 0.00 ± 0.00 ± .001 ± .001 ± .014 ± .005 ± .007 ± .003 ± .001 ± .011

SAC×10 .4007 .3983 .4015 .4169 .4329 .4472 .4494 .4511 .4508 .4508 .4923 .4324 .4379
± .010 ± .009 ± 0.00 ± 0.00 ± .014 ± .002 ± .002 ± .005 ± .001 ± .004 ± .028 ± .016 ± .009

avg. rank 8.500 2.444 8.611 8.056 4.778 6.167 5.389 6.278 5.875 6.889 9.000 7.111 11.111
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Table 10: The whole results of Table 2: Average accuracy with standard deviation on 18 downstream
datasets. The best results are shown in bold, and the second-best results are underlined. TABPTMD

predicts directly without additional training, while TABPTM is fine-tuned on the downstream dataset.

dataset TABPTMD TABPTM SVM XGBoost MLP FT-T TabR SAINT TANGOS TabNet TabPFN XTab DEN

BCC 85.90 85.30 86.50 86.80 85.70 86.50 85.80 87.10 86.40 86.00 78.90 85.00 80.10
± 0.30 ± 0.80 ± 0.01 ± 0.28 ± 0.01 ± 0.17 ± 0.26 ± 0.34 ± 0.30 ± 1.50 ± 1.60 ± 0.60 ± 2.30

CDH 72.60 75.20 75.10 75.10 75.20 75.30 74.20 75.00 75.20 75.00 75.00 86.70 70.20
± 0.80 ± 0.00 ± 0.01 ± 0.09 ± 0.10 ± 0.12 ± 0.14 ± 0.14 ± 0.13 ± 0.13 ± 0.26 ± 0.61 ± 1.20

ECS 67.40 67.40 75.10 67.80 67.20 67.80 66.20 67.70 67.80 67.10 67.20 66.30 72.90
± 1.30 ± 0.80 ± 0.01 ± 0.29 ± 0.23 ± 0.43 ± 0.52 ± 0.34 ± 0.45 ± 0.46 ± 0.70 ± 1.30 ± 0.68

FCC 76.30 77.30 76.70 79.20 78.80 78.00 77.90 77.60 77.60 78.60 77.00 72.80 71.00
± 0.75 ± 1.40 ± 0.01 ± 1.20 ± 2.00 ± 1.70 ± 0.74 ± 1.60 ± 2.10 ± 1.50 ± 2.50 ± 1.80 ± 1.00

BAA 48.40 59.40 53.10 55.40 54.10 53.80 55.60 55.50 54.70 54.60 54.60 49.30 45.90
± 1.20 ± 1.40 ± 0.01 ± 0.73 ± 1.40 ± 1.20 ± 0.01 ± 1.20 ± 1.50 ± 0.92 ± 1.70 ± 1.30 ± 2.00

KC2 84.10 83.10 81.90 79.60 84.50 79.10 82.00 77.80 81.60 83.10 79.70 84.40 82.60
± 1.50 ± 1.60 ± 0.01 ± 1.40 ± 1.70 ± 2.40 ± 0.65 ± 2.20 ± 1.00 ± 2.30 ± 2.30 ± 2.70 ± 2.60

MHR 64.40 68.70 67.00 81.90 73.20 69.60 73.80 78.10 74.10 71.40 58.80 54.30 56.80
± 1.30 ± 1.10 ± 0.01 ± 0.63 ± 1.20 ± 1.40 ± 0.72 ± 2.20 ± 1.80 ± 1.70 ± 5.00 ± 1.60 ± 1.50

SEB 92.60 92.80 92.80 92.70 92.90 92.90 92.80 93.00 92.90 92.80 92.90 92.80 92.10
± 1.80 ± 2.80 ± 0.01 ± 0.01 ± 1.00 ± 1.20 ± 0.05 ± 0.21 ± 0.17 ± 0.13 ± 2.90 ± 1.50 ± 1.00

SAF 81.40 81.90 83.50 83.20 81.80 80.60 84.60 83.60 82.90 80.30 79.70 68.80 78.30
± 0.98 ± 1.30 ± 0.01 ± 0.98 ± 1.10 ± 1.50 ± 0.73 ± 1.10 ± 0.96 ± 1.60 ± 1.30 ± 2.00 ± 0.03

TSE 44.50 48.30 49.20 51.90 49.70 51.20 49.20 50.20 50.40 49.30 49.20 46.70 31.50
± 0.60 ± 0.80 ± 0.01 ± 0.15 ± 0.80 ± 0.79 ± 0.55 ± 0.58 ± 0.64 ± 0.79 ± 1.10 ± 0.51 ± 1.40

WAQ 88.90 91.10 89.80 89.40 89.40 88.70 88.80 89.60 89.60 89.20 88.40 88.00 88.20
± 0.70 ± 1.10 ± 0.01 ± 0.20 ± 0.20 ± 0.41 ± 0.18 ± 0.19 ± 0.37 ± 0.27 ± 0.64 ± 2.20 ± 2.10

BLO 73.60 78.00 74.70 76.90 77.70 77.90 77.80 75.40 78.20 77.20 76.40 75.70 71.20
± 0.45 ± 1.90 ± 0.01 ± 1.90 ± 1.90 ± 0.41 ± 0.38 ± 2.50 ± 1.00 ± 0.13 ± 2.60 ± 1.20 ± 0.20

BRC 66.00 67.10 55.20 69.00 62.60 65.90 66.80 67.50 67.00 67.00 66.70 65.60 63.40
± 0.85 ± 1.00 ± 0.01 ± 0.42 ± 1.80 ± 2.90 ± 1.60 ± 1.40 ± 1.70 ± 1.70 ± 1.60 ± 0.34 ± 1.70

BCW 96.60 97.50 97.10 97.10 96.60 95.80 97.10 95.90 88.40 96.90 95.10 97.30 97.10
± 1.30 ± 1.70 ± 0.01 ± 1.30 ± 0.20 ± 1.10 ± 1.30 ± 0.46 ± 2.30 ± 0.53 ± 1.80 ± 2.40 ± 1.70

BCP 82.00 82.00 75.00 84.70 79.00 83.20 87.30 83.00 76.30 82.30 74.00 77.70 75.00
± 1.70 ± 2.00 ± 0.01 ± 2.70 ± 1.40 ± 2.00 ± 1.00 ± 1.70 ± 0.38 ± 0.12 ± 1.20 ± 1.80 ± 2.00

DER 99.80 99.20 98.60 99.00 98.50 99.50 98.60 98.40 98.80 98.90 89.50 80.00 97.70
± 0.30 ± 0.50 ± 0.01 ± 0.80 ± 0.30 ± 0.39 ± 0.30 ± 0.90 ± 0.10 ± 0.34 ± 0.00 ± 0.50 ± 0.50

ECH 84.70 81.20 77.80 75.60 79.80 74.10 78.00 80.20 70.40 76.50 69.90 84.40 80.30
± 1.90 ± 1.80 ± 0.01 ± 1.60 ± 0.33 ± 1.60 ± 2.50 ± 1.60 ± 1.90 ± 1.60 ± 1.60 ± 1.50 ± 1.80

HEC 52.70 52.30 55.70 50.60 52.20 51.90 53.80 53.90 51.90 52.00 49.80 51.30 47.50
± 1.00 ± 2.50 ± 0.01 ± 2.30 ± 2.60 ± 1.80 ± 1.90 ± 2.20 ± 1.60 ± 1.20 ± 1.60 ± 1.10 ± 2.90

avg. rank 7.944 4.833 6.833 5.056 6.389 6.167 6.056 5.167 5.778 6.722 9.944 8.889 10.556
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