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Abstract

Recent advances in machine learning have sig-001
nificantly impacted the field of information ex-002
traction, with Language Models (LMs) play-003
ing a pivotal role in extracting structured in-004
formation from unstructured text. Prior works005
typically represent information extraction as006
triplet-centric and use classical metrics such as007
precision and recall for evaluation. We reformu-008
late the task to be entity-centric, enabling the009
use of diverse metrics that can provide more in-010
sights from various perspectives. We contribute011
to the field by introducing Structured Entity Ex-012
traction and proposing the Approximate Entity013
Set OverlaP (AESOP) metric, designed to ap-014
propriately assess model performance. Later,015
we introduce a new model that harnesses the016
power of LMs for enhanced effectiveness and017
efficiency by decomposing the extraction task018
into multiple stages. Quantitative and human019
side-by-side evaluations confirm that our model020
outperforms baselines, offering promising di-021
rections for future advancements in structured022
entity extraction. Our source code and datasets023
are available at this anonymous link.024

1 Introduction025

Information extraction refers to a broad family026

of challenging natural language processing (NLP)027

tasks that aim to extract structured information028

from unstructured text (Cardie, 1997; Eikvil, 1999;029

Chang et al., 2006; Sarawagi et al., 2008; Grish-030

man, 2015; Niklaus et al., 2018; Nasar et al., 2018;031

Wang et al., 2018; Martinez-Rodriguez et al., 2020).032

Examples of information extraction tasks include:033

(i) Named-entity recognition (Li et al., 2020), (ii) re-034

lation extraction (Kumar, 2017), (iii) event extrac-035

tion (Li et al., 2022), and (iv) coreference reso-036

lution (Stylianou and Vlahavas, 2021; Liu et al.,037

2023), as well as higher-order challenges, such as038

automated knowledge base (KB) and knowledge039

graph (KG) construction from text (Weikum and040

Theobald, 2010; Ye et al., 2022; Zhong et al., 2023).041

Figure 1: Illustration of the structured entity extraction,
an entity-centric formulation of information extraction.
Given a text description as well as some predefined
schema containing all the candidates of entity types and
property keys, we aim to output a structured json for all
entities in the text with their information.

The latter may in turn necessitate solving a combi- 042

nation of the former more fundamental extraction 043

tasks as well as require other capabilities like en- 044

tity linking (Shen et al., 2014, 2021; Oliveira et al., 045

2021; Sevgili et al., 2022). 046

Previous formulations and evaluations of informa- 047

tion extraction have predominantly centered around 048

the extraction of ⟨subject, relation, object⟩ triplets. 049

The conventional metrics used to evaluate triplet- 050

level extraction, such as recall and precision, how- 051

ever, might be insufficient to represent a model’s 052

understanding of the text from a holistic perspec- 053

tive. For example, consider a paragraph that men- 054

tions ten entities, where one entity is associated 055

with 10 relations as the subject, while each of the 056

other nine entities is associated with only 1 relation 057

as the subject. Imagine a system that accurately 058

predicts all ten triplets for the heavily linked entity 059

but overlooks the other entities. Technically, this 060

system achieves a recall of more than 50% (i.e., 061

10 out of 19) and a precision of 100%. However, 062

when compared to another system that recognizes 063

one correct triplet for each of the ten entities and 064

achieves the same recall and precision, it becomes 065
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evident that both systems, despite showing identi-066

cal evaluation scores, offer significantly different067

insights into the text comprehension. Moreover,068

implementing entity-level normalization within tra-069

ditional metrics is not always easy due to chal-070

lenges like coreference resolution (Stylianou and071

Vlahavas, 2021; Liu et al., 2023), particularly in072

scenarios where multiple entities share the same073

name or lack primary identifiers such as names.074

Therefore, we advocate for alternatives that can075

offer insights from diverse perspectives.076

In this work, we propose Structured Entity077

Extraction, an entity-centric formulation of (strict)078

information extraction, which facilitates diverse079

evaluations. We define a structured entity as a080

named entity with associated properties and rela-081

tionships with other named-entities. Fig. 1 shows082

an illustration of the structured entity extraction.083

Given a text description, we aim to first identify the084

two entities “Bill Gates” and “Microsoft”. Then,085

given some predefined schema on all possible en-086

tity types and property keys (referred to as a strict087

setting in our scenario), the exact types, property088

keys, property values on all identified entities in089

the text are expected to be predicted, as well as the090

relations between these two entities (i.e., Bill Gates091

co-founded Microsoft). Such extracted structured092

entities may be further linked and merged to auto-093

matically construct KBs from text corpora. Along094

with this, we propose a new evaluation metric,095

Approximate Entity Set OverlaP (AESOP), with096

numerous variants for measuring the similarity be-097

tween the predicted set of entities and the ground098

truth set, which is more flexible to include differ-099

ent level of normalization (see default AESOP in100

Sec. 3 and other variants in Appendix A).101

In recent years, deep learning has garnered signif-102

icant interest in the realm of information extrac-103

tion tasks. Techniques based on deep learning for104

entity extraction have consistently outperformed105

traditional methods that rely on features and kernel106

functions, showcasing superior capability in fea-107

ture extraction and overall accuracy (Yang et al.,108

2022). Building upon these developments, our109

study employs language models (LMs) to solve110

structured entity extraction. We introduce a Multi-111

stage Structured Entity Extraction (MuSEE) model,112

a novel architecture that enhances both effective-113

ness and efficiency. Our model decomposes the en-114

tire information extraction task into multiple stages,115

enabling parallel predictions within each stage for 116

enhanced focus and accuracy. Additionally, we re- 117

duce the number of tokens needed for generation, 118

which further improves the efficiency for both train- 119

ing and inference. Human side-by-side evaluations 120

show similar results as our AESOP metric, which 121

not only further confirm our model’s effectiveness 122

but also validate the AESOP metric. 123

In summary, our main contributions are: 124

• We introduce an entity-centric formulation of 125

the information extraction task within a strict 126

setting, where the schema for all possible en- 127

tity types and property keys is predefined. 128

• We propose an evaluation metric, 129

Approximate Entity Set OverlaP (AE- 130

SOP), with more flexibility tailored for 131

assessing structured entity extraction. 132

• We propose a new model leveraging the capa- 133

bilities of LMs, improving the effectiveness 134

and efficiency for structured entity extraction. 135

2 Related work 136

In this section, we first review the formulation of ex- 137

isting information extraction tasks and the metrics 138

used, followed by a discussion of current methods 139

for solving information extraction tasks. 140

Information extraction tasks are generally divided 141

into open and closed settings. Open information 142

extraction (OIE), first proposed by Banko et al. 143

(2007), is designed to derive relation triplets from 144

unstructured text by directly utilizing entities and 145

relationships from the sentences themselves, with- 146

out adherence to a fixed schema. Conversely, 147

closed information extraction (CIE) focuses on ex- 148

tracting factual data from text that fits into a pre- 149

determined set of relations or entities, as detailed 150

by Josifoski et al. (2022). While open and closed 151

information extraction vary, both seek to convert 152

unstructured text into structured knowledge, which 153

is typically represented as triplets. These triplets 154

are useful for outlining relationships but offer lim- 155

ited insight at the entity level. It is often assumed 156

that two triplets refer to the same entity if their 157

subjects match. However, this assumption is not 158

always held. Additionally, the evaluation of these 159

tasks relies on precision, recall, and F1 scores at the 160

triplet level. As previously mentioned, evaluating 161

solely on triplet metrics can yield misleading in- 162

sights regarding the entity understanding. Thus, it 163

is essential to introduce a metric that assesses under- 164
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standing at the entity level through entity-level nor-165

malization. In this work, we introduce the AESOP166

metric, which is elaborated on in Sec. 3.2.167

Various strategies have been employed in existing168

research to address the challenges of information169

extraction. TextRunner (Yates et al., 2007) initially170

spearheaded the development of unsupervised171

methods. Recent progress has been made with the172

use of manual annotations and Transformer-based173

models (Vasilkovsky et al., 2022; Kolluru et al.,174

2020a). Sequence generation approaches, like IMo-175

JIE (Kolluru et al., 2020b) and GEN2OIE (Kolluru176

et al., 2022), have refined open information extrac-177

tion by converting it into a sequence-to-sequence178

task (Cui et al., 2018). GenIE (Josifoski et al.,179

2022) focuses on integrating named-entity recogni-180

tion, relation extraction, and entity linking within181

a closed setting where a knowledge base is pro-182

vided. Recent work, PIVOINE (Lu et al., 2023),183

focuses on improving the language model’s gener-184

ality to various (or unseen) instructions for open185

information extraction, whereas our focus is on de-186

signing a new model architecture for improving the187

effectiveness and efficiency of language model’s188

information extraction in a strict setting.189

3 Structured Entity Extraction190

In this section, we first describe the structured en-191

tity extraction formulation, followed by detailing192

the Approximate Entity Set OverlaP (AESOP) met-193

ric for evaluation. We would like to emphasize that194

structured entity extraction is not an entirely new195

task, but rather a novel entity-centric formulation196

of information extraction.197

3.1 Task Formulation198
Given a document d, the goal of structured entity199

extraction is to generate a set of structured entities200

E = {e1, e2, . . . , en} that are mentioned in the doc-201

ument text. Each structured entity e is a dictionary202

of property keys p ∈ P and property values v ∈ V ,203

and let ve,p be the value of property p of entity204

e. In this work we consider only text properties205

and hence V is the set of all possible text property206

values. If a property of an entity is common knowl-207

edge but does not appear in the input document, it208

will not be considered in the structured entity ex-209

traction. Depending on the particular situation, the210

property values could be other entities, although211

this is not always the case.212

So, the goal then becomes to learn a function213

f : d → E ′ = {e′1, e′2, . . . , e′m}, and we expect214

the predicted set E ′ to be as close as possible to 215

the target set E , where the closeness is measured 216

by some similarity metric Ψ(E ′, E). Note that the 217

predicted set of entities E ′ and the ground-truth set 218

E may differ in their cardinality, and our definition 219

of Ψ should allow for the case when |E ′| ̸= |E|. 220

Finally, both E ′ and E are unordered sets and hence 221

we also want to define Ψ to be order-invariant over 222

E ′ and E . As we do not need to constrain f to pro- 223

duce the entities in any strict order, it is reasonable 224

for Ψ to assume the most optimistic assignment of 225

E ′ with respect to E . We denote E⃗′ and E⃗ as some 226

arbitrary but fixed ordering over items in prediction 227

set E ′ and ground-truth set E for allowing indexing. 228

229

3.2 Approximate Entity Set OverlaP (AESOP) 230

Metric 231
We propose a formal definition of the Approximate 232

Entity Set OverlaP (AESOP) metric, which focuses 233

on the entity-level and more flexible to include 234

different level of normalization: 235

Ψ(E ′, E) = 1

µ

m,n⊕
i,j

Fi,j · ψent(E⃗′
i, E⃗j), (1) 236

which is composed of two phases: (i) optimal en- 237

tity assignment for obtaining the assignment matrix 238

F to let us know which entity in E ′ is matched with 239

which one in E , and (ii) pairwise entity compar- 240

ison through ψent(E⃗′
i, E⃗j), which is a similarity 241

measure defined between any two arbitrary enti- 242

ties e′ and e. We demonstrate the details of these 243

two phases in this section. We implement Ψ as 244

a linear sum
⊕

over individual pairwise entity 245

comparisons ψent, and µ is the maximum of the 246

sizes of the target set and the predicted set, i.e., 247

µ = max{m,n}. 248

Phase 1: Optimal Entity Assignment. The op- 249

timal entity assignment is directly derived from a 250

matrix F ∈ Rm×n, which is obtained by solving 251

an assignment problem between E ′ and E . Here, 252

the matrix F is a binary matrix where each element 253

Fi,j is 1 if the entity E⃗′
i is matched with the en- 254

tity E⃗j , and 0 otherwise. Before formulating the 255

assignment problem, we first define a similarity 256

matrix S ∈ Rm×n where each element Si,j quan- 257

tifies the similarity between the i-th entity in E⃗′ 258

and the j-th entity in E⃗ for the assignment phase. 259

For practical implementation, we ensure inclusion 260

of the union set of property keys from both the 261

i-th entity in E⃗′ and the j-th entity in E⃗ for each 262

of these entities. When a property key is absent, 263
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its corresponding property value is set to be an264

empty string. The similarity is then computed as265

a weighted average of the Jaccard index (Murphy,266

1996) for the list of tokens of the property values267

associated the same property key in both entities.268

The Jaccard index involved empty strings is defined269

as zero in our case. We assign a weight of 0.9 to270

the entity name, while all other properties collec-271

tively receive a total weight of 0.1. This ensures272

that the entity name holds the highest importance273

for matching, while still acknowledging the con-274

tributions of other properties. Then the optimal275

assignment matrix F is found by maximizing the276

following equation:277

F = argmax
F

m∑
i=1

n∑
j=1

Fi,j · Si,j , (2)278

subject to the following four constraints to279

ensure one-to-one assignment between entities280

in the prediction set and the ground truth281

set: (i) Fi,j ∈ {0, 1}; (ii)
∑m

i=1 Fi,j ≤ 1, ∀j ∈282

{1, 2, . . . , n}; (iii)
∑n

j=1 Fi,j ≤ 1, ∀i ∈ {1, 2, . . . ,m}; (iv)283 ∑m
i=1

∑n
j=1 Fi,j = min{m,n}.284

Phase 2: Pairwise Entity Comparison. After285

obtaining the optimal entity assignment, we fo-286

cus on the pairwise entity comparison. We define287

ψent(E⃗′
i, E⃗j) as a similarity metric between any288

two arbitrary entities e′ and e from E ′ and E .289

The pairwise entity similarity function ψent is de-290

fined as a linear average
⊗

over individual pair-291

wise property similarity ψprop as follows:292

ψent(e
′, e) =

⊗
p∈P

ψprop(ve′,p, ve,p), (3)293

where ψprop(ve′,p, ve,p) is defined as the Jaccard294

index between the lists of tokens of the predicted295

values and ground-truth values for corresponding296

properties. We define the score as zero for missing297

properties.298

It should be noted that while both S and ψent are299

used to calculate similarities between pairs of en-300

tities, they are not identical. During the entity as-301

signment phase, it is more important to make sure302

the entity names are aligned, while it is more ac-303

ceptable to treat all properties equally without dif-304

ferentiation during the pairwise entity comparison.305

The separation in the definitions of two similarity306

measures allows us to tailor our metric more pre-307

cisely to the specific requirements of each phase308

of the process. Different variants for our proposed309

AESOP metric are elaborated in Appendix A. We 310

discuss the relationship between traditional met- 311

rics, such as precision and recall, and AESOP in 312

Appendix B. 313

4 Multi-stage Structured Entity 314

Extraction using Language 315

Models 316

In this section, we elaborate on the methodology 317

for structured entity extraction using LMs. We 318

introduce a novel model architecture leveraging 319

LMs, MuSEE, for Multi-stage Structured Entity 320

Extaction. MuSEE is built on an encoder-decoder 321

architecture, whose pipeline incorporates two piv- 322

otal enhancements to improve effectiveness and 323

efficiency: (i) reducing output tokens through intro- 324

ducing additional special tokens where each can be 325

used to replace multiple tokens, and (ii) multi-stage 326

parallel generation for making the model focus 327

on a sub-task at each stage where all predictions 328

within a stage can be processed parallelly. 329

Reducing output tokens. Our model condenses 330

the output by translating entity types and property 331

keys into unique, predefined tokens. Specifically, 332

for the entity type, we add prefix “ent_type_”, 333

while for each property key, we add prefix “pk_”. 334

By doing so, the type and each property key on 335

an entity is represented by a single token, which 336

significantly reduces the number of output tokens 337

during generation thus improving efficiency. For 338

instance, if the original entity type is “artificial 339

object” which is decomposed into 4 tokens (i.e., 340

“_art”, “if ”, “ical”, “_object”) using the T5 to- 341

kenizer, now we only need one special token, 342

“ent_type_artifical_object”, to represent the entire 343

sequence. All of these special tokens can be de- 344

rived through the knowledge of some predefined 345

schema before the model training. 346

Multi-stage parallel generation. In addition to 347

reducing the number of generated tokens, MuSEE 348

further decomposes the generation process into 349

three stages: (i) identifying all entities, (ii) deter- 350

mining entity types and property keys, and (iii) 351

predicting property values. To demonstrate this 352

pipeline more clearly, we use the same text shown 353

in Fig. 1 as an example to show the process of 354

structured entity extraction as follows: 355

Stage 1: Entity Identification. 356

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_ent_names
“Bill Gates” “Microsoft” ⟨EOS⟩

357
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Figure 2: The pipeline of our proposed MuSEE model, which is built on an encoder-decoder architecture. The input
text only needs to be encoded once. The decoder is shared for all the three stages. All predictions within each stage
can be processed in batch, and teacher forcing enables parallelization even across stages during training.

Stage 2: Type and property key prediction.358

❖ [[[Text Description]]] ⇒ MuSEE ⇒
pred_type_and_property
{“Bill Gates”} ent_type_human pk_country
pk_occupation ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒
pred_type_and_property
{“Microsoft”} ent_type_corporation pk_cofounder
pk_headquarter ⟨EOS⟩

359

Stage 3: Property value prediction.360

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Bill Gates”} {ent_type_human} {pk_country}
America ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Bill Gates”} {ent_type_human} {pk_occupation}
Businessman ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Microsoft”} {ent_type_corporation}
{pk_cofounder} Bill Gates ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Microsoft”} {ent_type_corporation}
{pk_headquarter} Redmond ⟨EOS⟩

361

Among the three stages depicted, pred_ent_names,362

pred_type_and_property, and pred_val are special363

tokens to indicate the task. For each model pre-364

diction behavior, the first “⇒” indicates inputting365

the text into the encoder of MuSEE, while the sec-366

ond “⇒” means inputting the encoded outputs into367

the decoder. All tokens in blue are the prompt368

tokens input into the decoder which do not need369

to be predicted, while all tokens in bold are the370

model predictions. For the stage 1, we emphasize371

that MuSEE outputs a unique identifier for each372

entity in the given text. Taking the example in373

Fig. 1, the first stage outputs “Bill Gates” only,374

rather than both “Bill Gates” and “Gates”. This375

requires the model implicitly learn how to do coref-376

erence resolution, namely learning that “Bill Gates”377

and “Gates” are referring to the same entity. There-378

fore, our approach uses neither surface forms, as379

the outputs of the first stage are unique identifiers, 380

nor the entity titles followed by entity linkings. No- 381

tice that we do not need to predict the value for 382

“type” and “name” in stage 3, since the type can 383

be directly derived from the “ent_type_” special 384

key itself, and the name is obtained during stage 385

1. The tokens in the bracket “{..}” are also part 386

of the prompt tokens and are obtained in different 387

ways during training and inference. During train- 388

ing, these inputs are obtained from the ground truth 389

due to the teacher forcing technique (Raffel et al., 390

2023). During inference, they are obtained from the 391

output predictions from the previous stages. The 392

full training loss is a sum of three cross-entropy 393

losses, one for each stage. An illustration of our 394

model’s pipeline is shown in Fig. 2. 395

Benefits for Training and Inference. MuSEE’s 396

unique design benefits both training and inference. 397

In particular, each stage in MuSEE is finely tuned to 398

concentrate on a specific facet of the extraction pro- 399

cess, thereby enhancing the overall effectiveness. 400

Most importantly, all predictions within the same 401

stage can be processed in batch thus largely improv- 402

ing efficiency. The adoption of a teacher forcing 403

strategy enables parallel training even across dif- 404

ferent stages, further enhancing training efficiency. 405

During inference, the model’s approach to breaking 406

down long sequences into shorter segments signifi- 407

cantly reduces the generation time. It is also worthy 408

to mention that each text in the above three stages 409

needs to be encoded only once by the MuSEE’s 410

encoder, where the encoded output is repeatedly 411

utilized across different stages. This streamlined 412

approach ensures a concise and clear delineation 413

of entity information, facilitating the transforma- 414

tion of unstructured text into a manageable and 415

structured format. 416
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5 Experiments417

In this section, we describe the datasets used in our418

experiment, followed by the discussion of baseline419

methods and training details.420

5.1 Data421
In adapting the structured entity extrac-422

tion, we repurpose the NYT (Riedel et al.,423

2010), CoNLL04 (Roth and Yih, 2004), and424

REBEL (Huguet Cabot and Navigli, 2021)425

datasets, which are originally developed for426

relation extractions. For NYT and CoNLL04,427

since each entity in these two datasets has a428

predefined type, we simply reformat them to our429

entity-centric formulation by treating the subjects430

as entities, relations as property keys, and objects431

as property values. REBEL connects entities432

identified in Wikipedia abstracts as hyperlinks,433

along with dates and values, to entities in Wikidata434

and extracts the relations among them. For entities435

without types in the REBEL dataset, we categorize436

their types as “unknown”. Additionally, we437

introduce a new dataset, named Wikidata-based.438

The Wikidata-based dataset is crafted using an439

approach similar to REBEL but with two primary440

distinctions: (i) property values are not necessarily441

entities; (ii) we simplify the entity types by442

consolidating them into broader categories based443

on the Wikidata taxonomy graph, resulting in less444

specific types. The processes for developing the445

Wikidata-based dataset is detailed in Appendix C.446

Comprehensive statistics for all four datasets are447

available in Appendix D.448

5.2 Baseline449
We benchmark our methodology against two dis-450

tinct classes of baseline approaches. The first cat-451

egory considers adaptations from general seq2seq452

task models: (i) LM-JSON: this approach involves453

fine-tuning pre-trained language models. The input454

is a textual description, and the output is the string455

format JSON containing all entities. The second456

category includes techniques designed for differ-457

ent information extraction tasks, which we adapt458

to address our challenge: (ii) GEN2OIE (Kolluru459

et al., 2022), which employs a two-stage genera-460

tive model initially outputs relations for each sen-461

tence, followed by all extractions in the subsequent462

stage; (iii) IMoJIE (Kolluru et al., 2020b), an ex-463

tension of CopyAttention (Cui et al., 2018), which464

sequentially generates new extractions based on465

previously extracted tuples; (iv) GenIE (Josifoski466

et al., 2022), an end-to-end autoregressive genera-467

tive model using a bi-level constrained generation 468

strategy to produce triplets that align with a pre- 469

defined schema for relations. GenIE is crafted for 470

the closed information extraction, so it includes a 471

entity linking step. However, in our strict setting, 472

there is only a schema of entity types and relations. 473

Therefore, we repurpose GenIE for our setting by 474

maintaining the constrained generation strategy and 475

omitting the entity linking step. 476

5.3 Training 477

We follow existing studies (Huguet Cabot and Nav- 478

igli, 2021) to use the encoder-decoder architecture 479

in our experiment. We choose the T5 (Raffel et al., 480

2023) series of LMs and employ the pre-trained 481

T5-Base (T5-B) and T5-Large (T5-L) as the base 482

models underlying every method discussed in sec- 483

tion 5.2 and our proposed MuSEE. LM-JSON and 484

MuSEE are trained with the Low-Rank Adapta- 485

tion (Hu et al., 2021), where r = 16 and α = 32. 486

For GEN2OIE, IMoJIE, and GenIE, we follow all 487

training details of their original implementation. 488

For all methods, we employ a linear warm up and 489

the Adam optimizer (Kingma and Ba, 2017), tun- 490

ing the learning rates between 3e-4 and 1e-4, and 491

weight decays between 1e-2 and 0. All experiments 492

are run on a NVIDIA A100 GPU. 493

It is worthy to mention that MuSEE can also build 494

upon the decoder-only architecture by managing 495

the KV cache and modifications to the position 496

encodings (Xiao et al., 2024), though this requires 497

additional management and is not the main focus 498

of this study. 499

6 Results 500

In this section, we show the results for both quanti- 501

tative and human side-by-side evaluation. 502

6.1 Quantitative Evaluation 503

Effectiveness comparison. The overall effective- 504

ness comparison is shown in Table 1. We report tra- 505

ditional metrics, including precision, recall, and F1 506

score, in addition to our proposed AESOP metric. 507

From the results, the MuSEE model consistently 508

outperforms other baselines in terms of AESOP 509

across all datasets. For instance, MuSEE achieves 510

the highest AESOP scores on REBEL with 55.24 511

(T5-B) and 57.39 (T5-L), on NYT with 81.33 (T5- 512

B) and 82.67 (T5-L), on CoNLL04 with 78.38 (T5- 513

B) and 79.87 (T5-L), and on the Wikidata-based 514

dataset with 46.95 (T5-B) and 50.94 (T5-L). These 515

scores significantly surpass those of the competing 516

models, indicating MuSEE’s stronger entity extrac- 517
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Table 1: Summary of results of different models. Each metric is shown in percentage (%). The last column shows
the inference efficiency, measured by the number of samples the model can process per second. The best is bolded,
and the second best is underlined. Our model has a statistical significance for p ≤ 0.01 compared to the best
baseline (labelled with *) based on the paired t-test.

Model
REBEL NYT CoNLL04 Wikidata-based samples

per secAESOP Precision Recall F1 AESOP Precision Recall F1 AESOP Precision Recall F1 AESOP Precision Recall F1

LM-JSON (T5-B) 41.91 38.33 51.29 43.87 66.33 73.10 52.66 61.22 68.80 61.63 48.04 53.99 36.98 43.95 29.82 35.53 19.08
GEN2OIE (T5-B) 44.52 35.23 40.28 37.56 67.04 72.08 53.02 61.14 68.39 62.35 42.20 50.26 37.07 40.87 28.37 33.55 28.21
IMoJIE (T5-B) 46.11 34.10 48.61 40.08 63.86 72.28 48.99 58.40 63.68 52.00 42.62 46.85 37.08 41.61 28.23 33.64 5.36
GenIE (T5-B) 48.82∗ 57.55 38.70 46.28∗ 79.41∗ 87.68 73.24 79.81 74.74∗ 72.49∗ 59.39 65.29 40.60∗ 50.27∗ 29.75 37.38 10.19
MuSEE (T5-B) 55.24 56.93 42.31 48.54 81.33 88.29 72.21 79.44 78.38 73.18 60.28 66.01 46.95 53.27 29.33 37.99 52.93

LM-JSON (T5-L) 45.92 39.49 40.82 40.14 67.73 73.38 53.22 61.69 68.88 61.50 47.77 53.77 38.19 43.24 31.63 36.54 11.24
GEN2OIE (T5-L) 46.70 37.28 41.12 39.09 68.27 73.97 53.32 61.88 68.52 62.76 43.31 51.16 38.25 41.23 28.54 33.77 18.56
IMoJIE (T5-L) 48.13 38.55 49.73 43.43 65.72 73.46 50.03 59.52 67.31 53.00 43.44 47.75 38.18 41.74 30.10 34.98 3.73
GenIE (T5-L) 50.06∗ 58.00 42.56 49.09 79.64∗ 84.82∗ 75.69 80.00 72.92∗ 77.75 55.64∗ 64.86 43.50∗ 54.05 30.98 39.38 5.09
MuSEE (T5-L) 57.39 57.11 42.89 48.96 82.67 89.43 73.32 80.60 79.87 74.89 60.72 67.08 50.94 53.72 31.12 39.24 33.96

tion capability. The other three traditional met-518

rics further underscore the efficacy of the MuSEE519

model. For instance, on CoNLL04, MuSEE (T5-B)520

achieves a precision of 73.18, a recall of 60.28, and521

a F1 score of 66.01, which surpass all the other522

baselines. Similar improvements are observed on523

REBEL, NYT, and Wikidata-based dataset. Nev-524

ertheless, while MuSEE consistently excels in the525

AESOP metric, it does not invariably surpass the526

baselines across all the traditional metrics of preci-527

sion, recall, and F1 score. Specifically, within the528

REBEL dataset, GenIE (T5-B) achieves the highest529

precision at 57.55, and LM-JSON (T5-B) records530

the best recall at 51.29. Furthermore, on the NYT531

dataset, GenIE (T5-B) outperforms other models532

in F1 score. These variances highlight the unique533

insights provided by our adaptive AESOP metric,534

which benefits from our entity-centric formulation.535

We expand on this discussion in section 6.2.536

As discussed in Sec. 4, our MuSEE model is cen-537

tered around two main enhancements: reducing538

output tokens and multi-stage parallel generation.539

By simplifying output sequences, MuSEE tackles540

the challenge of managing long sequences that of-541

ten hinder baseline models, like LM-JSON, GenIE,542

IMoJIE, thus reducing errors associated with se-543

quence length. Additionally, by breaking down544

the extraction process into three focused stages,545

MuSEE efficiently processes each aspect of entity546

extraction, leveraging contextual clues for more547

accurate predictions. In contrast, GEN2OIE’s two-548

stage approach, though similar, falls short because549

it extracts relations first and then attempts to pair550

entities with these relations. However, a single re-551

lation may exist among different pairs of entities,552

which can lead to low performance with this ap-553

proach. Supplemental ablation study is provided in554

Appendix E.555

Efficiency comparison. As shown in the last col-556

umn of Table 1, we provide a comparison on the in-557

ference efficiency, measured in the number of sam- 558

ples the model can process per second. The MuSEE 559

model outperforms all baseline models in terms of 560

efficiency, processing 52.93 samples per second 561

with T5-B and 33.96 samples per second with T5- 562

L. It shows a 10x speed up compared to IMoJIE, 563

and a 5x speed up compared to the strongest base- 564

line GenIE. This high efficiency can be attributed to 565

MuSEE’s architecture, specifically its multi-stage 566

parallel generation feature. By breaking down the 567

task into parallelizable stages, MuSEE minimizes 568

computational overhead, allowing for faster pro- 569

cessing of each sample. The benefit of this design 570

can also be approved by the observation that the 571

other multi-stage model, GEN2OIE, shows the sec- 572

ond highest efficiency. 573

To better illustrate our model’s strength, we show 574

the scatter plots comparing all models with various 575

backbones in Fig. 3 on the effectiveness and effi- 576

ciency. We choose the Wikidata-based dataset and 577

the effectiveness is measured by AESOP. As de- 578

picted, our model outperforms all baselines with a 579

large margin. This advantage makes MuSEE partic- 580

ularly suitable for applications requiring rapid pro- 581

cessing of large volumes of data, such as processing 582

web-scale datasets, or integrating into interactive 583

systems where response time is critical. 584

Grounding check. As the family of T5 models 585

are pre-trained on Wikipedia corpus (Raffel et al., 586

2023), we are curious whether the models are ex- 587

tracting information from the given texts, or they 588

are leveraging their prior knowledge to generate 589

information that cannot be grounded to the given 590

description. We use T5-L as the backbone in this 591

experiment. We develop a simple approach to con- 592

duct this grounding check by perturbing the orig- 593

inal test dataset with the following strategy. We 594

first systematically extract and categorize all enti- 595

ties and their respective properties, based on their 596

entity types. Then, we generate a perturbed version 597
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Figure 3: An overall effectiveness-and-efficiency com-
parison across models on Wikidata-based Dataset.
MuSEE strongly outperforms all baselines on both mea-
sures. The effectiveness is measured by AESOP.

LLM-JSON
GEN2OIE IMoJIE GenIE MuSEE
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40
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Figure 4: Grounding check across models on the
Wikidata-based dataset. MuSEE shows the least perfor-
mance drop on the perturbed version of data compared
to other baselines.

of the dataset, by randomly modifying entity prop-598

erties based on the categorization we built. We in-599

troduce controlled perturbations into the dataset by600

selecting alternative property values from the same601

category but different entities, and subsequently602

replacing the original values in the texts. The ex-603

periment results from our grounding study on the604

Wikidata-based dataset, as illustrated in Fig. 4, re-605

veal findings regarding the performance of various606

models under the AESOP and F1 score. Our model,607

MuSEE, shows the smallest performance gap be-608

tween the perturbed data and the original data com-609

pared to its counterparts, suggesting its stronger610

capability to understand and extract structured in-611

formation from given texts.612

6.2 Human Evaluation613

To further analyze our approach, we randomly se-614

lect 400 test passages from the Wikidata-based615

dataset, and generate outputs of our model MuSEE616

and the strongest baseline GenIE. Human evalua-617

tors are presented with a passage and two randomly618

flipped extracted sets of entities with properties.619

Evaluators are then prompted to choose the output620

they prefer or express no preference based on three621

criteria, Completeness, Correctness, and Halluci-622

nations (details shown in Appendix F). Among all623

Human Evaluation Quantitative Metrics
Complete. Correct. Halluc. AESOP Precision Recall F1

MuSEE prefer 61.75 59.32 57.13 61.28 45.33 37.24 40.57

Table 2: Percentage of samples preferred by humans
and metrics on MuSEE’s results when compared with
GenIE’s. The first three columns are for human evalua-
tion. The next four columns are for quantitative metrics.

400 passages, the output of MuSEE is preferred 624

61.75% on the completeness, 59.32% on the cor- 625

rectness, and 57.13% on the hallucinations. For a 626

complete comparison, we also report the percent- 627

age of samples preferred by quantitative metrics on 628

MuSEE’s results when compared with GenIE’s, as 629

summarized in Table 2. As shown, our proposed 630

AESOP metric aligns more closely with human 631

judgment than traditional metrics. These observa- 632

tions provide additional confirm to the quantitative 633

results evaluated using the AESOP metric that our 634

model significantly outperforms existing baselines 635

and illustrates the inadequacy of traditional metrics 636

due to their oversimplified assessment of extrac- 637

tion quality. Case study of the human evaluation is 638

shown in Appendix F. 639

7 Discussion and Conclusion 640

We introduce Structured Entity Extraction (SEE), 641

an entity-centric formulation of information ex- 642

traction in a strict setting. We then propose the 643

Approximate Entity Set OverlaP (AESOP) Met- 644

ric, which focuses on the entity-level and more 645

flexible to include different level of normalization. 646

Based upon, we propose a novel model architec- 647

ture, MuSEE, that enhances both effectiveness and 648

efficiency. Both quantitative evaluation and human 649

side-by-side evaluation confirm that our model out- 650

performs baselines. 651

An additional advantage of our formulation is its 652

potential to address coreference resolution chal- 653

lenges, particularly in scenarios where multiple 654

entities share the same name or lack primary iden- 655

tifiers such as names. Models trained with prior 656

triplet-centric formulation cannot solve the above 657

challenges. However, due to a scarcity of relevant 658

data, we were unable to assess this aspect in our 659

current study. 660

8 Limitations 661

The limitation of our work lies in the assumption 662

that each property possesses a single value. How- 663

ever, there are instances where a property’s value 664

might consist of a set, such as varying “names”. 665

Adapting our method to accommodate these scenar- 666

ios presents a promising research direction. 667
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A Variants of AESOP 843

The AESOP metric detailed in section 3.2 matches entities by considering all properties and normalizes 844

with the maximum of the sizes of the target set and the predicted set. We denote it as AESOP-MultiProp- 845

Max. In this section, we elaborate more variants of the AESOP metric in addition to section 3.2, 846

categorized based on two criteria: the definition of entity similarity used for entity assignment and the 847

normalization approach when computing the final metric value between E ′ and E . These variants allow for 848

flexibility and adaptability to different scenarios and requirements in structured entity extraction. 849

Variants Based on Entity Assignment. The first category of variants is based on the criteria for 850

matching entities between the prediction E ′ and the ground-truth E . We define three variants: 851

• AESOP-ExactName: Two entities are considered a match if their names are identical, disregarding 852

case sensitivity. This variant is defined as Si,j = 1 if ve′i,name = vej ,name, otherwise 0. 853

• AESOP-ApproxName: Entities are matched based on the similarity of their “name” property values. 854

This similarity can be measured using a text similarity metric, such as the Jaccard index. 855

• AESOP-MultiProp: Entities are matched based on the similarity of all their properties, with a much 856

higher weight given to the “entity name” property due to its higher importance. 857

Variants Based on Normalization. The second category of variants involves different normalization 858

approaches for computing the final metric value through Eq. 1: 859

• AESOP-Precision: The denominator is the size of the predicted set E ′, i.e., µ = m. 860

• AESOP-Recall: The denominator is the size of the target set E , i.e., µ = n. 861

• AESOP-Max: The denominator is the maximum of the sizes of the target set and the predicted set, i.e., 862

µ = max{m,n}. 863

Given these choices, we can obtain 3 × 3 = 9 variants of the AESOP metric. To avoid excessive 864

complexity, we regard the AESOP-MultiProp-Max as default. For clarity, we illustrate the two phases of 865

computing the AESOP metric and its variants in Fig. 5. We also show that precision and recall are specific 866

instances of the AESOP metric in Appendix B. 867

Figure 5: An illustration of the AESOP metric, including optimal entity assignment (phase 1) and pairwise entity
comparison (phase 2), and overall metric computation with various similarity and normalization choices.

B Relationship between Precision/Recall and AESOP 868

In this section, we show the traditional metrics, precision and recall, are specific instances of the AESOP 869

metric. To calculate precision and recall, we use the following equations on the number of triplets, where 870

each triplet contains subject, relation, and object. 871

precision =
# of correctly predicted triplets
# of triplets in the prediction

, (4) 872
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recall =
# of correctly predicted triplets

# of triplets in the target
. (5)873

In the framework of the AESOP metric, precision and recall are effectively equivalent to treating each874

triplet as an entity, where the subject as the entity name, and the relation and object form a pair of property875

key and value. For optimal entity assignment (phase 1), precision and recall use the AESOP-MultiProp876

variant but match entities based on the similarity of all their properties with a same weight. For pairwise877

entity comparison (phase 2), the ψent(e
′, e) (Eq. 3), can be defined as 1 if v′ = v, otherwise 0, where v′878

and v are the only property values in e′ and e, respectively. For Eq. 1,
⊕

aggregation can be defined as a879

linear sum, which principally results in how many triplets are correctly predicted in this case. If µ in Eq. 1880

is set as the number of triplets in the prediction, this corresponds to the calculation of precision. Similarly,881

when µ equals the number of triplets in the target, it corresponds to the calculation of recall.882

C Details of Wikidata-based Dataset883

We build a new Wikidata-based dataset. This dataset is inspired by methodologies employed in previous884

works such as Wiki-NRE (Trisedya et al., 2019), T-REx (Elsahar et al., 2018), REBEL (Huguet Cabot885

and Navigli, 2021), leveraging extensive information available on Wikipedia and Wikidata. The primary886

objective centers around establishing systematic alignments between textual content in Wikipedia articles,887

hyperlinks embedded within these articles, and their associated entities and properties as cataloged in888

Wikidata. This procedure is divided into three steps: (i) Parsing Articles: We commence by parsing889

English Wikipedia articles from the dump file1, focusing specifically on text descriptions and omitting890

disambiguation and redirect pages. The text from each selected article is purified of Wiki markup to891

extract plain text, and hyperlinks within these articles are identified as associated entities. Subsequently,892

the text descriptions are truncated to the initial ten sentences, with entity selection confined to those893

referenced within this truncated text. This approach ensures a more concentrated and manageable dataset.894

(ii) Mapping Wikidata IDs to English Labels: Concurrently, we process the Wikidata dump1 file to895

establish a mapping (termed as the id-label map) between Wikidata IDs and their corresponding English896

labels. This mapping allows for efficient translation of Wikidata IDs to their English equivalents. (iii)897

Interconnecting Wikipedia articles with Wikidata properties: For each associated entity within the text898

descriptions, we utilize Wikidatas API to ascertain its properties and retrieve their respective Wikidata899

IDs. The previously established id-label map is then employed to convert these property IDs into English900

labels. Each entitys type is determined using the value associated with instance of (P31). Given the highly901

specific nature of these entity types (e.g., small city (Q18466176), town (Q3957), big city (Q1549591)),902

we implement a recursive merging process to generalize these types into broader categories, referencing903

the subclass of (P279) property. Specifically, we first construct a hierarchical taxonomy graph. Each node904

within this graph structure represents an entity type, annotated with a count reflecting the total number905

of entities it encompasses. Second, a priority queue are utilized, where nodes are sorted in descending906

order based on their entity count. We determine whether the top n nodes represent an ideal set of entity907

types, ensuring the resulted entity types are not extremely specific. Two key metrics are considered for908

this evaluation: the percentage of total entities encompassed by the top n nodes, and the skewness of the909

distribution of each entity type’s counts within the top n nodes. If the distribution is skew, we then execute910

a procedure of dequeuing the top node and enqueueing its child nodes back into the priority queue. This911

iterative process allows for a dynamic exploration of the taxonomy, ensuring that the most representative912

nodes are always at the forefront. Finally, our Wikidata-based dataset is refined to contain the top-10 (i.e.,913

n = 10) most prevalent entity types according to our hierarchical taxonomy graph and top-10 property914

keys in terms of occurrence frequency, excluding entity name and type. The 10 entity types are talk,915

system, spatio-temporal entity, product, natural object, human, geographical feature, corporate body,916

concrete object, and artificial object. The 10 property keys are capital, family name, place of death, part of,917

location, country, given name, languages spoken, written or signed, occupation, and named after.918

1The version of the Wikipedia and Wikidata dump files utilized in our study are 20230720, representing the most recent
version available during the development of our work.

12



D Statistics of Datasets 919

NYT is under the CC-BY-SA license. CoNLL04 is under the Creative Commons Attribution- 920

NonCommercial-ShareAlike 3.0 International License. REBEL is under the Creative Commons At- 921

tribution 4.0 International License. The dataset statistics presented in Table 3 compare NYT, CoNLL04, 922

REBEL, and Wikidata-based datasets. All datasets feature a minimum of one entity per sample, but they 923

differ in their average and maximum number of entities, with the Wikidata-based dataset showing a higher 924

mean of 3.84 entities. They also differ in the maximum number of entities, where REBEL has a max of 925

65. Property counts also vary, with REBEL having a slightly higher average number of properties per 926

entity at 3.40. 927

Table 3: Statistics of all three datasets used in our paper.

Statistics NYT CoNLL04 REBEL Wikidata-based

# of Entity Min 1 1 1 1
# of Entity Mean 1.25 1.22 2.37 3.84
# of Entity Max 12 5 65 20
# of Property Min 3 3 2 2
# of Property Mean 3.19 3.02 3.40 2.80
# of Property Max 6 4 17 8
# of Training Samples 56,196 922 2,000,000 23,477
# of Testing Samples 5,000 288 5,000 4,947
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Figure 6: Frequency histogram of entity types in
Wikidata-based Dataset.
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Figure 7: Frequency histogram of property keys in
Wikidata-based Dataset.

E Ablation Study 928

The ablation study conducted on the MuSEE model, with the Wikidata-based dataset, serves as an 929

evaluation of the model’s core components: the introduction of special tokens and the Multi-stage parallel 930

generation. By comparing the performance of the full MuSEE model against its ablated version, where 931

only the special tokens feature is retained, we aim to dissect the individual contributions of these design 932

choices to the model’s overall efficacy. The ablated version simplifies the output format by eliminating 933

punctuation such as commas, double quotes, and curly brackets, and by converting all entity types and 934

property keys into special tokens. This is similar to the reducing output tokens discussed in Sec. 4. Results 935

from the ablation study, as shown in Table 4, reveal significant performance disparities between the 936

complete MuSEE model and its ablated counterpart, particularly when examining metrics across different 937

model sizes (T5-B and T5-L) and evaluation metrics. The full MuSEE model markedly outperforms 938

the ablated version across all metrics with notable improvements, underscoring the Multi-stage parallel 939
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Table 4: Ablation study on Wikidata-based dataset. Each metric is shown in percentage (%).

Model
AESOP-ExactName AESOP-ApproxName AESOP-MultiProp

Max Precision Recall Max Precision Recall Max Precision Recall

w/o Multi-stage (T5-B) 25.19 40.87 27.64 25.75 42.14 28.26 26.93 44.49 29.72
MuSEE (T5-B) 44.95 50.63 58.99 45.75 51.57 60.10 46.95 53.00 61.75

w/o Multi-stage (T5-L) 27.74 53.04 28.81 28.14 54.10 29.22 29.14 56.90 30.29
MuSEE (T5-L) 49.35 57.97 59.63 49.89 58.69 60.35 50.94 60.11 61.68

generation’s critical role in enhancing the model’s ability to accurately and comprehensively extract940

entity-related information. These findings highlight the synergistic effect of the MuSEE model’s design941

elements, demonstrating that both the Reducing output tokens and the Multi-stage parallel generation are942

pivotal for achieving optimal performance in structured entity extraction tasks.943

F Human Evaluation Criteria and Case Study944

The details for the three human evaluation criteria are shown below:945

• Completeness: Which set of entities includes all relevant entities and has the fewest missing important946

entities? Which set of entities is more useful for further analysis or processing? Focus on the set that947

contains less unimportant and/or irrelevant entities.948

• Correctness: Which set of entities more correctly represents the information in the passage? Focus949

on consistency with the context of the passage. Do extracted properties correctly represent each950

entity or are there more specific property values available? Are property values useful?951

• Hallucinations: Which set of entities contains less hallucinations? That is, are there any entities or952

property values that do not exist or cannot be inferred from the text?953

We provide a case study for the human evaluation analysis comparing the outputs of GenIE (T5-L) and954

MuSEE (T5-L) given a specific text description. MuSEE accurately identifies seven entities, surpassing955

GenIE’s two, thus demonstrating greater completeness. Additionally, we identify an error in GenIE’s956

output where it incorrectly assigns Bartolomeo Rastrelli’s place of death as Moscow, in contrast to the957

actual location, Saint Petersburg, which is not referenced in the text. This error by GenIE could stem958

from hallucination, an issue not present in MuSEE’s output. In this example, it is evident that MuSEE959

outperforms GenIE in terms of completeness, correctness, and resistance to hallucinations.960

Text Description: The ceremonial attire of Elizabeth, Catherine Palace, Tsarskoye Selo; fot. Ivonna
Nowicka Elizabeth or Elizaveta Petrovna (; ) reigned as Empress of Russia from 1741 until her
death in 1762. She remains one of the most popular Russian monarchs because of her decision
not to execute a single person during her reign, her numerous construction projects, and her strong
opposition to Prussian policies. The second-eldest daughter of Tsar Peter the Great (), Elizabeth lived
through the confused successions of her father’s descendants following her half-brother Alexei’s
death in 1718. The throne first passed to her mother Catherine I of Russia (), then to her nephew
Peter II, who died in 1730 and was succeeded by Elizabeth’s first cousin Anna (). After the brief rule
of Anna’s infant great-nephew, Ivan VI, Elizabeth seized the throne with the military’s support and
declared her own nephew, the future Peter III, her heir. During her reign Elizabeth continued the
policies of her father and brought about a remarkable Age of Enlightenment in Russia. Her domestic
policies allowed the nobles to gain dominance in local government while shortening their terms of
service to the state. She encouraged Mikhail Lomonosov’s foundation of the University of Moscow,
the highest-ranking Russian educational institution. Her court became one of the most splendid
in all Europe, especially regarding architecture: she modernised Russia’s roads, encouraged Ivan
Shuvalov’s foundation of the Imperial Academy of Arts, and financed grandiose Baroque projects of
her favourite architect, Bartolomeo Rastrelli, particularly in Peterhof Palace.

GenIE (T5-L):961
962
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{ 963

"0": { 964

"entity name": "Bartolomeo Rastrelli", 965

"place of death": "Moscow", 966

"given name": "Bartolomeo", 967

"family name": "Rastrelli", 968

"languages spoken, written or signed": "Russian", 969

"country": "Russia", 970

"type": "human" 971

}, 972

"1": { 973

"entity name": "Catherine I of Russia", 974

"given name": "Catherine", 975

"languages spoken, written or signed": "Russian", 976

"type": "human" 977

} 978

} 979980

MuSEE (T5-L): 981
982

{ 983

"0": { 984

"type": "human", 985

"entity name": "Peter the Great", 986

"given name": "Peter" 987

}, 988

"1": { 989

"type": "human", 990

"entity name": "Bartolomeo Rastrelli", 991

"family name": "Rastrelli", 992

"given name": "Bartolomeo" 993

}, 994

"2": { 995

"type": "human", 996

"entity name": "Catherine I of Russia", 997

"given name": "Catherine" 998

}, 999

"3": { 1000

"type": "human", 1001

"entity name": "Peter III", 1002

"given name": "Peter" 1003

}, 1004

"4": { 1005

"type": "human", 1006

"entity name": "Ivan Shuvalov", 1007

"family name": "Shuvalov", 1008

"given name": "Ivan", 1009

"languages spoken, written or signed": "Russian" 1010

}, 1011

"5": { 1012

"type": "concrete object", 1013

"entity name": "Peterhof Palace", 1014

15



"country": "Russia"1015

},1016

"6": {1017

"type": "human",1018

"entity name": "Mikhail Lomonosov",1019

"family name": "Lomonosov",1020

"given name": "Mikhail",1021

"languages spoken, written or signed": "Russian"1022

}1023

}10241025
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REBEL Dataset

Figure 8: Metric correlation analysis on the REBEL dataset.
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Figure 9: Metric correlation analysis on the NYT dataset.

G Metric Correlation Analysis1026

We show the correlation analysis between AESOP metric variants across all models on all four datasets,1027

shown in Fig. 8, Fig. 9, Fig. 10, and Fig. 11, respectively. Specifically, we focus on the correlation analysis1028
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CONLL04 Dataset

Figure 10: Metric correlation analysis on the CONLL04.
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Figure 11: Metric correlation analysis on the Wikidata-based dataset.

of different variants based on entity assignment variants in Phase 1 of AESOP, as described in Sec. 3. 1029

For Phase 2, the “Max” normalization method is employed by default. Observations for the other two 1030

normalization variants are similar. In the associated figures, AESOP-MultiProp-Max is uniformly used as 1031

the x-axis measure, while AESOP-ExactName-Max or AESOP-ApproxName-Max serve as the y-axis 1032

metrics. The scatter plots in all figures tend to cluster near the diagonal, indicating a robust correlation 1033

among the various metric variants we have introduced. 1034
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