
3rd Symposium on Advances in Approximate Bayesian Inference, 2020 1–14

Learning Discrete Distributions by Dequantization

Emiel Hoogeboom∗ e.hoogeboom@uva.nl
University of Amsterdam, Netherlands

Taco S. Cohen
Jakub M. Tomczak
Qualcomm AI Research, Qualcomm Technologies Netherlands B.V..

Abstract

Media is generally stored digitally and is therefore discrete. Many successful deep distribu-
tion models in deep learning learn a density, i.e., the distribution of a continuous random
variable. Näıve optimization on discrete data leads to arbitrarily high likelihoods, and in-
stead, it has become standard practice to add noise to datapoints. In this paper, we present
a general framework for dequantization via latent variable modelling. In this framework,
we are able to recover existing dequantization schemes as special cases, and we are able
to derive natural extensions from variational inference literature. We investigate two un-
explored directions for dequantization: More sophisticated inference objectives, based on
importance-weighting (iw) and Rényi variational inference. In addition, we analyze dequan-
tization for different types of distributions, and show that autoregressive dequantization
achieves 3.06 bits per dimension in negative log-likelihood on CIFAR10.

1. Introduction

0 1 2

(a) Pdata(x)

0 1 2

(b) uniform
q(v|x)

0 1 2

(c) flexible q(v|x)

Figure 1: A discrete distribution Pdata(x) is dequan-
tized by q(v|x). Here, the continuous density model
p(v) is relatively simple, and two dequantization dis-
tributions are considered: one is simple and the other
is flexible. Suppose that the dequantization distribu-
tion is uniform. Then p(v) is encouraged to have rela-
tively high uncertainty under variational inference. In
contrast, when the dequantization distribution q(v|x)
is flexible it can match p(v) which considerably im-
proves the tightness of the variational bound.

Today, virtually all media is handled dig-
itally. As such, it is stored in bits and is
therefore discrete. Deep learning models
Larochelle and Murray (2011); Kingma and
Welling (2014) aim to learn a distribution
pmodel(x) for high-dimensional data. Many
of these models are density models Uria
et al. (2013); van den Oord and Schrauwen
(2014); Dinh et al. (2017); Papamakarios
et al. (2017), meaning they learn a distri-
bution of a continuous random variable.

Applying a continuous density model to
discrete data, may place arbitrarily high
likelihood on the discrete locations Theis
et al. (2016). Since discrete and continuous
spaces are topologically different, a probability density does not necessarily approximate a
probability mass. The total probability at a single point under a density is always zero.

In this paper, we present a general approach for dequantization via latent variable mod-
elling. In this framework, we are able to recover existing dequantization schemes as special

∗ Research done while completing an internship at Qualcomm AI Research, Qualcomm Technologies
Netherlands. Currently a Ph.D. student at the University of Amsterdam, Netherlands.

© E. Hoogeboom, T.S. Cohen & J.M. Tomczak.

Learning Discrete Distributions by Dequantization

cases, and we are able to derive natural extensions from variational inference literature. We
investigate two directions: more sophisticated variational inference objectives, importance-
weighted (iw) and Rényi dequantization; and autoregressive distributions, since noise does
not need to be inverted. We aim to not only investigate different dequantization methods,
but also to highlight its importance.

2. Related Work

A large number of distribution models learn a density, a distribution over a continuous vari-
able (Uria et al., 2013; van den Oord and Schrauwen, 2014; Dinh et al., 2017; Papamakarios
et al., 2017; Kingma and Dhariwal, 2018; Huang et al., 2018; De Cao et al., 2019; Grathwohl
et al., 2019; Hoogeboom et al., 2019b; Ho et al., 2019; Chen et al., 2019; Song et al., 2019;
Ma et al., 2019). A standard approach adds uniform noise to discrete values (Theis et al.,
2016; Uria et al., 2013; van den Oord and Schrauwen, 2014). Recently, it was proposed
to consider a learnable dequantization treated as a variational posterior over latent contin-
uous variables (Ho et al., 2019; Winkler et al., 2019). Here, we derive a new framework
for dequantization using latent variable modelling and we present two new dequantization
objectives based on Burda et al. (2016); Li and Turner (2016) for VAEs.

3. Methodology

Let x ∈ X denote a vector of D observable discrete random variables and Pdata(x) be its
(unknown) distribution. We assume there is a set of data D = {xn} given, or, equivalently,
an empirical distribution P̂data(x) is provided. The likelihood-based approach to learning a
distribution is about finding values of parameters of a model Pmodel(x) that maximize the
log-likelihood function: logPmodel(D) = Ex∼P̂data(x)[logPmodel(xn)].

3.1. Dequantization as a latent variable model

Frequently, a discrete distribution models a proxy of a continuous variable in the physical
world. For instance, a digital photograph of an observed scene represents the light that
is reflected from observed objects, quantized to a certain precision. In other words, we
can consider a latent variable model where continuous latent variables v ∈ RD correspond
to a continuous representation of the world and observable discrete variables x are mea-
sured quantities. This suggests the following model: Pmodel(x) =

∫
Pϑ(x|v)pθ(v)dv, where

Pϑ(x|v) is an indicator function of v being contained in a volume Bϑ(x) ⊆ RD, namely,
Pϑ(x|v) = 1[v ∈ Bϑ(x)], and pθ(v) is a continuous distribution, which may be modeled
using a flexible density model (MacKay and Gibbs, 1999; Dinh et al., 2017; Rippel and
Adams, 2013). We refer to Pϑ(x|v) as a quantizer. Note that in principle the volumes Bϑ
can be constructed to induce any type of partition of a volume space, where care should
be taken that Bϑ for different x do not overlap. When we set B(x) = {x · u|u ∈ RD+} for
x ∈ {−1, 1}D we recover half-infinite dequantization for binary variables from Winkler et al.
(2019). In this paper, since image data is often represented on a square grid we will focus
on hypercubes, namely, B(x) = {x + u : u ∈ [0, 1)D}.

2

Learning Discrete Distributions by Dequantization

Notice that Theis et al. (2016); Ho et al. (2019) require the definition P (x) =
∫

[0,1)D p(x+

u)du to relate a discrete and continuous model. In contrast, our method is derived without
this definition, and the quantizer volume B generalizes to any volumetric partition.

Calculating the integral in the latent variable model is troublesome, and thus, learning
is infeasible especially in high dimensional cases. Therefore, in order to alleviate this issue,
we introduce a new distribution qφ(v|x) with parameters φ, a dequantizing distribution or
dequantizer. In fact, the dequantizer should have the same support as Pϑ(x|v), otherwise
it would assign probability mass to regions outside the volume B(x). Therefore, we will
use u instead of v in the dequantizing distribution to highlight the fact that the support of
qφ(v|x) equals B(x), where we define v = x + u. Including the dequantizer yields:

Pmodel(x) =

∫
qφ(u|x)Pϑ(x|v)pθ(v)

qφ(u|x)
dv = Eu∼qφ(u|x)

[Pϑ(x|v)pθ(v)

qφ(u|x)

]
,

Introducing the dequantizer allows us to connect dequantization to the broad literature on
variational inference. We propose three approaches to approximate the integral: i) varia-
tional inference, ii) weighted importance sampling and iii) variational Rényi approximation.

3.2. Variational Dequantization

We can interpret the dequantizing distribution as a variational distribution and apply
Jensen’s inequality to obtain the lower-bound on the log-likelihood function:

logPmodel(x) ≥ Eu∼qφ(u|x)

[
log

Pϑ(x|v)pθ(v)

qφ(u|x)

]
. (1)

The dequantizing distribution must be restricted to assign probability mass to B(x) only,
otherwise the lower-bound is undefined for certain samples u ∼ qφ(u|x). For our choice of
B(x) being a hypercube, we can apply the sigmoid function to the output of the dequantizer
to ensure the lower-bound has appropriate support. Thus, we can re-write (1) as follows:

logPmodel(x) ≥ Eu∼qφ(u|x)

[
log pθ(v)

]
+ H[qφ], (2)

which recovers the variational dequantization (vi dequantization) from Ho et al. (2019).

3.3. Importance-Weighted Dequantization

Alternatively, we can interpret the dequantizing distribution as a proposal distribution
and instead of using Jensen’s inequality we sample K times from qφ(u|x), which directly
approximates the log-likelihood:

logPmodel(x) ≥ log
[1

K

K∑
k=1

Pϑ(x|vk)pθ(vk)

qφ(uk|x)

]
= log

[1

K

K∑
k=1

pθ(vk)

qφ(uk|x)

]
, (3)

where uk ∼ qφ(u|x) and vk = x + uk for k = 1, 2, . . . ,K. The last equality follows if we
constrain the proposal distribution (the dequantizer) in the same manner as we did in the
case of the variational dequantization (i.e., the probability mass should be assigned only
to B(x)). This objective was studied in the context of VAEs in (Burda et al., 2016). In
general, if K → ∞, then we obtain an equality in (3). But since we take a finite sample,
the approximate gives a lower-bound to the log-likelihood function (iw-bound). Impor-
tantly, the iw-bound is tighter than the variational lower-bound Burda et al. (2016); Domke

3

Learning Discrete Distributions by Dequantization

and Sheldon (2018). Hence, the importance-weighting is preferable over the variational
inference and in practice it leads to a better log-likelihood performance. We refer to this
dequantization scheme as iw dequantization.

3.4. Rényi Dequantization

The variational inference and importance-weighting sampling for a latent variable model
could be generalized by noticing that both approaches are special cases of the variational
Rényi bounds. The log-likelihood function could be lower-bounded by the Rényi divergence
approximated with the sample from qφ(u|x) of size K <∞ (Li and Turner, 2016):

logPmodel(x) ≥ 1

1− α
log
[1

K

K∑
k=1

(Pϑ(x|vk)pθ(vk)

qφ(uk|x)

)1−α]
,

where α ∈ [0, 1) is a hyperparameter. Interestingly, for α → 1 we obtain the variational
lower-bound and for α = 0 we get the iw-bound. Li and Turner (2016) have further shown
that it is advantageous to consider α < 0, because it may give tighter bounds than the
iw-bound when the sample size K is low.1 Setting α = −∞ corresponds to picking the
largest importance weight value. By restricting the domain of q(u|x) to B(x) can obtain
the variational Rényi max approximation (VR-max):

logPmodel(x) ≈ log max
k=1,2,...,K

[pθ(vk)

qφ(uk|x)

]
. (4)

The maximum weight dominates the contributions of all the gradients Li and Turner (2016).
Thus, the VR-max approach could be seen as a fast approximation to the importance-
weighting, since it speeds up computations by considering only one example instead of K in
calculating gradients. We refer to this whole dequantization scheme as Rényi dequantization.

3.5. Dequantizing distributions

The dequantizing distribution plays an important role in the framework and its flexibility
allows to obtain better log-likelihood scores. Importantly, the dequantizing distribution is
a conditional distribution and we use it for sampling instead of calculating probabilities.

Uniform The special case in which qφ(u|x) is a uniform distribution over B(x), is the
setting introduced in (Theis et al., 2016; Uria et al., 2013; van den Oord and Schrauwen,
2014), termed uniform dequantization.

Gaussian A more powerful dequantization scheme than the uniform dequantization
is a conditional logit-normal distribution Atchison and Shen (1980), namely, qφ(u|x) =

sigm
(
N
(
µφ(x),Σφ(x)

))
, where µφ(x) and Σφ(x) denote the mean and the covariance ma-

trix for given x, respectively, and sigm(·) is the sigmoid function.
Flow Instead of using a certain family of distribution, we can define the quantizer by

applying the change of variables formula, that is:

qφ(u|x) = qφ
(
ε = fφ(sigm−1(u); x)|x

)
|J |, (5)

1. To be precise, if we consider the infinite sample for α < 0, we get an upper-bound on the log-likelihood
function. However, taking K < ∞ may result in a tighter bounds according to Corollary 1 in Li and
Turner (2016).

4

Learning Discrete Distributions by Dequantization

where f : RD → RD is a bijective map to a simple base distribution qφ(ε|x), and J = ∂ε
∂u

denotes a Jacobian matrix. Notice we highlight the need of using the (inverse) sigmoid
function on top of the bijective map in order to ensure correct support, i.e.u ∈ [0, 1)D. There
are two important parts of a flow-based model, namely, a choice of a base distribution qφ(ε|x)
and the bijective map fφ. Here we decide to use a diagonal Gaussian base distribution Dinh
et al. (2017). Whereas Ho et al. (2019) studied bipartite maps for fφ, here we examine
autoregressive bijective maps, since dequantization noise does not have to be inverted.

Bipartite flows The bipartite bijective maps ensure invertibility by splitting an input
into two parts, and processing only the second part (Dinh et al., 2017).

Autoregressive flows We can model qφ(u|x) with an ‘expensive to invert’ bijective map.
We find that an autoregressive model as proposed for variational autoencoders (Kingma
et al., 2016) is an appealing choice for dequantization. We utilize the following:

u = exp tanh(s)� ε + m where [m, s] = ARMφ(ε,h), (6)

where ARMφ is an autoregressive model (an autoregressive neural network), h is a context
variable that is calculated based on the conditioning x using a neural network, s. We refer
to this dequantization scheme as Autoregressive Dequantization (ARD).

3.6. Distributions for the density model

The continuous model pθ(v) is the crucial component in the presented framework since the
better performance depends on the flexibility of this model. In principle, any continuous
density model could be used as pθ(v), e.g., any model mentioned in section 3.5, with the
important difference that the sigmoid function is not used as the support does not need to
be confined. In practice, however, pθ(v) has to be evaluated during training and we are
interested in sampling v ∼ pθ(v). Hence, utilizing models with autoregressive components
would be prohibitively slow. Therefore, in our experiments, we consider a Gaussian distri-
bution with diagonal covariance, full covariance, and a bipartite flow-based model (a series
of coupling layers and a factored-out base distribution) as a continuous distribution.

4. Experiments

To understand and evaluate different dequantization schemes, they are tested on different
data problems: i) a 2-dimensional binary problem, ii) (statically) binarized MNIST (bM-
NIST) (Larochelle and Murray, 2011) and centered patches of bMNIST, which is derived
directly from MNIST and iii) CIFAR10 (Krizhevsky et al., 2009) (8 bit and 5 bit). Per-
formance is evaluated on a held-out test-set using negative log-likelihood. This method
of evaluation is common in deep distribution learning literature because it allows for an
information theoretic interpretation: the negative log2-likelihood is expressed in bits or bits
per dimension (bpd), where the latter is an average over dimensions and gives the lossless
compression size. In the experiments we consider diagonal Gaussians, covariance Gaussians
and flows as distribution models, since these models admit exact likelihood evaluation. A
detailed description of experiments (i) and (ii), and architectures and optimization can be
found in the Appendix.

5

Learning Discrete Distributions by Dequantization

Table 1: Comparison of negative log-likelihood, vi dequantization (ELBO) evaluation of
our model versus literature. - logP (x) is approximated using 1000 importance weighted
samples. KL(qφ|pθ) is the difference between - logP (x) and vi. In bits per dimension.

Method KL(qφ|pθ) vi − logP (x)

IAF-VAE (Kingma et al., 2016) 0.04 3.15 3.11
BIVA (Maaløe et al., 2019) 0.04 3.12 3.08

Glow (Kingma and Dhariwal, 2018) n/a 3.35 n/a
FFJORD (Grathwohl et al., 2019) n/a 3.40 n/a
IDF (Hoogeboom et al., 2019a) - - 3.32
MintNet (Song et al., 2019)? n/a 3.32 n/a
Residual Flow (Chen et al., 2019)† n/a 3.28 n/a
Flow++ (Ho et al., 2019)† 0.04 3.12 3.08
ARD (ours) 0.03 3.09 3.06

? Sampling from model requires autoregressive inverse.
† Sampling from model requires other iterative procedures.
n/a not available, this value exists but was not reported in the literature.

4.1. Image distribution modelling

In this experiment the model using ARD is compared with other methods in the literature.
Experiments show that our model outperforms other methods in the literature on both
variational inference objective and negative likelihood (Table 1). In general we compare to
models that do not require an autoregressive inverse to sample from, where the exception
is marked ?. In particular, we report vi evaluation, also referred to as Expected Lower
Bound (ELBO), and we report the approximate negative likelihood - logP (x) using 1000
importance weighted samples following Maaløe et al. (2019). Note that Ho et al. (2019)
use 16384 samples, which skews the experiment in their favour for vi and - logP (x), but
against them for KL(qφ|pθ). Architecturally, the density model in ARD is most similar
to IDF (Hoogeboom et al., 2019a), where 1 × 1 convolutions from Glow (Kingma and
Dhariwal, 2018) and scale transformations from RealNVP (Dinh et al., 2017) are added.
Flow++ (Ho et al., 2019) has additional attention layers and MintNet (Song et al., 2019)
has autoregressive transformations instead of coupling layers in the density model. Note
that even though our model utilizes autoregressive components similar to MintNet (Song
et al., 2019), our model is computationally cheap to invert since it does not require the
solution to autoregressive inverses. Residual Flow (Chen et al., 2019) utilizes invertible
ResNets instead of coupling layers.

5. Conclusion

In this paper we presented a framework for dequantization via latent variable modeling.
Using this interpretation, we derive natural extensions from variational inference literature
for dequantization: importance-weighted (iw) and Rényi dequantization. We show that low
bit-depth data combined with simple dequantizers benefit from these objectives. In addition,
we analyze dequantization for different types of distributions (simple and complicated) and
show that autoregressive dequantization achieves 3.06 bits per dimension in negative log-
likelihood on CIFAR10.

6

Learning Discrete Distributions by Dequantization

References

J Atchison and Sheng M Shen. Logistic-normal distributions: Some properties and uses.
Biometrika, 67(2):261–272, 1980.

Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance weighted autoen-
coders. In 4th International Conference on Learning Representations, ICLR, 2016.

Ricky TQ Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual
flows for invertible generative modeling. arXiv preprint arXiv:1906.02735, 2019.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Block neural autoregressive flow. In Proceedings
of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI, page 511,
2019.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP.
In 5th International Conference on Learning Representations, ICLR, 2017.

Justin Domke and Daniel R. Sheldon. Importance weighting and variational inference. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS, pages 4475–4484, 2018.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.
FFJORD: free-form continuous dynamics for scalable reversible generative models. In 7th
International Conference on Learning Representations, ICLR, 2019.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improv-
ing flow-based generative models with variational dequantization and architecture design.
In Proceedings of the 36th International Conference on Machine Learning, ICML, pages
2722–2730, 2019.

Emiel Hoogeboom, Jorn WT Peters, Rianne van den Berg, and Max Welling. Integer
Discrete Flows and Lossless Compression. Advances in Neural Information Processing
Systems 32, NeurIPS, 2019a.

Emiel Hoogeboom, Rianne van den Berg, and Max Welling. Emerging convolutions for
generative normalizing flows. In Proceedings of the 36th International Conference on
Machine Learning, ICML, pages 2771–2780, 2019b.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron C. Courville. Neural
autoregressive flows. In Proceedings of the 35th International Conference on Machine
Learning, ICML, pages 2083–2092, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR, 2015.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 con-
volutions. In Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems, NeurIPS, pages 10236–10245, 2018.

7

Learning Discrete Distributions by Dequantization

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR, 2014.

Diederik P. Kingma, Tim Salimans, Rafal Józefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improving variational autoencoders with inverse autoregressive flow. In Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and Statis-
tics, AISTATS, pages 29–37, 2011.

Yingzhen Li and Richard E. Turner. Rényi divergence variational inference. In Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems, pages 1073–1081, 2016.

Xuezhe Ma, Xiang Kong, Shanghang Zhang, and Eduard H. Hovy. Macow: Masked convolu-
tional generative flow. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing (NeurIPS), pages 5891–5900, 2019.

Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. BIVA: A very deep
hierarchy of latent variables for generative modeling. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
NeurIPS, pages 6548–6558, 2019.

David JC MacKay and Mark N Gibbs. Density networks. Statistics and neural networks:
advances at the interface. Oxford University Press, Oxford, pages 129–144, 1999.

George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow for
density estimation. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems, pages 2338–2347, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch. In NeurIPS Autodiff Workshop, 2017.

Oren Rippel and Ryan Prescott Adams. High-dimensional probability estimation with deep
density models. arXiv preprint arXiv:1302.5125, 2013.

Yang Song, Chenlin Meng, and Stefano Ermon. Mintnet: Building invertible neural net-
works with masked convolutions. CoRR, abs/1907.07945, 2019.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of
generative models. In 4th International Conference on Learning Representations, ICLR,
2016.

8

Learning Discrete Distributions by Dequantization

Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: the real-valued neural autore-
gressive density-estimator. In Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems., pages 2175–2183,
2013.

Aäron van den Oord and Benjamin Schrauwen. Factoring variations in natural images with
deep gaussian mixture models. In Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems, pages 3518–3526, 2014.

Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learning Likeli-
hoods with Conditional Normalizing Flows. CoRR, abs/1912.00042, 2019.

9

Learning Discrete Distributions by Dequantization

Appendix A. Experiments

A.1. Analysis in 2d

The different dequantization methods and objectives are analyzed in two dimensions using
the binary checkerboard, which places equal probability over two of the four states in the
binary space {0, 1}2, such that Pdata(x) = 0.5 if x = (1, 0) or if x = (0, 1), and zero otherwise.
Although the theoretical likelihood limit of a dataset is typically unknown, for the binary
checkerboard this is exactly 1 bit, because there is an equal probability over two events.
Since the problem is two dimensional, the learned distributions can be visualized. Figure
2 depicts the probability density of the dequantizer q(v|x) and the density model p(v), for
models trained using vi -dequantization. Since by construction q(v|x) only places density
on a bin corresponding to x, the distribution q(v|x) can be visualized without overlap in
the marginal distribution q(v) = Ex∼Pdata(x)[q(v|x)].

When the model p(v) is a flow and the dequantizer q(v|x) is uniform (Figure 2a), the
model p(v) is struggling to adequately model the boundaries of the dequantized density
regions. When the model p(v) is a simple diagonal Gaussian and the dequantizer q(v|x)
is a flow (Figure 2b), the flexible dequantizer compensates the limitations of the density
model by shaping itself to the limitations of the simple distribution. An interesting variant
we would like to highlight is when the density model p(v) is a Gaussian with covariance,
and q(v|x) is a flow (Figure 2c). Aided by the dequantizer, the model p(v) aims to place
density on the diagonal line which improves the performance to 1.08 bits, which is already
close to the theoretical limit. Surprisingly, when the density model is relatively simple, a
flexible dequantizer can compensate a lot. The best performance is achieved when both
q(v|x) and p(v) are flexible (Figure 2d). For this problem we observe the density contracts
somewhat away from boundaries, and the center has relatively high density.

The effects seen in Figure 2 are also confirmed quantitatively with the likelihood per-
formance of these models (Table 2). Note that the more flexible the distributions, the
better the performance. An interesting observation is that when p(v) is a flow distribution,
a Gaussian q(v|x) and a flow q(v|x) have equal performance. Presumably, the flexibility
of p(v) does not require a more complicated dequantizer for this relatively simple prob-
lem. In addition the effects iw and Rényi dequantization are shown in Table 3. Uniformly
dequantized models that are trained using Rényi or iw dequantization are considerably

Table 2: Binary checkerboard vi -
dequantization performance for different
dequantizer q(v|x) and density model p(v)
pairs in bits. Lower is better.

q(v|x)
Uniform Diag. Flow

p
(v

) Diag. 2.51 2.08 2.01
Cov. 1.91 1.66 1.08
Flow 1.11 1.02 1.02

Table 3: Likelihood performance on binary

checkerboard when trained with iw or Rényi

dequantization in bits per dimension (bpd).

Lower is better.

q(v|x)
Uniform Normal Flow

vi? 1.05 1.00 1.00
iw (K = 16) 1.00 1.00 1.00
Rényi (K = 2) 1.02 1.00 1.01

? vi is equivalent to iw or Rényi with K = 1.

10

Learning Discrete Distributions by Dequantization

0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

(a) q(v|x) is uniform, p(v) is a flow, 1.11 bits.

0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

(b) q(v|x) is a flow, p(v) is diag. normal, 2.08
bits.

0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

(c) q(v|x) is a flow, p(v) is a cov. normal, 1.08
bits.

0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

(d) q(v|x) is a flow, p(v) is a flow, 1.02 bits.

Figure 2: Density visualization of different density models p(v) and dequantizer q(v|x) pairs. This
figure considers a selection, for all different pairs we tested please see the Appendix. The dequantizing
distributions is visualized in the marginal distribution q(v) = Ex∼Pdata(x)[q(v|x)]. Models are trained
using vi -dequantization and the values reported are vi evaluation.

better than vi in terms of likelihood. For more complicated dequantizers though, we find
that improvements are negligible. Therefore, these sophisticated objectives appear to be
particularly useful when the dequantization distribution is simple. Note that due to the low
dimensionality of the problem Rényi dequantization will typically result in loose bounds
for larger values than K = 2.

A.2. Analysis in high-dim: Image modelling

Similar to the 2d example, more sophisticated training objectives are most advantageous
when dequantization distributions are simple, which can be seen in Table 6. For binary
MNIST and patches of binary MNIST, training using iw dequantization improves negative
likelihood performance consistently. However, for more expressive learnable dequantizers
the added benefit of these objectives becomes smaller. For CIFAR10 we train only last 100
epochs with the sophisticated objectives and the first with vi to reduce the computational
cost. In high-bit depth settings such as CIFAR10, we find that the performance gains of
importance weighting are minimal. Hence, for simple dequantizers on data with low bit
depth, iw-dequantization may considerably improve performance. Rényi dequantization
achieves similar but slightly worse performance, which is acceptable since it is a faster
approximation.

Autoregressive Dequantization Experiments show that ARD outperforms all other
dequantization distributions, when trained using comparable architectures (see Table 4 and
5). Two results are particularly striking: Firstly, even when binary MNIST is learned using
a simple density model p(v) (covariance normal), ARD achieves a negative log-likelihood
of 0.183 bpd. In constrast, the uniformly dequantized covariance model achieves only

11

Learning Discrete Distributions by Dequantization

Table 4: Performance of vi dequantization on
binary MNIST for different density model p(v)
and dequantizer distributions q(v|x) pairs. In
bits per dimension, lower is better.

p
(v

) q(v|x)
Unif. Normal Bipart. ARD

C
ov

. KL(qφ|pθ) 0.061 0.046 0.010 0.007
vi 0.533 0.268 0.196 0.190
− logP (x) 0.472 0.242 0.186 0.183

F
lo

w

KL(qφ|pθ) 0.014 0.007 0.005 0.005
vi 0.176 0.156 0.153 0.152
− logP (x) 0.162 0.149 0.148 0.147

Table 5: Performance of vi dequantization
on CIFAR10 8 and 5 bit for a flow density
model p(v) and different dequantizer distribu-
tions q(v|x). In bits per dimension.

q(v|x)
Unif. Normal Bipart. ARD

8
b
it

KL(qφ|pθ) 0.03 0.02 0.02 0.02
vi 3.29 3.21 3.18 3.16
− logP (x) 3.26 3.19 3.16 3.14

5
b
it

KL(qφ|pθ) 0.04 0.02 0.01 0.02
vi 1.65 1.50 1.43 1.41
− logP (x) 1.61 1.48 1.42 1.39

Table 6: Likelihood performance for models trained with iw or Rényi objectives and uniform
dequantization on binary MNIST and CIFAR10 in bits per dimension (bpd). The reported values
are a (bounded) approximations of - logP (x) using iw -dequantization with 256 samples. Lower is
better.

Dataset bMNIST 2 × 2 bMNIST 4 × 4 bMNIST CIFAR10
q(v|x) Unif. Normal Bipart. Unif. Normal Bipart. Unif. Unif.

vi 0.747 0.724 0.723 0.633 0.603 0.601 0.162 3.26
iw (K = 4) 0.726 0.722 0.721 0.610 0.600 0.599 0.159 3.25
Rényi (K = 4) 0.724 0.722 0.723 0.610 0.602 0.600 0.160 3.25

0.472 bpd. Secondly, notice that dequantization seems to matter more when bit-depths
are smaller. To see this, consider the log-likelihood improvement when comparing uniform
dequantization and ARD: For the 8 bit data the improvement is 0.12 bpd, which is about
3.7% relative to the total bpd. However, for 5 bit data the improvement is already 0.20 bpd
which is about 12% relatively. Hence, log-likelihood modelling of lower bit depth data may
especially benefit from more expressive dequantizers.

Recommendations This section aims to give the reader recommendations on what de-
quantization methods to use and what gains are to be expected. When bit-depths are
small and dequantization distributions are fixed, we find that iw or Rényi dequantization
objectives improve log-likelihood performance. Note that by design of the objectives, the
approximate posterior q(v|x) will diverge more from the (unknown) true posterior p(v|x).
Therefore, a downside of these objectives is that a single sample iw dequantization (equiva-
lent to vi) will be a poor approximation to the log-likelihood, and instead multiple samples
are required to obtain accurate estimates.

In contrast, when dequantization noise can be learned or bit-depths are higher, it may
be better to simply use vi dequantization and better performance is obtained by increasing
the complexity of the dequantizer. Note that at the cost of some small performance losses,
Gaussian dequantization might be a good simple alternative to flow-based dequantization.

12

Learning Discrete Distributions by Dequantization

Appendix B. Architecture and Optimization details

In the experiments we consider diagonal Gaussian, covariance Gaussian and flows as distri-
bution models, since these models admit exact likelihood evaluation. The diagonal Gaussian
is parametrized straightforwardly using parameters for mean and log scale. The covariance
Gaussian is parametrized using a Cholesky decomposition, i.e., the precision Λ = LLT where
L is the learnable parameter. The diagonal of L is modelled separately using a log diagonal
parameter, which ensures positive-definiteness of Λ. The covariance matrix is defined then
as Σ = Λ−1. Further, flows have an architecture as described in Kingma and Dhariwal
(2018) using the densenet coupling networks from Hoogeboom et al. (2019a). For MNIST
data we use the given split of 40000 train, 10000 validation and 10000 test images. In the
bMNIST patches experiments, center patches of the relevant size are taken. For CIFAR10
we split the 50000 training images into the first 40000 for train and the last 10000 for
validation, we use the 10000 test images as provided.

Models were all optimized using Kingma and Ba (2015) with a learning rate of 0.0005
and standard β parameters. Furthermore, during initial 10 epochs the learning rate is
multiplied by epoch divided by 10, referred to as warmup Kingma and Dhariwal (2018).
All our code was implemented in PyTorch Paszke et al. (2017). Since experiments are
computationally expensive, architectures were trained once. Models were trained using two
Nvidia Tesla V100 GPUs, with Nvidia driver 410.104, CUDA 10.0, and cuDNN v7.5.1. In
this setting, smaller models (Binary MNIST) take approximately three days to complete,
and larger models (CIFAR10) require five to six days to complete. Results are obtained
by running models a single time, due to the large computational power that normalizing
flows require. The basic architecture was built following Kingma and Dhariwal (2018): The
flow is divided in multiple levels with a decreasing number of dimensions. At the end of
every level, half of the representation is modelled using a factor out layer (splitprior) Dinh
et al. (2017); Kingma and Dhariwal (2018). Every level consists of subflows, i.e. a coupling
layer followed by a 1 × 1 convolution Kingma and Dhariwal (2018). The coupling layers
utilize neural networks as described in Hoogeboom et al. (2019a). For the autoregressive
transformation, we utilize the masking as described in Song et al. (2019). In terms of
autoregressive order, this is equivalent to reshaping a C × H × W image to a vector and
applying the autoregressive mask. This is opposed to masking in Kingma et al. (2016), which
is equivalent to a mask on a reshaped H × W × C image. In practice, the autoregressive
transformation is obtained by masking convolutions.

Table 7: Optimization details.

Experiment levels subflows net. depth net. channels context channels q levels q subflows batch size

Binary checkerboard 1 8 12 192 16 1 4 128
Binary MNIST patches 1 8 12 192 16 1 4 128
Binary MNIST 2 8 12 192 16 1 4 128
CIFAR10 5bit 2 10 12 768 16 1 2 256
CIFAR10 2 10 12 768 16 1 2 256
CIFAR10 (Literature comparison) 2 18 12 768 16 1 2 128

13

Learning Discrete Distributions by Dequantization

Appendix C. Additional results

Visualization of samples v ∼ p(v) from a density model, and the quantizer x ∼ P (x|v)
are depicted in Figure 3. The quantizer is simply a Kronecker delta peak and amounts
to applying a floor function in the case of hypercube partitioning. The density model is a
flow trained with autoregressive dequantization on standard 8 bit CIFAR10. Notice that
although the method is trained using autoregressive dequantization, the density model p(v)
uses bipartite transformations and does not require the solution to autoregressive inverses.

Table 8: Likelihood performance for models trained with iw or Rényi objectives and uni-
form dequantization on binary MNIST and CIFAR10 in bits per dimension (bpd). The
reported values are a (bounded) approximations of - logP (x) using iw -dequantization with
256 samples. Lower is better.

Dataset bMNIST 4 × 4
K = 1 K = 2 K = 4 K = 8 K = 16

iw 0.633 0.619 0.610 0.607 0.604
Rényi 0.633 0.621 0.610 0.608 0.609

Appendix D. Visualizations on Binary Checkerboard

In this section a comprehensive overview of the distributions dequantizer and density model
pairs is visualized. The models trained using variational inference are displayed in Table 9.
In general, the dequantizer q(v|x) and density model p(v) try to compensate for each other
where they are lacking flexibility. This effect can be seen when q(v|x) is a flow and p(v)
is a diagonal Gaussian, a covariance Gaussian and lastly a flow. When p(v) is a flow, it is
generally difficult to capture the edges of the squares when dequantization noise is uniform.
However, both Gaussian and flow dequantization perform equally when the model p(v) is a
flow. In this simple problem, Gaussian dequantization is sufficiently flexible when combined
with a flow.

The models trained using iw and Rényi dequantization objectives are depicted in Table
10. An important difference with vi -dequantization is that it is much less important for
q(v|x) and p(v) to match completely. Rather, more emphasis is placed so that p(v) places
distribution somewhere in the appropriate bin, where the exact location in the bin matters
less. As a result, when q(v|x) is uniform the model p(v) is not forced to learn the uniform
square and retracts somewhat away from the edges.

14

Learning Discrete Distributions by Dequantization

Figure 3: Samples from the flow model in the literature comparison, trained using ARD.

Table 9: Different dequantizer q(v|x) and density model p(v) pairs trained using vi -
dequantization. The depicted values are computed using vi-dequantization (ELBO).

q(v|x)
Uniform Normal Flow

Normal diag.

0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

2.51
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

2.08
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

2.01

p
(v

) Normal cov.

0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.91
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.66
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.08

Flow

0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.11
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.02
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.02

15

Learning Discrete Distributions by Dequantization

Table 10: Models trained using iw and Rényi dequantization with different dequantizing
distributions q(v|x), and a flow p(v). The values are an approximation of - logP (x) using
importance-weighted dequantization with Ktest = 256 samples.

q(v|x)
Uniform Normal Flow

vi

0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.05
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.00
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.00

iw (K = 16)

0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.00
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.00
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.00

Rényi (K = 2)

0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.02
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.00
0 1 2

0

1

2

0 1 2

 0.0

 2.5

>5.0
-log q(v) -log p(v)

1.01

16

	Introduction
	Related Work
	Methodology
	Dequantization as a latent variable model
	Variational Dequantization
	Importance-Weighted Dequantization
	Rényi Dequantization
	Dequantizing distributions
	Distributions for the density model

	Experiments
	Image distribution modelling

	Conclusion
	Experiments
	Analysis in 2d
	Analysis in high-dim: Image modelling

	Architecture and Optimization details
	Additional results
	Visualizations on Binary Checkerboard

