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Abstract

Improving fertilizer practices through on-farm trials is challenging, especially in
rain-fed farming due to weather uncertainty. However, it is crucial to test various
practices to determine their performance, even if some may yield inferior results
during the experiment. Our case study focuses on maize production in south-
ern Mali, and we use the Decision Support System for Agrotechnology Transfer
(DSSAT) crop model to simulate maize responses to nitrogen fertilization. We
compare fertilizer practices using the Conditional Value-at-Risk (CVaR) of the
Yield Excess (YE), a novel agronomic metric that considers both grain yield and
nitrogen use efficiency. An "intuitive strategy" for practitioners, called Explore-
Then-Commit (ETC) in the bandit literature, involves multi-year, multi-location
field trials, where each practice is tested equally over several years. Inspired by a
recent contribution, we propose the Bounded–CVaR TS–Batch (BCB) bandit algo-
rithm, improving over ETC both theoretically and in crop model simulations. This
study opens new horizons for risk-aware identification of best crop management
practices’ in real conditions.

1 Introduction

Identifying site-specific best-performing crop management is crucial for farmers to increase their
income from crop production, but also for minimizing the negative environmental impacts of cropping
activities [57]. However, due to weather variability, the identification of these practices can be
challenging, in particular with rainfed farming: what worked best in a wet year or a year with
sufficient rainfall, might not work in the next year, when rainfall is lower [3]. The performance
of crop management at a given site has an underlying unknown distribution due to inter-annual
weather variability, thus creating great uncertainty [20]. Because crop management decisions are
repeated for each new crop growing season, the identification of best available crop management falls
into the category of sequential decision making under uncertainty [25]. Computer-based decision
support tools can allow farmers to make more informed (less uncertain) decisions about their cropping
practices from one year to the next, and can facilitate farmers’ risk management in the face of seasonal
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weather variability [28]. There exist numerous decision support tools of widely ranging complexity
for crop management, that have been introduced to farmers with varying degrees of success [25].

In this study, we focus on nitrogen fertilization for rainfed maize production in southern Mali, using
the Decision Support System for Agrotechnology Transfer (DSSAT) [29] crop model to simulate
real-world performance. The objective is not to optimize nitrogen management itself but to refine the
sequential selection strategy among pre-selected practices. While our example is nitrogen fertilization,
our broader goal is to provide a method for identifying the best crop management practices from any
set of predefined options, such as varietal choice or irrigation. This method is adaptable to real field
conditions and do not rely on model simulations alone.

More specifically, we frame this problem as a Multi-Arm Bandit (MAB, see [39] for a survey).
Indeed, a decision-maker (group of farmers) repeatedly faces a choice between contending actions
(pre-selected practices), collect a reward (grain yield), and aims at iteratively improving their decision-
making with trials in order to implement as often as possible the best practice among all candidates.
In MAB, the typical objective is to sequentially choose actions such that the expected sum of rewards
is maximized. This is equivalent to minimizing the regret, which measures the total losses that occur
by testing sub-optimal practices [50]. This can be done by carefully balancing exploration (testing
all practices to learn their reward) and exploitation (choosing in-trial best performing practices).
The exploration-exploitation dilemma is a reality for farmers when implementing crop management.
Farmers typically want to minimize overall crop yield losses and therefore may explore the perfor-
mance of promising new crop management practices on small test field plots [14, 17]. Thus, they
avoid potentially large crop yield losses from new practices by managing a gradual transition between
the current practices and the promising new one(s), based on the results they obtain on the small test
plots. Because trials are costly, bandit algorithms that minimize regret [8, 36, 12] are better-suited
than pure exploration algorithms [22, 34] for the problem of improving crop management practices.
In this article, we adapt a risk-aware bandit algorithm proposed in [9], reflecting the preferences
of the farmer for multi-year experiments, that successfully tackles the realistic crop-management
problem that we introduce.

2 Methodology

2.1 The virtual crop management problem

In our virtual crop management problem, a population of 500 virtual farmers from southern Mali
joins a participatory experiment to improve their nitrogen fertilizer practices for maize production in
their fields. The distribution of soil types of the fields of the group of virtual farmers is representative
of the region (see Table 1 in appendix), and we design cohorts as group of farmers growing maize on
the same soil type. For each cohort, we want to recommend as often as possible the best nitrogen
fertilizer practice from a set of candidates (see Section 2.2 for the performance measures considered).
The research team sets the additional objective to limit the maize yield losses of individual farmers
that could arise from poor nitrogen fertilizer practice recommendations during the experiment.

At the beginning of each crop growing season, a random number of virtual farmers (uniformly
obtained between 250 and 350) of the total population of 500 farmers volunteers to apply the rec-
ommended fertilizer policies provided by the research team. Each year, the group of volunteers
is variable in size and in the representation of cohorts, as could occur in reality (Figure 1). Thus,
researchers do not control the composition of the group of volunteers. Each virtual farmer indi-
cates the fields and corresponding soil types on which she/he plans to grow maize. Following the
recommendation strategies, researchers then provide a fertilizer practice among ten candidates to
each virtual farmer for the ongoing growing season, depending on her/his soil type. At the end of
the season, the farmers share their results in terms of maize grain yields with the research team,
allowing to refine the recommendations for the next season. The whole experiment is repeated during
20 consecutive years following the same steps. Figure 6a in appendix illustrates this process, and
corresponds to the steps described in Figure 1. We detail the experimental design in Appendix A,
including the choice of the candidate practices, justified from an agronomic perspective.

Maize growth simulations. In order to get a proxy for real-world performances of the maize
nitrogen fertilizer practices, we simulated maize growth responses to fertilization under the growing
conditions of the Cercle of Koutiala in southern Mali using gym-DSSAT v0.0.7 [26] developed from
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Figure 1: Set-up of the numerical experiment with (n = 500) virtual farmers grouped by cohorts
(c = 7, Table 1, identified by symbols), sharing the same soil type.

the Decision Support System for Agrotechnology Transfer (DSSAT) v4.7 crop model [29]. In the
model simulations, a different weather time series is generated for each growing season but also
for each farmer using the WGEN weather simulator [47], inducing sets of independent simulated
maize yield responses to nitrogen fertilization. The modeling approach we embraced can be seen as
distant farms encountering distinct weather patterns within the same year. The variability introduced
by weather randomness is the source of uncertainty in the simulator. In Appendix B we further
detail the DSSAT simulation settings. All the numerical experiments in this paper are meant to be
fully reproducible, and the code is open source. The repository containing the Python code with the
necessary packages, instructions and experimental data will be provided in the camera ready version.

2.2 Performance indicators of fertilizer practices

Yield Excess A popular indicator to evaluate both the economic and environmental performance of
a nitrogen fertilizer practice π is Agronomic Nitrogen use Efficiency (ANE), as defined by [60]:

ANEπ :=
Yπ − Y0

Nπ , (1)

where Yπ is the crop yield obtained with the fertilizer practice π with a quantity Nπ of nitrogen,
and Y0 is the yield of the control obtained in the same conditions without nitrogen fertilization.
Maximizing ANE is a proxy of minimizing the quantity of nitrogen losses, e.g. through nitrate
leaching. However, there are certain limitations associated with using ANE as an indicator for
optimizing fertilizer rates. For example, an ANE value of 25 kg grain/kg N can be achieved with a
fertilizer input of 20 kg N/ha resulting in a total yield gain of 500 kg/ha, or with an input of 60 kg
N/ha resulting in a total gain of 1500 kg/ha. For the same ANE, a farmer prefers the fertilizer practice
that provides the greatest crop yield gain, i.e. with 60 kg N/ha. Similarly, for a fixed crop yield the
most efficient fertilizer practice should be preferred. Hence, we introduce the Yield Excess (YE)
indicator to implement these preferences. The YE of a fertilizer practice π is defined with respect to
a reference practice πref of fixed efficiency ANEref, using the same quantity of nitrogen fertilizer as
practice π denoted by Nπ , and is computed as follows,

YEπ := Yπ − Yπref = Yπ − Y0︸ ︷︷ ︸
yield gain of π
w.r.t. control

−
(

Yπref − Y0
)︸ ︷︷ ︸

yield gain of πref
w.r.t. control

=
(
Yπ − Y0

)
×
(
1− ANEref

ANEπ

)
︸ ︷︷ ︸

penalization factor

(2)

The YE of practice π with respect to the reference practice πref corresponds to the yield difference
between the practice π and a reference practice that has a fixed ANE equal to ANEref and which
uses the same quantity Nπ of nitrogen fertilizer as π. YEπ increases with ANEπ (Figure 2). YEπ

is negative and decreases with Yπ − Y0 when ANEπ < ANEref and is positive and increases with
Yπ − Y0 when ANEπ ≥ ANEref. The YE of fertilizer practices with efficiency below ANEref are
negatively affected by this metric. We chose ANEref = 15 kg grain/kg N for our study, i.e. the
average ANE currently achieved by farmers across sub-Saharan Africa [54, 60].

Risk-awareness Because farmers are usually risk averse [e.g. 15, 43, 33], they are likely to prefer
a stable maize grain yield excess of, for example, 3000 kg/ha rather than a yield of 5000 kg/ha in half
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Figure 2: Yield Excess (YEπ, Equation 2) for ANEref = 15 kg grain /kg N (left) and ANEref = 30
kg grain /kg N (right) as a function of ANEπ and Yπ − Y0.
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Figure 3: Conditional Value-at-Risk (CVaR) of level α in the case of high (a) and low(b) risk aversion.
CVaR is the value of the blue area, the expectation of the example distribution is denoted by µ.

of the years, and of 1000 kg/ha in the other half of the years, while both distributions have the same
expectation. To account for risk aversion, we consider the Conditional-Value-at-Risk (CVaR, [40, 1]),
a popular risk-metric originated from the finance sector. Two definitions of the CVaR coexist in the
literature, depending if an outcome is considered as a gain or a cost [16]. We adopt the gain point of
view, in which the CVaR puts emphasis on the lower tail of a distribution. For a (continuous) random
variable X with cumulative distribution function FX , the CVaR is defined as follows

CVaRα(X) := E[X|X ≤ VaRα(X)] , with VaRα(X) := inf {x ∈ R : FX(x) > α} . (3)

A farmer is likely to prefer the practice with the highest CVaR for the considered level α. The more
α→ 0+, the more the measure puts emphasis on the worst observable yields. On the contrary, the
more α→ 1, the less risk averse is the CVaR. When α = 1, the CVaR equals the usual expectation
E [X], which is risk neutral (see Figure 3 for an illustration). In our study, we choose α = 30%,
representing the expected crop yield of the 30% lowest observable yields.

2.3 Formalization as a Multi-Armed Bandit

The maximization of farmers’ YE when experimenting crop management practices can be modeled as
a bandit problem [39, 8, 5] with specific features, that we detail in the following. First, contrarily to
the canonical bandit problem where an observation directly follows each trial, observations are made
at the end of each season (see Figure 6b), which is known as batched bandits [45, 21]. However, since
the size of the batches is not controlled by the researchers this feature does not pose challenges, and
simply motivates the use of a randomized bandit algorithm, to encourage the diversity of practices

4



tested at early stages of the experiment. Second, the objective of maximizing the CVaR of the Yield
Excess indicator situates our problem in the literature on risk-aware bandits, and more precisely
CVaR bandits [13, 9, 53]. These characteristics make CVTS [9] a natural candidate for our problem.

Formally, in our virtual experiment, for t ∈ {1, 2, · · · , T}, in each season t, researchers assign a
number nt of volunteer farmers for season t with a nitrogen fertilizer practice π ∈ {1, 2, · · · ,K}.
Each farmer belonged to a cohort c ∈ {1, 2, · · · , C}. At the end of season t, researchers assemble
rewards (YE of each trial) Yt = {y1t , . . . , ynt

t } as a result of the fertilizer practices of all farmers
for season t. For each cohort c ∈ {1, · · · , C}, rewards are independently and identically distributed
from unknown stationary distributions {νc1, · · · , νcK}. These reward distributions are the YE with
ANEref = 15 kg grain/kg N associated to each of the 10 recommended nitrogen fertilizer practices,
for a given soil type. Following [9], for a given parameter α, a bandit policy selecting action kt,n for
the n-th farmer in season t incurs the following α-CVaR regret

Rα
T =

T∑
t=1

E

[
nt∑
n=1

C∑
c=1

1(cn = c)
(

CVaRα(ν
c
⋆)− CVaRα(ν

c
kt,n

)
)]

, (4)

where νc⋆ = argmax
k

CVaRα(ν
c
k) is the distribution of the optimal practice for cohort c.

2.4 Algorithms for α-CVaR-regret minimization

We expect fertilizer practices to perform differently within each cohort, and assume that no model is
available to share knowledge between cohorts. Hence, we treat the cohorts independently, presenting
to each of them a replication of the same algorithm. In this study, we consider two algorithms: the
standard ETC (Explore-Then-Commit) strategy, previously referred as the “intuitive strategy” for
agronomists, and the more elaborated BCB (Bounded-CVaR-Thompson-Sampling Batch) strategy.

Intuitive strategy (ETC) Explore-Then-Commit (ETC) [23] provides a simple and intuitive solution
to the exploration-exploitation dilemma. During an initial exploration phase of an arbitrary number of
years, ETC equiproportionally test all nitrogen fertilizer practices. Thereafter, the exploitation phase
starts and ETC chooses for the remaining time the fertilizer strategy that has shown best performance
during the exploration phase. In Appendix C.2, we provide a natural adaptation of ETC to the batch
setting (see Section 2.1) using the CVaR of rewards rather than the expectation. We consider ETC-3
and ETC-5, with respectively three and five years for the exploration phase. During the exploration
phase, fertilizer practices are randomly assigned in equal proportions to the farmers within the cohort.

Optimal Bandit strategy (BCB) BCB, adapts the CVaR Thompson Sampling algorithm (CVTS, [9])
to the batch setting of this paper. CVTS is itself an adaptation of the celebrated Thompson Sampling
(TS) [56, 6, 37, 48] that achieves optimal guarantees in minimizing the α-CVaR-regret for bounded
distributions with a known support. This is our main motivation for adapting this algorithm, instead
of other candidates based on the optimism principle [13, 53]. In our setting, the YE is naturally
bounded due to physical constraints.

An overview of the execution of BCB is shown in Algorithm 1, and a more detailed implementation
can be found in Appendix C.1. For the execution of BCB (see first step of Algorithm 1), we set the
maximum obtainable maize YE at 4000 kg/ha (Figure 2) for ANEref = 15 kg grain/kg N for all
fertilizer practices.

3 Results: theory and experiments

3.1 Theoretical guarantees

It is proved that the CVTS algorithm is asymptotically optimal for CVaR-bandits [10]. The main
difference with BCB is that it incorporates batched feedback and parallel learning across all cohorts.
Our theoretical result proves that the batches do not alter the theoretical performance of the algorithm.
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Algorithm 1 Simplified pseudo-code of BCB (Bounded-CVaR-Thompson-Sampling Batch), single
cohort.
for each practice k ∈ {1, . . . ,K}, add the maximum obtainable YE to the observations ;
// prior to any experiments, treat maximum YE as one observation for each
practice

for season t ∈ {1, · · · , T} do
for farmer f ∈ {1, · · · , nt} do

for fertilizer practice k ∈ {1, · · · ,K} do
Re-weight the YE collected for k with random weights drawn uniformly at random
// Dirichlet distribution with a vector of ones as parameter [18]

Evaluate the CVaR at level α of the resulting (noisy) empirical distributions
end
Recommend to the farmer f the fertilizer practice with the maximum noisy CVaR
// Thompson Sampling principle: greedy w.r.t. the sampled model

end
Collect and store all results of the season for all fertilizer practices

end

Theorem 3.1 (α-CVaR regret of BCB). Let F denote the maximum number of farmers participating
the experiment. Assume that there is only one cohort (C = 1). Then, BCB satisfies

Rα
T ≤ Rα,CVTS

T +O

F
∑

k:∆α
k>0

∆α
k

 , with ∆α
k = CVaRα(ν

c
⋆)− CVaRα(ν

c
k)

and Rα,CVTS
T is the regret upper bound of the CVTS algorithm, provided in Theorem 3 of [9]. In

particular, the asymptotic optimality of CVTS is preserved with the batched feedback.

Furthermore, the generalization to C > 1 cohorts is trivial due to their independent treatment. We
prove Theorem 3.1 in Appendix D, by comparing a regret upper bound obtained for BCB (Theo-
rem D.1) and the upper bound obtained in [9] for CVTS (Theorem D.2).

3.2 Simulated maize yield responses to nitrogen fertilizer practices

All simulated maize yield responses to nitrogen fertilization showed values within the expected ranges
for the growing conditions in Koutiala, with an average grain yield varying from 3125 kg/ha for a
sandy soil with low fertility (ITML84105) up to 3945 kg/ha for a loamy soil (ITML84106). When
applying the most promising fertilization strategies, YE (i.e. yield gain compared to the reference)
ranged from 1200 kg/ha to 1800 kg/ha, and CVaR30%(YE) (i.e. the mean crop YE of the 30% lowest
yields) from 500 kg/ha to 1032 kg/ha. Table 5 provides the statistics of the best available nitrogen
fertilizer practices for each soil type (Table 1), and Figure 7 in appendix shows the distributions of
grain maize yield, ANE and YE responses.

For all soil types, the best available nitrogen fertilizer practices were either Practice 0 or 8 i.e. practices
with a single nitrogen top-dressing application that is not threshold dependent (Table 5). Yet, the
fertilizer practices had different responses for the different soil types in terms of grain yield and
ANE (and consequently YE) and ranking of the practices were inconsistent across the soil types
(Figure 7). For instance, for the soil ITML840104 (silt clay loam of medium fertility), Practices 0 to 4
all had similar YE values (Figure 7e), whilst, for the soil ITML840105 (silt clay loam of low fertility),
Practices 0, 1 and 4 had substantially higher YE values compared to Practices 2 and 3 (Figure 7f).

3.3 Empirical results with DSSAT

We now describe the empirical results obtained by repeating multiple times the experiment describes
in Section 2.1, in order to compare the performance of ETC-3, ETC-5, and BCB in this context.

Proportion of best choices Figure 4 provides the average proportions at which the fertilizer
practices were selected by the identification strategies, from the beginning of the experiment to
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(a) BCB sampling proportions for soil ITML840105.

2 4 6 8 10 12 14 16 18 20
time step (year)

0%

20%

40%

60%

80%

100%

p
ro

p
o
rt

io
n
 i
n
 s

a
m

p
lin

g

Identification strategy of ETC_5 ; soil ITML840105 
960 replications

practice index
8

0

4

1

5

9

7

3

2

6

(b) ETC-5 sampling proportions for soil ITML840105.
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(c) BCB sampling proportions for soil ITML840101.
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(d) ETC-5 sampling proportions for soil ITML840101.

Figure 4: Averaged sampling proportions for soils ITML840105 and ITML840101, T = 20 years.
Practices are ordered according to their true Conditional Value-at-Risk at level 30% of Yield Excess
(YE); the greener the color, the better a fertilizer practice. Close colors indicate similarperformances.

time T , exemplified for soil types ITML840105 and ITML840101. For the soil ITML840105 (silt
clay loam of low fertility), after a span of 20 years of experimentation, BCB selected the Practice
8, which was the best available one for this soil type (see Table 5), with an average proportion of
50%. ETC-5 also decided on the same practice, with an average proportion of 31%. For the soil
ITML840101, BCB and ETC-5 similarly performed after 20 years of experimentation. For this soil
type, BCB sampled the best available Practice 0 (Table 5) with an average proportion of 27%, ETC-5
selected the same practice with an average proportion of 26%. In the case of ETC-5, the constant and
equal proportions of each management practice during the five first years seen in Figures 4b and 4d
illustrate the equiproportional initial exploration phase used by the strategy.

Empirical CVaR of YE On average, farmers following the nitrogen fertilizer recommendations
based on the BCB identification strategy had a higher empirical CVaR at 30% of YE than farmers
following the recommendations from the ETC strategies, from the second year of the experiment
onwards. Figure 5 (Left) shows the evolution of the CVaR at 30% of the YE for all cohorts (soil
types) throughout the years (Equation 6). The difference in performance between BCB and ETC is
relatively high during the initial years. For instance, at year 4, farmers following recommendations
from the BCB identification strategy had a CVaR at 30% of YE of 318 kg/ha, compared to 168 kg/ha
(47% less than BCB) and 74 kg/ha (77% less than BCB) for farmers following the recommendations
from the ETC-3 and the ETC-5 strategies, respectively. Thus, BCB allowed to identify sooner the best
available fertilizer practices and consequently further avoided low crop yield outcomes compared to
ETC strategies. ETC strategies were adversely affected by their exploration phases during which all
fertilizer practices were equiproportionally tested. In contrast, BCB had a continuously increasing
empirical CVaR, during the whole duration of the experiment.
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Figure 5: Empirical conditional Value-at-Risk (CVaR) at level 30% of maize Yield Excesses (YE)
between T = 0 and T = 20 years (Left); and corresponding average cumulated regret over the virtual
farmers’ population (Right). Confidence intervals for the empirical CVaR were computed following
[55].

CVaR regret For α = 30%, the BCB strategy outperformed ETC strategies, regardless of the number
of years during which the strategy was applied. Figure 5 (Right) shows the evolution of the average
cumulated regret for all cohorts throughout the years of the simulated experiment (Equation 9). The
difference in performance between BCB and ETC increased for the whole duration of the experiment.
After 20 years, farmers following recommendations from the BCB identification strategy experienced a
mean cumulated regret of 2400 kg/ha, compared to 3385 kg/ha (41% more than BCB) and 3701 kg/ha
(54% more than BCB) for farmers following the recommendations respectively from the ETC-3 and
ETC-5 strategies. Consequently, farmers following BCB recommendations accumulated less regret
compared to farmers following ETC recommendations. Furthermore, the variance of the cumulated
regret (due to the different weather series in the experiments, for each season and each field trial,
and the variability in cohorts each year) was smaller for BCB than for ETC, confirming that the BCB
strategy was more robust (see quantile ranges in Figure 5) for this decision problem.

Sensitivity to the CVaR level α In Appendix F we present additional experiments for α = 50%
and for α = 100% (expectation). For α = 50% we obtain similar result to what we obtained with
α = 30%, while for α = 100% all algorithms seem to perform similarly for the time horizon
considered. Nonetheless , BCB shows a smaller variance than both ETC-3 and ETC-5.

3.4 Discussion

In this section we discuss the results presented in previous sections and the perspectives they offer for
the community of researchers in agronomy.

Benefits from an adaptive strategy The results presented in previous sections showcase the
benefits of using tailored algorithms from the bandit literature to tackle multi-year multi-location
on-farm trials similar to the one presented in this article. Indeed, we demonstrated both in theory
and experiments that using our BCB algorithm, the better a crop management practice is, the more its
representation among the tested practices grows over time. From a farmer’s perspective, this means
that the probability of testing sub-optimal recommendations decreases over time. This is in contrast
with non-adaptive identification strategies, such as ETC that equi-proportionally recommend all crop
management practices during the exploration phase. While the length of the exploration phase could
be well-calibrated by chance, in general the ETC strategy is sub-optimal if the decision-maker does
not have access to strong knowledge on the problem [39, Chapter 6]. On the contrary, BCB only
requires to know the maximum observable reward. In agronomy, such knowledge is usually available
through expert knowledge, either obtained through crop growth modeling or from field experiments
conducted under optimal growing conditions [4]. Hence, the cost of the experiment to improve crop-
management practices is likely to be reduced for the farmers when using bandit-based approaches
with stronger guarantees. Another common method to generate crop management recommendation
consists in the use of calibrated crop simulation models and scenario analyses [e.g. 30]. Although this
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method has its limitations due to model uncertainty [61], it can be complementary to the bandit-based
approach. For example, a set of candidate crop management practices can first be determined based
on outcomes from crop modeling, and out of those, the true best option can then be identified in
practice from field trials with the bandit algorithms for the experimental setup.

Definition of fertilization practices In this study, the values for the fertilizer practice attributes
are likely not optimal, because our objective was on establishing an improved generic method
for crop management experiments using bandit algorithms, rather than designing refined fertilizer
recommendations. For an application in real field conditions, we recommend these attributes to be
first estimated using existing expert knowledge and/or crop growth model simulations. The set of
candidate practices can also comprise practices that are based on advanced methods, such as refined
balance-based methods or machine learning-based methods for nitrogen fertilization [e.g., 44, 58].
More generally, the design of fertilizer recommendations must include experts, local agricultural
extension officers and farmers themselves [14, 28]. Finally, it is also important to take into account
that the quantity of mineral fertilizer a farmer can apply often depends on access to financial resources
and markets [31].

Objective to maximize In Section 2.2, we advocated for the use of the CVaR of Yield Excess as a
relevant performance metric for the problem considered in this study. In particular, the value of α
allows to adjust the risk aversion level for a cohort of farmers, and the value of ANEref defines an
invariant economic and environmental trade-off setting the boundaries of the performance of nitrogen
fertilizer use. However, we did not evaluate fertilizer practices by their economic return that depends
on many factors, such as fertilizer subsidies, fertilizer market price, application costs, and grain
selling prices. Including those factors dramatically increases the complexity of the learning problem,
and so does the required amount of data to identify the best practices (we provide more details in
Appendix G). In this context, we must keep in mind the inherent constraints of modeling farmer’s
objectives and decisions, that always remains a proxy for real life situations and choices [42]. It
is evident that farmers should play an active role in the formulation and validation of the objective
to maximize, ensuring that mathematical terms are meaningfully translated into practical cases of
crop management decision problems. Nonetheless, we emphasize that the BCB approach proposed in
this paper is very flexible, and can be easily adapted to more sophisticated practices (e.g. including
economic factors) and other performance metrics.

Limits and possible improvements The simulated crop management decision problem presented
in this paper largely simplifies the experimental structure of multi-location, multi-year replicated
field trials. First, weather time series are unlikely to be independent and identically distributed in the
real world, because weather spatial correlations can be high, for instance in case of extreme weather
events [52]. Second, within the same cohort, we assumed that farmers had identical soil type and
maize cultivars, and were closely adhering to the assigned fertilizer practices. For the application
of our methodology in real field conditions, variations in site conditions and other potential random
effects should be properly considered, requiring some adaptation of BCB. Furthermore, information
might be shared between cohorts by adopting a contextual/structured bandit approach [39], which
would require to find a proper model of the rewards according to the characteristics of each soil type
and the similarities between fertilizer practices. In the agronomy literature, mixed linear models
[38] are typically used to account for random effects associated with the underlying structure of an
experiment. While this additional complexity might improve the asymptotic performance of BCB, it
is not clear that the gain could be observed within the limited time scale inherent to field trials. We
leave the exploration of these directions for future work.

Finally, in the model simulations, we assumed average weather (rainfall, temperature) in southern
Mali to remain the same throughout the 20 years of the experiment. Such hypothesis is unlikely in
real conditions given climate change [e.g., 59]. Best available management practices are likely to
change over time under climate change, as a response to the increasing occurrences of heat and water
stress [2]. Such problem can be formalized as a non-stationary bandit problem [39]. To handle this,
the BCB strategy can be equipped with a sliding window approach where the algorithms’ decisions
are based only on the most recent rewards, discarding older ones over time [24, 10].

9



4 Conclusion

Bandit algorithms aim at optimally balancing between exploration (gathering information) and
exploitation (using the information to make good decisions) in uncertain decision problems with
repeated choice between contending actions. In a simulated problem of testing fertilizer practices
with virtual farmers, we compared the BCB bandit algorithm to the “intuitive strategy” of Explore-
Then-Commit (ETC) in which the set of pre-defined practices are tested in an equiproportional way
during a fixed number of years. During simulated field trials in southern Mali, BCB successfully
minimized maize yield losses occured from testing worse performing fertilizer practices compared
to the true best available practice, by up to 35% after 20 years. This novel approach opens up new
perspectives as an alternative to the usual multi-year, multi-location on-farm trials. The bandit-based
crop-management strategy shows promises in identifying best management practices in real field
conditions, if variability in site conditions, possible correlations between site conditions, and other
potential random effects are further considered in future works.
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A Experimental design

In this section we provide more detail on the design of the virtual crop-farming experiment presented
in the paper.

For T years:

1.b get
volunteer
farmers for
current year

1.a farmer
population

4 get all
volunteers’

yield
outcomes

2 researcher’
identification
strategies

3 assign the
specific fertilizer

practices to
the volunteers

beginning of the season

end of the
season

year← year + 1

(a) Best fertilizer practice identification process. At
the start of the season, a number of farmers (n = 250

to 350) volunteer 1.b to test fertilizer practices rec-
ommended by the researcher following an identifica-
tion strategy 2, 3 . At the end of each season, the
farmers share their yield outcomes with the experts
4 . The experts will use these results to improve their

fertilizer recommendations for the next growing sea-
son. The process is repeated for a total number of
T = 20 years.

For T times:

1 choose
an action kt

from K actions

3 observe an
uncertain result
rt of action kt

2 make the
action kt

t← t+ 1

(b) Canonical bandit problem. For T times, an agent
sequentially makes decisions on an action kt from the
set {1, · · · ,K} of possible actions 1 . After mak-

ing the action kt 2 , the agent observes an uncertain

result rt 3 . This result is sampled from a fixed dis-
tribution, unknown to the agent, which corresponds to
the effect of action kt.

Figure 6: Schematic representation of the ensemble best fertilization identification process (a) and
the canonical bandit problem (b).

Nitrogen fertilizer practices. Ten nitrogen fertilizer practices were considered as recommendations
in the virtual experiment (see Table 2). Practices 0 to 7 represent the following set of split fertilizer
practice for a total amount of 135 kg N/ha applied:

- Two split applications (Practice 0): 15 kg N/ha at 15 days after planting (DAP), and 120 kg
N/ha at 30 DAP.

- Three split applications (Practice 4): 15 kg N/ha at 15 DAP, 60 kg N/ha at 30 DAP and 60
kg N/ha at 45 DAP.

- Split applications according to the rainfall amount (Practices 2, 3 and 6, 7): 2nd and 3rd
top-dressing applications only if the cumulated rainfall amount from the start of the season
to 30 DAP exceeds the 30th percentile of historical rainfall i.e. 200 mm.

- Split applications according to plant nitrogen status (Practices 1, 3 and 5, 7): 2nd and 3rd
top-dressing applications only if the simulated nitrogen stress factor (NSTRES in DSSAT,
see below) exceeds 0.2 (0 standing for no stress, 1 for maximal stress) at 30 DAP, hereby
mimicking the use of a portable chlorophyll meter to monitor plant nitrogen status [e.g. 35].

Split fertilizer applications were considered in order to adjust the amount of nitrogen applied to the
likely crop demand as the season develops. This adjustment can rely on factors such as weather
conditions and the crop performance [46].

Practice 8 corresponds to the recommended fertilizer application for maize (70 kg N/ha) in the study
region, which was determined based on model simulations [30], i.e. the average of the nitrogen
fertilizer rates that were expected to result in maximum positive return on fertilizer investment [27].
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Practice 9 (180 kg N/ha) corresponds to a nitrogen fertilizer application that is likely excessive. In
our model simulations (see below), the type of nitrogen fertilizer applied for all practices was set as
ammonium nitrate broadcasted on the soil surface.

Table 1: Main properties of the soil types of the fields of farmers growing maize in Koutiala, Mali [2].

Soil name Texture SLDR SLOC SLDP AWCH pH Prop.
ITML840101 clay loam 0.60 0.20 110 115 5.7 7
ITML840102 loam 0.60 0.45 100 124 5.5 9
ITML840103 silty loam 0.60 0.27 160 98 6.5 21
ITML840104 silty clay loam 0.25 0.70 105 101 5.5 4
ITML840105 silty clay loam 0.40 0.38 120 108 5.8 24
ITML840106 loam 0.60 0.30 110 115 5.7 27
ITML840107 silty clay loam 0.25 0.60 105 101 5.5 8

‘SLDR’: soil drainage rate (fraction/day); ‘SLOC’: soil organic matter (g C/ 100 g soil) in the 0-30 cm
topsoil; ‘SLDP’: soil depth (cm); ‘AWCH’: soil available water-holding capacity (mm); ‘pH’ is the pH
in water; ‘Prop’ stands for the percentage of each soil type present in the study area.

B Maize simulations

Simulator gym-DSSAT is a modification of the DSSAT crop simulator [29] to allow a user to read
daily internal DSSAT states and, accordingly, to be able to take fertilization decisions on a daily basis.
Evidence of the reliability of DSSAT in simulating maize responses to different nitrogen fertilization
practices under the conditions of southern Mali is provided by [19, 30]. The soils (and associated
model parameters) we used for simulations are the same as the ones used by [2] who calibrated
DSSAT for sorghum under different plant densities and nitrogen fertilizer practices in southern Mali.
For each soil type (Table 1) that was parameterized in DSSAT (soil parameter files *.SOL), each
simulated maize grain yield value is a sample of the yield response distribution for the considered
fertilizer practice. This response distribution is the result of weather variability, generated in our study
by the stochastic weather generator WGEN [47, 51], which was parameterized using the 47-year
weather records from the N’Tarla agricultural research station of the Institute of Rural Economics
(12◦35’ N, 5◦42’ W, 302 m.a.s.l.), about 30 km from the city of Koutiala [49]. The ‘Sotubaka’
maize cultivar (original name ‘Suwan 1 SR’), from the DSSAT default cultivar list) was used for all
model simulations as a representative of the maize varieties grown in southern Mali. This cultivar
was parameterized by the DSSAT team for the conditions of southern Mali [32]. Planting date was

Table 2: Maize nitrogen fertilizer practices for maize considered during the virtual experiment in
Koutiala, Southern Mali. The inclusion of rainfall and plant nitrogen stress as threshold factors in the
fertilizer practice is denoted by “Yes” or “No”.

Index Max. # of
fertilizer
applica-
tions

Rainfall
threshold

NSTRES1

threshold
Application
at 15 DAP
(kgN/ha)

Application
at 30 DAP
(kgN/ha)

Application
at 45 DAP
(kgN/ha)

Max.
total
amount
applied
(kgN/ha)

0 2 No No 15 120 0 135
1 2 No Yes 15 120 0 135
2 2 Yes No 15 120 0 135
3 2 Yes Yes 15 120 0 135
4 3 No No 15 60 60 135
5 3 No Yes 15 60 60 135
6 3 Yes No 15 60 60 135
7 3 Yes Yes 15 60 60 135
8 2 No No 23 0 47 70
9 3 No No 60 60 60 180
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defined by an automatic rule (see Table 4) depending on soil water conditions. At the start of the
simulations, the initial soil mineral nitrogen content was set to a fixed, depending on the soil type as
in [2]. Still, the variability of the weather from the beginning of the simulation to the occurrence of
the automatic planting (itself dynamic) induced a variable initial soil mineral nitrogen content at the
planting date for each simulation. Water and nitrogen stresses were simulated but yield reduction
through pests and diseases were not considered, neither was weed competition.

Model parameters The cultivation scenarios were based on the the conditions found in Southern
Mali. The soils came from [2] who compiled and supplemented with survey data the soils found
in the literature for the location of Koutiala, Mali. The data of [2] included soils’ depth, texture,
water capacity, bulk density, organic matter content, pH and initial mineral nitrogen content. Soil
characteristics and proportions in the population were summarized in Table 1, based on [2]. During
the simulations, the weather times series were generated using the WGEN weather model [see
47, 51]. WGEN had been parameterized on 47-year-long historical daily weather records from a
weather station located in N’Tarla found in [49], which was located about 20 km from Koutiala ;
these historical weather records were the best available. The cultivars used in the simulation and
its parameterization in DSSAT are presented in Table 3 ; this cultivars comes with DSSAT default
data and was representative of the cultivars used in Mali. The cultivars were already calibrated based
on experiments carried out in Mali. The simulations were initiated on Day Of Year (DOY) 140 and
the planting is automatically performed in a window ranging from DOY 155 to 185 ; we specified
the parameters of the automatic planting with Table 4. For each soil, the initial soil nitrogen content
was set according to the values found in [2]. The soil water content was set to crop lower limit, as a
result of the end of the dry season at the usual planting dates. Because the simulations were initiated
prior to planting date and because the weather was stochastically generated, the soil nitrogen mineral
and water contents were uncertain at planting time. Each simulation was performed independently
from the previous ones. At the beginning of the experiment, all the soils described in Table 1 were
randomly distributed amongst the initial group of farmers following the proportions provided in
Table 1. Figure 7 shows the simulated yield distributions for ITML840104 and ITML840105 soils.

Table 3: Maize cultivar parametrization in DSSAT

name ecotype P1 P2 P5 G2 G3 PHINT
Sotubaka IB0001 300.0 0.520 930.0 500.0 6.00 38.90

Table 4: Automatic planting parametrization in DSSAT. PFRST: Starting date of the planting window;
PLAST: End date of the planting window; PH2OL: Lower limit on soil moisture for automatic
planting; PH2OU: Upper limit on soil moisture for automatic planting; PH2OD: Depth to which
average soil moisture is determined for automatic planting; PSTMX: Maximum temperature of
planting; PSTMN: Minimum temperature of planting.

PFRST (DOY) 155
PLAST (DOY) 185
PH2OL (%) 40
PH2OU (%) 100
PH2OD (cm) 30
PSTMX (◦C) 40
PSTMN (◦C) 10

In the following Table 5 we present the numerical value associated with the optimal fertilizer practice
for each soil type considered in this study. For the corresponding best available nitrogen fertilizer
practice π∗, we define Nπ∗

: quantity of nitrogen fertilizer applied; CVaR30%(X): conditional Value-
at-Risk of X of level 30% (Section 2.2); X̄: mean value of X; Yπ∗

: maize grain yield; ANEπ∗
:

Agronomic Nitrogen use Efficiency; YEπ∗
: Yield Excess (Section 2.2); values in parentheses indicate

standard deviations.
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(a) Yield distributions for soil
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(b) Yield distributions for soil
ITML840105. Stars represent the
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(c) Agronomic Nitrogen Effi-
ciency (ANE) distributions for
soil ITML840104. Stars represent
the mean value.
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(d) Agronomic Nitrogen Effi-
ciency (ANE) distributions for
soil ITML840105. Stars represent
the mean value.

1000 0 1000 2000 3000 4000
yield excess (kg/ha)

0
1
2
3
4
5
6
7
8
9

(e) Yield Excess (YE) distribu-
tions for soil ITML840104 with
ANEref=15 kg grain/kg N. Stars
represent the CVaR at level 30%.
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(f) Yield Excess (YE) distribu-
tions for soil ITML840105 with
ANEref=15 kg grain/kg N. Stars
represent the CVaR at level 30%.

Figure 7: Simulated impact of maize fertilizer practices on grain yield, Agronomic Nitrogen use Efficiency
(ANE), Yield Excess (YE) for 105 hypothetical years using a weather generator. Maize cultivar was the same for
all simulations. Practices indexes are indicated on the left-hand side of each sub-figure.

Table 5: Statistics of the best available nitrogen fertilizer practices for each of the soil types presented
in Table 1.

soil π∗ N̄π∗
CVaR30% Ȳπ∗

¯ANEπ∗

CVaR30% ȲEπ∗

(kg/ha) (kg/ha) (kg/ha) (kg/kg) (kg/ha) (kg/ha)

ITML840101 0 120.0 (1.0) 3091 3874 (666) 30.0 (5.4) 1032 1795 (651)
ITML840102 8 69.8 (4.0) 2391 3150 (653) 33.2 (7.5) 652 1270 (529)
ITML840103 8 70.0 (0.4) 2539 3152 (526) 34.4 (6.8) 808 1356 (475)
ITML840104 8 69.9 (2.7) 2533 3339 (682) 31.7 (8.1) 500 1169 (565)
ITML840105 8 70.0 (1.2) 2467 3127 (570) 34.2 (7.3) 757 1346 (508)
ITML840106 0 120.0 (1.2) 3132 3945 (695) 28.9 (5.5) 900 1667 (660)
ITML840107 8 69.9 (2.7) 2472 3247 (659) 32.5 (8.0) 565 1226 (559)
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Figure 8: Examples of weights sampled from Dirichlet distributions during BCB execution, respec-
tively for 10 and 100 rewards. The greater the number of rewards, the less variance the weights show.
The variance of weights is related to the noise level in the computation of the empirical CVaR of BCB.

Practical implementation Since each call to DSSAT is costly, we simulated 105 times the maize
grain yield responses to a given fertilizer practice for the different soil types prior to the experiment,
which corresponds to 105 hypothetical growing seasons for each setting. We assume that these
samples represent their respective distribution well enough so that sampling from them uniformly
at random is close to sampling from the true underlying distribution. Since we report results from
repeated simulations in the experiment section 3, this considerably speeds-up the cost to reproduce
the experiments.

Furthermore, these samples were used i) to ensure that simulated maize yield responses were in
realistic ranges, ii) to evaluate the complexity of the decision problem, and iii) to determine best
nitrogen fertilizer practices whilst analyzing the performance of the crop management identification
strategies. The samples were not provided to the algorithms prior to their learning.

C Algorithms

C.1 Details about BCB

In Algorithm 2, we provide the detailed pseudo-code of BCB (BCB). As shown by Figure 8, the higher
the number of collected rewards, the less the weights sampled from Dirichlet distributions exhibit
variance. This variance directly relates to the noise introduced in the computation of the score of the
different available actions.

Remark C.1 (First season). Algorithm 2 is well defined for the first season as without data all CVaRs
will be equal to the maximum observable result, making the algorithm choose each option arbitrarily
at random. On average, each option will be equally explored. Note that we could replace this step by
an equi-proportional exploration step (similar to Explore-Then-Commit, see C.2) without changing
the theoretical properties of our algorithm. Furthermore, the decision maker could also include any
additional results collected before the experiment (if the practices has already been tested for some
time) in the initialization of the algorithm.

C.2 Explore-Then-Commit (ETC)

We provide the pseudo-code of the Explore-Then-Commit (ETC) strategy with algorithm 3. The
noise introduced by random weights and the presence of the maximum observable results in the
histories manage the exploration/exploitation dilemma. BCB will favor fertilizer practices with higher
CVaR compared to the others. But, the algorithm will still prevent the under-exploration of fertilizer
practices by choosing them with a proper probability, even if e.g. poor YE have been observed due
to rare unfavorable weather events. Indeed, with the extra randomness introduced by the random
weighting of rewards, poor rewards may be re-weighted by smaller weights compared to higher
rewards, yielding a good score. The amount of noise introduced by the random weights sampled from
the Dirichlet distribution is related to variance of these random weights. The greater the number of
rewards, the lesser the variance and consequently the lesser the noise (Figure 8). Thereby, the more a
fertilizer practice was tried by the algorithm, the closer its score gets to the true CVaR of rewards.
The presence of the maximum observable YE acts as an “optimistic bonus" in the computation of
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Algorithm 2 BCB: identification strategy at cohort level (detailed)
Input: Level α, horizon T , K options, upper bounds B1, . . . , BK , Fc the set of all farmers in the

cohort
Init.: ∀k ∈ {1, ...,K}: Xk = {Bk}, Nk = 0 ; Fc

1 = {f1, · · · , fn1
} ; t = 1 ; A1 = {∅}

// Beginning of first season
for f ∈ Fc

1 do
Randomly assign a crop management option a ∈ {1, . . . ,K} to the farmer f
A1 = A1 ∪ {a}

end
// End of first season
for (a, f) ∈ (A1,Fc

1) do
Receive the result of the option a from farmer f : rf,a

Update Xa = Xa ∪ {rf,a}, Na = Na + 1
end
for t ∈ {2, . . . , T} do

// Beginning of season t
Get Fc

t = {f1, · · · , fnt} ; // the set of farmers of the same cohort to provide
recommendations

for k ∈ {1, . . . ,K} do
Update the empirical CVaR of action k: ĉk,t−1 = Ĉα(Xk)

end
for f ∈ Fc

t do
Update the empirical regret of farmer f : lf,t−1 = R̂α

f (t− 1)

end
At = {∅} ; // the set of recommendations to provide to the farmers
for f ∈ Fc

t do
for k ∈ {1, . . . ,K} do

Draw ωk = {w1, · · · , wNk
} ∼ DNk

; // random weights drawn from a Dirichlet
distribution of concentration parameter (1, · · · , 1)︸ ︷︷ ︸

Nk times

Search j the maximum index such that
∑j

i=1 wi ≤ α

Compute c̃k = xj − 1
α

∑Nk

i=1 wi max(xj − xi, 0) ; // Compute the “noisy”
empirical CVaR for action k

end
a = argmaxk∈{1,...,K}c̃k
At = At ∪ {a}

end
for (a, f) ∈ (At,Fc

t ) do
Assign action a to farmer f

end
// End of season t
for (a, f) ∈ (At,Fc

t ) do
Receive result of action a from farmer f : rf,a

Update Xa = Xa ∪ {rf,a}, Na = Na + 1
end

end
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the scores, encouraging exploration even for sub-optimal practices, as it raises up their initial values
when few rewards have been observed.

Algorithm 3 ETC: identification strategy at cohort level
Input: Level α, horizon T , K options, Fc the set of all farmers in the cohort, ttrials the number of

years of trials
Init.: ∀k ∈ {1, · · · ,K} : Nk = 0
// Do trials during ttrials years
for t ∈ {1, · · · , ttrials} do

// Beginning of the season t
Get Fc

t = {f1, · · · , fnt
} ; // get the farmers willing to participate

At = {∅}
Fill At by uniformly distributing the K options to the farmers in Fc

t
// End of the season t

for (a, f) ∈ (At,Fc
t ) do

Receive the result of the option a from farmer f : rf,a
Update Xa = Xa ∪ {rf,a}, Na = Na + 1

end
end
for k ∈ {1, . . . ,K} do

Compute the empirical CVaR of action k: ĉk,t−1 = Cα(Xk)
end
amax = argmaxk∈{1,...,K}ĉk ; // get the action that best performed during trials
// After trial phase, always recommend the action that best performed during trials
for t ∈ {ttrials + 1, · · · , T} do

// Beginning of the season t
Get Fc

t = {f1, · · · , fnt
}

for f ∈ Fc
t do

Assign option amax to the farmer f
end
// End of the season t
for f ∈ Fc

t do
Receive the result of the option amax from farmer f : rf,amax

Update Xamax
= Xamax

∪ {rf,amax
}, Namax

= Namax
+ 1

end
end

D Theoretical Analysis

This section is devoted to the theoretical analysis of the BCB algorithm, in particular to the proof of
Theorem 3.1. It is mostly adapted from the analysis of CVTS in [9], and shows that the problem of
learning with batched data of finite upper bounded size is no harder than the pure online learning
problem considered in the original paper. The proof of the result comes from deriving a regret
upper bound for BCB, and comparing it to the regret upper bound of CVTS. The result presented
in Theorem 3.1 is simplified, in order to convey the main idea that BCB preserves the theoretical
guarantees of CVTS and that the batches only incur a second-order term for problem-dependent
guarantees. We prove it using the results presented in the following Theorem D.1 and Theorem D.2.
Before that, we recall from [9] the definition of the following quantity, defining the asymptotic
optimality of CVaR-bandit algorithms.

Definition. For any distribution F with bounded support [O,B], for B > 0, and any c ∈ [0, B], we
define

Kα,D
inf (F, c) = inf

G: supp(G)⊂[0,B], CVaRα(G)>c
KL(F,G) .

Theorem 1 from [10] states how this quantity determines asymptotic optimality in CVaR bandits, in
an analogous way to the Burnetas & Katehakis lower bound in standard bandits [11].
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Theorem D.1 (α-CVaR Regret of BCB). Consider a bandit problem (F1, . . . , FK) ∈ FK , with
respective CVaRα denoted by (c1, . . . , cK) with c1 = argmaxk=1,...,Kck. Assume that BCB runs for
T seasons, and that at each season the size of the batch is nT ∈ [1, F ], and F ∈ N. Then, for any
ε > 0 small enough there exists some ε1 > 0, ε2 > 0 such that the regret of BCB satisfies :

Rα
T ≤

K∑
k=2

∆α
k

(
mk

T + F + 2F
e−2mk

T ε21

1− e−2 ε11
+ Cα

1,ε2

)
,

where mk
T = log(FT )

Kα,D
inf (Fk,c1)−ε

and C1,ε2 is a constant depending only on the distribution F1, the family

F and ε2.

Then, theorem D.2 is adapted from Theorem 3 in [9], presented in a form that simplifies comparison
with the previous theorem.

Theorem D.2 (α-CVaR Regret of B-CVTS with time horizon ST (adapted from Theorem 3 in [9])).
Consider a bandit problem (F1, . . . , FK) ∈ FK , with respective CVaRα denoted by (c1, . . . , cK)

with c1 = argmaxKck. Consider a number of data collected ST =
∑T

t=1 nt. Then, for any ε > 0
small enough there exists some ε1 > 0, ε2 > 0 such that the CVaR-regret of B-CVTS satisfies

Rα
T ≤

K∑
k=2

∆α
k

(
mk

T + 2
e−2mk

T ε21

1− e−2 ε11
+ Cα

1,ε2

)
,

where mk
T = log(FT )

Kα,D
inf (Fk,c1)−ε

and C1,ε2 is a constant depending only on the distribution F1, the family

F and ε2.

We now prove Theorem 3.1 by comparing these two results.

Proof of Theorem 3.1. We remark that the two results admit the same first order term (logarithmic in
T ), which is already sufficient to show that BCB is asymptotically optimal because this result holds for
CVTS. Similarly, the constant Cα

1,ε2 appears in the two bounds. Then, we observe that the second term
in the bound of Theorem D.1 is the one that we introduced in Theorem 3.1. We finally observe that
the remaining term in both upper bounds decreases to 0, since it contains a log(T ) in the exponent in
the numerator. This is still true when multiplying this term by F in Theorem D.1.

In the proof, we used that ST ≤ FT and that the upper bound F on the number of farmers is constant
(i.e do not depend on the time). We now detail the proof of Theorem D.1, which mirrors the proof of
Theorem D.2 in [9] with some additional ingredients needed to adapt it to the batch setting.

Proof of Theorem D.1. As in the proof of [9] we will decompose the expected number of pulls of
each sub-optimal arm inside the cohort according to several possible events, corresponding to "good"
scenarios (the empirical distributions accurately reflect the true distributions) and "bad" ones (the
empirical distributions give a wrong idea of the true performance of some arms) for the trajectory of
the bandit algorithms. We denote by T the number of seasons in the experiments and nt the number
of farmers at each season t for this cohort, and by F the total number of farmers available for the
experiment. Then, the expected number of pulls of arm k during the total duration of the experiment
inside the cohort is

E[Nk(T )] = E

 T∑
t=1

nt∑
f=1

1(At,f = k)

 ,

where At,f denotes the recommendation to farmer f at season t.
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The first step of the proof consists in considering the number of pulls of k when its sample size is
larger (resp. smaller) than some fixed threshold mT , that we will specify later.

E[Nk(T )] =E

 T∑
t=1

nt∑
f=1

1(At,f = k)


≤E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≤ mT )


+ E

 T∑
t=1

nT∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT )



We now consider the first term and introduce the random variable τ = {supt≤T : Nk(t− 1) ≤ mT }.
By construction, τ is the last season for which the total number of observations for arm k is smaller
than mT . Using the basic properties of τ we obtain that:

T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≤ mT ) ≤
τ∑

t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≤ mT )

+

T∑
t=τ+1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≤ mT )

≤Nk(τ) +

nτ+1∑
f=1

1(Aτ,f = k)

≤mT + F

As this result does not depend on the value of τ , we can then obtain:

E[Nk(T )] ≤ mT + F + E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT )


︸ ︷︷ ︸

A

.

At this step, the only difference with the purely sequential bandit problem is the additional F . We now
consider the term A, that we further analyze according to three events: (1) the empirical distribution
of arm k is not close to its true distribution, (2) the empirical distribution of arm k is close to its
true distribution but the "noisy" CVaR computed for arm k over-estimates its true CVaR, and (3) the
"noisy" CVaR computed for the optimal arm 1 under-estimates its true CVaR. Classically in bandit
analysis, we decompose the number of pulls of arm k according to these three events, as at least one
of them must be true when At,f = k holds, that is

{At = k} ⊂ {Fk,t−1 /∈ Bε1(Fk)} ∪ {Fk,t−1 ∈ Bε1(Fk), c̃k,t,f ≥ c1 − ε2} ∪ {c̃1,t,f ≤ c1 − ε2} ,
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where Bε1(Fk) is an ε1-Levy ball around Fk, and ε1, ε2 are two small positive constants. This leads
to

A ≤ E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT , Fk,t−1 /∈ Bε1(Fk))


︸ ︷︷ ︸

A1

+ E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT , Fk,t−1 ∈ Bε1(Fk), c̃k,t,f ≥ c1 − ε2)


︸ ︷︷ ︸

A2

+ E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT , c̃1,t,f ≤ c1 − ε2)


︸ ︷︷ ︸

A3

.

Upper bounding A2 Denoting by F̂k,n the empirical distribution of arm k after a total number of
pulls n (instead of after season t), we obtain

A1 := E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT , Fk,t−1 /∈ Bε1(Fk))


≤ E

 T∑
t=1

1(Nk(t− 1) ≥ mT , Fk,t−1 /∈ Bε1(Fk))

nt∑
f=1

1(At,f = k)


≤ E

 T∑
t=1

T∑
n=mT

1(Nk(t− 1) = n, Fk,t−1 /∈ Bε1(Fk))

nt∑
f=1

1(At,f = k)

 ,

with a union bound on the number of pulls. Under Nk(t− 1) = n it holds that Fk,t−1 = F̂k,n, and
so we can further write that

A1 ≤ E

 T∑
t=1

T∑
n=mT

1(Nk(t− 1) = n, F̂k,n /∈ Bε1(Fk))

nt∑
f=1

1(At,f = k)


≤ E

 T∑
n=mT

1(F̂k,n /∈ Bε1(Fk))

T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) = n)


≤ FE

[
T∑

n=mT

1(F̂k,n /∈ Bε1(Fk))

]

= F

+∞∑
n=mT

P(Fk,n /∈ Bε1(Fk))
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Finally, using the Dvoretzky–Kiefer–Wolfowitz inequality [41] we obtain:

≤ F

+∞∑
n=mT

2e−2n ε21

≤ 2Fe−2mT ε21

1− e−2 ε21
.

This upper bound holds for any choice of mT , ε1, and we remark that if mT → +∞ then A1 → 0.

Upper bounding A2 The term A2 is then handled with similar tricks, and the arguments used in
[9].

A2 := E

 T∑
t=1

nt∑
f=1

1(At,f = k,Nk(t− 1) ≥ mT , Fk,t−1 ∈ Bε1(Fk), c̃k,t,f ≥ c1 − ε2)


≤ E

 T∑
t=1

F∑
f=1

1(Nk(t− 1) ≥ mT , Fk,t−1 ∈ Bε1(Fk))× P (c̃k,t,f ≥ c1 − ε2 |Ft)

 ,

where Ft is the canonical filtration, so the probability is obtained conditioning on the data observed
before the beginning of the round. Using the the continuity of Kα,D

inf in its two arguments as proved
in [7], we obtain that for any ε > 0 small enough there exist some ε1, ε2 such that:

A2 ≤ E

 T∑
t=1

F∑
f=1

1(At,f = k,Nk(t− 1) = n, Fk,t−1 ∈ Bε1(Fk))e
−mT (Kα,D

inf (Fk,c1)−ε)


≤ F × T × e−mT (Kα,D

inf (Fk,c1)−ε) .

As we did not specify the choice of ε1, ε2 already we simply require them to be small enough to
satisfy this condition. Then, we can calibrate mT as

mT =
log(T ) + log(F )

Kα,D
inf (Fk, c1)− ε

.

Furthermore, with this choice mT will become the main term in the regret upper bound when T
becomes large enough.

Upper bounding A3 The final term is the one that leading to the most complicated part of the
analysis in [9]. Fortunately, the batch setting will have no impact on this part, so we can directly
reuse the results provided in this paper.

Indeed, we can re-write A3 to make it equivalent to the corresponding term in the purely sequential
problem:

A3 = E

 T∑
t=1

nt∑
f=1

1(c̃1,t,f ≤ c1 − ε2)

 = E

[
ST∑
r=1

1(c̃1(r) ≤ c1 − ε2)

]
,

where in the second term we count the number of recommendations provided by the algorithm,
assigning those in the same batch an arbitrary order, c̃1(r) is then the noisy CVaR computed for arm
1 for this specific round. Furthermore, we write ST =

∑T
t=1 nt ≤ FT . In [9], the authors obtain

a constant upper bound for this term, depending only on ε2 (and the upper bound of the support),
and in particular not depending on the exact number of plays. We conclude that there exists some
constant C1,ε2 satisfying

A3 ≤ C1,ε2 .
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This result concludes our proof, and we refer the interested reader to the original paper for a complete
proof and a detailed expression for C1,ε2 . We further remark that contrarily to the previous terms, the
upper bound of A3 does not depend on F at all.

E Performance measure

In this Section, we detail the computation of the performance measures we used to evaluate the
identification strategies.

E.1 Direct measure of performance of an identification strategy

We denote Ĉα the expression of the empirical CVaR of level α ∈ (0, 1]. The empirical CVaR is
an estimate of the true CVaR as defined in Equation 3 –just as an average value is an estimate of
the true mean of a distribution–. Assuming a sample Y of rewards sorted in an increasing order i.e.
Y = {y1, · · · , yn} such that yi ≤ yi+1, and defining q = y⌈αn⌉ the empirical quantile of level α, we
have:

Ĉα(Y) := q − 1

nα

n∑
i=1

max(q − yi, 0) (5)

In a simulated problem, the CVaR can be estimated by repeatedly applying R times an identification
strategy during T years, and then concatenating all results of all farmers from time t = 1 to time
t = T for all replications, and finally computing the empirical CVaR of the resulting set. In order to
approximate all expectations, for all experiments, in practice we consider R = 960 (12 executions in
parallel on an 80 core machine; for each one of the 960 experiments, the weather generator had a
different random state). We denote r ∈ {1, · · · , R} the repetition index. We define YT =

⋃R
r=1 Yr

T
i.e. the results of all farmers until year T for all replications. Then:

E [CVaRα(YT )] =̂ Ĉα(YT ) (6)

The resulting quantity is an average measure of the results of the group. The more an identification
strategy maximizes this quantity, the better it is. In a real-world problem, only one realization of
CVaRα(YT ) is computable.

E.2 Proxy measure of performance of an identification strategy

While the CVaR can be estimated with Equation (6), it is complex to analyze and derive statistical
guarantees for this estimator. This is why, we introduced a proxy of this quantity called the cumulated
(CVaR) regret, which is a central element behind the theoretical performance guarantees of bandit
algorithms.

Mean cumulated regret of the farmer population Considering a single cohort c, we suppose that
we sequentially repeat T times the choice of one option k from an ensemble of K possible options.
Here k is the index of the fertilizer practice. We denote CVaRα(ν

c
k) the CVaR of level α associated

with the option k and cohort c, and CVaRα(ν
c
∗) = max

k∈{1,··· ,K}
CVaRα(ν

c
k) the highest CVaR at level

α of all options for cohort c i.e. the CVaR of the best option for cohort c. In expectation, for a farmer
belonging to cohort c and following T years the recommendations of a given identification strategy
selecting a fertilizer practice k(t) each year t ∈ {1, · · · , T}, we define the cumulated regret for the
CVaR as in [53]:

Rc
α(T )︸ ︷︷ ︸

loss of the
strategy

:= T × CVaRα(ν
c
∗)︸ ︷︷ ︸

score of the best
possible strategy

−E

[
T∑

t=1

CVaRα(ν
c
k(t))

]
︸ ︷︷ ︸

score of the actual
strategy

(7)

=

K∑
k=1

(
CVaRα(ν

c
∗)− CVaRα(ν

c
k)
)︸ ︷︷ ︸

loss between the best option
and the option k for cohort c

× E [N c
k(T )]︸ ︷︷ ︸

expected number of times
option k is chosen for cohort c

during the T years

(8)
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Figure 9: Farmers’ empirical CVaR at level of all YE received between T = 0 and the considered T .

For cohort c, the cumulated regret Rc
α(T ) can be seen as a loss occurred with the considered strategy

with respect to the best possible strategy –the one that always chooses the fertilizer practice with
the best CVaR–. Equivalently, it can be interpreted as a measure of the expected total error due to
sub-optimal actions made during a series of T decisions: the more often the best option is chosen
within the T decisions, the smaller the cumulated regret. The mean cumulated regret of the total
farmer population is given by the cumulated regret of each cohort, weighted by the probability of an
individual to belong to this cohort:

Rα(T ) =

C∑
c=1

Rc
α(T )× Pr(c), with

C∑
c=1

Pr(c) = 1 (9)

When extensively testing an identification strategy on a simulated problem, the CVaR of the different
options can be approximated with a large enough number of samples or analytically computed,
irrespective of the identification strategy. For each cohort, this corresponds to the left-hand side
of Equation 8, and is thus supposed to be known. For a real-world problem, these quantities are
unknown –else the decision problem would have been solved–. On the right hand side of Equation 8,
the quantity E [N c

k(T )] can be empirically approximated by repeatedly performing experiments with
the identification strategy, and averaging the number of times each fertilizer practice has been chosen
since time step T for each cohort. Finally, in Equation 9, the proportion of each soil, i.e. cohort, can
be found in Table 1. Minimizing the cumulated regret maximizes the quantity in Equation ??, as
shown by [13]. For a given identification strategy, the smaller and less variable the mean cumulated
regret of population (Equation 9), the more farmers are guaranteed to maximize their CVaR of YE.

F Experiment complements

Following methods of Section 2 of the main text, we provide identification performances of identifi-
cation strategies for CVaR levels α = 50% and α = 100% with Figures 9, 10. For both CVaR levels,
the YE is defined with ANEref = 15 kg N/kg grain.

G Alternative performance measure of fertilizer practices

We briefly discuss economical criteria we considered as performance indicators of fertilizer
practices. A first indicator we considered was the gross margin. The cost of production of nitrogen
fertilizer being indexed on the price of natural gas, it is subject to high volatility. As a consequence,
an optimal practice is likely to be different each year and thus the decision problem would turn to be
highly non-stationary. Such setting dramatically increases the complexity of the decision problem,
and the chance of observing good identification performances are lowered.
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Figure 10: Cumulated regret averaged over the population for the CVaR at level of YE.

Another economic measure could be the value:cost ratio (VCR), which is given for a fertilizer
practice π as:

VCRπ =
pmaize

pN
× Y π − Y 0

Nπ (10)

=
pmaize

pN
× ANEπ (11)

where pN is fertilizer unitary cost and pmaize unitary maize grain selling price. We neglect a possible
quality consideration that could motivate a different maize selling price between the fertilizer practices,
for instance a difference of protein content in maize grains. Remarking that each given year the ratio
pmaize
pN

is shared by all fertilizer practices, then the decision problem is perfectly equivalent to choosing
the fertilizer practice which maximizes the ANE. Thereby, the use of the cost:value ratio suffers from
the same drawbacks as the ANE.
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