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ABSTRACT

Deformable image registration is a crucial task in medical image analysis, and its
complexity has spurred significant research and ongoing progress. Much of the
work in this area has concentrated on achieving incremental performance gains by
adjusting network architectures or introducing new loss functions. However, these
modifications are often tailored to specific tasks or datasets, which limits their
general applicability. To address this limitation, we propose an innovative solu-
tion: a plug-in curriculum scheduler that can be seamlessly integrated into existing
methods without changing their core architecture. Our scheduler, inspired by cur-
riculum learning, progressively increases task difficulty to enhance performance,
incorporating sample difficulty and matching accuracy as key criteria. Sample
difficulty is assessed at voxel and volume levels, using Variance of Gradients for
voxel complexity and Gaussian blurring for volume evaluation, while matching
accuracy involves gradually increasing supervision for improved alignment and
accuracy. We empirically demonstrate that this scheduler achieves superior accu-
racy and visual quality in various tasks and datasets.

1 INTRODUCTION

Deformable medical image registration is vital for medical image analysis because it allows precise
alignment of images from various times or modalities. This accuracy is key for identifying changes,
planning treatments, and combining data from different imaging sources. The field’s complexity
and its significant role in diagnosis, treatment, and personalized care have led to extensive research
and ongoing advancements over the years. However, because of the difficulties in accurately repre-
senting deformation fields, research in deformable medical image registration has primarily focused
on incremental performance improvements. These improvements often involve minor changes to
network architectures, the integration of hierarchical or iterative processes, or the addition of loss
functions. In most cases, these methods follow a common structure: a network inputs two images
and generates a deformation field to align them. The loss function generally consists of an image
similarity measure combined with a regularization term for the deformation field.

Recent studies continue to follow this similar flow. For example, H-ViT Ghahremani et al. (2024)
introduces a top-down approach for estimating deformation fields by capturing multi-scale short-
and long-range flow features, utilizing dual self- and cross-attention to enhance low-level features
with high-level representations. CorrMLP Meng et al. (2024) presents the first correlation-aware
MLP-based network for deformable medical image registration, improving efficiency and capturing
long-range dependencies at full resolution without using self-attention. IIRP-Net Ma et al. (2024)
develops a pyramid registration network that integrates a feature extractor with residual flow esti-
mators to improve the generalization of feature extraction and registration. Despite the difference in
architectures used to generate the registration field, all three methods share a common framework;
a network for estimating deformation fields, with losses that include an image similarity measure
and a regularization term. In addition to these recent methods, a summary of the taxonomy of
representative approaches is provided in Table 1.

While modifying model architectures can lead to performance improvements, these approaches are
often tailored to specific tasks or datasets, limiting their broader applicability. To overcome this
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Method CNN U-Net Encoder-Decoder Transformer MLP

plain VoxelMorph, DALT, SVF-Net, AVSM,
LKU-Net, AUM-Net, MIFR, MIDIR ADRIR TransMorph, ViT-V-Net

dual / inverse CycleMorph ICNet, SYMNet DTN

iterative / recursive IIRP-Net VTN, RCN, VR-Net

hierarchical / pyramid /
coarse-to-fine SDHNet, DLIR Dual-PRNet LapIRN, PMDR,

Im2grid, NICE-Net
H-ViT, PIViT, Deformer,

C2FViT, ModeT CorrMLP

patch-wise DIRNet Quicksilver TM-DCA, XMorpher

Table 1: Taxonomy of design choices for deep learning based medical image registration methods.

limitation, we propose a novel approach that maintains the integrity of existing model structures.
Rather than altering the architecture, we introduce a plug-in curriculum scheduler that integrates
seamlessly with current methods. Our scheduler is inspired by curriculum learning, a training strat-
egy that involves progressively increasing the difficulty of tasks. This approach has proven effective
in various fields, which demonstrated how gradually evolving tasks and network architectures can
benefit language processing models. We extend this concept to medical image registration, showing
that it can significantly enhance performance on complex tasks.

Our approach incorporates two key criteria to guide the network’s learning: sample difficulty and
matching accuracy. Sample difficulty involves gradually selecting more challenging training exam-
ples, while matching accuracy focuses on ensuring precise alignment by strengthening supervision
over time. Sample difficulty is assessed at two levels: voxel and volume. For voxel difficulty within
an MRI volume, we use the Variance of Gradients (VoG) to prioritize more complex voxels for better
alignment as training progresses. Evaluating difficulty across MRI volumes is more challenging, so
we simplify the samples using Gaussian blurring, starting with highly blurred images and gradually
shifting to sharper ones. In terms of matching accuracy, we progressively increase the strictness
of supervision. This approach allows for more flexibility in the early stages, focusing on broader
patterns, and then demands closer adherence to ground truths as training advances, ultimately im-
proving accuracy.

Unlike most curriculum learning methods in medical image analysis, our approach offers an au-
tomated curriculum learning solution for medical image registration that does not require expert
knowledge or prior experience. This scheduler enhances adaptability and flexibility, enabling im-
proved performance across various tasks and datasets. By focusing on a plug-in curriculum sched-
uler rather than architectural changes, we aim to develop more robust and widely applicable regis-
tration techniques. In summary, our main contributions are as follows.

• We propose a novel approach that introduces a plug-in curriculum scheduler, allowing for
seamless integration with existing model structures without modifying their architecture.

• In contrast to most curriculum learning methods in medical image analysis, our approach
provides an automated curriculum learning solution for medical image registration that
operates without the need for expert knowledge or prior experience.

• This scheduler improves adaptability and flexibility for better performance across diverse
tasks and datasets, focusing on robust registration techniques without requiring architec-
tural changes.

2 RELATED WORKS

2.1 DEFORMABLE MEDICAL IMAGE REGISTRATION

Traditional Algorithms. Traditional algorithms for image registration include popular models such
as elastic registration Kybic (2001); Shen & Davatzikos (2002); Zhang et al. (2013); Heinrich et al.
(2015), b-spline registration Jiang & Shackleford (2015); Sorzano et al. (2005); Zufeng et al. (2016);
Modat et al. (2010), and viscous fluid-flow registration Bro-Nielsen & Gramkow (1996); D’agostino
et al. (2003). These methods typically involve numerical optimization steps that iteratively adjust a
predefined transformation space to find the optimal solution based on explainable metrics. Optical
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flow models Brox & Malik (2010); Chen et al. (2013); Ranjan & Black (2017) treat the moving and
fixed images as continuous time samples of a sequence. To address challenges with large defor-
mations and reverse fields, enhancements have been made through algorithms such as the Demons
algorithm Thirion (1998) and diffeomorphism techniques Ashburner (2007); Avants et al. (2008);
Dalca et al. (2018); Janssens et al. (2011); Krebs et al. (2019); Zhang (2018); Beg et al. (2005).
These approaches provide smooth, continuous, and invertible velocity fields while preserving the
topological structure of images.

Deep Learning Image Registration (DLIR) Algorithms. As shown in Tab. 1, DLIR algorithms
can be categorized into five types based on their network architectures. Over the past decade, CNNs
have been a primary focus of research in medical image registration, including approaches like Cy-
cleMorph Kim et al. (2021), IIRP-Net Ma et al. (2024), SDHNet Zhou et al. (2023a), DLIR de Vos
et al. (2019), and DIRNet de Vos et al. (2017). U-Net architectures, along with encoder-decoder
models, have become popular choices in DLIR due to their efficiency in capturing hierarchical fea-
tures at multiple resolutions, which is crucial for accurately modeling complex image transforma-
tions. Notable examples include VoxelMorph Balakrishnan et al. (2019; 2018); Dalca et al. (2018),
DALT Zhao et al. (2019a), SVF-Net Rohé et al. (2017), AVSM Shen et al. (2019), LKU-Net Jia
et al. (2022), AUM-Net Xu et al. (2020), MIFR Shin & Lee (2023), MIDIR Qiu et al. (2021), IC-
Net Zhang (2018), SYMNet Mok & Chung (2020b), VTN Zhao et al. (2020), RCN Zhao et al.
(2019b), VR-Net Jia et al. (2021), and Dual-PRNet Kang et al. (2022) for U-Net, as well as ADRIR
Hu et al. (2018), LapIRN Mok & Chung (2020a), PMDR Krebs et al. (2019), Im2grid Liu et al.
(2022), NICE-Net Meng et al. (2022), and Quicksilver Yang et al. (2017) for encoder-decoder struc-
tures. With the advancement of Vision Transformers (ViT), transformers have also been applied
in DLIR, with examples including TransMorph Chen et al. (2022a), ViT-V-Net Chen et al. (2021),
DTN Zhang et al. (2021), H-ViT Ghahremani et al. (2024), PIViT Ma et al. (2023), Deformer Chen
et al. (2022b), C2FViT Mok & Chung (2022), ModeT Wang et al. (2023), TM-DCA Chen et al.
(2023), and XMorpher Shi et al. (2022). Their significantly larger receptive fields enable a more
accurate understanding of spatial relationships between images. CorrMLP Meng et al. (2024) in-
troduces the first MLP-based architecture for deformable medical image registration, overcoming
transformers’ limitations in capturing fine-grained long-range dependencies at full resolution due to
high computational costs.

For each architecture, additional procedures can be integrated. Dual and inverse mechanisms are
employed to ensure that two images deform symmetrically towards each other. Iterative and recur-
sive methods are used to align images with significant displacements. Hierarchical, pyramid, and
coarse-to-fine structures enhance the deformation field by leveraging high-resolution feature maps.
Lastly, patch-wise techniques selectively sample a diverse range of features across a large search
area while keeping computational overhead low.

2.2 CURRICULUM LEARNING (CL)

Imposing curriculum in neural networks can be traced back to Elman (1993). Inspired by the man-
ners of how humans learn languages, Elman (1993) points out the importance of starting easily and
gradually hardening the learning process when training networks. Bengio et al. (2009) further ex-
tends the idea to various vision and language tasks - where multi-stage curriculum strategies give
rise to improved generalization and faster convergence. Named “curriculum learning” for these
strategies, they are employed to different algorithms such as image classification Wang et al. (2019);
Wei et al. (2021), object detection Zhang et al. (2019; 2017a), semantic segmentation Zhang et al.
(2017b), self or semi supervised learning Murali et al. (2018), multi-task learning Sarafianos et al.
(2017; 2018); Dong et al. (2017); Wang et al. (2018), multi-modal learning Gong et al. (2016); Gong
(2017), etc Jiang et al. (2015); Matiisen et al. (2019); Weinshall et al. (2018). In the medical field,
there has been limited prior research on curriculum learning (CL), with some examples in classi-
fication Jiménez-Sánchez et al. (2019); Luo et al. (2021), semantic segmentation Kervadec et al.
(2019), self-supervised or semi-supervised learning Tang et al. (2018), and multi-modal learning
Lotter et al. (2017). However, only a few studies leverage external knowledge from human experts,
and even fewer integrate CL with image registration Burduja & Ionescu (2021); Zhou et al. (2023b).
Our work introduces an automated CL approach for medical image registration that operates without
the need of expert knowledge or prior experience.
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3 PRELIMINARY: MEDICAL IMAGE REGISTRATION

Medical image registration, also known as image alignment, involves aligning two or more anatom-
ically related images according to their spatial features. This process establishes non-linear dense
correspondences between n-D medical images that are acquired from different patients, scanners, or
at different times. It has been extensively studied due to its importance in clinical applications, such
as monitoring tumor growth or conducting group analysis.

Deformable image registration is commonly framed as an optimization problem, aiming to minimize
an energy function. This function generally consists of two main components: a penalty function
that evaluates the similarity between the aligned and reference images, and a regularization term that
enforces constraints on the registration field, such as promoting smoothness through a gradient loss
penalty. In this process, the fixed image (or target image) serves as the baseline or template to which
the moving image (or source image) is aligned. The fixed image provides the spatial coordinates
used for alignment, while the moving image is adjusted to match the fixed image as closely as
possible. The goal is to determine the optimal transformation that aligns the moving image with the
fixed image. Below is a comprehensive explanation and formulation of a widely used framework for
medical image registration.

The moving image Îm and the fixed image If are initially transformed into a common coordinate
system using an affine transformation. The affine-aligned moving image is referred to as Im. Next,
Im is deformed to align with If using a deformation field ϕ, which is generated by a specific network
fθ as

fθ(If , Im) = ϕ (1)
where θ is the parameters of the network. The overall loss function used for training the network
is based on the energy function from traditional image registration techniques. This loss function
comprises two components: one evaluates the similarity between the deformed image and the fixed
image, while the other regularizes the deformation field to ensure smoothness. It is expressed as:

L(If , Im, ϕ) = Lsim(If , Im, ϕ) + λR(ϕ), (2)

where Lsim denotes the image fidelity measure, and R is the regularization term for the deformation
field. A common metric for evaluating the similarity between If and Im is the local normalized
cross-correlation:

LNCC(If , Im, ϕ) =
∑
p∈Ω

(∑
pi
(If (pi)− If (p))([Im ◦ ϕ](pi)− [Im ◦ ϕ](p))

)2

(∑
pi
(If (pi)− If (p))2

)(∑
pi
([Im ◦ ϕ](pi)− [Im ◦ ϕ](p))2

) ,
(3)

where If (p) and Im(p) denote the mean value within the local window of size n3 centered at voxel
p. A higher LNCC indicates a better alignment, yielding the loss function: Lsim(If , Im, ϕ) =
−LNCC(If , Im, ϕ). The regularizer R promotes similarity in displacement values between a given
location and its neighboring locations. A commonly used diffusion regularizer can be formulated
as:

Rdiffusion(ϕ) =
∑
p∈Ω

∥ ∇u(p) ∥2, (4)

where ∇u is the spatial gradients of the displacement field u. The spatial gradients are approximated
using forward differences, that is, ∂u(p)

∂{x,y,z} ≈ u(p{x,y,z} + 1)− u(p{x,y,z}).

4 METHOD

Research in deformable medical image registration has primarily focused on incremental perfor-
mance improvements through minor changes to model architectures or the addition of new loss
functions. While these adjustments can improve performance metrics, they often result in methods
that are task- or dataset-specific, limiting their broader applicability. To overcome these limitations,
we propose a novel approach that avoids modifying existing model architectures. Instead, we intro-
duce a plug-in curriculum scheduler that integrates seamlessly with current methods. This scheduler,
inspired by curriculum learning, organizes the learning process by increasing task difficulty based
on two main criteria: sample difficulty and accuracy tolerance. For sample difficulty, we employ
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two strategies: weighting challenging voxel-level samples within the brain and starting with blurred
images before transitioning to sharper images as training progresses. The second criterion focuses
on the rigor of supervision by utilizing ground truth data for more comprehensive training. This
approach aims to improve the generalizability and flexibility of registration methods, making them
more robust and widely applicable.

4.1 SAMPLE DIFFICULTY

Curriculum learning involves training models in a structured sequence, beginning with simpler ex-
amples and progressively advancing to more complex ones. A key challenge in this approach is
developing automatic and objective metrics to assess the difficulty of each sample. However, in
the medical domain, determining the difficulty of individual samples is not straightforward. For
instance, identifying which specific MRI volume would be easier for learning the deformation field
in registration tasks is not intuitive. Previous research has utilized domain knowledge from human
experts to qualitatively assess the classification difficulty of medical images to guide curriculum
learning. This approach, however, requires additional annotation efforts, depends on subjective hu-
man experience, and introduces potential bias. Instead of relying on this computationally intensive
approach, we propose an automated method for assessing sample difficulties at two levels: voxel-
level and volume-level.

4.1.1 VOXEL-LEVEL SAMPLE DIFFICULTY

In medical image registration tasks, each voxel in a 3D volume contributes to the overall alignment
between the moving and fixed images. In standard registration methods, all voxels within an MRI
volume are assigned identical weights during training, based on the assumption that each voxel has
equal significance. However, not all voxels are equally crucial for registration; for instance, areas
like edges or regions with high contrast tend to be more difficult to align, while homogeneous areas
are often easier. To address this, we propose a method to evaluate the varying difficulty in learning
the displacement field between voxels. Based on this measure, we design a training schedule that
gradually prioritizes voxels of different difficulty levels as training progresses.

Difficulty Measure. For a given MRI image I , it can be decomposed into a set of voxels xi, where
i = {1, ..., N} and N represents the total number of voxels in the image. The difficulty of these
voxels is then evaluated using the Variance of Gradients (VoG) Agarwal et al. (2022) method. The
VoG method is applied to the deformation fields in the following order.

The gradient calculation for each voxel involves determining how sensitive the deformation field is
to changes in the input voxel values. Specifically, for each voxel in the input image, the gradient
of the deformation field (displacement vector) is computed with respect to the voxel itself. This is
expressed as Si =

∂D(xi)
∂xi

, where D(xi) is the deformation vector at voxel xi and Si denotes the sen-
sitivity of the deformation field to variations in that voxel. The gradient matrices for the deformation
field are computed at different epochs or iterations during training, forming a series of checkpoints,
denoted as {Si,1, Si,2, ..., Si,K}, where Si,t represents the gradient matrix at checkpoint t. This pro-
cess enables the monitoring of how the deformation field’s sensitivity to voxel changes evolves over
time. The average of the gradient matrices across all checkpoints for each voxel xi is then calculated
as

µi =
1

K

K∑
t=1

Si,t. (5)

This mean represents the average sensitivity of the deformation field with respect to each voxel over
time. Finally, the Variance of Gradients (VoG) is calculated across the checkpoints as:

V oGi =

√√√√ 1

K

K∑
t=1

(Si,t − µ)2. (6)

This variance provides a measure of how much the deformation field’s sensitivity to each voxel
varies over time. A higher variance indicates that the voxel is more difficult to register, while a
lower variance suggests that it is easier to register.
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Training Scheduler. Once the difficulty of each voxel is determined through VoG, the loss function
can be modified by multiplying it with calculated weights for each voxel: L =

∑
i wi · Loss(xi),

adjusting the loss contribution during backpropagation.

To align with the goal of curriculum learning, which trains models by starting with simpler examples
and gradually moving to more complex ones, the weights wi are scheduled to update at each epoch.
This allows the model to adjust to new weights progressively as training proceeds. Each voxel xi is
associated with an initial weight wi,(1) given by:

wi,(1) =
si∑N
j=1 sj

(7)

where si represents the rank of the voxel xi in the sorted VoG scores from highest to lowest, and N
is the total number of voxels in the MRI image. In this initial probability assignment, easier samples,
which have lower VoG scores, are given higher probabilities. To reflect the changing importance of
each voxel over training epochs, the weight for voxel xi at epoch e is updated as:

wi,(e) = wi,(e−1) × λi, λi =
L

√
1/N

wi,(1)
. (8)

Here, L is the number of epochs over which the scheduling will last. By the final epoch, the proba-
bility for every voxel xi is set to:

wi,(final) = 1/N. (9)
This training scheduler ensures that the probability distribution over voxels smooths out over time,
with each voxel eventually being assigned an equal probability by the end of the scheduling.

4.1.2 VOLUME-LEVEL SAMPLE DIFFICULTY

In the previous analysis, we identified variations in difficulty within a single MRI volume, leading
to different contributions for individual voxels. On a broader scale, we aim to assess the difficulty
across different volume samples.

When working with a set of MRI volumes, determining which volume poses a greater challenge in
learning the deformation field is difficult. In situations where directly assessing the difficulty of data
samples is not possible, a curriculum learning approach can be employed by deliberately simplifying
the inputs. This is achieved by blurring the images with a Gaussian filter, reducing their complexity
and information content Burduja & Ionescu (2021). Training begins with highly blurred images,
gradually transitioning to sharper images as the process advances.

Specifically, at a given training epoch e, the degree of blur σ is adjusted according to the following
rule:

σ =

{
σmax × (1− e/esch) if e < esch
0 if e > esch

(10)

where σmax represents the initial level of blur at the start of training, and esch is the final epoch
during which the blur is applied.

4.2 ACCURACY TOLERANCE

In the context of model accuracy, curriculum learning generally involves presenting training data in
a structured manner, starting from easier examples and gradually moving to more difficult ones to
aid the model’s learning process. An additional dimension to this approach is adjusting the level of
strictness in supervision using ground truth data. This method is particularly effective in tasks that
require mastering intricate details, such as medical imaging, where accurate alignment or segmen-
tation is critical and develops over time.

In this approach, the level of strictness in evaluating the model against the ground truths is pro-
gressively increased. Early in training, the model is allowed more flexibility in its predictions (i.e.,
accepting a wider range of outputs as correct), focusing on general patterns. As the model pro-
gresses, the supervision becomes more stringent, requiring closer alignment with the exact ground
truth (e.g., penalizing even slight deviations from the correct output). This strategy helps the model
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avoid being overwhelmed by complex or highly detailed data in the early stages, enabling it to build
a foundational understanding before being challenged to achieve higher accuracy levels.

At a given training epoch e with a tolerance parameter ϵe, the image similarity loss is defined as:

Lϵ(Lsim(If , Im, ϕ)) = max{Lsim(If , Im, ϕ) + ϵ, 0} (11)

when a higher similarity value corresponds to better alignment (e.g., for metrics like LNCC or
SSIM ). The value of ϵe increases progressively as training continues. In contrast, when a lower
similarity measure indicates better alignment (e.g., for metrics like MSE), the image similarity loss
is given by:

Lϵ(Lsim(If , Im, ϕ)) = max{Lsim(If , Im, ϕ)− ϵ, 0} (12)
with the value of ϵe gradually decreasing as training progresses.

5 EXPERIMENTAL SETUP

5.1 DATASETS AND EVALUATION METRICS

Our method is employed in the analysis of two popular MRI databases, including IXI 1 and Mind-
Boggle 2. Detailed information regarding the datasets and their preparation procedures are presented
in Section A.1 of the supplementary material. For quantitative comparisons on the datasets, Dice
similarity coefficients (DSC) Dice (1945) and non-positive values in the Jacobian determinant (NJD)
are computed. Specifically, DSC are measured between the segmentation labels of the fixed and
moved images. The smoothness and invertibility of the predicted displacement fields are evaluated
by determining the percentage of NJD of the deformation fields (i.e., % of |Jϕ| ≤ 0). Adjusting the
regularization parameter often involves a trade-off between registration accuracy and transformation
smoothness Mok & Chung (2020b); Meng et al. (2022; 2024). Hence, registration methods should
be evaluated using both DSC and NJD metrics. Further details and formulations can be found in
Section A.2 of the supplementary material.

5.2 COMPARISON METHODS

Our method is extensively evaluated against state-of-the-art deformable image registration tech-
niques, encompassing four traditional optimization-based methods (SyN Avants et al. (2008),
NiftyReg Modat et al. (2010), LDDMM Beg et al. (2005), deedsBCV Heinrich et al. (2015)) and nine
deep learning-based registration methods (VoxelMorph Balakrishnan et al. (2019), CycleMorph Kim
et al. (2021), MIDIR Qiu et al. (2021), ViT-V-Net Chen et al. (2021), PVT Wang et al. (2021), CoTr
Xie et al. (2021), nnFormer Zhou et al. (2021), TransMorph Chen et al. (2022a), H-ViT Ghahremani
et al. (2024)). The methods and their hyperparameter settings are described in Section A.3 and A.4
of the supplementary material.

5.3 IMPLEMENTATION DETAILS

Our method builds upon two state-of-the-art deformable image registration models: TransMorph and
H-ViT. These designs are referred to as TM+ and HV+, respectively. Both models were trained for
500 epochs on an NVIDIA A6000 GPU, using the Adam optimizer with a learning rate of 1× 10−4

and a batch size of 1. Hyperparameter selections are specified in the ablation study results. Section
A.4 provides more details about the experiment settings.

6 RESULTS AND DISCUSSION

6.1 COMPARISON WITH BASELINE METHODS

We conducted inter-patient and atlas-to-patient registration experiments on both the IXI and Mind-
Boggle datasets. Table 2 presents the registration metrics for IXI, comparing our method against
several baselines using DSC and NJD. Our approach achieves the highest scores, including a DSC

1https://brain-development.org/ixi-dataset/
2https://mindboggle.info/
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PVT CoTr nnFormer TransMorphVoxelMorph CycleMorph MIDIR ViT-V-Net H-ViT Ours (TM+) Ours (HV+)Fixed

Moving

Figure 1: Example coronal slices from the IXI dataset and outcomes (moved MRI images and dif-
ference between fixed image and moved results) of baseline registration methods, compared with
our methods. Red highlights indicate misalignments between the ground truth and the aligned re-
sults, while black highlights signify successful registration, with fewer red pixels indicating better
performance.

Method Inter-patient Registration Atlas-to-patient Registration
DSC ↑ NJD (%) ↓ DSC ↑ NJD (%) ↓

SyN 0.639 ± 0.197 < 0.001 0.590 ± 0.210 < 0.001
NiftyReg 0.626 ± 0.183 0.068 ± 0.085 0.587 ± 0.223 0.020 ± 0.046
LDDMM 0.730 ± 0.134 < 0.001 0.638 ± 0.186 < 0.001
deedsBCV 0.717 ± 0.180 0.188 ± 0.059 0.706 ± 0.151 0.147 ± 0.050
VoxelMorph 0.720 ± 0.139 0.799 ± 0.103 0.695 ± 0.162 1.586 ± 0.339
CycleMorph 0.704 ± 0.167 0.651 ± 0.197 0.706 ± 0.155 1.719 ± 0.382
MIDIR 0.721 ± 0.156 0.151 ± 0.069 0.711 ± 0.158 < 0.001
ViT-V-Net 0.736 ± 0.128 0.999 ± 0.201 0.702 ± 0.155 1.609 ± 0.319
PVT 0.733 ± 0.117 1.314 ± 0.600 0.695 ± 0.159 1.858 ± 0.314
CoTr 0.741 ± 0.132 0.719 ± 0.269 0.706 ± 0.164 1.298 ± 0.343
nnFormer 0.744 ± 0.130 0.800 ± 0.283 0.719 ± 0.157 1.595 ± 0.358
TransMorph 0.763 ± 0.119 0.617 ± 0.210 0.724 ± 0.150 1.502 ± 0.342
H-ViT 0.779 ± 0.078 0.589 ± 0.182 0.740 ± 0.139 0.707 ± 0.185
Ours (TM+) 0.808 ± 0.063 0.493 ± 0.101 0.755 ± 0.107 0.401 ± 0.090
Ours (HV+) 0.812 ± 0.060 0.285 ± 0.071 0.772 ± 0.091 < 0.001

Table 2: Quantitative evaluation results for the registration methods on the IXI dataset for 34 anatom-
ical structures over 115 random pairs for inter-patient and 115 pairs for atlas-to-patient registrations.

performance improvement of +0.045 and +0.033 in inter-patient registration compared to Trans-
Morph and H-ViT, respectively. While the differences between the baselines are relatively small, our
method shows a significantly larger margin, yielding meaningful results. Figure 1 presents the visu-
alized registration results, highlighting the differences between the fixed image and the transformed
outputs as well. Our method shows more precise warping of the moving MRI compared to other
approaches, especially in the areas marked by the red and blue rectangles. The registration results
for the MindBoggle dataset are shown in Table 3, where our method achieves an increase in DSC
values by +0.056 and +0.070 compared to TransMorph and H-ViT, respectively, in atlas-to-patient
registration experiments, representing a substantial performance improvement. Detailed results, in-
cluding DSC values for each anatomical structure, are provided in the Supplementary material in
Section B.

6.2 VISUALIZATION RESULTS BY EPOCHS

In Figure 2, the progression of the moved image at key training epochs is illustrated. Our curriculum
learning-based approach initially focuses on learning coarse spatial transformations during the early
stages of training, deliberately omitting intricate details to prioritize broader structural changes. By
starting with simpler, larger-scale adjustments, the model establishes a solid foundation for subse-
quent refinement. As training progresses, the model gradually hones in on finer, localized regions,
refining these areas based on the broader shapes learned in the earlier stages. This phased approach
allows the network to incrementally build upon its initial understanding, ultimately leading to more
accurate and precise registration results. By progressively tackling the complexity of the transforma-
tion, this training strategy significantly enhances the overall performance of the registration process,
resulting in improved alignment and greater detail capture in the final output.
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Method Inter-patient Registration Atlas-to-patient Registration
DSC ↑ NJD (%) ↓ DSC ↑ NJD (%) ↓

VoxelMorph 0.674 ± 0.197 0.821 ± 0.170 0.666 ± 0.201 0.831 ± 0.163
CycleMorph 0.679 ± 0.194 1.044 ± 0.211 0.671 ± 0.199 1.064 ± 0.189
MIDIR 0.637 ± 0.197 0.403 ± 0.215 0.539 ± 0.292 0.347 ± 0.205
ViT-V-Net 0.700 ± 0.186 1.168 ± 0.225 0.695 ± 0.187 0.840 ± 0.573
PVT 0.588 ± 0.214 2.006 ± 0.254 0.583 ± 0.216 2.034 ± 0.217
CoTr 0.633 ± 0.214 0.691 ± 0.163 0.630 ± 0.218 0.701 ± 0.141
nnFormer 0.622 ± 0.210 1.077 ± 0.210 0.618 ± 0.213 1.090 ± 0.189
TransMorph 0.699 ± 0.186 0.702 ± 0.106 0.695 ± 0.189 0.716 ± 0.082
H-ViT 0.731 ± 0.170 0.328 ± 0.061 0.726 ± 0.173 0.335 ± 0.049
Ours (TM+) 0.749 ± 0.126 0.209 ± 0.039 0.751 ± 0.086 0.199 ± 0.020
Ours (HV+) 0.781 ± 0.099 < 0.001 0.796 ± 0.062 0.128 ± 0.011

Table 3: Quantitative evaluation results for the registration methods on the MindBoggle dataset for
41 anatomical structures over 114 random pairs for inter-patient and 222 pairs for atlas-to-patient
registrations.

# 4 # 5 FixedMoving # 1 # 2 # 3

Figure 2: The visualization of moved MRI images at the end of each training stage.

6.3 ABLATION STUDY

6.3.1 COMPONENTS OF CURRICULUM LEARNING

We perform an ablation study on the components of curriculum learning: voxel-level sample diffi-
culty (VLSD), volume-level sample difficulty (VMSD), and accuracy tolerance (AT), with the re-
sulting metrics shown in Table 4. Incorporating all three components in the learning schedule yields
the best performance.

Components VLSD VMSD AT VLSD,
VMSD

VLSD,
AT

VMSD,
AT Full

DSC ↑ 0.754
±0.110

0.745
±0.132

0.749
±0.124

0.761
±0.105

0.767
±0.099

0.758
±0.127

0.772
±0.091

Table 4: Ablation study on the curriculum learning components for the IXI registration.

6.3.2 PARAMETERS OF VOXEL-LEVEL SAMPLE DIFFICULTY

Sample difficulties. In the curriculum for voxel-level sample difficulty, we update the weights of
voxels at each epoch to encourage the network to increasingly focus on challenging samples. We
contrast this with a simpler approach that maintains a fixed difficulty level for each voxel, utilizing
only the difficulty measure and omitting the training scheduler. Table 5 presents the DSC measures
for various fixed difficulty values. Our method demonstrates superior performance by progressively
increasing the probabilities for difficult samples, allowing the network to concentrate more on chal-
lenging details.

Scheduling epochs. An ablation study is conducted on different scheduling epochs for voxel-level
sample difficulty. Here, estart indicates the epoch at which scheduling begins; thus, the VoG values
for individual voxels are computed and stacked for the difficulty measure during the epochs prior to
estart. Meanwhile, eend signifies the epoch when scheduling concludes. Consequently, the difficulty
weights of voxels are updated between estart and eend, after which equal probabilities are assigned
to all voxels. Note that estart = K and eend = K + L, with K and L detailed in Section 4.1.1.
Table 6 shows the DSC score of methods trained with varying scheduling epochs, showing that
setting estart to 100 epochs and eend to 300 epochs yields the best DSC measures.
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wi wi,(1) wi,(final/4) wi,(final/2) wi,(final) Ours
DSC ↑ 0.750 ± 0.135 0.767 ± 0.105 0.764 ± 0.119 0.758 ± 0.127 0.772 ± 0.091

Table 5: Ablation study on methods with fixed difficulties of voxel-level sample difficulty for the
IXI registration.

estart, eend 100, 200 100, 300 200, 300 200, 400
DSC ↑ 0.765 ± 0.097 0.772 ± 0.091 0.767 ± 0.102 0.760 ± 0.099

Table 6: Ablation study on the scheduling epochs of voxel-level sample difficulty for the IXI regis-
tration.

6.3.3 PARAMETERS OF VOLUME-LEVEL SAMPLE DIFFICULTY

The effects of varying degrees of initial blur and scheduling epochs are presented in Table 7. The
ablation study on initial blur was conducted using a fixed scheduling epoch of esch = 300, while the
ablation study on scheduling epochs was carried out with a fixed initial blur value of σmax = 1.0.
Our optimal method is configured with hyperparameters of esch = 300 and σmax = 1.0.

σmax 0.5 0.75 1.0 1.5 2.0
DSC ↑ 0.760 ± 0.119 0.769 ± 0.098 0.772 ± 0.091 0.767 ± 0.101 0.757 ± 0.125

esch 200 250 300 350 400
DSC ↑ 0.765 ± 0.120 0.768 ± 0.115 0.772 ± 0.091 0.763 ± 0.116 0.759 ± 0.120

Table 7: Ablation study on the initial blur and the scheduling epoch of volume-level sample difficulty
for the IXI registration.

6.3.4 PARAMETERS OF ACCURACY TOLERANCE

The DSC measurements for various methods trained with different ϵ values are presented in Table
8. The chosen ϵ values were determined by analyzing the model’s training curve without any tol-
erances. Our optimal method is configured with the following ϵ values: 0.24, 0.26, 0.28, 0.3, 0.31,
0.32, 0.34, and 0.38 for epochs under 3, 5, 30, 100, 200, 300, 400, and 500, respectively. It is im-
portant to note that these values increase as training progresses, as we utilize the image similarity
metric LNCC.

ϵ (epochs) DSC ↑

# 1 0.24(< 3), 0.26(< 5), 0.28(< 30), 0.3(< 100),
0.31(< 200), 0.32(< 300), 0.34(< 400), 0.38(< 500)

0.772 ± 0.091

# 2 0.24(< 5), 0.26(< 30), 0.29(< 100), 0.3(< 150),
0.305(< 200), 0.31(< 300), 0.45(< 500)

0.754 ± 0.141

# 3 0.24(< 5), 0.26(< 30), 0.29(< 100), 0.3(< 150),
0.305(< 200), 0.31(< 270), 0.32(< 400), 0.5(< 500)

0.748 ± 0.160

Table 8: Ablation study on the accuracy tolerance scheduling for the IXI registration.

7 CONCLUSION

We introduced an innovative approach that marks a notable advancement in deformable medical
image registration through the development of a plug-in scheduler inspired by curriculum learning.
This technique improves the adaptability and flexibility of existing network architectures without
the need for substantial alterations, enabling broader applicability across diverse tasks and datasets.
By concentrating on the dual aspects of sample difficulty and matching accuracy, we effectively
steer the network’s learning process towards achieving accurate image alignment. Our distinctive
application of the Variance of Gradients (VoG) for assessing voxel difficulty and the gradual shift
from blurred to clearer images for volume difficulty sets our work apart from conventional methods.
In contrast to earlier curriculum learning techniques in medical imaging, our automated solution
removes the necessity for expert knowledge, making it accessible to a wider audience.
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SUPPLEMENTARY MATERIAL

A EXPERIMENTAL SETUP

A.1 DATASETS AND PREPROCESSING

IXI (Information eXtraction from Images). The publicly available IXI 3 dataset contains 576 T1-
weighted MRI scans. These were split into 403 for training, 58 for validation, and 115 for testing.
The MRI volumes were cropped to dimensions of 160 × 192 × 224 and underwent preprocessing
using FreeSurfer. Registration performance was assessed using label maps corresponding to 34
anatomical structures. For inter-patient registration inference, 115 pairs were randomly selected
for the primary evaluation of the methods. In the atlas-to-patient registration tasks, the IXI images
served as the fixed images, while the moving image was an atlas brain MRI from Kim et al. (2021).

MindBoggle-101. The MindBoggle dataset 4 contains 41 anatomically labeled brain surfaces from
101 healthy individuals, divided into four subsets: HLN (12 scans), MMRR (23 scans), NKI (42
scans), and OASIS (20 scans). MRI volumes from the HLN, MMRR, and NKI subsets were reg-
istered to MNI152 space 5 using affine transformations, with a resolution of 1 × 1 × 1mm3 and a
voxel grid size of 160× 192× 224. Registration performance was evaluated based on label maps of
41 anatomical structures. For inter-patient registration, 15, 33, and 66 pairs were randomly selected
from the HLN, MMRR, and NKI subsets, respectively. In the patient-to-atlas registration task, one
random sample from each subset was chosen as the atlas, and the remaining samples were registered
to it, with the process repeated twice to produce 33, 66, and 123 registration pairs for the HLN,
MMRR, and NKI subsets, respectively.

A.2 EVALUATION METRICS

Dice Score. The Dice score Dice (1945), also known as the Dice coefficient, is a statistical measure
used to gauge the similarity between two sets, commonly applied in image segmentation. It quanti-
fies the overlap between the predicted segmentation and the ground truth by calculating the ratio of
twice the area of overlap to the total number of pixels in both sets. The formula is:

Dice =
2× |A ∩B|
|A|+ |B|

(13)

where |A| and |B| are the sizes of the two sets (predicted and ground truth), and |A ∩B| is the size
of their intersection. The Dice score ranges from 0 to 1, with 1 indicating perfect agreement and 0
indicating no overlap.

Jacobian determinant. The Jacobian determinant measures local volume changes induced by a
deformation field. It is computed from the Jacobian matrix, which contains partial derivatives of the
deformation field with respect to spatial coordinates. A positive Jacobian determinant indicates a
local volume expansion or contraction, while a non-positive Jacobian determinant indicates a prob-
lematic deformation, such as folding or inversion of the image. The percentage of non-positive
values in the Jacobian determinant provides an indication of the quality of the deformation; ideally,
this percentage should be low to ensure topological preservation and avoid unrealistic transforma-
tions.

A.3 COMPARISON METHODS

Four traditional optimization-based methods and nine deep learning-based registration methods are
introduced as baselines for the IXI atlas-to-patient registration task, as outlined below.

SyN Avants et al. (2008) introduces a novel symmetric image normalization method to maximize
cross-correlation within the space of diffeomorphic maps, along with the necessary Euler-Lagrange
equations for optimization.

3https://brain-development.org/ixi-dataset/
4https://mindboggle.info/
5https://www.lead-dbs.org/about-the-mni-spaces/
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NiftyReg Modat et al. (2010) presents a GPU-optimized, parallel-friendly algorithm that performs
MR image registration in less than one minute, achieving the same accuracy as conventional serial
methods for segmentation propagation.

LDDMM Beg et al. (2005) explores the Euler-Lagrange equations for large deformation diffeomor-
phic metric mapping, deriving the minimizing vector fields and implementing a semi-Lagrangian
method to compute particle flows and metric distances on anatomical structures.

deedsBCV Heinrich et al. (2015) presents a automated discrete medical image registration frame-
work for multi-organ segmentation across various modalities, using local self-similarity context
(SSC) for similarity assessment and a Markov random field (MRF) to ensure smoothness efficiently.

VoxelMorph Balakrishnan et al. (2019) formulates registration as a function mapping an input im-
age pair to a deformation field aligned by a CNN, using two training strategies: an unsupervised
method maximizing image intensity matching and a second method leveraging auxiliary segmenta-
tions from the training data.

CycleMorph Kim et al. (2021) proposes a cycle-consistent deformable image registration method
that enhances performance by preserving topology during deformation, applicable to both 2D and
3D problems and easily extendable to multi-scale implementations for large volume registration.

MIDIR Qiu et al. (2021) introduces a deep learning registration framework for fast mono-modal
and multi-modal image registration using differentiable mutual information and B-spline free-form
deformation to achieve smooth, efficient diffeomorphic deformation.

ViT-V-Net Chen et al. (2021) integrates ViT and ConvNets to improve volumetric medical image
registration, drawing inspiration from ViT-based image segmentation methods that combine Con-
vNets for better localization.

PVT Wang et al. (2021) addresses dense prediction tasks by providing high output resolution and
lower computational costs than ViT, while combining the strengths of both CNNs and transformers
as a versatile backbone for various vision applications.

CoTr Xie et al. (2021) proposes a framework that combines CNNs with a deformable Transformer
(DeTrans) for accurate 3D medical image segmentation, efficiently addressing long-range dependen-
cies while reducing computational complexities by focusing on key positions through deformable
self-attention.

nnFormer Zhou et al. (2021) is a 3D transformer for volumetric medical image segmentation that
integrates interleaved convolution with self-attention, employs local and global volume-based self-
attention mechanisms, and enhances the U-Net architecture by replacing skip connections with skip
attentions.

TransMorph Chen et al. (2022a) is a hybrid model combining Transformer and ConvNet architec-
tures for volumetric medical image registration, featuring diffeomorphic variants that ensure topol-
ogy preservation and a Bayesian variant for assessing registration uncertainty.

H-ViT Ghahremani et al. (2024) introduces a deformable image registration method that uses dual
self-attention and cross-attention mechanisms to capture multi-scale flow features, enabling high-
level features to inform the representation of low-level ones across spatially distant voxel patches.

A.4 IMPLEMENTATION DETAILS

All registration models, including the baselines and our proposed method, were trained for 500
epochs on an NVIDIA A6000 GPU, using the Adam optimizer with a learning rate of 1× 10−4 and
a batch size of 1. For the competing methods, the default network parameter settings recommended
by their respective authors were applied.

SyN Avants et al. (2008): For both inter-patient and atlas-to-patient brain MRI registration tasks, the
mean squared difference (MSQ) is employed as the objective function, applying a default Gaussian
smoothing of 3 and utilizing three scales with 180, 80, and 40 iterations, respectively.

NiftyReg Modat et al. (2010): The sum of squared differences (SSD) is employed as the objective
function, while bending energy acts as a regularizer for all registration tasks. In inter-patient brain
MRI registration, the regularization weight is empirically set to 0.0002, utilizing three scales with
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300 iterations each. For atlas-to-patient brain MRI registration, the regularization weight is modified
to 0.0006, with three scales and 500 iterations applied for each scale.

LDDMM Beg et al. (2005): The mean squared error (MSE) serves as the default objective function.
For both inter-patient and atlas-to-patient brain MRI registration, a smoothing kernel size of 5, a
smoothing kernel power of 2, a matching term coefficient of 4, a regularization term coefficient of
10, and an iteration count of 500 is applied.

deedsBCV Heinrich et al. (2015): The default objective function is self-similarity context (SSC).
For both inter-patient and atlas-to-patient brain MRI registration, the hyperparameter values rec-
ommended by Hoffmann et al. (2020) is utilized for neuroimaging, setting the grid spacing, search
radius, and quantization step to 6 × 5 × 4 × 3 × 2, 6 × 5 × 4 × 3 × 2, and 5 × 4 × 3 × 2 × 1,
respectively.

VoxelMorph Balakrishnan et al. (2019): For inter-patient and atlas-to-patient brain MRI regis-
tration, the regularization hyperparameter λ is set to 0.02 and 1, respectively, as these values are
identified as optimal by the authors.

CycleMorph Kim et al. (2021): In CycleMorph, the hyperparameters α, β, and λ denote the weights
for cycle loss, identity loss, and deformation field regularization, respectively. For inter-patient brain
MRI registration, the hyperparameters are set to α = 0.1, β = 0.5, and λ = 0.02, whereas for atlas-
to-patient brain MRI registration, they are set to α = 0.1, β = 0.5, and λ = 1. The authors suggest
these values as optimal for neuroimaging.

MIDIR Qiu et al. (2021): The same loss function and λ value as those used in VoxelMorph are
applied. Additionally, the control point spacing δ for the B-spline transformation was set to 2 for all
tasks, which was identified as the optimal value by the authors.

ViT-V-Net Chen et al. (2021): This registration network was built on the Vision Transformer (ViT)
framework Dosovitskiy et al. (2021). The default network hyperparameter settings recommended
by the authors are utilized.

PVT Wang et al. (2021): In the context of registration with the PVT model, we adhered to the
configuration recommended by TransMorph. Specifically, the default settings are implemented,
with the exception that the embedding dimensions are adjusted to {20, 40, 200, 320}, the number
of heads is set to {2, 4, 8, 16}, and the depth is increased to {3, 10, 60, 3} to ensure a comparable
number of parameters to those in TransMorph.

CoTr Xie et al. (2021): Default network settings by the authors are used for all registration tasks.

nnFormer Zhou et al. (2021): To ensure a fair comparison, the same Transformer parameter values
from TransMorph are used for nnFormer, as nnFormer is also built on the Swin Transformer Liu
et al. (2021) architecture.

TransMorph Chen et al. (2022a): The same loss function parameters as those used in VoxelMorph
are applied to all tasks of TransMorph.

H-ViT Ghahremani et al. (2024): The default network settings provided by the authors are
applied to all registration tasks. Specifically, the encoder consists of five layers with sizes
[32, 64, 128, 256, 512] and the decoder with sizes [192, 192, 192, 192]. The parameters for H-ViT
are configured as follows: the embedding dimension fe is set to 192, the number of feature maps
Sh to 4, the voxel patch size to 2 × 2 × 2, the model depth to 1, the MLP ratio in the feedforward
network to 2, the drop rate to 0, and the number of heads to 32.
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B RESULTS AND DISCUSSION
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Figure 3: Dice score results for the atlas-to-patient registration of various methods on the IXI dataset
(continued).
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Figure 4: Dice score results for the atlas-to-patient registration of various methods on the IXI dataset.
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