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ABSTRACT
Measuring similarity based on network topology is a crucial task
in the realm of web search. While many well-established similarity
measures (e.g. SimRank) focus on assessing node-to-node similarity,
capturing edge-to-edge relationships is equally important in many
applications (e.g. link spam detection). However, existing node-to-
node similarity measures from the SimRank family may violate
the triangular inequality. When applied directly to assessing edge-
to-edge similarity, such measures may fail to capture transitive
relationships and misrepresent dissimilarity between nodes.

In this paper, we propose a novel similarity measure, SimEdge,
which can capture transitive relationships for assessing edge-to-
edge similarity. The intuition of SimEdge revolves around a mutual
reinforcement co-recursion: “two edges are assessed as similar if
they are linked to similar nodes, and two nodes are assessed as
similar if they are linked to similar edges.” We show that SimEdge
guarantees the transitivity of similarity, and enhances the accuracy
of the node-to-node SimRank similarity without misrepresenting
dissimilarity between nodes. For large-scale graphs, we also pro-
pose efficient techniques to compute SimEdge similarities in linear
memory with guaranteed accuracy. Our empirical evaluation on
various datasets validates that SimEdge is highly effective in cap-
turing transitive edge-to-edge relationships, while offering a more
reliable assessment of node-to-node similarity. Moreover, SimEdge
shows superior scalability in assessing edge-to-edge similarities on
large-scale graphs with billions of edges.

1 INTRODUCTION
Quantifying the similarity of two objects based on link structures
is a fundamental problem in web search. Over the last decade,
various link-based similarity measures have emerged for assess-
ing node-to-node similarity [4, 5, 13, 14, 18, 20, 22]. Among them,
the similarity models from the SimRank family (e.g. SimRank [12],
CoSimRank [19], SimRank* [20], P-Rank [22]) have garnered grow-
ing attention due to their wide range of real-world applications,
including web search, co-citation analysis, collaborative filtering,
and social networks. The popularity of these measures is largely
credited to two prominent features: 1) The core ideas underpinning
these models are simple and intuitive, rendering their mathematical
representations relatively easy for practical implementation. 2) The
similarity scores generated by these models solely hinge on the
underlying graph structures and can be iteratively propagated. As a
result, the multi-hop neighborhood information between two nodes
can be captured in a recursive and global manner.

However, these well-established similarity measures from the
SimRank family are only designed for node-to-node similarity as-
sessment. In practice, capturing edge-to-edge relationships in a
graph holds equal importance in numerous real applications, such
as neural synapse classification, link spam detection, co-citation
analysis, fraud ring detection, and road network analysis.

Application 1 (Neural Synapse Classification). In a neu-
ral network, nodes represent neurons, and edges stand for synapses.

Different synapse types (e.g. Send-poly (Sp), Receive-poly (Rp), Elec-
tric Junction (EJ), Neuromuscular Junction (NMJ)) exhibit distinct
connectivity patterns. Abnormal synaptic connectivity patterns are
often associated with neurological disorders. Through edge-to-edge
similarity assessment, we can distinguish these synapse types and
identify unusual synaptic patterns associated with neurological disor-
ders, aiding in the early diagnosis of neurological conditions. □

Application 2 (Link Spam Detection). Link spam often in-
volves inserting links to irrelevant or low-quality websites within the
content for the purpose of manipulating search engine rankings. Edge-
to-edge similarity assessment based on hyperlinks in a web graph can
help identify patterns and anomalies in the link structure of websites
(e.g. link farms) by revealing web links with highly similar linking
behaviors that lead to unrelated or spammy sites. □

Despite its importance in many applications, effectively captur-
ing the relationships between edges poses considerable challenges:
PriorApproach. A straightforwardmethod to assess the similarity
between edges in a graph 𝐺 is to construct a bipartite graph 𝐺𝐵

with two disjoint sets of nodes,𝑋 and𝑌 , where𝑋 corresponds to all
vertices in𝐺 , and𝑌 represents all edges in𝐺 . An edge (𝑥,𝑦) ∈ 𝑋×𝑌
(resp. (𝑦, 𝑥) ∈ 𝑌×𝑋 ) exists in𝐺𝐵 if 𝑥 is the outgoing (resp. incoming)
edge of node 𝑦 in 𝐺 . Then, any existing node-to-node similarity
measure (e.g. [4, 13, 20–22]) can be directly applied to evaluate
similarity in 𝐺𝐵 . The similarity of any two nodes within the set 𝑌
of 𝐺𝐵 corresponds to the similarity of two edges in 𝐺 .
Limitations. However, there are two limitations to this approach:

Firstly, this method would significantly increase computational
time for edge-to-edge similarity assessment, which does not scale on
large graphs. To be specific, a conventional SimRank algorithm [20]
applied to a graph𝐺 with |𝑉 | nodes and |𝐸 | edges requires𝑂 ( |𝑉 | |𝐸 |)
time for evaluating similarities for |𝑉 |2 pairs of nodes. Now, when
constructing the bipartite graph𝐺𝐵 from the original graph𝐺 (𝑉 , 𝐸),
we end up with two disjoint sets of nodes with a combined size
of ( |𝑉 | + |𝐸 |) and a total of 2|𝐸 | edges in 𝐺𝐵 . Consequently, if the
existing SimRank algorithm [20] is directly applied to 𝐺𝐵 , the time
required for assessing similarities for ( |𝑉 | + |𝐸 |)2 pairs of nodes in
𝐺𝐵 — in order to obtain similarities for |𝐸 |2 pairs of edges in 𝐺 –
would be 𝑂 (( |𝑉 | + |𝐸 |) |𝐸 |), which is prohibitively expensive.

Secondly, existing node-to-node similarity measures [4, 13, 20–
22] from the SimRank family exhibit a lack of transitivity. To clarify,
for any three nodes 𝑎, 𝑏, 𝑐 in a graph, if 𝑎 is similar to 𝑏 and 𝑏 is
similar to 𝑐 , it does not necessarily imply that 𝑎 is similar to 𝑐 . This
phenomenon arises due to the fact that these similarity measures
are pseudometrics that may violate the triangular inequality. Conse-
quently, when applied directly to assessing edge-to-edge similarity,
these measures may struggle to capture transitive relationships in
web search and may even lead to misrepresentations of dissimilarity
between nodes (or edges), as illustrated by Example 1.

Example 1. Consider the web graph in Figure 1, where each node
is a web page, and each edge is a hyperlink. Using SimRank measure,
we can verify that the similarities among the three nodes 𝑎, 𝑏, 𝑐 are not
transitive. Precisely, nodes 𝑎 and 𝑏 are similar (𝑠𝑖𝑚(𝑎, 𝑏) > 0) since
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Figure 1: SimRank and SimRank* do not satisfy transitivity
they share two common in-neighbors 𝑑 and 𝑒 . Similarly, nodes 𝑏 and 𝑐
are similar (𝑠𝑖𝑚(𝑏, 𝑐) > 0) since they have a common in-neighbor 𝑓 .
However, nodes 𝑎 and 𝑐 are considered dissimilar (𝑠𝑖𝑚(𝑎, 𝑐) = 0) by
SimRank since there are no common 1-hop or multi-hop in-neighbors
linking𝑎 and 𝑐 . This reveals that SimRankmay not consistently exhibit
transitivity since “𝑎 𝑠𝑖𝑚∼𝑏 and 𝑏

𝑠𝑖𝑚∼ 𝑐 ≠⇒ 𝑎
𝑠𝑖𝑚∼ 𝑐”. When applied to

edge-to-edge similarity analysis, this measure would fail to capture
transitive relationships between edges as well. Worse, it misrepresents
the dissimilarity between 𝑎 and 𝑐 (𝑠𝑖𝑚(𝑎, 𝑐) = 0) despite the existence
of several weakly connected paths (e.g. 𝑎 ← 𝑒 → 𝑏 ← 𝑓 → 𝑐). □

It is important to note that the transitivity problem of SimRank
cannot be fully remedied by its variantmodels (e.g. SimRank* [20], P-
Rank [22], ASCOS++ [7]) or by simply adding self-loops to nodes. In
Example 1, even if we replace the SimRank measure with SimRank*,
SimRank* does not satisfy transitivity. This is because SimRank*
can only capture incoming paths with a single bifurcation node
(e.g. 𝑎 ← 𝑑 → 𝑏 with one bifurcation node 𝑑), and it still neglects
all the weakly connected paths with multiple bifurcation nodes
(e.g. 𝑎 ← 𝑒 → 𝑏 ← 𝑓 → 𝑐 with 2 bifurcation nodes 𝑒 and 𝑓 ).
Consequently, using SimRank* in Figure 1, we still have 𝑠𝑖𝑚(𝑎, 𝑏) >
0 and 𝑠𝑖𝑚(𝑏, 𝑐) > 0, but 𝑠𝑖𝑚(𝑎, 𝑐) = 0. This violates the transitivity.

The above example reveals that assessing edge-to-edge similarity
in 𝐺 by simply treating all edges in 𝐺 as a separate set of nodes
in its bipartite graph 𝐺𝐵 and then applying an existing node-to-
node similarity model to 𝐺𝐵 , is inadequate. Therefore, there is a
pressing demand to devise an effective transitivity-aware model
for edge-to-edge similarity assessment.
Contributions. The main contributions of this work are as follows:
• We propose a novel similarity model, SimEdge, based on a sim-

ple and intuitive mutual reinforcement co-recursion philosophy,
which can effectively assess edge-to-edge similarity. (Section 3)
• We represent SimEdge in matrix forms and present a fixed-point

iterative method to compute both edge-to-edge similarity and
node-to-node similarity of SimEdge simultaneously. We also
provide the error bounds for the SimEdge iterations. (Section 4)

• We theoretically justify that SimEdge can capture transitive
relationships and fulfill triangular inequality. We also show
how SimEdge avoids misrepresenting dissimilarity, and why it
is more reliable than SimRank and SimRank*. (Section 5)

• For large-scale graphs, we devise efficient techniques to sub-
stantially speed up the computation of SimEdge similarities
within only linear memory, and propose a scalable algorithm
for SimEdge search that is easy to parallelise over multi-core
processors without any loss in accuracy. (Section 6)

• We conduct extensive experiments on various real-world datasets
to demonstrate that (a) SimEdge achieves high accuracy (e.g.
0.97 MAP@100 and 0.95 NDCG@100 on DP) for quantifying
edge-to-edge similarities. (b) In terms of accuracy for node-to-
node similarities, SimEdge outperforms SimRank by a notable
19.3% and SimRank* by 10.9%. (c) SimEdge shows superior scal-
ability in assessing edge-to-edge similarities on large datasets
with billions of edges. (Section 7)

2 RELATEDWORK
Over the last decade, the majority of prior research has centered on
assessing the similarity between nodes rather than edges in a graph.
This inclination stems from the common belief among researchers
that assessing edge-to-edge similarity in a graph can be tackled
by simply applying the existing node-to-node similarity models
(e.g. SimRank) to a bipartite graph with its two disjoint node sets
corresponding to the vertex set and edge set of the original graph,
respectively. However, this approach would introduce substantial
computational overhead and may often result in low accuracy for
edge-to-edge similarity, particularly when the underlying node-to-
node similarity measure lacks transitivity, as shown in Section 1.
SimRank. SimRank, conceived by Jeh and Widom [12], is one of
the most attractive graph-theoretic node-to-node similarity mea-
sures. However, SimRank exhibits some blemishes that may lead
to undesirable similarities. These limitations include leakage of
paths with odd lengths [7] and asymmetry [20], ignorance of out-
links [22], over-relaxed normalisation factors [4, 8], dead loops in
cycles [21], and indistinguishable self-similarity of all 1s [19].

To address these issues, some variants of SimRank have emerged,
including SimRank* [20], P-Rank [22], PSimRank [8], SimRank++ [4],
CoSimRank [19], CoSimHeat [21], MatchSim [16], etc. However,
one critical issue, plagued by SimRank but largely overlooked by
these variant models, is the transitivity property.
SimRank* & P-Rank. SimRank* [20] provides a partial remedy
by integrating asymmetric incoming paths between nodes that are
ignored by SimRank. P-Rank [22] is another adaptation of SimRank
that combines both in- and out-neighbors for assessing similarity, as
opposed to SimRank which solely considers in-neighboring nodes.
Nonetheless, neither SimRank* nor P-Rank fulfil transitive property.
PSimRank & SimRank++. Fogaras et al. [8] and Antonellis
et al. [4] observed the “connectivity trait” issue in SimRank, which
leads to the counterintuitive decrease in similarity when there is an
increase in the number of common in-neighbors between nodes. To
resolve this issue, they introduced the PSimRank and SimRank++
models, respectively, by incorporating various weight factors into
SimRank. However, these models do not ensure transitive property.
CoSimRank & CoSimHeat. Rothe and Schütze [19] proposed
CoSimRank which excels in capturing all of the meeting time of two
random surfers, unlike SimRank which only accounts for their first
meeting time. However, there are “dead-loop” problems in cyclic
graphs. When two random surfers enter a cycle, they endlessly
chase each other and never meet again. As a consequence, all nodes
on the cycle end up being evaluated as dissimilar. To circumvent this
barrier, CoSimHeat [21] has been proposed recently. It leverages
heat diffusion to mimic the activities of similarity propagation on
the Web. Nonetheless, CoSimRank, like SimRank, lacks transitivity.
RoleSim & MatchSim. RoleSim [13] and MatchSim [16] incor-
porate “automorphism equivalence” into SimRank, based on the
maximum weighted matching of the similarity between two in-
neighbor sets. A slight disparity between RoleSim and MatchSim is
the initialisation step. While MatchSim retains the initialisation of
SimRank, whereas RoleSim initialises all-pairs scores with 1s. Both
of these measures are based on role rather than distance.
Edge Ranking & GNN. There have also been studies on rating
the importance of graph edges (e.g. [6, 10, 11]). Edge Betweenness
Centrality (EBC) [6] is an appealing measure for ranking edges
based on graph connectivity. EBC implies how the edges expedite
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the flow of information in a graph. Node2Vec [10] is a graph em-
bedding algorithm that converts a graph into a low-dimensional
vector representation, which can also serve as an effective represen-
tation for edge features. Recently, Jana et al. [11] proposed a deep
learning-based approach to estimate the EBC using a Graph Neural
Network (GNN). Nevertheless, all of these studies concentrate on
ranking edges rather than assessing the similarity between edges.

3 PROPOSED MODEL: SIMEDGE
Notations. Let𝐺 = (𝑉 , 𝐸) be a digraph, where𝑉 is the set of nodes,
and 𝐸 is the set of edges. Nodes in𝑉 are signified as 𝑣𝑎, 𝑣𝑏 , · · · , and
edges in 𝐸 as 𝑒𝑎, 𝑒𝑏 , · · · . An edge originating from node 𝑣𝑥 and
ending at 𝑣𝑦 can also be represented as an ordered pair of nodes
(𝑣𝑥 , 𝑣𝑦). We refer to 𝑣𝑥 as the tail (node) of the edge 𝑒 , denoted as
𝑇 (𝑒) = 𝑣𝑥 , and 𝑣𝑦 as the head (node) of 𝑒 , denoted as 𝐻 (𝑒) = 𝑣𝑦 .

The in-link set (resp. out-link set) of node 𝑣 , denoted as 𝐿− (𝑣)
(resp. 𝐿+ (𝑣)), is defined as the set of edges in the graph𝐺 that have
node 𝑣 as their head (resp. tail) node, that is,

𝐿− (𝑣) = {𝑒 ∈ 𝐸 | 𝐻 (𝑒) = 𝑣} and 𝐿+ (𝑣) = {𝑒 ∈ 𝐸 | 𝑇 (𝑒) = 𝑣}
Throughout the paper, the following notations are adopted:
(a) Let |𝑋 | be the cardinality of a set 𝑋 . (b) We define

average
(𝑥,𝑦) ∈𝑋×𝑌

{𝑓 (𝑥,𝑦)} =
{ 0, if 𝑋 = ∅ or 𝑌 = ∅

1
|𝑋 | |𝑌 |

∑
(𝑥,𝑦) ∈𝑋×𝑌

𝑓 (𝑥,𝑦), otherwise.

(c) 𝑛 = |𝑉 | (resp.𝑚 = |𝐸 |) is the number of nodes (resp. edges) in 𝐺 .
SimEdge Formulation. The central theme behind the SimEdge
measure is an intuitive mutual reinforcement co-recursion that

“two edges are similar if they are related to similar nodes;
two nodes are similar if they are related to similar edges”.

The base case for this mutual co-recursion is to make each node
and each edge most similar to itself.

Mathematically, the above ideas can be formulated as follows:

Definition 1 (SimEdge). Given digraph 𝐺 and damping factor
𝛾 ∈ (0, 1), the SimEdge similarity between two edges 𝑒𝑎 and 𝑒𝑏 in 𝐸,
denoted as 𝑟 (𝑒𝑎, 𝑒𝑏 ), is defined by

𝑟 (𝑒𝑎, 𝑒𝑏 ) =
𝛾
4

(
𝑠 (𝐻 (𝑒𝑎), 𝐻 (𝑒𝑏 )) (1a)

+ 𝑠 (𝐻 (𝑒𝑎),𝑇 (𝑒𝑏 )) (1b)
+ 𝑠 (𝑇 (𝑒𝑎), 𝐻 (𝑒𝑏 )) (1c)

+ 𝑠 (𝑇 (𝑒𝑎),𝑇 (𝑒𝑏 ))
)

(1d)

+ (1 − 𝛾) ·
{

1, if 𝑒𝑎 = 𝑒𝑏 ;
0, if 𝑒𝑎 ≠ 𝑒𝑏 .

(1e)

where 𝑠 (∗, ∗) is the SimEdge similarity score between nodes. For any
two nodes 𝑣𝑎 and 𝑣𝑏 in 𝑉 , 𝑠 (𝑣𝑎, 𝑣𝑏 ) is defined by

𝑠 (𝑣𝑎, 𝑣𝑏 ) =
𝛾
4

(
average

(𝑣𝑥 ,𝑣𝑦 ) ∈𝐿− (𝑣𝑎 )×𝐿− (𝑣𝑏 )
{𝑟 (𝑣𝑥 , 𝑣𝑦)} (2a)

+ average
(𝑣𝑥 ,𝑣𝑦 ) ∈𝐿− (𝑣𝑎 )×𝐿+ (𝑣𝑏 )

{𝑟 (𝑣𝑥 , 𝑣𝑦)} (2b)

+ average
(𝑣𝑥 ,𝑣𝑦 ) ∈𝐿+ (𝑣𝑎 )×𝐿− (𝑣𝑏 )

{𝑟 (𝑣𝑥 , 𝑣𝑦)} (2c)

+ average
(𝑣𝑥 ,𝑣𝑦 ) ∈𝐿+ (𝑣𝑎 )×𝐿+ (𝑣𝑏 )

{𝑟 (𝑣𝑥 , 𝑣𝑦)}
)

(2d)

+ (1 − 𝛾) ·
{

1, if 𝑣𝑎 = 𝑣𝑏 ;
0, if 𝑣𝑎 ≠ 𝑣𝑏 .

(2e)

ea
eb

H(eb)H(ea)

T (ea)
T (eb)

Eq.(1a)

Eq.(1d)

Eq.(1b) Eq
.(1

c)

Figure 2: Two edges 𝑒𝑎 and
𝑒𝑏 are similar if their related
nodes are similar (dashed)

L−(va)
L−(vb)

L+(va) L+(vb)

Eq.(2a)

Eq.(2d)

Eq.(2b)va
vbEq

.(2
c)

Figure 3: Two nodes 𝑣𝑎 and
𝑣𝑏 are similar if their related
edges are similar (dashed)

Both edge-to-edge similarity 𝑟 (∗, ∗) in Eq.(1) and node-to-node
similarity 𝑠 (∗, ∗) in Eq.(2) form a unified SimEdge measure. □

Intuitively, edge-to-edge similarity 𝑟 (𝑒𝑎, 𝑒𝑏 ) in Eq.(1) consists
of five components. The first four components (1a)–(1d) are the
average of its four related node-pair similarities between 𝑒𝑎 ’s head
and 𝑒𝑏 ’s head (1a), 𝑒𝑎 ’s head and 𝑒𝑏 ’s tail (1b), 𝑒𝑎 ’s tail and 𝑒𝑏 ’s
head (1c), 𝑒𝑎 ’s tail and 𝑒𝑏 ’s tail (1d). Figure 2 pictorially depicts the
evaluation of these four node-pairs to quantify 𝑟 (𝑒𝑎, 𝑒𝑏 ). The last
component (1e) guarantees that every edge is most similar to itself.
The choice of the factor (1 − 𝛾) in (1e) ensures all scores of 𝑟 (∗, ∗)
within [0, 1]. This is because, when 𝑠 (∗, ∗) ∈ [0, 1], Eq.(1) implies

0 ≤ 𝑟 (𝑒𝑎, 𝑒𝑏 ) ≤
𝛾
4 (1 + 1 + 1 + 1) + (1 − 𝛾) ≤ 1. (∀𝑒𝑎,∀𝑒𝑏 )

From 𝑟 (∗, ∗) ∈ [0, 1], we can deduce via Eq.(2) that 𝑠 (∗, ∗) ∈ [0, 1].
Analogously, node-to-node similarity 𝑠 (𝑣𝑎, 𝑣𝑏 ) in Eq.(2) also con-

sists of five components. The first four components (2a)–(2d) are
four related averaged edge-pair similarities between 𝑣𝑎 ’s in- and
𝑣𝑏 ’s in-links (2a), 𝑣𝑎 ’s in- and 𝑣𝑏 ’s out-links (2b), 𝑣𝑎 ’s out- and 𝑣𝑏 ’s
in-links (2c), 𝑣𝑎 ’s out- and 𝑣𝑏 ’s out-links (2d). Figure 3 picturizes the
evaluation of these four sets of pairs of edges to measure 𝑠 (𝑣𝑎, 𝑣𝑏 ).
The last component (2e) guarantees that each node is most similar
to itself, in which the factor (1 − 𝛾) ensures 𝑠 (∗, ∗) ∈ [0, 1].

In our SimEdge model, edge-to-edge similarity 𝑟 (∗, ∗) penetrates
into its neighboring node-pairs, and recursively, node-to-node sim-
ilarity 𝑠 (∗, ∗) in turn penetrates into its neighboring edge-pairs.
Thus, both edge- and node-pair similarities are mutually reinforced.

The damping factor 𝛾 ∈ (0, 1) is a user-tuned parameter, which
gives the rate of decay as similarity flows across edges and nodes.
It is often set to 0.6–0.8, as previously used in SimRank [17].

4 MATRIX FORMULATION OF SIMEDGE
The SimEdge model in Definition 1 looks lengthy. In this section,
we provide a concise matrix representation of SimEdge.

4.1 Matrix Form of SimEdge
Forward&Backward IncidenceMatrices. To formulate SimEdge
in matrix forms, we first introduce two incidence matrices.

Definition 2. A ∈ R𝑛×𝑚 is called the forward incidence matrix
of a digraph 𝐺 = (𝑉 , 𝐸) whenever

A𝑣𝑖 ,𝑒 𝑗 =

{
1, if 𝑣𝑖 = 𝑇 (𝑒 𝑗 );
0, otherwise. (∀𝑣𝑖 ∈ 𝑉 , ∀𝑒 𝑗 ∈ 𝐸)

B ∈ R𝑛×𝑚 is called the backward incidence matrix of 𝐺 whenever

B𝑣𝑖 ,𝑒 𝑗 =

{
1, if 𝑣𝑖 = 𝐻 (𝑒 𝑗 );
0, otherwise. (∀𝑣𝑖 ∈ 𝑉 , ∀𝑒 𝑗 ∈ 𝐸)

3
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Wealso introducematrices Ā and B̄, which normalises all nonzero
rows of A and B, respectively, in the following manner:

Ā𝑣𝑖 ,𝑒 𝑗 =

{ 1
|𝐿+ (𝑣𝑖 ) | , if 𝑣𝑖 = 𝑇 (𝑒 𝑗 );
0, otherwise.

(∀𝑣𝑖 ∈ 𝑉 , ∀𝑒 𝑗 ∈ 𝐸)

B̄𝑣𝑖 ,𝑒 𝑗 =

{ 1
|𝐿− (𝑣𝑖 ) | , if 𝑣𝑖 = 𝐻 (𝑒 𝑗 );
0, otherwise.

(∀𝑣𝑖 ∈ 𝑉 , ∀𝑒 𝑗 ∈ 𝐸)

Co-resurive Form of SimEdge. With forward and backward in-
cidence matrices, we present the matrix representation of SimEdge.

Theorem 1. For digraph𝐺 = (𝑉 , 𝐸), let R ∈ R𝑚×𝑚 and S ∈ R𝑛×𝑛
be its edge-to-edge and node-to-node similarity matrix, respectively,
where R𝑒𝑖 ,𝑒 𝑗 = 𝑟 (𝑒𝑖 , 𝑒 𝑗 ) and S𝑣𝑖 ,𝑣𝑗 = 𝑠 (𝑣𝑖 , 𝑣 𝑗 ). In matrix notations,
the SimEdge model in Definition 1 can be expressed as

R = 𝛾 · N𝑇 SN + (1 − 𝛾) · I𝑚 (3a)

S = 𝛾 ·MRM𝑇 + (1 − 𝛾) · I𝑛 (3b)
where N and M are two 𝑛 ×𝑚 matrices given by

N = 1
2 (A + B) M = 1

2 (Ā + B̄)
and I𝑚 ∈ R𝑚×𝑚 and I𝑛 ∈ R𝑛×𝑛 are two identity matrices. □

With this formulation, we will show the existence and unique-
ness of SimEdge solution and derive the series form of SimEdge.
Existence and Uniqueness. Leveraging Theorem 1, we next
prove the existence and uniqueness of SimEdge.

Theorem 2. There exists a unique solution for the edge-to-edge
similarity R and node-to-node SimEdge similarity S in Eq.(3). □

Series Form of SimEdge. Based on Theorems 1 and 2, we next
get the power series form of the SimEdge solution R and S in Eq.(3).

Theorem 3. In the SimEdge model Eq.(3), the edge-to-edge simi-
larity matrix R takes the following series form:

R = (1 − 𝛾)
∞∑
𝑘=0

𝛾2𝑘 (N𝑇 M
)𝑘 (

𝛾N𝑇 N + I𝑚
) (

M𝑇 N
)𝑘 (4)

The node-to-node similarity matrix S can be expressed as

S = (1 − 𝛾)
∞∑
𝑘=0

𝛾2𝑘 (MN𝑇
)𝑘 (

𝛾MM𝑇 + I𝑛
) (

NM𝑇
)𝑘 (5)

Theorem 3 converts the mutual co-recursive form of SimEdge
into two (infinite) matrix series. The convergence of these series
in Eqs.(4) and (5) is guaranteed by Theorem 2. Moreover, with
Theorem 3, we notice thatR = R𝑇 and S = S𝑇 . This implies that both
edge-to-edge and node-to-node SimEdge matrices are symmetric.

4.2 Iteratively Computing R and S
Iterative Model of SimEdge. Now that we have proved the ex-
istence and uniqueness of SimEdge, we next devise an iterative
model capable of simultaneously obtaining R and S in Eq.(3).

Theorem 4. Let R𝑘 and S𝑘 be the edge-to-edge and node-to-node
similarity matrices at the 𝑘-th iteration, respectively, obtained by

S0 = (1 − 𝛾) · I𝑛 (6a)

R𝑘 = 𝛾 · N𝑇 S𝑘N + (1 − 𝛾) · I𝑚 (𝑘 = 0, 1, · · · ) (6b)

S𝑘+1 = 𝛾 ·MR𝑘M𝑇 + (1 − 𝛾) · I𝑛 (𝑘 = 0, 1, · · · ) (6c)
After 𝑙 iterations, the following results hold:

(a) R𝑙 = {the first 𝑙-th partial sums of R in Eq.(4)};
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Figure 4: Example of Computing SimEdge on Graph 𝐺

(b) S𝑙 = {the first (𝑙 − 1)-th partial sums of S in Eq.(5)}
+ (1 − 𝛾)𝛾2𝑙 (MN𝑇

)𝑙 (NM𝑇
)𝑙 ;

(c) R𝑙 (resp. S𝑙 ) converges to R (resp. S) as 𝑙 →∞.

Theorem 4 not only gives an iterative method to compute R
and S, but also discovers the relationship between the 𝑙-th iterative
results in Eq.(6) and the first 𝑙-th partial sums of the series R and
S in Eqs.(4) and (5). Unlike R𝑙 that equals exactly the first 𝑙-th
partial sums of Eq.(4), the value of S𝑙 at iteration 𝑙 is between the
first (𝑙 − 1)-th and 𝑙-th partial sums of Eq.(5), but this does not
affect the convergence of S𝑙 to the same S. This is because the gap
(1−𝛾)𝛾2𝑙 (MN𝑇

)𝑙 (NM𝑇
)𝑙 between S𝑙 and the first (𝑙 − 1)-th partial

sums of Eq.(5) converges to 0 as 𝑙 →∞.
Iterative Error Bound. Capitalising on Theorem 4, we next ana-
lyze the accuracy of the iterative method in Eq.(6).

Theorem 5. Let R𝑙 and S𝑙 be the edge-to-edge and node-to-node
similarity matrices at the 𝑙-th iteration of Eq.(6); R and S be the exact
solutions. Then, for every iteration 𝑙 = 0, 1, · · · ,

∥R − R𝑙 ∥max ≤ 𝛾2(𝑙+1) and ∥S − S𝑙 ∥max ≤ 𝛾2𝑙

where ∥X∥max = max𝑖, 𝑗 {X𝑖, 𝑗 } denotes the max norm of X. □

Theorem 5 gives a neat a-priori upper bound on the gap between
the 𝑙-th iterative and exact similarities. It implies that, for attaining
a desirable accuracy 𝜖 > 0, the number of iterations required to
compute R𝑙 and S𝑙 is ⌈ 12 log𝛾 𝜖⌉ and ⌈ 12 log𝛾 𝜖⌉ + 1, respectively.

Example 2. Consider the network 𝐺 in Figure 4. Given damping
factor 𝛾 = 0.6 and desirable accuracy 𝜖 = 0.001, we compute edge-to-
edge similarity matrix R and node-to-node similarity matrix S.

First, based on the forward and backward incidence matrices A and
B in Definition 2, N and M can be derived by Theorem 1 as follows:

N =



𝑒𝑎 𝑒𝑏 𝑒𝑐 𝑒𝑑 𝑒𝑒 𝑒𝑓 𝑒𝑔

𝑣𝑎
1
2

1
2 0 0 0 0 0

𝑣𝑏
1
2 0 1

2
1
2 0 0 0

𝑣𝑐 0 1
2

1
2 0 1

2
1
2 0

𝑣𝑑 0 0 0 1
2

1
2 0 1

2
𝑣𝑒 0 0 0 0 0 1

2
1
2


M =



𝑒𝑎 𝑒𝑏 𝑒𝑐 𝑒𝑑 𝑒𝑒 𝑒𝑓 𝑒𝑔

𝑣𝑎
1
2

1
2 0 0 0 0 0

𝑣𝑏
1
4 0 1

4
1
2 0 0 0

𝑣𝑐 0 1
6

1
6 0 1

6
1
2 0

𝑣𝑑 0 0 0 1
6

1
6 0 1

6
𝑣𝑒 0 0 0 0 0 1

4
1
4


Applying Theorem 5, we obtain the number of iterations required

for computing R𝑙 and S𝑙 is, respectively,

⌈ 12 log𝛾 𝜖⌉ = ⌈ 12 log0.6 0.001⌉ = 6 and ⌈ 12 log𝛾 𝜖⌉ + 1 = 7.

By Theorem 4, R6 and S7 can be iteratively computed as

R6 =



𝑒𝑎 𝑒𝑏 𝑒𝑐 𝑒𝑑 𝑒𝑒 𝑒𝑓 𝑒𝑔

𝑒𝑎 .606 .125 .118 .109 .028 .022 .013
𝑒𝑏 .125 .598 .116 .028 .101 .105 .017
𝑒𝑐 .118 .116 .584 .104 .102 .102 .022
𝑒𝑑 .109 .028 .104 .565 .084 .017 .078
𝑒𝑒 .028 .101 .102 .084 .557 .100 .082
𝑒𝑓 .022 .105 .102 .017 .100 .568 .084
𝑒𝑔 .013 .017 .022 .078 .082 .084 .539


S7 =



𝑣𝑎 𝑣𝑏 𝑣𝑐 𝑣𝑑 𝑣𝑒

𝑣𝑎 .618 .093 .073 .015 .012
𝑣𝑏 .093 .570 .049 .046 .013
𝑣𝑐 .073 .049 .556 .028 .060
𝑣𝑑 .015 .046 .028 .436 .023
𝑣𝑒 .012 .013 .060 .023 .448


□

4
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5 MEANINGFUL SEMANTICS OF SIMEDGE
In this section, we will theoretically substantiate two key points: 1)
the effectiveness of SimEdge in capturing transitive relationships by
maintaining the triangular inequality, and 2) how SimEdge avoids
misrepresenting dissimilarity, making its node-to-node similarity S
more meaningful than SimRank and SimRank*.
Transitivity of SimEdge. To show that SimEdge is capable of
capturing transitive relationships, we will begin by presenting two
lemmas. These lemmas will serve as the groundwork for the subse-
quent proof of SimEdge triangular inequality.

Lemma 1. For every iteration number 𝑘 = 0, 1, 2, · · · , if R𝑘 in
Eq.(6c) satisfies

[R𝑘 ]𝑒𝑎,𝑒𝑐 − [R𝑘 ]𝑒𝑎,𝑒𝑏 ≥ [R𝑘 ]𝑒𝑏 ,𝑒𝑐 − 1, (∀𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 ∈ 𝐸)
then, for S𝑘+1 in Eq.(6c), the following inequality holds:

[S𝑘+1]𝑣𝑎,𝑣𝑐 − [S𝑘+1]𝑣𝑎,𝑣𝑏 ≥ [S𝑘+1]𝑣𝑏 ,𝑣𝑐 − 1. (∀𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 ∈ 𝑉 ) □

Lemma 1 indicates that, for the SimEdge model, when the node-
to-node similarity at the current iteration satisfies the triangular
inequality, the edge-to-edge similarity in the next iteration also
complies with the triangular inequality.

Lemma 2. For every iteration number 𝑘 = 0, 1, 2, · · · , if S𝑘 in
Eq.(6b) satisfies

[S𝑘 ]𝑣𝑎,𝑣𝑐 − [S𝑘 ]𝑣𝑎,𝑣𝑏 ≥ [S𝑘 ]𝑣𝑏 ,𝑣𝑐 − 1. (∀𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 ∈ 𝑉 )
then, for R𝑘 in Eq.(6b), the following inequality holds:

[R𝑘 ]𝑒𝑎,𝑒𝑐 − [R𝑘 ]𝑒𝑎,𝑒𝑏 ≥ [R𝑘 ]𝑒𝑏 ,𝑒𝑐 − 1, (∀𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 ∈ 𝐸) □

Lemma 2 suggests that, at each current iteration, when the edge-
to-edge similarity fulfills the triangular inequality, the node-to-node
similarity also adheres to the triangular inequality.

Combining Lemmas 1 and 2, we observe that the adherence to
the triangular inequality will persist in its transmission from the
node layer to the edge layer in each iteration and then from the edge
layer back to the node layer in the subsequent iteration, mutually
reinforcing this property. Building upon these two lemmas, we next
show that the SimEdge measure satisfies the triangular inequality.
This result ensures the transitive property of its similarity values.

Theorem 6. For any two nodes 𝑣𝑎 and 𝑣𝑏 , let 𝑠 (𝑣𝑎, 𝑣𝑏 ) be their
node-to-node SimEdge similarity. We define

𝑑𝑖𝑠𝑡𝑠 (𝑣𝑎, 𝑣𝑏 ) ≜ 1 − 𝑠 (𝑣𝑎, 𝑣𝑏 )
to be the SimEdge closeness between nodes 𝑣𝑎 and 𝑣𝑏 . Then,

(a) 𝑑𝑖𝑠𝑡𝑠 (𝑣𝑎, 𝑣𝑏 ) ≥ 0;
(b) 𝑑𝑖𝑠𝑡𝑠 (𝑣𝑎, 𝑣𝑏 ) = 𝑑𝑖𝑠𝑡𝑠 (𝑣𝑏 , 𝑣𝑎);
(c) 𝑑𝑖𝑠𝑡𝑠 (𝑣𝑎, 𝑣𝑐 ) ≤ 𝑑𝑖𝑠𝑡𝑠 (𝑣𝑎, 𝑣𝑏 )+𝑑𝑖𝑠𝑡𝑠 (𝑣𝑏 , 𝑣𝑐 ) ∀𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 . □

It is worth noting that the importance of the transitive prop-
erty in SimEdge lies in its role in maintaining consistent similarity
propagation within a network. Moreover, combined with Lemma 2,
Theorem 6 implies that the transitivity for edge-to-edge similarity
also holds. In comparison, other existing similarity measures from
the SimRank family (e.g. SimRank*, P-Rank) lack transitivity, which
can lead to counterintuitive results (see Example 1 in Section 1).
Comparison with Other Similarity Measures. In light of the
transitive property of SimEdge, we next elucidate how SimEdge en-
hances the accuracy of SimRank and other variants (e.g. SimRank*).

Recently, some pioneering studies have observed the limitations
of the SimRank measure – it may yield undesired similarities due to

its failure to account for 1) paths with odd lengths [7], 2) asymmetric
paths between nodes [20], and 3) cycles in graphs that lead to dead-
loops [21]. To address these limitations, several promising variant
models have been proposed [7, 20, 21]. Among them, SimRank* [20]
stands out as a notable solution that allows SimRank to capture
asymmetric paths without significantly increasing computational
cost. These newly included paths by SimRank* encompass those in
other models [7, 21] to enhance the SimRank accuracy. However,
SimRank* still suffers from some limitations, as shown below:

Theorem 7. To quantify the node-to-node similarity 𝑠 (𝑣𝑎, 𝑣𝑏 ),
SimRank* [20] captures only the limited weakly connected paths of
length 𝑘 (∀𝑘 = 1, 2, · · · ) between nodes 𝑣𝑎 and 𝑣𝑏 :

(𝑣𝑎 =)𝑣0, 𝑒0, 𝑣1, 𝑒1, 𝑣2, · · · , 𝑣𝑘−1, 𝑒𝑘−1, 𝑣𝑘 (= 𝑣𝑏 ) (7)
under the constraints that, for any fixed 𝛼 ∈ {0, 1, · · · , 𝑘 − 1}, its first
𝛼 edges {𝑒0, 𝑒1, · · · , 𝑒𝛼−1} bear “←” directions and last (𝑘 −𝛼) edges
{𝑒𝛼 , 𝑒𝛼+1, · · · , 𝑒𝑘−1} bear “→” directions. □

Theorem 7 indicates that SimRank* can only partially resolve
the “zero-similarity” problem in SimRank, as it still overlooks many
weakly connected paths for similarity assessment. In contrast, these
disregarded paths in SimRank* can be effectively accommodated by
SimEdge due to its transitive capability to intertwine edge-to-edge
relationships with its node-to-node similarity, as indicated below.

Theorem 8. SimEdge (Eq.(2)) can comprehensively quantify node-
to-node similarity 𝑠 (𝑣𝑎, 𝑣𝑏 ) by capturing all paths (including weakly
connected paths) between nodes 𝑣𝑎 and 𝑣𝑏 . □

Example 3. Let us consider the following 12 weakly connected
paths of length 4 between two nodes 𝑣𝑎 and 𝑣𝑏 .

Paths SR SR* PR RWR SE
𝑝1 𝑣𝑎 → ◦ → ◦ → ◦ → 𝑣𝑏 ! ! !

𝑝2 𝑣𝑎 ← ◦ → ◦ → ◦ → 𝑣𝑏 ! !

𝑝3 𝑣𝑎 ← ◦ ← ◦ → ◦ → 𝑣𝑏 ! ! ! !

𝑝4 𝑣𝑎 ← ◦ ← ◦ ← ◦ → 𝑣𝑏 ! !

𝑝5 𝑣𝑎 ← ◦ ← ◦ ← ◦ ← 𝑣𝑏 ! !

𝑝6 𝑣𝑎 → ◦ → ◦ ← ◦ ← 𝑣𝑏 ! !

𝑝7 𝑣𝑎 ← ◦ → ◦ ← ◦ → 𝑣𝑏 ! !

𝑝8 𝑣𝑎 → ◦ ← ◦ → ◦ ← 𝑣𝑏 ! !

𝑝9 𝑣𝑎 ← ◦ → ◦ ← ◦ ← 𝑣𝑏 !

𝑝10 𝑣𝑎 → ◦ → ◦ ← ◦ → 𝑣𝑏 !

𝑝11 𝑣𝑎 ← ◦ ← ◦ → ◦ ← 𝑣𝑏 !

𝑝12 𝑣𝑎 → ◦ ← ◦ → ◦ → 𝑣𝑏 !

SE

SR

PR

RWR

SR*

p1

p3

p6
p7
p8

p2 p4 p5 p10

p9

p11
p12

To quantify 𝑠 (𝑣𝑎, 𝑣𝑏 ), we have the following:
(a) SimRank (SR) captures only one path (𝑝3), whose single bifurca-

tion node is in the center of the path.
(b) SimRank* (SR*) captures 5 paths (𝑝1) − (𝑝5), whose single bifur-

cation node can be at any position of the path, but with all edges
on its left (resp. right) side bearing “←” (resp. “→”) directions.

(c) P-Rank (PR) captures only 4 paths (𝑝3), (𝑝6), (𝑝7), (𝑝8), whose
edge directions are symmetric w.r.t. the center node of the path.

(d) Random Walk with Restart (RWR) captures only one unidirec-
tional path (𝑝1) from 𝑣𝑎 to 𝑣𝑏 .

(e) SimEdge (SE) captures all these weakly connected paths, most of
which are ignored by SimRank and SimRank*. □

6 FAST SIMEDGE COMPUTATION AT SCALE
In this section, we propose efficient scalable techniques to compute
SimEdge similarities on large graphs using only linear memory.

Recall the iterative algorithm of SimEdge in Theorem 4 (Sec-
tion 4.2). There are several limitations that hinder its scalability to
large graphs: (a) The memory required for iteratively computing R𝑘
and S𝑘 by Eq.(6) is quadratic (𝑂 (𝑚2)). (b) All entries of R𝑘 (resp. S𝑘 )
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Algorithm 1: Evaluate Edge-To-Edge SimEdge Similarities
Input :digraph 𝐺 = (𝑉 , 𝐸), query edge 𝑒𝑖 ∈ 𝐸,

damping factor 𝛾 , desired accuracy 𝜖 .
Output :edge-to-edge SimEdge similarities [R]★,𝑒𝑖

between all edges in 𝐺 and query 𝑒𝑖 .
1 build incidence matrices A,B, Ā, B̄ by Definition 2 ;
2 initialize N← 1

2 (A + B) and M← 1
2 (Ā + B̄) ;

3 determine the number of iterations 𝑘 ← ⌈ 12 log𝛾 𝜖⌉ ;
4 initialize 𝝃0 ← [I𝑚]★,𝑒𝑖 ;
5 for 𝑙 ← 1, 2, · · · , 𝑘 do
6 update 𝝃𝑙 ← 𝛾M𝑇 (N𝝃𝑙−1) ;
7 initialize 𝜼0 ← 𝝃𝑘 + 𝛾N𝑇 (N𝝃𝑘 ) ;
8 for 𝑙 ← 1, 2, · · · , 𝑘 do
9 update 𝜼𝑙 ← 𝝃𝑘−𝑙 + 𝛾N𝑇 (N𝝃𝑘−𝑙 +M𝜼𝑙−1) ;

10 return [R𝑘 ]★,𝑒𝑖 ← (1 − 𝛾)𝜼𝑘 ;

in Eq.(6) have to be evaluated simultaneously even if some applica-
tions may necessitate only a subset of elements within R𝑘 (resp. S𝑘 ).
(c) Eq.(6) disallows the independent evaluation of edge-to-edge and
node-to-node similarities, even though in some cases, users may
only require edge-to-edge similarities. To address these issues, we
next propose an efficient method to compute R𝑘 .

Theorem 9. Given a digraph𝐺 , a query edge 𝑒𝑖 , and the number
of iterations 𝑘 , the SimEdge similarities [R𝑘 ]★,𝑒𝑖 between every edge
in 𝐺 and query 𝑒𝑖 at the 𝑘-th iteration of Eq.(6b) can be computed as

[R𝑘 ]★,𝑒𝑖 = (1 − 𝛾)𝜼𝑘
where auxiliary vector 𝜼𝑘 can be iteratively reached as{

𝜼0 = 𝝃𝑘 + 𝛾N𝑇 (N𝝃𝑘 )
𝜼𝑙 = 𝝃𝑘−𝑙 + 𝛾N𝑇 (N𝝃𝑘−𝑙 +M𝜼𝑙−1) (𝑙 = 1, · · · , 𝑘) (8)

with auxiliary vectors 𝝃0, · · · , 𝝃𝑘 iteratively obtained by{
𝝃0 = [I𝑚]★,𝑒𝑖
𝝃𝑙 = 𝛾M𝑇 (N𝝃𝑙−1) (𝑙 = 1, · · · , 𝑘) (9)

Algorithm. Theorem 9 provides an efficient way to compute R𝑘

column by column, independently, in linear memory, as shown
in Algorithm 1. Initially, the algorithm first manages two sparse
matrices N and M. Next, it iteratively obtains 𝑘 auxiliary vectors
𝝃0, · · · , 𝝃𝑘 , and then computes 𝜼𝑘 , whose scaled result is [R]★,𝑒𝑖 .
Time & Space Complexity. The computational time and space
complexities of Algorithm 1 are analysed as follows.

Theorem 10. Given a query edge 𝑒𝑖 and the total number of it-
erations 𝑘 , it requires 𝑂 (𝑘𝑚) time and 𝑂 (𝑘𝑚) memory to compute
[R𝑘 ]★,𝑒𝑖 ∈ R𝑚×1 via Algorithm 1. □

Compared with our previous model in Eq.(6), Algorithm 1 high-
lights the following advantages: (a) Each column of R𝑘 can be com-
puted independently and in parallel as needed, without relying on
S𝑘 or other columns of R𝑘 . (b) The memory required for computing
all pairs of R𝑘 is reduced from𝑂 (𝑚2) of Eq.(6) to𝑂 (𝑘𝑚) (𝑘 ≪𝑚)1.
Correctness. The correctness of the edge-to-edge similarity results
returned by Algorithm 1 is guaranteed by Theorem 9.

Example 4. Recall Example 2 and 𝐺 in Figure 4. Given 𝛾 = 0.6
and 𝑘 = 6, we show how Theorem 9 computes only the SimEdge
similarities between all edges in 𝐺 and query edge 𝑒5.
1For real large networks,𝑚 is 105 ∼ 107 , whereas 𝑘 ≈ 20 (≪𝑚) .

First, we employ Eqs.(8)–(9) to iteratively get 𝝃𝑘 and 𝜼𝑘 :
𝑘 𝝃𝑘 𝜼𝑘
0 [ 0 0 0 0 1 0 0 ]𝑇 [.003 .003 .003 .003 .003 .004 .002]𝑇
1 [ 0 .050 .050 .050 .100 .150 .050]𝑇 [.008 .009 .009 .008 .007 .011 .006]𝑇
2 [.015 .025 .025 .025 .028 .068 .025]𝑇 [.016 .019 .019 .016 .016 .024 .012]𝑇
3 [.011 .013 .012 .014 .011 .029 .011]𝑇 [.030 .038 .039 .032 .035 .053 .027]𝑇
4 [.006 .007 .006 .007 .005 .013 .005]𝑇 [.051 .077 .080 .061 .079 .123 .061]𝑇
5 [.004 .004 .003 .004 .002 .006 .002]𝑇 [.061 .159 .167 .124 .223 .277 .134]𝑇
6 [.002 .002 .002 .002 .001 .003 .001]𝑇 [.069 .252 .255 .210 .393 .250 .205]𝑇

Then, leveraging 𝜼6 and 𝛾 = 0.6, we can obtain

[R6]★,𝑒5 = (1 − 0.6)𝜼6 = [.028 .101 .102 .084 .557 .100 .082]𝑇 □

Error Bound. Regarding the accuracy of Algorithm 2, a method
similar to Theorem 5 can be applied to show that, for ∀𝑒𝑖 ∈ 𝐸,

∥ [R]★,𝑒𝑖 − [R𝑘 ]★,𝑒𝑖 ∥max ≤ 𝛾
2(𝑘+1) (𝑘 = 1, 2, · · · )

where [R]★,𝑒𝑖 is the column 𝑒𝑖 of the exact solution R, and [R𝑘 ]★,𝑒𝑖
is the resulting vector at the 𝑘-th iteration returned by Algorithm 1.
Extension to Node-To-Node Similarity Assessment. Analo-
gous to Theorems 9–10, a similar efficient algorithm can be devised
to evaluate node-to-node SimEdge similarities S𝑘 of Eq.(6) column
by column independently and in parallel, with just𝑂 (𝑚+𝑘𝑛) linear
memory for 𝑘 iterations (see Algorithm 2 in Appendix B).

7 EXPERIMENTAL STUDY
We will validate: (a) the high accuracy of SimEdge to quantify edge-
to-edge relationships; (b) more meaningful node-to-node semantics
of SimEdge; and (c) its fast speed and scalability on large graphs.

7.1 Experimental Settings
(1) Real-World Datasets. The datasets are described as follows:
Data |𝐸 | |𝑉 | |𝐸 |/|𝑉 | Scale Description
NU 3,677 182 20.2 small neuronal connectivity network
DP 27,550 5,001 5.5 small co-authorship DBLP network
AL 67,663 3,425 19.8 small snapshot of OpenFlights network
HP 118,521 12,008 9.9 medium citation network from arXiv HEP
AM 925,872 334,863 2.8 medium Amazon co-purchasing network
LJ 34,681,189 3,997,962 8.7 large LiveJournal online social network
EU 386,915,963 11,264,052 16.1 large EU web hosting infrastructure
TW 1,468,365,182 41,652,230 35.3 large large-scale social network on Twitter
The detailed description of each dataset is given in Appendix C.1.
(2) Synthetic Datasets. We use GTgraph [2], a synthetic graph
generator that takes as input the number of nodes (𝑛) and edges
(𝑚), and adds𝑚 edges randomly each time.
(3) Query Sampling. To achieve statistical significance, when
assessing edge-to-edge similarities 𝑟 (∗, 𝑞) w.r.t. a given edge query
𝑞, we randomly choose 300 queries from 𝐸 as follows: We first
calculate the PageRank values of every node in𝑉 , and then assign a
weight𝑤 (𝑒) = 1

2 (PR(𝐻 (𝑒)) +PR(𝑇 (𝑒))) to each edge 𝑒 in 𝐸, where
PR(𝐻 (𝑒)) is the PageRank value of 𝑒’s head node, and PR(𝑇 (𝑒))
is that of 𝑒’s tail node. To ensure a comprehensive coverage of
potential queries, we rank all edges in 𝐸 based on their weight𝑤 (𝑒)
and divide them into 5 buckets. The first bucket comprises edges
with𝑤 (𝑒) in the range [0.8, 1], followed by the second bucket with
edges in the range [0.6, 0.8), and so on. Subsequently, we randomly
pick 60 edges from each bucket, guaranteeing that all 300 queries
encompass both significant and less significant edges.

Similarly, to assess node-to-node similarity 𝑠 (∗, 𝑣), we randomly
choose 300 queries from 𝑉 based on the PageRank value PR(𝑣).
(4) Evaluation Metrics. Two metrics are used to measure accu-
racy: MAP (Mean Average Precision), and NDCG (Normalized Dis-
counted Cumulative Gain) (see their definitions in Appendix C.2).
(5) Algorithms. We implement all algorithms using Visual C++.
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Figure 5: Accuracy for Edge-To-Edge Similarities
Algo. Description
SE Iterative algorithm in Theorem 4 to assess all edge-to-edge simi-

larities 𝑟 (∗, ∗) and all node-to-node similarities 𝑠 (∗, ∗)
SE-PE Algorithm 1 that evaluates 𝑟 (∗, 𝑒𝑖 ) w.r.t. edge query 𝑒𝑖
SE-PN Algorithm 2 that evaluates 𝑠 (∗, 𝑣𝑖 ) w.r.t. node query 𝑣𝑖
SR SimRank, an influential node-to-node similarity measure [15]
SR* SimRank*, the state-of-the-art variation of SimRank [20]
PR Penetrating-Rank considering both in- and out-links [22]
RWR a popular proximity model – Random Walk with Restart [9]

(6) Parameters. We set (a) 𝛾 = 0.6, as used by SimRank. (b) 𝑘 = 20,
which guarantees R𝑘 and S𝑘 accurate to 10−9.
(7) Ground Truth. (a) To establish the ground truth for the similar-
ity of neurons (nodes) and synapses (edges) on NU, an evaluation
is carried out manually by 22 bioinformatics researchers. The judg-
ment is based on evaluator’s knowledge on neuron description, type
of synapse, and the affinity view of neuronal topology. Each pair
of neurons (nodes) is assigned a relevance score based on neuron
name, position of cell body, length of neuron span, and the number
of synapses in the head/mid-body/tail. Each pair of synapses (edges)
is given a relevance score based on its type, e.g. “receives”, “sends”,
“electrical junction” and “neuromuscular junction”.

(b) To build the ground truth for similar authors (nodes) and
co-authored publications (edges) on DP, we invited 20 researchers
from DB, IR, and NC groups. Each pair of authors (nodes) is as-
signed a score based on their “collaboration distance” in Microsoft
Academic Search [3]. Each pair of papers (edges) is given a rele-
vance score based on the assessor’s domain-specific knowledge of
paper contents, citation relations, and publication venues.

(c) To create the ground truth of relevant airports (nodes) and
routes (edges) on AL, we invited 10 travel consultants from Egencia.
The judgment relies on the evaluator’s experience and knowledge
on Airline Route Mapper [1]. Each pair of airports (nodes) is given
a relevance score based on their connectivity and closeness; and
each pair of routes (edges) is assigned a relevance score based on
their airline, the number of overlapped source/destination airports,
and the country/territory where the airline is incorporated.

All experiments are run with Intel Xeon E7-8890 v3 processors
(18 cores per socket) and 1 TB of memory.

7.2 Experimental Results
7.2.1 Semantic Accuracy. To evaluate the semantic accuracy of
SimEdge, we adopt MAP and NDCG measures on real NU, DP, and
AL. For each dataset, we randomly select 300 edge queries 𝑒𝑞 to
evaluate edge-to-edge similarities 𝑟 (∗, 𝑒𝑞), and 300 node queries 𝑣𝑞
to evaluate node-to-node similarities 𝑠 (∗, 𝑣𝑞), respectively.

Fig. 5 shows the average quantitative results on edge-to-edge sim-
ilarities. We see that (a) SE and SE-PE consistently have high seman-
tic accuracy, e.g., onDP, the averageMAP@100 and NDCG@100 for
both SE and SE-PE are 0.97 and 0.95, respectively. This highlights
the good quality of SimEdge in quantifying edge-to-edge similarity.
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(b) On each dataset, the accuracy of SE is the same as that of SE-PE,
showing the correctness of SE-PE by Theorem 9.

Fig. 6 compares the average quantitative results of SE, SE-PN
with SR, SR*, PR, RWR for node-to-node similarities. The results
show that (a) on every dataset, SE and SE-PN exhibit the highest
accuracy for node-to-node evaluation, e.g. on NU, the NDCG@100
for both SE and SE-PN is 0.921, much superior to SR (0.772), SR*
(0.859), PR (0.776), RWR (0.883). This is because SE and SE-PN are
transitive measures that fulfill the triangle inequality so that all
weakly connected paths between nodes are captured. In contrast,
SR, SR*, PR, RWR often neglect certain weakly connected paths,
thereby yielding less meaningful results. (b) The huge discrepancy
in accuracy between SE and SR validates that SimEdge can better
resolve the “zero-similarity” problems of SimRank than SimRank*.

Fig. 7 depicts the qualitative accuracy of SE for assessing edge-to-
edge similarities on NU and DP. For each dataset, we first calculate
its SimEdge matrix R, and then rearrange both column- and row-
indices of R according to the ground truth of edges.

Fig. 7a displays the heat map for the first 230 rows and columns
of the reordered edge-to-edge SimEdge matrix on NU, in which
the darker color of the point in the matrix denotes the higher edge-
to-edge SimEdge score. We discern that, after rearrangement, the
darker color points mostly are centred on the diagonal blocks of the
matrix. This implies that the synapse (edge) communities identified
by SE agreewell with the ground truth data, showing the superiority
of our edge-to-edge SimEdge for edge classification.

Similarly, Fig. 7b visualizes the heat map for all pairs of the
reordered edge-to-edge SimEdge matrix on DP. Notice that the
darker points are centred on 3 diagonal blocks of the matrix. This
suggests that SimEdge effectively identifies 3 communities of papers
(edges), corresponding to 3 venues (VLDB, WWW, SIGCOMM).
Moreover, the points in Block 5 are darker than those in Blocks 4
and 6. This indicates that the connection between SIGCOMM and
VLDB papers is stronger than the correlations between SIGCOMM
and WWW papers, as well as VLDB and WWW papers.

7.2.2 Computational Time & Memory Efficiency. Fig. 8a evaluates
the computational time for all-pairs of edges onNU,DP, and AL. (1)
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On each dataset, when SE does not fail for edge-to-edge similarity
evaluation, SE runs slightly faster than execution of SE-PE𝑚 times.
This is because SE-PEwill break down the computation of the entire
edge-to-edge similarity matrix R into small pieces consisting of𝑚
columns, R★,𝑒 , ∀𝑒 ∈ 𝐸, This process entails repeated preprocessing
to obtain M and N. Thus, for smaller graphs that can hold the entire
R in memory, SE is slightly faster than SE-PE. (2) On AL, SE fails
due to insufficient memory to store the entire R. Consequently, for
larger graphs, SE-PE exhibits superior scalability.

Fig. 8b compares the time of SE with others for assessing all-
pairs node-to-node similarities. The results show that the time for
SE, SR, and SR* is nearly identical, all of which are faster than
PR. This indicates that SE does not need to sacrifice extra time for
archiving high accuracy to traverse more paths neglected by SR
and SR*, unlike PR entailing more time to capture out-links.

Fig. 9 compares the time and memory of SE-PE with SE to assess
edge-to-edge similarities w.r.t. queries on real datasets. For each
dataset, when varying the query size, we observe that: (1) With a
fixed number of queries, both the time and memory for SE-PE grow
w.r.t. the size of graphs. This is consistent with SE-PE complexity
analysis in Theorem 10. (2) SE survives only on small NU and
DP, and requires huge memory to store the entire edge-to-edge
similarity matrix for the next iteration, even if only a fraction of
columns are needed. (3) The time of SE-PE increases with the size of
queries, but its memory retains the same, highlighting its scalability.
(4) For large datasets, SE-PE also scales well, whereas SE crashes
due to memory explosion.

Regarding node-to-node similarity assessment, the performance
of SE-PN is similar to that of SE-PE. The results are shown in
Appendix C.3 (Fig. 13). Given similar trends, we omit its description.

To assess the efficiency of SimEdge on synthetic datasets, we
vary 𝑚 from 104 to 106 (resp. 𝑛 from 103 to 105). Fig. 10 depicts
the time and memory of SE-PE (resp. SE-PN) to assess all pairs
of edges (resp. nodes). We discern that (1) the time and memory
of SE-PE (resp. SE-PN) linearly increase with the growing size of
𝑛. This agrees well with the complexity analysis in Theorem 10.
(2) The memory of SE-PE is consistently larger than that of SE-
PN. This conforms to our intuition that, for the generated graphs,
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Figure 10: Time & Memory of SE-PE (resp. SE-PN) for All
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𝑚 is greater than 𝑛, which implies that edge-to-edge similarity R
contains more nonzeros than node-to-node similarity S.

7.2.3 Effect of 𝑘 and 𝛾 on Iterative Error. Fig. 11 shows the effect of
the number of iterations 𝑘 and the damping factor 𝛾 on the conver-
gence rate of SimEdge. For every fixed 𝛾 , we vary 𝑘 from 4 from 20,
and evaluate the iterative error 𝜖 = ∥R𝑘 − R∥max. We regard R100
as the ideal R, since 𝑘 = 100 ensures the first 15 decimal places of
all entries in R𝑘 and R𝑘+1 to be the same. We see that (1) the error
𝜖 dramatically drops as 𝑘 grows. As 𝑦 axis is in log scale, the linear
trend implies that the rate of convergence is exponential. (2) When
𝛾 rises from 0.6 to 0.9, the slope of the declining trendline becomes
less steep. This implies that a smaller 𝛾 results in a quicker rate of
convergence, which aligns with the error bound in Theorem 5.

7.2.4 Statistics on % of Nonzero Similarity Pairs. To show the num-
ber of node pairs that are ignored by SR and SR* but can be captured
by SE, Fig. 12 shows statistical findings on the percentage of nonzero
pairs on real datasets for each algorithm. (1) On DP and AL, SE
captures far more pairs of nodes with nonzero similarities than SR
and SR*, highlighting its more meaningful semantics. (2) On NU,
all the methods can capture ∼98.9% nonzero pairs, due to the fewer
number of cycles in neural networks. Hence, SR and SR* do not
always yield unreasonable scores, depending on graph structures.

8 CONCLUSION
In this paper, we introduce SimEdge, a novel similarity measure to
assess edge-to-edge similarity while preserving transitivity. The
core idea behind SimEdge is a mutual reinforcement co-recursion.
We show that SimEdge ensures the transitivity of similarity, im-
proving the accuracy of node-to-node SimRank similarity with-
out misrepresenting dissimilarity between nodes. For large-scale
graphs, we also present efficient techniques to compute SimEdge
similarities using linear memory without any loss of accuracy. Our
empirical evaluation on various datasets validates 1) the high accu-
racy of SimEdge in capturing transitive edge-to-edge relationships,
2) a more reliable assessment of node-to-node similarity than Sim-
Rank and its variants, and 3) the superior scalability and fast speed
on large graphs with billions of edges.
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A PROOF OF THEOREMS & LEMMAS
A.1 Proof of Theorem 1

Proof. By Definition 2, the four components (1a)–(1d) in Eq.(1)
can be rewritten, respectively, as

𝑠 (𝐻 (𝑒𝑎 ), 𝐻 (𝑒𝑏 ) ) = [B𝑇 SB]𝑒𝑎 ,𝑒𝑏 𝑠 (𝐻 (𝑒𝑎 ),𝑇 (𝑒𝑏 ) ) = [B𝑇 SA]𝑒𝑎 ,𝑒𝑏
𝑠 (𝑇 (𝑒𝑎 ), 𝐻 (𝑒𝑏 ) ) = [A𝑇 SB]𝑒𝑎 ,𝑒𝑏 𝑠 (𝑇 (𝑒𝑎 ),𝑇 (𝑒𝑏 ) ) = [A𝑇 SA]𝑒𝑎 ,𝑒𝑏

Substituting the above results into Eq.(1) yields

[R]𝑒𝑎,𝑒𝑏 =
𝛾
4
[
B𝑇 SB + B𝑇 SA + A𝑇 SB + A𝑇 SA

]
𝑒𝑎,𝑒𝑏

+ (1 − 𝛾) [I𝑚]𝑒𝑎,𝑒𝑏

= 𝛾 ·
[(

B+A
2

)𝑇
S
(

B+A
2

)]
𝑒𝑎,𝑒𝑏

+ (1 − 𝛾) · [I𝑚]𝑒𝑎,𝑒𝑏

Hence, combining N = 1
2 (A + B), we can obtain Eq.(3a).

Next, let us prove Eq.(3b). By the definition of Ā and B̄, the first
component (2a) of Eq.(2) can be expressed as

(2a) =

∑
𝑣𝑥 ∈𝐿− (𝑣𝑎 )

∑
𝑣𝑦 ∈𝐿− (𝑣𝑏 ) R𝑣𝑥 ,𝑣𝑦

|𝐿− (𝑣𝑎) | |𝐿− (𝑣𝑏 ) |

=
∑︁
𝑣𝑥 ∈𝑉

B̄𝑣𝑎,𝑒𝑥

∑︁
𝑣𝑦 ∈𝑉

B̄𝑣𝑏 ,𝑒𝑦 R𝑒𝑥 ,𝑒𝑦 =
[
B̄RB̄𝑇

]
𝑣𝑎,𝑣𝑏

Similarly, the components (2b)–(2d) can be represented as

(2b) =
[
B̄RĀ𝑇

]
𝑣𝑎,𝑣𝑏

(2c) =
[
ĀRĀ𝑇

]
𝑣𝑎,𝑣𝑏

(2d) =
[
ĀRĀ𝑇

]
𝑣𝑎,𝑣𝑏

Plugging the above results into Eq.(2) produces

[S]𝑣𝑎,𝑣𝑏 =
𝛾
4
[
B̄RB̄𝑇 + B̄RĀ𝑇 + ĀRB̄𝑇 + ĀRĀ𝑇

]
𝑣𝑎,𝑣𝑏
+ (1 − 𝛾) [I𝑛]𝑣𝑎,𝑣𝑏

= 𝛾 ·
[(

B̄+Ā
2

)
R
(

B̄+Ā
2

)𝑇 ]
𝑣𝑎,𝑣𝑏
+ (1 − 𝛾) · [I𝑛]𝑣𝑎,𝑣𝑏

Thus, utilizing M = 1
2 (Ā + B̄), we have Eq.(3b). □

A.2 Proof of Theorem 2
Proof. We focus on showing the existence and uniqueness of

R. A similar proof can be applied to S and is omitted for brevity.
Substituting S of Eq.(3b) back into Eq.(3a) yields

R = 𝛾2 (N𝑇 M
)
R
(
N𝑇 M

)𝑇 + (1 − 𝛾) (𝛾N𝑇 N + I𝑚
)

(10)

Let L(∗) be a linear transformation from R𝑚×𝑚 to R𝑚×𝑚 :

L(X) ≜ X − 𝛾2 (N𝑇 M
)
X
(
N𝑇 M

)𝑇 (for X ∈ R𝑚×𝑚)

Then, Eq.(10) is expressible as L(R) = (1 − 𝛾)
(
𝛾N𝑇 N + I𝑚

)
. Thus,

to prove the existence and uniqueness of R, we just need to show
that L(∗) is invertible, or equivalently, L(∗) has no 0 eigenvalue.

Let u1, · · · , u𝜏 be the eigenvectors of the matrix (N𝑇 M) associ-
ated with the eigenvalues 𝜌1, · · · , 𝜌𝜏 , i.e.,(

N𝑇 M
)
u𝑖 = 𝜌𝑖u𝑖 (∀𝑖 = 1, 2, · · · , 𝜏)

Then, it follows that, ∀𝑖 = 1, 2, · · · , 𝜏 and ∀𝑗 = 1, 2, · · · , 𝜏

L(u𝑖u𝑇𝑗 ) = u𝑖u𝑇𝑗 − 𝛾
2 (N𝑇 M

)
u𝑖u𝑇𝑗

(
N𝑇 M

)𝑇
=
(
1 − 𝛾2𝜌𝑖𝜌 𝑗

)
u𝑖u𝑇𝑗

meaning that L(∗) has 𝜏2 eigenvalues
(
1 − 𝛾2𝜌𝑖𝜌 𝑗

)
(∀𝑖, 𝑗).

Next, we will show that all eigenvalues of L(∗) are not 0s. Due
to 𝛾 ∈ (0, 1), 1 − 𝛾2𝜌𝑖𝜌 𝑗 ≠ 0 (∀𝑖, 𝑗) ⇔ max𝑖 {|𝜌𝑖 |} ≤ 1.

By N and M definition, for each row of (N𝑇 M), we have[
N𝑇 M

]
𝑥,∗ =

1
4
[
A𝑇 + B𝑇

]
𝑥,∗

(
Ā + B̄

)
(∀𝑥 = 1, · · · ,𝑚)

Since each edge is connected by two nodes (head and tail), there
are only two 1s entries in every row of (A𝑇 + B𝑇 ). Let 𝑦1 and 𝑦2
be the column indices of the two 1s entries in

[
A𝑇 + B𝑇

]
𝑥,∗. Since

other entries of row 𝑥 are 0s, we have[
N𝑇 M

]
𝑥,∗ =

1
4
( [

Ā + B̄
]
𝑦1,∗ +

[
Ā + B̄

]
𝑦2,∗

)
Taking ∥ ∗ ∥∞ norms on both sides, we can get

[N𝑇 M

]
𝑥,∗




∞ = 1

4


[Ā + B̄

]
𝑦1,∗ +

[
Ā + B̄

]
𝑦2,∗




∞

= 1
4
(
(1 + 1) + (1 + 1)

)
≤ 1 (∀𝑥 = 1, · · · ,𝑚)

By spectral radius property, max𝑖 {|𝜌𝑖 |} ≤ ∥N𝑇 M∥∞ ≤ 1. □

A.3 Proof of Theorem 3
Proof. We just show Eq.(4), and a similar proof applies to Eq.(5).

Let Q = 𝛾 (N𝑇 M) and C = (1 − 𝛾) (𝛾N𝑇 N + I𝑚). Then, Eq.(10) in
Theorem 2 can be rewritten as

R = QRQ𝑇 + C ⇔ R =

∞∑︁
𝑘=0

Q𝑘C
(
Q𝑇 )𝑘
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In virtue of Theorem 2, the above series of R is convergent since
∥Q∥∞ ≤ 𝛾 < 1. Plugging the definition of Q and C back into the
above series produces Eq.(4). □

A.4 Proof of Theorem 4
Proof. Successive substitution applied to Eq.(6) yields

R𝑙 = (1 − 𝛾 )
𝑙∑

𝑘=0
𝛾2𝑘 (N𝑇 M

)𝑘 (
𝛾N𝑇 N + I𝑚

) (
M𝑇 N

)𝑘 (11)

Thus, (a) holds. To prove (b), we plug Eq.(11) into Eq.(6c)

S𝑙 =(1 − 𝛾)
(
𝑙−1∑
𝑘=0

𝛾2𝑘+1M
(
N𝑇 M

)𝑘 (
𝛾N𝑇 N + I𝑚

) (
M𝑇 N

)𝑘
M𝑇 + I𝑛

)

=(1 − 𝛾)
(
𝑙−1∑
𝑘=0

𝛾2𝑘+2

=(MN𝑇 )𝑘+1 (NM𝑇 )𝑘+1︷                                 ︸︸                                 ︷
M
(
N𝑇 M

)𝑘 (
N𝑇 N

) (
M𝑇 N

)𝑘
M𝑇

+
𝑙−1∑
𝑘=0

𝛾2𝑘+1 M
(
N𝑇 M

)𝑘 (
M𝑇 N

)𝑘
M𝑇︸                       ︷︷                       ︸

=(MN𝑇 )𝑘 (MM𝑇 ) (NM𝑇 )𝑘

+ I𝑛

)

=(1 − 𝛾)
( =𝛾2𝑙 (MN𝑇 )𝑙 (NM𝑇 )𝑙+∑𝑙−1

𝑘=1 (...)︷                         ︸︸                         ︷
𝑙∑

𝑘=1
𝛾2𝑘 (MN𝑇

)𝑘 (NM𝑇
)𝑘

+
𝑙−1∑
𝑘=0

𝛾2𝑘 (MN𝑇
)𝑘 (

𝛾MM𝑇
) (

NM𝑇
)𝑘

︸                                      ︷︷                                      ︸
=𝛾MM𝑇 +∑𝑙−1

𝑘=1 (...)

+I𝑛
)

=(1 − 𝛾)𝛾2𝑙 (MN𝑇 )𝑙 (NM𝑇 )𝑙
+ {the first (𝑙 − 1)-th partial sums of Eq.(5)} (12)

Hence, (b) holds. To prove (c), taking the limit on both sides of
Eq.(11) yields Eq.(4). Thus, lim

𝑙→∞
R𝑙 = R.

We can verify that ∥MN𝑇 ∥∞ ≤ 1, which implies that

∥(1 − 𝛾)𝛾2𝑙 (MN𝑇 )𝑙 (NM𝑇 )𝑙 ∥∞ ≤ (1 − 𝛾)𝛾2𝑙 → 0 (𝑙 →∞)

By taking the limit on both sides of Eq.(12) yields Eq.(5). □

A.5 Proof of Theorem 5
Proof. We can readily verify that, for two vectors x and y ∈

R𝑚×1 and a matrix Z ∈ R𝑚×𝑚 , if ∥x∥∞ = ∥y∥∞ = 1,

xZy𝑇 ≤ (x11𝑇 y𝑇 )∥Z∥max = ∥Z∥max with 1 = (1, · · · , 1)𝑇

By Theorems 3 and 4, we subtract Eq.(11) from Eq.(4):

[R − R𝑙 ]𝑖, 𝑗 = (1 − 𝛾)
∞∑

𝑘=𝑙+1
𝛾2𝑘 [ (N𝑇 M

)𝑘 ]
𝑖,∗︸          ︷︷          ︸

=x

(
𝛾N𝑇 N + I𝑚

)︸          ︷︷          ︸
=Z

[ (
M𝑇 N

)𝑘 ]
∗, 𝑗︸          ︷︷          ︸

=y𝑇

Since ∥N𝑇 M∥∞ ≤ 1 and ∥N𝑇 N∥max ≤ 1, it follows that

∥R − R𝑙 ∥max ≤ (1 − 𝛾)
∞∑

𝑘=𝑙+1
𝛾2𝑘 (𝛾 ∥N𝑇 N∥max + 1

)
= 𝛾2(𝑙+1)

Similarly, utilizing ∥MN𝑇 ∥∞ ≤ 1 and ∥M𝑇 M∥max ≤ 1, we can
prove that ∥S − S𝑙 ∥max ≤ 𝛾2𝑙 . □

A.6 Proof of Lemma 1
Proof. By the definition of S in Eq.(2) and its iterative form in

Eq.(6c), for any three nodes 𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 , it follows that

[S𝑘+1 ]𝑣𝑎 ,𝑣𝑐 − [S𝑘+1 ]𝑣𝑎 ,𝑣𝑏 =
𝛾

4 ×
(

average
(𝑒𝑖 ,𝑒 𝑗 ) ∈𝐿− (𝑣𝑎 )×𝐿− (𝑣𝑐 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 } − average
(𝑒𝑖 ,𝑒 𝑗 ) ∈𝐿− (𝑣𝑎 )×𝐿+ (𝑣𝑏 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 }

(13a)
+ average
(𝑒𝑖 ,𝑒 𝑗 ) ∈𝐿− (𝑣𝑎 )×𝐿+ (𝑣𝑐 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 } − average
(𝑒𝑖 ,𝑒 𝑗 ) ∈𝐿− (𝑣𝑎 )×𝐿− (𝑣𝑏 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 }

(13b)
+ average
(𝑒𝑖 ,𝑒 𝑗 ) ∈𝐿+ (𝑣𝑎 )×𝐿− (𝑣𝑐 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 } − average
(𝑒𝑖 ,𝑒 𝑗 ) ∈𝐿+ (𝑣𝑎 )×𝐿− (𝑣𝑏 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 }

(13c)

+ average
(𝑒𝑖 ,𝑒 𝑗 ) ∈𝐿+ (𝑣𝑎 )×𝐿+ (𝑣𝑐 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 } − average
(𝑒𝑖 ,𝑒 𝑗 ) ∈𝐿+ (𝑣𝑎 )×𝐿+ (𝑣𝑏 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 }
)

(13d)

+
{
1 − 𝛾 (𝑣𝑎 = 𝑣𝑐 )

0 (𝑣𝑎 ≠ 𝑣𝑐 )
−
{
1 − 𝛾 (𝑣𝑎 = 𝑣𝑏 )

0 (𝑣𝑎 ≠ 𝑣𝑏 )
(13e)

Let us first evaluate the first part (13a). By the definition of
average(∗, ∗), it follows that

(13a) =

∑
𝑒𝑖 ∈𝐿− (𝑣𝑎 )

∑
𝑒𝑗 ∈𝐿− (𝑣𝑐 )

[R𝑘 ]𝑒𝑖 ,𝑒 𝑗

|𝐿− (𝑣𝑎 ) | |𝐿− (𝑣𝑐 ) | −

∑
𝑒𝑖 ∈𝐿− (𝑣𝑎 )

∑
𝑒𝑗 ∈𝐿+ (𝑣𝑏 )

[R𝑘 ]𝑒𝑖 ,𝑒 𝑗

|𝐿− (𝑣𝑎 ) | |𝐿+ (𝑣𝑏 ) |

= 1
|𝐿− (𝑣𝑎 ) |

∑
𝑒𝑖 ∈𝐿− (𝑣𝑎 ) 𝜙 (𝑒𝑖 ), (14)

where 𝜙 (𝑒𝑖 ) ≜ 1
|𝐿− (𝑣𝑐 ) |

∑
𝑒 𝑗 ∈𝐿− (𝑣𝑐 ) [R𝑘 ]𝑒𝑖 ,𝑒 𝑗

− 1
|𝐿+ (𝑣𝑏 ) |

∑
𝑒 𝑗 ∈𝐿+ (𝑣𝑏 ) [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 .

To find out the lower bound for 𝜙 (𝑒𝑖 ), we notice that∑
𝑒 𝑗 ∈𝐿− (𝑣𝑐 )

[R𝑘 ]𝑒𝑖 ,𝑒 𝑗 =
1

|𝐿+ (𝑣𝑏 ) |
∑

𝑒𝑦 ∈𝐿+ (𝑣𝑏 )

∑
𝑒𝑥 ∈𝐿− (𝑣𝑐 )

[R𝑘 ]𝑒𝑖 ,𝑒𝑥∑
𝑒 𝑗 ∈𝐿+ (𝑣𝑏 )

[R𝑘 ]𝑒𝑖 ,𝑒 𝑗 =
1

|𝐿− (𝑣𝑐 ) |
∑

𝑒𝑦 ∈𝐿+ (𝑣𝑏 )

∑
𝑒𝑥 ∈𝐿− (𝑣𝑐 )

[R𝑘 ]𝑒𝑖 ,𝑒𝑦 ,

which implies that

𝜙 (𝑒𝑖 ) =
∑

𝑒𝑦 ∈𝐿+ (𝑣𝑏 )
∑

𝑒𝑥 ∈𝐿− (𝑣𝑐 )
(
[R𝑘 ]𝑒𝑖 ,𝑒𝑥 −[R𝑘 ]𝑒𝑖 ,𝑒𝑦 )

)
|𝐿− (𝑣𝑐 ) | |𝐿+ (𝑣𝑏 ) |

≥
∑

𝑒𝑦 ∈𝐿+ (𝑣𝑏 )
∑

𝑒𝑥 ∈𝐿− (𝑣𝑐 )
(
[R𝑘 ]𝑒𝑦,𝑒𝑥 −1

)
|𝐿− (𝑣𝑐 ) | |𝐿+ (𝑣𝑏 ) |

= average
(𝑒𝑦 ,𝑒𝑥 ) ∈𝐿− (𝑣𝑏 )×𝐿+ (𝑣𝑐 )

{[R𝑘 ]𝑒𝑦 ,𝑒𝑥 } − 1

Thus, substituting the above lower bound into Eq.(14) yields

(13a) ≥ average
(𝑒𝑦 ,𝑒𝑥 ) ∈𝐿− (𝑣𝑏 )×𝐿+ (𝑣𝑐 )

{[R𝑘 ]𝑒𝑦 ,𝑒𝑥 } − 1

Similarly, we can prove that

(13b) ≥ average
(𝑒𝑦 ,𝑒𝑥 ) ∈𝐿+ (𝑣𝑏 )×𝐿− (𝑣𝑐 )

{[R𝑘 ]𝑒𝑦 ,𝑒𝑥 } − 1

(13c) ≥ average
(𝑒𝑦 ,𝑒𝑥 ) ∈𝐿− (𝑣𝑏 )×𝐿− (𝑣𝑐 )

{[R𝑘 ]𝑒𝑦 ,𝑒𝑥 } − 1

(13d) ≥ average
(𝑒𝑦 ,𝑒𝑥 ) ∈𝐿+ (𝑣𝑏 )×𝐿+ (𝑣𝑐 )

{[R𝑘 ]𝑒𝑦 ,𝑒𝑥 } − 1

We next evaluate the last part (13e) as follows:

(13e) =


1 − 𝛾 (if 𝑣𝑎 = 𝑣𝑐 and 𝑣𝑎 ≠ 𝑣𝑏 )
𝛾 − 1 (if 𝑣𝑎 ≠ 𝑣𝑐 and 𝑣𝑎 = 𝑣𝑏 )
0 (otherwise)
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≥
{
min{1 − 𝛾,𝛾 − 1, 0} = 𝛾 − 1 (𝑣𝑏 ≠ 𝑣𝑐 )

0 (𝑣𝑏 = 𝑣𝑐 )

Finally, we replace (13a)–(13e) with the above lower bounds:

[S𝑘+1 ]𝑣𝑎 ,𝑣𝑐 − [S𝑘+1 ]𝑣𝑎 ,𝑣𝑏 ≥
𝛾

4 ×
(

average
(𝑒𝑦 ,𝑒𝑥 ) ∈𝐿− (𝑣𝑏 )×𝐿+ (𝑣𝑐 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 } − 1

+ average
(𝑒𝑦 ,𝑒𝑥 ) ∈𝐿+ (𝑣𝑏 )×𝐿− (𝑣𝑐 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 } − 1

+ average
(𝑒𝑦 ,𝑒𝑥 ) ∈𝐿− (𝑣𝑏 )×𝐿− (𝑣𝑐 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 } − 1

+ average
(𝑒𝑦 ,𝑒𝑥 ) ∈𝐿+ (𝑣𝑏 )×𝐿+ (𝑣𝑐 )

{ [R𝑘 ]𝑒𝑖 ,𝑒 𝑗 } − 1
)

+
{
𝛾 − 1 (𝑣𝑏 ≠ 𝑣𝑐 )

0 (𝑣𝑏 = 𝑣𝑐 )
= [S𝑘+1 ]𝑣𝑏 ,𝑣𝑐 − 1

□

A.7 Proof of Lemma 2
Proof. By the definition of R in Eq.(1) and its iterative form in

Eq.(6b), for any three edges 𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , it follows that

[R𝑘 ]𝑒𝑎,𝑒𝑐 − [R𝑘 ]𝑒𝑎,𝑒𝑏 =
𝛾

4
×
(
[S𝑘 ]𝐻 (𝑒𝑎 ),𝐻 (𝑒𝑐 ) − [S𝑘 ]𝐻 (𝑒𝑎 ),𝐻 (𝑒𝑏 )
+ [S𝑘 ]𝐻 (𝑒𝑎 ),𝑇 (𝑒𝑐 ) − [S𝑘 ]𝐻 (𝑒𝑎 ),𝑇 (𝑒𝑏 )
+ [S𝑘 ]𝑇 (𝑒𝑎 ),𝐻 (𝑒𝑐 ) − [S𝑘 ]𝑇 (𝑒𝑎 ),𝐻 (𝑒𝑏 )
+ [S𝑘 ]𝑇 (𝑒𝑎 ),𝑇 (𝑒𝑐 ) − [S𝑘 ]𝑇 (𝑒𝑎 ),𝑇 (𝑒𝑏 )

)
+


1 − 𝛾 (if 𝑒𝑎 = 𝑒𝑐 and 𝑒𝑎 ≠ 𝑒𝑏 )
𝛾 − 1 (if 𝑒𝑎 ≠ 𝑒𝑐 and 𝑒𝑎 = 𝑒𝑏 )
0 (otherwise)

≥ 𝛾

4

(
[S𝑘 ]𝐻 (𝑒𝑏 ),𝐻 (𝑒𝑐 ) − 1 + [S𝑘 ]𝑇 (𝑒𝑏 ),𝑇 (𝑒𝑐 ) − 1

+[S𝑘 ]𝐻 (𝑒𝑏 ),𝐻 (𝑒𝑐 ) − 1 + [S𝑘 ]𝑇 (𝑒𝑏 ),𝑇 (𝑒𝑐 ) − 1
)
+
{
𝛾 − 1 (𝑒𝑐 ≠ 𝑒𝑏 )

0 (𝑒𝑐 = 𝑒𝑏 )
= [R𝑘 ]𝑒𝑏 ,𝑒𝑐 − 1. (∀𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 ∈ 𝐸)

□

A.8 Proof of Theorem 6
Proof. Clearly, 0 ≤ 𝑠 (𝑣𝑎, 𝑣𝑏 ) ≤ 1 and 𝑠 (𝑣𝑎, 𝑣𝑏 ) = 𝑠 (𝑣𝑏 , 𝑣𝑎). Thus,

(a) and (b) hold.
To prove (c), combining Lemmas 1 and 2, we can get that, for

each 𝑘 = 0, 1, 2, · · · and any three nodes 𝑣𝑎, 𝑣𝑏 , 𝑣𝑐 ∈ 𝑉 , if S𝑘 in
Eq.(6b) satisfies

[S𝑘 ]𝑣𝑎,𝑣𝑐 − [S𝑘 ]𝑣𝑎,𝑣𝑏 ≥ [S𝑘 ]𝑣𝑏 ,𝑣𝑐 − 1,

then S𝑘+1 in Eq.(6c) satisfies

[S𝑘+1]𝑣𝑎,𝑣𝑐 − [S𝑘+1]𝑣𝑎,𝑣𝑏 ≥ [S𝑘+1]𝑣𝑏 ,𝑣𝑐 − 1.

Since the base case of 𝑘 = 0 holds as follows:

[S0]𝑣𝑎,𝑣𝑐 − [S0]𝑣𝑎,𝑣𝑏

=

{
1 − 𝛾 (𝑣𝑎 = 𝑣𝑐 )

0 (𝑣𝑎 ≠ 𝑣𝑐 ) −
{
1 − 𝛾 (𝑣𝑎 = 𝑣𝑏 )

0 (𝑣𝑎 ≠ 𝑣𝑏 )

≥
{
min{1 − 𝛾,𝛾 − 1, 0} = 𝛾 − 1 (𝑣𝑏 ≠ 𝑣𝑐 )

0 (𝑣𝑏 = 𝑣𝑐 )

≥ − 1 +
{

0 (𝑣𝑏 ≠ 𝑣𝑐 )
1 − 𝛾 (𝑣𝑏 = 𝑣𝑐 ) = [S0]𝑣𝑏 ,𝑣𝑐 − 1,

we have [S𝑘 ]𝑣𝑎,𝑣𝑐 − [S𝑘 ]𝑣𝑎,𝑣𝑏 ≥ [S𝑘 ]𝑣𝑏 ,𝑣𝑐 − 1 holds for all 𝑘 . Next,
taking the limit as 𝑘 →∞ gives

[S]𝑣𝑎,𝑣𝑐 − [S]𝑣𝑎,𝑣𝑏 ≥ [S]𝑣𝑏 ,𝑣𝑐 − 1
⇔ (1 − [S]𝑣𝑎,𝑣𝑏 ) + (1 − [S]𝑣𝑏 ,𝑣𝑐 ) ≥ (1 − [S]𝑣𝑎,𝑣𝑐 )
⇔ 𝑑𝑖𝑠𝑡𝑠 (𝑣𝑎, 𝑣𝑏 ) + 𝑑𝑖𝑠𝑡𝑠 (𝑣𝑏 , 𝑣𝑐 ) ≥ 𝑑𝑖𝑠𝑡𝑠 (𝑣𝑎, 𝑣𝑐 ) .

□

A.9 Proof of Theorem 7
Proof. We show that, for any two nodes 𝑣𝑎 and 𝑣𝑏 , if the above

constraints are not satisfied, SimRank* 𝑠 (𝑣𝑎, 𝑣𝑏 ) = 0. Let us revisit
the matrix form of SimRank* in [20]:

[S]𝑣𝑎,𝑣𝑏 = (1 − 𝛾)
∞∑︁
𝑘=0

𝛾𝑘

2𝑘

𝑘∑︁
𝛼=0

(
𝑘

𝛼

)
[(W𝑇 )𝛼 ]𝑣𝑎,★ · [W𝑘−𝛼 ]★,𝑣𝑏

For each fixed 𝑘 and 𝛼 ∈ [0, 𝑘], if there exists 𝛼0 ∈ [0, 𝛼 − 1]
s.t. 𝑒𝛼0 in Eq.(7) bears “→” direction, then by the power property
of an adjacency matrix, we have [(W𝑇 )𝛼 ]𝑣𝑎,★ = 0, which implies
that [S]𝑣𝑎,𝑣𝑏 = 0.

Similarly, for each fixed 𝑘 and 𝛼 ∈ [0, 𝑘], if ∃𝛼0 ∈ [𝛼, 𝑘 − 1]
s.t. 𝑒𝛼0 in Eq.(7) bears “←” direction, then [W𝛼 ]★,𝑣𝑏 = 0, implying
that [S]𝑣𝑎,𝑣𝑏 = 0. □

A.10 Proof of Theorem 8
Proof. We assume that there exists a (weakly connected) path

between nodes 𝑣𝑎 and 𝑣𝑏 that is neglected by SimEdge:

(𝑣𝑎 =)𝑣0, 𝑒0, 𝑣1, 𝑒1, 𝑣2, · · · , 𝑣𝑘−1, 𝑒𝑘−1, 𝑣𝑘 (= 𝑣𝑏 ) (15)

and show that this leads to a contradiction. Suppose node-to-node
similarity 𝑠 (𝑣0, 𝑣𝑘 ) = 0, we can infer from Eq.(2) that its related edge-
to-edge similarity 𝑟 (𝑒0, 𝑒𝑘−1) = 0, and recursively, 𝑠 (𝑣1, 𝑣𝑘−1) = 0,
𝑟 (𝑒1, 𝑒𝑘−2) = 0, and so forth. Eventually,
a) if 𝑘 is an even number, we can arrive at 𝑠 (𝑣𝑘/2, 𝑣𝑘/2) = 0, which
contradicts that “each node is most similar to itself”.
b) if 𝑘 is an odd number, we have 𝑟 (𝑒 (𝑘−1)/2, 𝑒 (𝑘−1)/2) = 0, contra-
dicting that “each edge is most similar to itself”. □

A.11 Proof of Theorem 9
Proof. Let z𝑙 =

(
𝛾N𝑇 N + I𝑚

)
𝝃𝑘−𝑙 and C = 𝛾N𝑇 M. Then, 𝜼𝑘

can be iteratively computed from Eq.(8) as

𝜼𝑘 = C𝜼𝑘−1 + z𝑘 = C2𝜼𝑘−2 + Cz𝑘−1 + z𝑘
= C3𝜼𝑘−3 + C2z𝑘−2 + Cz𝑘−1 + z𝑘

= · · · = C𝑘𝜼0 + C𝑘−1z1 + · · · + Cz𝑘−1 + z𝑘 (16)

To evaluate z1, · · · , z𝑘 , we can obtain 𝝃𝑘 from Eq.(9):

𝝃𝑘 = (𝛾M𝑇 N)𝝃𝑘−1 = (𝛾M𝑇 N)2𝝃𝑘−2 = · · · = (𝛾M𝑇 N)𝑘𝝃0

Thus, it follows that

𝜼0 = (I𝑚 + 𝛾N𝑇 N)𝝃𝑘 = (I𝑚 + 𝛾N𝑇 N) (𝛾M𝑇 N)𝑘𝝃0

z𝑙 = (𝛾N𝑇 N + I𝑚)𝝃𝑘−𝑙 = (𝛾N𝑇 N + I𝑚) (𝛾M𝑇 N)𝑘−𝑙 𝝃0 (∀𝑙)

Substituting 𝜼0 and z𝑙 and C = 𝛾N𝑇 M into Eq.(16) yields

𝜼𝑘 =

C𝑘=︷     ︸︸     ︷
(𝛾N𝑇 M)𝑘

𝜼0=︷                           ︸︸                           ︷
(I𝑚 + 𝛾N𝑇 N) (𝛾M𝑇 N)𝑘𝝃0

11
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+
𝑘−1∑
𝑙=0
(𝛾N𝑇 M)𝑙︸     ︷︷     ︸

C𝑙=

(𝛾N𝑇 N + I𝑚) (𝛾M𝑇 N)𝑙 𝝃0︸                          ︷︷                          ︸
z𝑘−𝑙=

=
𝑘∑
𝑙=0
(𝛾N𝑇 M)𝑙 (𝛾N𝑇 N + I𝑚) (𝛾M𝑇 N)𝑙 [I𝑚]★,𝑒𝑖

Using [R𝑘 ]★,𝑒𝑖 = (1 − 𝛾)𝜼𝑘 produces (a) in Theorem 4. □

A.12 Proof of Theorem 10
Proof. The computational cost consists of two phases:
(a) computing 𝝃0, · · · , 𝝃𝑘 in Eq.(9). For each iteration 𝑙 , the com-

putational time of Eq.(9) is𝑂 (𝑚), dominated by M𝑇 (N𝝃𝑙−1). More
concretely, as the number of nonzeros in sparse N is 𝑂 (𝑚), it re-
quires𝑂 (𝑚) time to compute (N𝝃𝑙−1) whose result is an𝑛×1 vector
x; since each row of M𝑇 has at most two nonzeros, it yields 𝑂 (𝑛)
to compute M𝑇 x. Hence, for 𝑘 iterations, it entails 𝑂 (𝑘𝑚) time to
compute 𝝃0, · · · , 𝝃𝑘 .

(b) computing 𝜼𝑘 in Eq.(8). For each iteration 𝑙 , the time com-
plexity required to compute 𝜼0 and 𝜼𝑙 are bounded by N𝑇 (N𝝃𝑘 )
and N𝑇 (N𝝃𝑘−𝑙 +M𝜼𝑙−1), respectively. We can verify that (N𝝃𝑘 )
and (N𝝃𝑘−𝑙 +M𝜼𝑙−1) requires𝑂 (𝑚) time, and their results are two
𝑛 × 1 vectors, denoted as x1 and x2. Thereby, it requires 𝑂 (𝑛) time
to compute N𝑇 x1 and N𝑇 x2 as each row of N𝑇 has at most two
nonzeros. In total, it requires 𝑂 (𝑘𝑚) time to compute Eq.(9) for 𝑘
iterations.

By taking (a) and (b) together, the total time is 𝑂 (𝑘𝑚).
For memory usage, it requires 𝑂 (𝑚) to store M and N. To store

𝝃0, · · · , 𝝃𝑘 , the𝑂 (𝑘𝑚) memory is required. Other intermediate vec-
tors (e.g. (N𝝃𝑙−1), (N𝝃𝑘 ), (N𝝃𝑘−𝑙 +M𝜼𝑙−1)) produce𝑂 (𝑛) memory.
In total, the memory is dominated by 𝑂 (𝑘𝑚) for 𝑘 iterations. □

B ALGORITHM FOR ASSESSING SIMEDGE
NODE-TO-NODE SIMILARITY

Algorithm 2 shows the pseudocode for efficiently computing node-
to-node SimEdge similarities [S]★,𝑣𝑖 w.r.t. query node 𝑣𝑖 .

Algorithm 2: Evaluate Node-To-Node SimEdge Similarities
Input :digraph 𝐺 = (𝑉 , 𝐸), query node 𝑣𝑖 ∈ 𝑉 ,

damping factor 𝛾 , desired accuracy 𝜖 .
Output :node-to-node SimEdge similarities [S]★,𝑣𝑖

between all nodes in 𝐺 and query 𝑣𝑖 .
1-2 the same as Lines 1–2 in Algorithm 1 ;
3 determine the number of iterations 𝑘 ← ⌈ 12 log𝛾 𝜖⌉ + 1 ;
4 initialize 𝝃0 ← [I𝑛]★,𝑣𝑖 ;
5 for 𝑙 ← 1, 2, · · · , 𝑘 do
6 update 𝝃𝑙 ← 𝛾N

(
M𝑇 𝝃𝑙−1

)
;

7 initialize 𝜼0 ← 𝝃𝑘 + 𝛾M
(
M𝑇 𝝃𝑘

)
;

8 for 𝑙 ← 1, 2, · · · , 𝑘 do
9 update 𝜼𝑙 ← 𝝃𝑘−𝑙 + 𝛾M

(
M𝑇 𝝃𝑘−𝑙 + N𝑇𝜼𝑙−1

)
;

10 return [S𝑘 ]★,𝑣𝑖 ← (1 − 𝛾)𝜼𝑘 ;

C EXPERIMENTS
C.1 Detailed Description of Real Datasets
We use six real-world datasets. Below are their detailed description:

(a) NU, a neuronal connectivity graph2, where each node is a
neuron labeled by its name, and each edge is a synapse labeled by
its type, e.g. Sp (Send-poly), Rp (Receive-poly), EJ (Electric junction),
NMJ (Neuromuscular junction).

(b)DP, a co-authorship DBLP network3, where nodes are authors,
and edges represent coauthorship labeled by the latest coauthored
paper between two authors. The graph is derived from five-year
publications (2010–2015) in VLDB, WWW, and SIGCOMM.

(c) AL, a snapshot of the OpenFlights network4, where a node
denotes an airport labeled with its country or territory, and each
edge is a route labeled with its airline code.

(d) HP, a citation network from arXiv high energy physics phe-
nomenology5, where each node is a paper labeled with its title and
abstract, and an edge is a reference.

(e) AM, an Amazon co-purchasing graph, where nodes are prod-
ucts, and edges connect the latest commonly co-purchased items.

(f) LJ, a LiveJournal online social network, where each node is a
user, and an edge is a recommendation from one user to another.

(g) EU6, a large-scale network of EU government web hosting
infrastructure, where nodes represent websites or servers, and edges
capture the hosting and connectivity relationships.

(h) TW, a massive social network on Twitter, where nodes rep-
resentTwitter users, and edges denote follower relationships.

C.2 Accuracy Metrics
To assess similarity effectiveness, two accuracy metrics are used:

(a) MAP (Mean Average Precision):

MAP(𝑄) = 1
|𝑄 |

∑ |𝑄 |
𝑗=1

1
𝑢 𝑗

∑𝑢 𝑗

𝑝=1 Precision(𝑅 𝑗𝑝 )

where 𝑢 𝑗 is the number of relevant objects to query 𝑞 𝑗 ∈ 𝑄 , and
𝑅 𝑗𝑝 is the set of ranked retrieval results from the top results until
we get to the 𝑝-th object.

(b) NDCG (Normalized Discounted Cumulative Gain):

NDCG(𝑄, 𝑝) = 1
|𝑄 |

∑ |𝑄 |
𝑗=1 𝑍𝑝 𝑗

∑𝑝

𝑖=1
2𝑅 ( 𝑗,𝑖 )−1
log2 (1+𝑖 )

where 𝑍𝑝 𝑗 is a normalization factor to ensure a perfect ranking’s
NDCG at 𝑝 for query 𝑗 is 1, and 𝑅( 𝑗, 𝑖) is the relevance score that
assessors gave to object 𝑖 for query 𝑗 .

C.3 Additional Experiments: Time & Memory
for Evaluating Node-To-Node Similarities
w.r.t. # of Queries on Real Datasets
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Figure 13: CPU Time &Memory for Node-To-Node Similarity
Assessment w.r.t. # of Queries on Real Datasets

2http://www.wormatlas.org/neuronalwiring.html
3http://dblp.uni-trier.de/˜ley/db/
4http://openflights.org/data.html
5HP, AM, and LJ are from http://snap.stanford.edu/
6EU and TW are taken from LAW (https://law.di.unimi.it/datasets.php)
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