Under review as a conference paper at ICLR 2025

ADAPTIVE DEPTH TSETLIN AUTOMATON

Anonymous authors
Paper under double-blind review

ABSTRACT

The Tsetlin Automaton (TA) is a foundational single-state reinforcement learning
model, but its fixed depth parameter (N) poses a significant limitation for navigat-
ing the exploration and exploitation dilemma. Despite remarkable advancements,
existing TA models lack adaptability in real-world scenarios where dynamic depth
adjustments are essential. In this paper, we introduce the Adaptive Depth Tsetlin
Automaton (ADTA), a novel solution addressing this challenge. ADTA integrates
TA with a reinforcement agent capable of dynamically modifying N. We ana-
lyze ADTA using Lyapunov stability theorem and Markov chain analysis within a
dual-environment framework: the outer environment, where TA operates to max-
imize rewards, and the inner environment, where a reinforcement learning agent
evaluates TA’s performance based on N. Through actions like *Grow,” ’Shrink,’
and ’Stop,” the inner agent configures N dynamically. Unlike conventional TA
configurations with fixed N, our approach demonstrates improved reward maxi-
mization and regret minimization. Furthermore, we present numerical simulations
that corroborate our theoretical results.

1 INTRODUCTION

The Tsetlin Automaton (TA) (Tsetlinl |1961; [Narendra & Thathachar, 2012)) is an innovative con-
cept in a single-state reinforcement learning (Sutton & Bartol 2018} |(Calisir & Pehlivanoglul 2019;
Zhang et al.,[2022), designed to capture the intricate nature of human decision-making and calcula-
tion|Narendra & Thathachar|(2012). Inspired by principles from psychology, it emulates human-like
learning strategies within computational frameworks. Notably, the TA represents a pioneering so-
lution to the well-known multi-armed bandit problem (Yuan et al., 2022; |Amani & Thrampoulidis}
2021; [Ramponi et al.l [2021) and serves as the first learning algorithm in the Learning Automaton
(LA) (Granmo, 2018}, [Abeyrathna et al.,|2020; |Belaid et al., [2023)) family.

The TA (Narendra & Thathachar, 2012; Granmo, 2018) is characterized by its state-machine archi-
tecture, featuring a grid-like configuration of K actions and a fixed depth parameter N for each action
(number of nodes in each action), illustrated in Figure |l Within the TA, each node corresponds to
a specific action and is identified by a unique pair. This design allows the automaton to transition
between nodes based on rewards from its environment seamlessly. When receiving a reward, the
chosen action is reinforced by transitioning from higher-numbered nodes to lower-numbered nodes
within the action’s depth, thereby increasing its likelihood of selection. Conversely, in case of a
penalty, the transition occurs from lower-numbered nodes to higher-numbered ones within the ac-
tion. If the highest-numbered node is reached and a penalty is incurred, the next action is chosen
according to a clockwise policy for the subsequent iteration. For example, ¢35y denotes the first
node of action 3. Upon receiving a reward, the TA transitions to @3 1) to increase the likelihood of
selecting action 3 twice. Conversely, a penalty leads the TA to transition to @4 5), indicating that
selecting action 3 was incorrect and its selection chances are exhausted. This structured framework
enables the TA to effectively capture and represent the nuances of the learning process within a fixed
architecture.

TAs are typically employed in online learning decision-making scenarios, making it impractical to
adjust their depth using offline data (Narendra & Thathachar, [2012; |Granmo), |2018). Therefore, an
online mechanism is essential for adapting the TA’s depth based on specific problem requirements,
allowing for incremental, decremental, or unchanged adjustments. This mechanism will help the
TA to explore and exploit the environment efficiently. Lower depth values may result in more ex-
ploration and frequent action switching. Conversely, higher depth values may lead to challenges in

Under review as a conference paper at ICLR 2025

Clockwise

Figure 1: A four-action Tsetlin Automaton with depth two for each action

learning, as it becomes difficult to modify actions effectively, more exploitation toward sub-optimal
action and diminishing the TA’s efficacy. Given this critical challenge in the current implementation,
it is essential to adaptively adjust the TA’s depth to optimize performance (Narendra & Thathachar,
2012).

Moreover, from the perspective of Automated Machine Learning (AutoML) (He et al.| |2021}; |[Feurer
et al., |2015; |Kiibler et al., 2022), the TA lacks internal mechanisms or tools to discern whether
the selected depth is suitable or requires adjustment based on environmental conditions (Narendra
& Thathachar, 2012} |Granmol [2018; |Abeyrathna et al., [2020). Hence, there is a need for another
learning agent to be integrated with the TA. This auxiliary agent can assist the TA in modifying its
depth based on rewards and penalties received from the environment.

In this paper, we introduce the Adaptive Depth Tsetlin Automaton (ADTA), a novel approach that
intelligently learns the appropriate depth for the TA. By employing a central reinforcement learning
agent, the ADTA dynamically adjusts the depth of all actions within the automaton. This self-
adaptive, flexible methodology enables the TA to strike an ideal balance between exploration and
exploitation, significantly improving its performance and adaptability in a wide range of complex
environments.

1.1 CONTRIBUTIONS

* We identify a critical parameter N, which represents the depth parameter in the TA. This
parameter poses a challenge in balancing the exploration and exploitation capabilities of
the TA.

* We propose a learning algorithm aimed at dynamically adjusting the depth parameter within
the TA. This algorithm is devised by integrating the TA with an RL agent. During each
epoch, the algorithm assesses the current value of N, and when the TA seeks to alter its
action, the RL agent intervenes to adjust the depth accordingly.

* We offer a theoretical analysis that demonstrates the learning ability of the ADTA using a
combination of Markov process and Lyapunov stability theorem.

Under review as a conference paper at ICLR 2025

* We complement our theoretical results with numerical simulations and corresponding dis-
cussions on the performance of our algorithm.

* We illustrate ADTA’s practical versatility by applying it to the dropout problem in deep
neural networks, effectively countering overfitting concerns.

* We demonstrate the effectiveness of our learning model in a highly relevant and practical
context by applying ADTA to Bitcoin, a leading decentralized cryptocurrency. ADTA is
deployed as a distributed, real-time decision-making mechanism to mitigate the impact of
selfish mining attacks.

1.2 PROBLEM FORMULATION

TA Model. The TA consists of K actions denoted as aj,as,...,ax, and KN nodes represented by
O1,1):9(1,2)s+ - P(1.N)» - - - Pk v)- Bach node is defined by an ordered pair (i, j), where 1 <i <K
indicates the action number, and 1 < j < N denotes the node number. When the TA is in node
.j)> it performs action A(n) = a; in the n'" iteration. The environment will respond to the TA
with r, where r € R = {0, 1}. In the event of an unfavorable response (i.e., R(n) = r = 0), the state
transitions occur as follows:

(D

Similarly, in the case of a favorable response (i.e., R(n) = r = 1), the state transitions are determined
by:
{ Oij) = Puj-1) (2<j<N) @)

Oy =~ iy (=1)
The selection of the next action in this automaton follows a clockwise pattern (¢; ;) — @(i+1,j))-

Goal. In scenarios where the TA requires a change in action due to receiving a penalty from the
environment (@; ;) — @, 1)), the current depth parameter N may not be appropriately configured.
Thus, the main objective becomes either to increase (N <— N + 1) for exploitation, decrease (N <—
N — 1) for exploration, or maintain the depth unchanged in such situations.

1.3 RELATED WORKS

Tsetlin Automaton. Drawing inspiration from Sutton and Barto’s influential book (Sutton & Barto,
2018) on reinforcement learning, the exploration of learning automaton (LA) has played a pivotal
role in shaping modern research, particularly in the domain of trial-and-error learning. Among the
variants of LA, the TA (Granmo, |2018}; Granmo et al., [2019) stands out as a prominent model that
offers valuable insights into human decision-making processes and cognitive mechanisms. Notably,
its recent integration with Neural Networks (Sharma et al.|[2023;|Seraj et al.| 2022} |Abeyrathna et al.,
2021b; Bhattarai et al., 2022; Darshana Abeyrathna et al., 2020; Phoulady et al., 2019} |Abeyrathna
et al., 2021aj 2020; |Glimsdal & Granmo, 2021} [Bhattarai et al.| [2023) has gained remarkable at-
tention from researchers. Furthermore, over its renowned half-century existence, it has demon-
strated its versatility and applicability across a wide spectrum of fields (Narendra & Thathachar,
2012)) including: decentralized control (Tung & Kleinrockl [1996)), searching on the line (Oommen),
1997)), equi-partitioning (Oommen & Mal, [1988)), streaming sampling for social activity networks
(Ghavipour & Meybodi, 2018), faulty dichotomous search (Yazidi & Oommen, 2018)), learning in
deceptive environments (Zhang et al., 2016), and routing in telecommunication networks (Oommen
et al.l [2007).

Despite the TA’s effectiveness in uncertain and stochastic environments where problems require
quick trial-and-error solutions, it faces two fundamental challenges affecting its performance across
various applications (Narendra & Thathachar,2012)): (1) The clockwise policy for selecting the next
action; (2) The fixed depth value.

Hybrid Tsetlin Automaton. Gholami et al. (Gholami et al.|, |2023) proposed a solution to replace
the clockwise policy of choosing the next action in TA by integrating it with an RL agent. This
method is called the Hybrid Learning Automaton or HLA. In this method, an RL agent will learn

Under review as a conference paper at ICLR 2025

RL Agent
RA 1AA

{ Fusion Manager —

Environment

(a) ADTA with the RL agent modifying TA’s structure: (b) Architecture of ADTA
The RL agent’s action can increase depth (Green), main-

tain current depth (Yellow), or decrease depth (Red) of

TA.

Figure 2: An overview of ADTA

how to choose the next action in order to maximize the cumulative reward of HLA without changing
the structure of the TA, especially N. Despite the proposed model does not solve the fixed depth
problem, it can be considered as the state-of-the-art method in the TA field.

For a deeper exploration of the LA family and its position within the realm of model-free reinforce-
ment learning, please refer to Sections Appendix [B]and Appendix [C]

2 ADAPTIVE DEPTH TSETLIN AUTOMATON

In this section, we introduce two key quantities: (1) N, the depth of the ADTA, representing the
number of nodes in each action of the ADTA; (2) Transition, denoted by —, illustrating how the
ADTA moves from one node to another. There are four types of transitions: (i) ¢ ;) — 9 ;1)
indicates a traverse to deeper nodes due to a reward; (ii) ¢(; ;) — @(; j+1) indicates a traverse from
deeper nodes to outer nodes due to a penalty; (iii) ¢ y) — @11,v) indicates a traverse from one
action to the next; (iv) @ 1) — (1) or @;2) — @ 1) indicates depth traversal. For instance, in
Figure 2a] the TA of ADTA has three actions with a depth (N) of three. Considering the transitions
in (3): transition (1) is of type (i); transitions (2) and (3) are of type (iv); transitions (4) and (5) are
of type (ii); and transition (6) is of type (iii).

(1) (2 (3) 4) (5) (6)
033) — 032 — 96,1 — 93,1) — 932 — 933 — D43 (3)

Based on these considerations, we propose an adaptive TA algorithm called ADTA. The ADTA
comprises three units (Figure |7_5|): (i) TA, serving as the foundation of ADTA; (ii) an RL agent
tasked with controlling the depth of the TA; and (iii) Fusion Manager, which acts as the coordinator
between the TA and the RL agent to set an appropriate depth.

TA. This unit operates similarly to the Tsetlin Automaton, as described in detail in Section[T.2} It
selects action Ar based on the current node (¢; ;) and communicates this choice to the Fusion
Manager unit. In response to its selected action, it receives Rt € {0,1}.

RL Agent. This unit comprises an RL agent with three actions: 'Grow',/ Stop', Shrink’. Choosing
the 'Grow’ action leads to N <— N + 1, while selecting "Stop’ maintains N constant, and opting for
"Shrink’ yields to N <— N — 1. The Fusion Manager unit evaluates the selected depth and provides

Under review as a conference paper at ICLR 2025

Algorithm 1 ADTA Learning Algorithm
Notation: TA with K actions and N nodes, the RL Agent

1: Begin

2: for all episodes do

3: Play Ar € {1,...,K} of the TA through A € {1,...,K}
4. Observe R € {0,1} from the environment
5: Compute Ry € {0,1} for TA

6: Observe Action Traverse (¢ n) — @(i+1.n))
7: if Action Traverse then

8: Activate the RL agent

9: Compute R4 € [0,1] using

10: Observe the last value of N

11: Play A4 € {'Grow') Stop', Shrink'}
12: Play U pdate_Structure with new N
13: end if

14: end for

15: End

reward or penalty feedback via R4 € [0, 1] using ().

Number of Depth Transitions in i'* Action

4)

RRr Agent = S—— .
sen Total Number of Transitions in i'h Action

Fusion Manager. This unit coordinates the collaboration between the TA and the RL agent. In each
epoch, it receives A7 from the TA unit, which it then designates as the final action of the ADTA
(A in Figure 2b). The environment responds to this action in the form of R € {0,1}. Initially, the
Fusion Manager relays this response to the TA unit, prompting the TA to transition to a new node. If
this transition changes the selected action, N is transmitted to the Fusion Manager, which computes
R4. Subsequently, it awaits the RL agent unit to receive the updated N value, triggering a structural
adjustment in the TA (Update_Structure in Figure [2b)).

With the above definitions and explanations, we are now ready to summarize ADTA in Algorithm
Moreover, to provide a visual representation, Figure [2a] illustrates a ADTA with initially four
actions and two nodes per action (Without considering dotted nodes at first). This configuration
corresponds to TA with K =4 and N = 2, where action 1 is chosen (highlighted in blue). In the
event of an unfavorable response, the ADTA needs to rotate clockwise and select action 2. However,
prior to that, the RL agent determines the appropriate depth for ADTA. If the RL agent opts for
’Grow’, the number of states per action will increase by one, transforming ADTA with N = 2 into
ADTA with N = 3 (indicated by the green state in Figure [2a). Conversely, selecting *Shrink” by
the RL agent will change ADTA with N = 2 to ADTA with N = 1 (represented by the red state in
Figure[2a)). Lastly, choosing *Stop’ will maintain the existing structure (depicted by the yellow state
in Figure[2a). For clearer illustration, numerical examples are provided in Section D]

In the subsequent sections, we conduct a theoretical analysis of our proposed learning algorithm.
In Section we partition the ADTA’s environment into internal, relating to the RL agent, and
external, concerning the TA. Section [2.2] outlines the necessary definitions. We explore the theoret-
ical foundation for determining the convergence point of the RL agent and analyzing the internal
environment in Section Lastly, we prove the learning capability of ADTA through theoretical
analysis of the external environment in Section [2.4]

2.1 ENVIRONMENT SEPARATION

The ADTA integrates two distinct RL agents: the TA and an RL agent with three actions. To assess
its learning capacity, we conduct a theoretical analysis in two discrete environments, termed as
internal and external (as illustrated in Figure [3). By going deeper into the internal environment, we
aim to identify the RL agent’s convergence point using Lyapunov stability theorem. This insight
enables the evaluation of TA’s learning capability after determining the appropriate depth through
Markov analysis. It’s worth noting that we assume ADTA has two actions and an initial depth of N.

2.2 REQUIRED DEFINITIONS

This section has been dedicated to introducing some prerequisite definitions of the proof. All of
these definitions are related to the concept of learning ability in the Tsetlin Automaton.

Under review as a conference paper at ICLR 2025

External
o= P Lo el
- Environment Seel

, ADTA

£~

Clockwise
Dz

. (> T 1 ’
) {J i ’
. > O 1
22 ’
. a4 A,L _ Internal 'I
. -7 7|~ ~ , Environment
RL Agent - A
’
’

.
.
‘~
~ Gm”‘—»‘ ‘mu\ Grow Stop Shrink 6’3,2\ ‘ &
S e

- Y
S _l--

N

Figure 3: Separation of external and internal environment from each other in ADTA

Definition 1. M(n) is defined as the average penalty of a Tsetlin Automaton with K actions and
action probability p(n) in a stationary environment. The environment provides responses of R(n) €

{0,1} in the n'" iteration, where a response of 0 indicates a penalty and 1 indicates a reward. The
penalty probabilities are constant and denoted as {c1,c3,...,cx }. The M(n) is calculated as follows:
&)

M(n) = E[R(n)|p(n)]

PJR(n)=0/A(n) =a] PJA(n)=a)

Probability of each action

o

1

i
Constant value equals to c;

K
M(n) = ; cipi(n) (6)

Definition 2. The Pure Chance Automaton (PCA) is an automaton in which each action is chosen
with equal probability. The action probability vector p(n) for a PCA with K actions is defined as

follows:
ie{laza'”aK} (7)

Definition 3. For a pure chance automaton with K actions, M(n) becomes a constant parameter

denoted as My, defined by:
®)

1 K
Mo=-Y ¢
0 Ki=ZICl

This value equals %(cl + ¢2) for a pure chance automaton with two actions.

Definition 4. A Tsetlin Automaton is capable to learn if
lim E[M(n)] < My ©))
n—oo

2.3 INTERNAL ENVIRONMENT ANALYSIS

Firstly, we start our analysis by introducing the concept of the internal environment in which the RL
agent interacts with the TA. Then, we aim to find the convergence point of the RL agent at which

the appropriate depth for TA is chosen.

Under review as a conference paper at ICLR 2025

Definition 5. The internal environment is defined as the environment in which the RL agent interacts
with the TA by switching from the current action to a new action. This process continues as the agent
makes decisions about the new depth of the TA. The internal environment of the RL agent with three
actions is defined as follows:

Cin = {Cinthrow; Cint—Stop CinffShrirzk} (10)

Additionally, each item (for instance j'" item) in Ciy; is a function:

Cimfj(n) :f(nvcext;T7N) (11)

In the above function, n denotes the iteration number, C.; denotes an external environment, T
denotes the number of transitions (depth and total transitions in the i'* action), and N denotes the
depth of the Tsetlin Automaton in the current iteration.

Assumption 1. Let A be a threshold according to the properties of the internal environment in
Definition[3] Then, for all n > A, the internal environment turns into an environment with negligible
changes in the penalty probability. These changes can be expressed as follows:

A, cin—j(n+1)—ciu—j(n)| =0 Vn>A (12)
Lemma 1. Let A exists for the internal environment, then for n > A, the internal environment can

be a stationary environment in which the penalty set will be defined as follows:

Cine = {Winr—Gmw; VYint—Stop l//intfshrink} (13)

Proof. According to the assumption [I] since n > A, thus n exceeds the defined boundary criteria.
This leads to the assumption that the internal environment has turned into a stationary environment.
Therefore, we can consider the penalty probability of each RL agent’s action equal to the y; constant
value. As we know before from definition[3] the penalty set is compromised of three values that will
be replaced by y; constants named Win—Grow> Wint—Srop> a0d Wins—Shrink-

O

Since it is proved that the internal environment has turned to the stationary environment, we can
claim that the impact of the internal environment on the RL agent is independent of the iteration
number. Therefore, the RL agent can be analyzed as a Markov process. Also, we will assume that
the internal environment has an absorbing state.

Definition 6. The state space of Markov process for the RL agent is defined to be:

Q= {P | [pGrowapStompShrink]aO < pGrow <1,0< Dstop < 1
0< PShrink < 17PGr0W +pSt0p + PShrink = 1} (14)

Definition 7. ' state of a Markov process over Q state space is called absorbing if it is impossible
to leave it. Actually from n > ng in which nq is an arbitrary instance of time, the probability of i'"
state is 1. Consequently, the probability vector will converge to [0, 1,0] unit vector.

Assumption 2. Let the internal environment be a stationary environment, then there exists n* such
that for n > n* > A, Wiy —stop will be 0.

Definition 8. Consider a discrete-time system with the following definition:
x(n+1) = f(x(n)) (15)

Here, x and f are vectors, f(0) =0, and x # 0. Suppose a continuous scalar function V (x) exists
that satisfies the following conditions:

* V(x)>0forallx#0

. A‘(/(()))< 0 for all x # 0, where AV (x(n+1)) = V(x(n+1)) —V(x(n)) = V(f(x(n))) —

|4
« V(0)=0

Under review as a conference paper at ICLR 2025

* V(x) = oo if [|x]| — e

Then, V(x) is a Lyapunov function, and the system is stable asymptotically around x = 0.
Definition 9. The function in the definition[8)is said to be contraction if:

If @I <[] & f(0)=0 (16)

Given a non-zero set of values x and a specific norm, the system described above is stable asymp-
totically. Furthermore, the Lyapunov function of this system is given by:

V(x) = ||| (17)

Lemma 2. Assume that the internal environment is a stationary environment which is defined in the
assumption 2] then the RL agent will converge to the 'Stop’ action.

Proof. For this proof, we consider VASLA (detailed definition in Appendix [C.2)). However, since
our model is generalizable, other forms of reinforcement learning agents such as multi-armed bandits
and Q-learning can also be applied. The comprehensive proof is provided in Appendix [E.1] O

Lemma 3. Ifthe RL agent, using the defined Rgy agens, converges to the unit vector [0, 1,0] (indicat-
ing 0 probability for both "Grow’ and ’Shrink’ actions, and full probability for the 'Stop’ action),
the entropy will approach O.

Proof. This lemma has been proved through the definition of entropy. See Appendix [

Remark 1. Crucially, the RL agent’s convergence to the ’Stop’ action signifies the discovery of the
appropriate TA depth, indicated as N.

2.4 EXTERNAL ENVIRONMENT ANALYSIS

Before beginning the analysis of the external environment, we should wrap up what has been done so
far. We know that n > n* > A, as a result, the RL agent converges to the *Stop’ action (Assumption
and Lemma . On the other hand, this convergence leads to the choosing the constant depth N for
the TA (Remark[T)).

Definition 10. External environment is an outer environment with which the TA will interact. The
following set of penalty constants, which have a constant value between 0 and I for actions a; to
ag, represents the external environment.

Coxt = {Cextflacextflv--wcextfl(} (18)

Proposition 1. It is obvious that the probability of being rewarded (d) is the complement of the
penalty probability (c). Hence, dey—j =1 — Coxt—j.

Theorem 1. Ifn > n* > A and the RL agent, using the defined Ry, agens, has converged to the *Stop’
action, then the ADTA, with two actions and a constant depth of N, will be able to learn.

Proof. To prove this theorem, we leverage the steady-state analysis of the Markov chain associated
with the transition matrix of the ADTA. This approach is particularly effective when the ADTA
reaches a stable depth N, allowing us to apply steady-state Markov analysis. For a detailed explana-
tion of the proof, see Appendix [E.3] O

3 EXPERIMENTS

We present numerical simulations to complement and validate our theoretical findings, comparing
the ADTA with state-of-the-art methods in the field of TA. We explore three distinct environments
representative of many real-world scenarios, including both stationary and non-stationary settings
(see Appendix Section [F). Synthetic data from stationary environments is used to test our learning
algorithm from both internal and external perspectives. Additionally, we evaluate ADTA with var-
ious RL agents in Appendix Section |G} To further demonstrate ADTA’s practical effectiveness, we
apply it to two real-world domains: the dropout problem in deep neural networks and blockchain
systems. The detailed results of these applications are provided in Appendix [H|and[I] respectively.

Under review as a conference paper at ICLR 2025

Depth(N)

0 2000 4000 6000 8000 10000 0 50 100 150 200
Iteration RL Agent Activated Times

(a) Depth of the ADTA (b) Entropy of the RL agent

o 200 a00 600 800 1000 [200 a00 600 800 1000 o 200 a00 600 800 1000
Iteration Iteration Iteration

(c) Cumulative Reward (N=1) (d) Cumulative Reward (N=2) (e) Cumulative Reward (N=3)

° 200 a00 600 800 1000 o 200 a00 600 800 1000 o 200 a00
Iteration Iteration Iteration

600 800 1000

(f) Cumulative Regret (N=1) (g) Cumulative Regret (N=2) (h) Cumulative Regret (N=3)

Figure 4: Experimental results of the ADTA considering both internal and external environments

3.1 INTERNAL ENVIRONMENT

To explore how the RL agent sets the depth of ADTA, we designed a synthetic environment where
we deployed VASLA as the RL agent (detailed explanation in Appendix [C.2)). This experiment
was conducted 10000 times with initial values of N = 1. Figure [4d|illustrates the exploration and
exploitation of the RL agent in finding an appropriate depth. As per Assumptions [T] and 2] around
iteration 6000, the RL agent identifies n* and A (Assumptions [I] and [2), indicating convergence to
the *Stop’ action (Lemma [2)) and starting point for exploitation. The probability vector of the RL
agent is [0.10,0.82,0.08]. Notably, as suggested by Remark the RL agent identifies N = 3. This
behavior aligns with our theoretical findings in Section[2.3] Finally, Figuredb]illustrates the entropy
of the RL agent throughout 10000 iterations of ADTA, with the RL agent activated approximately
200 times for exploration purposes. As exploration increases, the entropy decreases until it reaches
zero, confirming its decline as described in Lemma 3]

3.2 EXTERNAL ENVIRONMENT

This experiment validates our theoretical findings from Section[2.4]by comparing our approach with
a Pure Chance Automaton (PCA, Definition [2) and benchmarking it against the base TA and HLA,
which is considered state-of-the-art. The presented results are averages of 20 runs, each with 1000
iterations, using a relatively high number of actions (K = 50) and initial N values set to 1, 2, and 3,
respectively. In the environment, one action is randomly dominant, with its probability drawn from a

Under review as a conference paper at ICLR 2025

Normal distribution .#"(0.8,0.05), while the other actions are drawn from .4"(0.05,0.02). Through
comprehensive evaluation, a depth of three is found to be optimal for this experiment. Figures
to[dh]demonstrate that ADTA outperforms PCA in terms of both cumulative reward and cumulative
regret, supporting our theoretical conclusions in Theorem [} Additionally, at N = 1 and N =2
(Figures and Ag), TA and HLA exhibit excessive exploration due to their fixed depths,
while ADTA adapts dynamically to N = 3, thereby avoiding over-exploration. As shown in Figures
and [h] since N = 3 represents the appropriate depth, all three learning agents perform similarly
at this level.

4 DISCUSSION

We consider the depth parameter, N, in the TA to develop a new learning agent, ADTA, capable of
adapting to a wide range of environments, including both stationary and non-stationary scenarios.
The ADTA can be analyzed from multiple perspectives, as outlined below.

Regarding the number of iterations, the ADTA inherently requires more iterations compared to
standard TA due to its adaptive mechanism designed to balance exploration and exploitation. Unlike
TA, which operates with a fixed depth and may continue doing so even when inappropriate, the
ADTA dynamically adjusts its depth, reducing the risk of suboptimal performance.

As demonstrated in our experiments, ADTA’s performance is particularly prominent at lower depths.
An inappropriate depth setting leads to excessive exploration, causing the learning agent to receive
fewer rewards. However, ADTA’s integrated reinforcement learning mechanism effectively tunes
the depth, allowing the agent to converge on the appropriate depth value. At higher depths, the per-
formance gap between ADTA and other learning automaton agents narrows, as the system naturally
approaches a near-optimal depth configuration.

Our approach leverages a large number of actions to showcase the scalability of ADTA, setting it
apart from traditional learning agents within the learning automaton family. This highlights ADTA’s
ability to adapt to more complex and dynamic environments effectively.

The inclusion of a reinforcement learning agent, such as VASLA or multi-armed bandits, introduces
minimal structural changes to the TA, requiring only the addition of a vector to track the probabilities
for *’Grow’, ’Stop’, and ’Shrink’ actions.

The model is highly flexible in terms of RL agent selection. Multiple RL agents, including multi-
armed bandits and Q-learning, can be utilized as depth controllers. However, employing these agents
may introduce additional parameters, such as A; and A, in VASLA or the € parameter in the €-greedy
multi-armed bandit, adding a layer of complexity to the learning process.

5 CONCLUSION

In this paper, we introduce the ADTA as a solution to the explore-exploit dilemma inherent in tradi-
tional TA approaches. This dilemma arises from the challenge of selecting an optimal depth for the
TA. The ADTA addresses this issue by autonomously adjusting its depth in unknown environments
through integration with an RL agent. Leveraging Lyapunov stability theorem and Markov chain
processes, we investigate ADTA’s learning capabilities. Our comprehensive evaluations consistently
demonstrate ADTA’s superiority over traditional TA methods and state-of-the-art techniques like
HLA. Interesting future research directions include providing stronger proof for ADTA’s effective-
ness in complex scenarios, exploring the integration of ADTA with HLA to jointly address depth
and action selection policies, and investigating asymmetric depth adjustments for the ADTA.

REFERENCES

K Darshana Abeyrathna, Ole-Christoffer Granmo, Rishad Shafik, Alex Yakovlev, Adrian Wheel-
don, Jie Lei, and Morten Goodwin. A novel multi-step finite-state automaton for arbitrarily de-
terministic tsetlin machine learning. In International Conference on Innovative Techniques and
Applications of Artificial Intelligence, pp. 108—122. Springer, 2020.

10

Under review as a conference paper at ICLR 2025

K Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. Extending the tsetlin ma-
chine with integer-weighted clauses for increased interpretability. IEEE Access, 9:8233-8248,
2021a.

Kuruge Darshana Abeyrathna, Bimal Bhattarai, Morten Goodwin, Saeed Rahimi Gorji, Ole-
Christoffer Granmo, Lei Jiao, Rupsa Saha, and Rohan K Yadav. Massively parallel and asyn-
chronous tsetlin machine architecture supporting almost constant-time scaling. In International
Conference on Machine Learning, pp. 10-20. PMLR, 2021b.

Sanae Amani and Christos Thrampoulidis. Ucb-based algorithms for multinomial logistic regression
bandits. Advances in Neural Information Processing Systems, 34:2913-2924, 2021.

Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On bitcoin and red balloons. In
Proceedings of the 13th ACM conference on electronic commerce, pp. 5673, 2012.

Mohamed-Bachir Belaid, Jivitesh Sharma, Lei Jiao, Ole-Christoffer Granmo, Per-Arne Andersen,
and Anis Yazidi. Generalized convergence analysis of tsetlin machines: A probabilistic approach
to concept learning. arXiv preprint arXiv:2310.02005, 2023.

Bimal Bhattarai, Ole-Christoffer Granmo, and Lei Jiao. Convtexttm: An explainable convolutional
tsetlin machine framework for text classification. In Proceedings of the Thirteenth Language
Resources and Evaluation Conference, pp. 3761-3770, 2022.

Bimal Bhattarai, Ole-Christoffer Granmo, Lei Jiao, Rohan Yadav, and Jivitesh Sharma.
Tsetlin machine embedding: Representing words using logical expressions. arXiv preprint
arXiv:2301.00709, 2023.

Sinan Calisir and Meltem Kurt Pehlivanoglu. Model-free reinforcement learning algorithms: A
survey. In 2019 27th signal processing and communications applications conference (SIU), pp.
1-4. IEEE, 2019.

K Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and Morten Goodwin. The
regression tsetlin machine: a novel approach to interpretable nonlinear regression. Philosophical
Transactions of the Royal Society A, 378(2164):20190165, 2020.

Gangan Elena, Kudus Milos, and Ilyushin Eugene. Survey of multiarmed bandit algorithms applied
to recommendation systems. International Journal of Open Information Technologies, 9(4):12—
27, 2021.

Ittay Eyal. The miner’s dilemma. In 2015 IEEE symposium on security and privacy, pp. 89—103.
IEEE, 2015.

Ittay Eyal and Emin Giin Sirer. Majority is not enough: Bitcoin mining is vulnerable. Communica-
tions of the ACM, 61(7):95-102, 2018.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. Advances in neural information pro-
cessing systems, 28, 2015.

Sara Ghanavati, Jemal Abawajy, and Davood Izadi. Automata-based dynamic fault tolerant task
scheduling approach in fog computing. IEEE Transactions on Emerging Topics in Computing, 10
(1):488-499, 2020.

Mina Ghavipour and Mohammad Reza Meybodi. A streaming sampling algorithm for social activity
networks using fixed structure learning automata. Applied Intelligence, 48:1054—1081, 2018.

Saber Gholami, Ali Mohammad Saghiri, SM Vahidipour, and MR Meybodi. Hla: a novel hybrid
model based on fixed structure and variable structure learning automata. Journal of Experimental
& Theoretical Artificial Intelligence, 35(2):231-256, 2023.

Sondre Glimsdal and Ole-Christoffer Granmo. Coalesced multi-output tsetlin machines with clause
sharing. arXiv preprint arXiv:2108.07594, 2021.

11

Under review as a conference paper at ICLR 2025

Ole-Christoffer Granmo. The tsetlin machine—a game theoretic bandit driven approach to optimal
pattern recognition with propositional logic. arXiv preprint arXiv:1804.01508, 2018.

Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian W Omlin, and
Geir Thore Berge. The convolutional tsetlin machine. arXiv preprint arXiv:1905.09688, 2019.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622, 2021.

Safwan Hossain, Evi Micha, and Nisarg Shah. Fair algorithms for multi-agent multi-armed bandits.
Advances in Neural Information Processing Systems, 34:24005-24017, 2021.

Amirhossein Jamalian and Shamim Mehrabi. Emotional learning automaton. In 2022 IEEE 21st
International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 99—
105. IEEE, 2022.

Tianyuan Jin, Pan Xu, Xiaokui Xiao, and Anima Anandkumar. Finite-time regret of thompson
sampling algorithms for exponential family multi-armed bandits. Advances in Neural Information
Processing Systems, 35:38475-38487, 2022.

Anand Kalvit and Assaf Zeevi. A closer look at the worst-case behavior of multi-armed bandit
algorithms. Advances in Neural Information Processing Systems, 34:8807-8819, 2021.

Mohammad R Khojasteh and Mohammad R Meybodi. Using learning automata in cooperation
among agents in a team. In 2005 portuguese conference on artificial intelligence, pp. 306-312.
IEEE, 2005.

Jonas M Kiibler, Vincent Stimper, Simon Buchholz, Krikamol Muandet, and Bernhard Scholkopf.
Automl two-sample test. Advances in Neural Information Processing Systems, 35:15929—-15941,
2022.

Tor Lattimore and Csaba Szepesvari. Bandit algorithms. Cambridge University Press, 2020.

Yongshuai Liu, Avishai Halev, and Xin Liu. Policy learning with constraints in model-free reinforce-
ment learning: A survey. In The 30th International Joint Conference on Artificial Intelligence
(IJCAI), 2021.

Mohammad Reza Meybodi and Hamid Beigy. A note on learning automata-based schemes for
adaptation of bp parameters. Neurocomputing, 48(1-4):957-974, 2002.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1-118,
2023.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Satoshi Nakamoto, 2008.

Kumpati S Narendra and Mandayam AL Thathachar. Learning automata: an introduction. Courier
corporation, 2012.

Ali Nikhalat-Jahromi, Ali Mohammad Saghiri, and Mohammad Reza Meybodi. Nik defense: An
artificial intelligence based defense mechanism against selfish mining in bitcoin. arXiv preprint
arXiv:2301.11463, 2023.

Ali Nikhalat-Jahromi, Ali Saghiri, and Mohammad Meybodi. Q-defense: When g-learning comes
to help proof-of-work against the selfish mining attack. In Proceedings of the 16th International
Conference on Agents and Artificial Intelligence - Volume 1: ICAART, pp. 37-46. INSTICC,
SciTePress, 2024. ISBN 978-989-758-680-4. doi: 10.5220/0012378600003636.

B John Oommen. Stochastic searching on the line and its applications to parameter learning in non-
linear optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
27(4):733-739, 1997.

B. John Oommen and Daniel C. Y. Ma. Deterministic learning automata solutions to the equiparti-
tioning problem. IEEE Transactions on Computers, 37(1):2-13, 1988.

12

Under review as a conference paper at ICLR 2025

B John Oommen, Sudip Misra, and Ole-Christoffer Granmo. Routing bandwidth-guaranteed paths
in mpls traffic engineering: A multiple race track learning approach. [EEE Transactions on
Computers, 56(7):959-976, 2007.

Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ahmady Phoulady. The
weighted tsetlin machine: compressed representations with weighted clauses. arXiv preprint
arXiv:1911.12607, 2019.

Jorge Ramirez, Wen Yu, and Adolfo Perrusquia. Model-free reinforcement learning from expert
demonstrations: a survey. Artificial Intelligence Review, pp. 1-29, 2022.

Giorgia Ramponi, Alberto Maria Metelli, Alessandro Concetti, and Marcello Restelli. Learning
in non-cooperative configurable markov decision processes. Advances in Neural Information
Processing Systems, 34:22808-22821, 2021.

Alireza Rezvanian, Ali Mohammad Saghiri, Seyed Mehdi Vahidipour, Mehdi Esnaashari, and Mo-
hammad Reza Meybodi. Recent advances in learning automata, volume 754. Springer, 2018.

Fatemeh Safara, Alireza Souri, and Sara Fathipour Deiman. Super peer selection strategy in peer-
to-peer networks based on learning automata. International Journal of Communication Systems,
33(6):e4296, 2020.

Raihan Seraj, Jivitesh Sharma, and Ole-Christoffer Granmo. Tsetlin machine for solving contextual
bandit problems. Advances in Neural Information Processing Systems, 35:30194-30205, 2022.

Jivitesh Sharma, Rohan Yadav, Ole-Christoffer Granmo, and Lei Jiao. Drop clause: Enhancing per-
formance, robustness and pattern recognition capabilities of the tsetlin machine. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 13547—-13555, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

MAL Thathachar and Bhaskar R Harita. Learning automata with changing number of actions. IEEE
transactions on systems, man, and cybernetics, 17(6):1095-1100, 1987.

Mandayam AL Thathachar and Pidaparty S Sastry. Networks of learning automata: Techniques for
online stochastic optimization. Springer Science & Business Media, 2003.

Michael Lvovitch Tsetlin. On behaviour of finite automata in random medium. Avtomat. i Telemekh,
22(10):1345-1354, 1961.

Brian Tung and Leonard Kleinrock. Using finite state automata to produce self-optimization and
self-control. IEEE transactions on parallel and distributed systems, 7(4):439-448, 1996.

Taotao Wang, Soung Chang Liew, and Shengli Zhang. When blockchain meets ai: Optimal mining
strategy achieved by machine learning. International Journal of Intelligent Systems, 36(5):2183—
2207, 2021.

Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping Wang, Yonggang
Wen, and Dong In Kim. A survey on consensus mechanisms and mining strategy management in
blockchain networks. leee Access, 7:22328-22370, 2019.

Anis Yazidi and B John Oommen. On the analysis of a random walk-jump chain with tree-based
transitions and its applications to faulty dichotomous search. Sequential Analysis, 37(1):31-46,
2018.

Anis Yazidi, Nourredine Bouhmala, and Morten Goodwin. A team of pursuit learning automata for
solving deterministic optimization problems. Applied Intelligence, 50(9):2916-2931, 2020.

Fengji Yi, Wenlong Fu, and Huan Liang. Model-based reinforcement learning: A survey. 2018.

13

Under review as a conference paper at ICLR 2025

Hui Yuan, Chengzhuo Ni, Huazheng Wang, Xuezhou Zhang, Le Cong, Csaba Szepesvari, and
Mengdi Wang. Bandit theory and thompson sampling-guided directed evolution for sequence
optimization. Advances in Neural Information Processing Systems, 35:38291-38304, 2022.

JunQi Zhang and MengChu Zhou. Learning Automata and Their Applications to Intelligent Systems.
John Wiley & Sons, 2023.

Junqgi Zhang, Yuheng Wang, Cheng Wang, and Mengchu Zhou. Symmetrical hierarchical stochastic
searching on the line in informative and deceptive environments. IEEE transactions on cybernet-
ics, 47(3):626-635, 2016.

Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh Agarwal, and Wen Sun.
Efficient reinforcement learning in block mdps: A model-free representation learning approach.
In International Conference on Machine Learning, pp. 26517-26547. PMLR, 2022.

14

Under review as a conference paper at ICLR 2025

A NOTATIONS

Table 1: Table of notations

Notation Description
Main Text and ADTA’s Proof (Section|E}

n The iteration number
K The number of actions
N The depth or the number nodes in each action of TA
0.j) The j” node of TA’s i/ action
D) = Plad) The transition from node ¢; ;) to node ¢, 1)
A The action set of ADTA
R The reward of ADTA from the environment
Ar The chosen action of TA in ADTA
Ry The reward of TA in ADTA
Ax The chosen action of the RL agent in ADTA
Ry The reward of the RL agent from the environment
M(n) The average penalty of the TA
ci The penalty of environment to the i action
A A threshold in which the property of the internal environment can be analyzed as a stationary environment
73 The constant value of penalty in the internal environment for n > A
Q The state space of a Markov process
n* The convergence point of the internal environment to the *Stop’ action
V(x) The Lyapunov function
p(n) The probability vector of a learning automaton
M The reward rate of VSLA
A The penalty rate of inner VSLA
wi(n) The expected value of the probability for each action
pij(n) cov(pi(n), pj(n))

Non-stationary Environments (Sectionlﬂ

E; Each stationary part of a non-stationary environment
T The transition matrix of a Markov chain
R The reward matrix of a Markov chain
4 The increment value of the penalty probability in the State-dependent environment
X The decrement value of the penalty probability in the State-dependent environment
Application : Blockchain Security (Sectionm
L Length of a branch in a fork
w Weight of a branch in a fork
[Fail-safe parameter
Omin The minimum value of the fail-safe parameter
Omax The maximum value of the fail-safe parameter
T Decision-making time
0 Time Window parameter

B ADDITIONAL RELATED WORKS

Reinforcement learning, a pivotal paradigm in machine learning, can be categorized into two main
types (Sutton & Bartol [2018): model-based (Moerland et al.| 2023} |Yi et al. 2018)) and model-
free (Calisir & Pehlivanoglu, [2019; Ramirez et al., 2022; [Liu et al.| [2021)) approaches (Figure E])
In model-based RL, agents construct an internal model of the environment to plan and optimize
actions. In contrast, model-free RL involves agents learning directly from interactions with the
environment, refining actions through trial-and-error. The choice between these approaches depends
on task characteristics, with model-based methods suited for environments where a reliable model is
available, and model-free methods excelling in complex and uncertain environments. In this paper,
we chose learning automaton from the model-free category.

15

Under review as a conference paper at ICLR 2025

Reinforcement
Learning

‘ Model-Free ‘ Model-Based ‘

Multi-armed ‘ Learn the ‘ ‘ Given the

o i
‘ :fearning ‘ Bandit Model Model

Figure 5: The taxonomy of reinforcement learning algorithms based on the model

Fixed Structure. The first class of the learning automaton family is fixed structure. The domain of
fixed structure learning automaton (Rezvanian et al., 2018} [Zhang & Zhoul 2023)) is expansive, en-
compassing various branches such as Tsetlin (Lgy x) (Granmo, 2018} |Seraj et al.,[2022; |Abeyrathna
et al.,|2021b), Krinsky (Meybodi & Beigy,|2002; Jamalian & Mehrabi,[2022)), and Krylov (Khojasteh
& Meybodi, 2005). Each learning automaton is dedicated to specific decision-making paradigms,
aligning with diverse cognitive abilities observed in human behavior. While the Tsetlin Automaton
incorporates rewards and penalties, other models explore cognitive aspects such as impulsivity and
greed.

Variable Structure. Variable Structure Learning Automaton (Narendra & Thathachar, 2012} Yazidi
et al., [2020; [Safara et al.| [2020; (Ghanavati et al., [2020), belonging to the second class of learning
automaton, exhibits various types, with VSLA and VASLA being the most significant branches. In
VSLA, interaction with the surrounding environment updates a probability vector. VASLA, similar
to VSLA, differs in that, in certain situations, not all actions are accessible, resulting in a variable
number of actions based on the prevailing circumstances.

Hybrid Structure. Representing a notable departure from prior literature, Gholami et al. introduced
a significant modification to the TA (Gholami et al.| 2023) by combining the fixed structure and
variable structure families, thereby establishing the third class and the state-of-the-art family of
learning automaton. This alteration specifically targeted the optimization of action switching by
learning the best next action.

C MORE ABOUT VSLA FAMILY

In this section, we expand upon the concept of the variable structure family of learning automata, as
its utilization is integral to various sections of our paper.

C.1 VARIABLE STRUCTURE LEARNING AUTOMATON (VSLA)

Variable structure learning automaton (Narendra & Thathachar, |2012; |Yazidi et al.l 2020; Safara
et al., 2020; Ghanavati et al.,[2020) can be defined mathematically by a quintuple < A,R, P,A;,A, >,
where A = {aj,as,--- ,ax} denotes the finite action set from which the automaton can select the
intended action, R denotes the reward of the environment (R € [0, 1)), P = {p1,p2,-- -, pk} denotes
the action probability vector, such that p; is the probability of choosing the a; action (1 < i < K),
A1, and A, indicate the reward and penalty parameters that determine the amount of increase and
decrease of the action probabilities at epoch .

A1 and A, can have different values. Based on these values, the updating rule of the probability
vector can be categorized as follows:

e Lg_p: This updating scheme, which is called "linear reward-penalty,” comes from the
equality of the reward and penalty parameters (A; = A;). When both are the same, the
probability vector of the learning automaton increases or decreases at a monotonic rate.

16

Under review as a conference paper at ICLR 2025

* Lg_¢p: This updating scheme, which is called "linear reward-€ penalty,” leads to a much
greater value of the reward parameter in relation to the penalty parameter (4; >> A,).

* Lg_;: When there is no penalty in an updating scheme (0 < A; < 1,A; = 0), this updating
scheme is called "linear reward-Inaction.” The probability vector of the learning automaton
will not change upon receiving an unfavorable response from the environment.

e Lp_j: If the conducted probability vector in the learning automaton doesn’t change by
receiving the favorable action, this updating scheme is called linear penalty-Inaction”
(ll =0,0<)Q <1).

* Pure Chance: An updating scheme in which there is no penalty and reward parameter
(A1 = A3 = 0) is called ”Pure Chance.” In this updating scheme, the probability vector of
the automaton will not change in any conditions.

The automaton performs its chosen action on the environment at epoch . If the learning automaton
chooses its intended action (i = j), the probability vector will update using (19).

pi(n+1)=pi(n)+ 2 (1 =Rn))(1 - pi(n)) — LaR(n)pi(n) (19)

On the other hand, the probability vector for the other actions (i # j) that are not chosen will update
due to the (20).

A

pj(n+1)=p;(n) = A(1=R(n))p;(n) + R(n) (=7 = A2p;(n)) (20)

C.2 VARIABLE ACTION SET LEARNING AUTOMATON (VASLA)

Under some circumstances, the number of available actions of the learning automaton varies at each
instant. To overcome this constraint, a subset of the variable structure learning automaton called
the variable action set learning automaton [Thathachar & Harital (1987); Narendra & Thathachar
(2012) is defined. Like the variable structure, this automaton can be formulated by a quintu-
ple < A,R,P,A1,A; >, where A = {aj,az, - ,ax} denotes the finite action set from which the
automaton can select the intended action, R denotes the reward of the environment (R € [0, 1]),
P ={p1,p2, -+, Pk} denotes the action probability vector, such that p; is the probability of choos-
ing the g; action (1 <i < K), A1, and A, indicate the reward and penalty parameters that determine
the amount of increase and decrease of the action probabilities at epoch n. Various values for A; and
A, are defined in Section|C.1

At each epoch, the action subset A C A is available for the learning automaton to choose from. Let
Un)=Y,.c A(n)Pi(") present the sum of probabilities of the available actions in subset A. Before
choosing an action, the available action probability vector is scaled using the (21).

Pn)=L1 Va; 21)

If the learning automaton chooses its intended action (i = j), the probability vector will update using

22).

pi(n+1) = pi(n) + MR(n)(1 = pi(n)) = L2 (1 = R(n)) pi(n) (22)
Conversely, the probability vector for the other actions (i # j) that are not chosen will update due to

the (23).

pi(n+1) = pj(n) = iR(n)p;(n) +A2(1 = R(n))| — = p;(n)] (23)

K —

17

Under review as a conference paper at ICLR 2025

depth_counter =1
transition_counter = 1

depth_counter =0

transition_counter =0 g>

QS EEd GI=D (51 uouQ:CD

(a) Stage one of example (b) Stage two of example

depth_counter =1
transition_counter =2

(OROEEEICNC

Clockwise
depth_counter =1
transition_counter = 3

r=0

(c) Stage three of example (d) Stage four of example

Figure 6: Four stages of depth decrement

D NUMERICAL EXAMPLE

This section presents two numerical examples to illustrate the effectiveness of the proposed learning
automaton. In these examples, we consider an ADTA with four actions (K = 4) and a depth of
two (N = 2). The RL agent employed is an Lg_p VASLA, with A; = A; = 0.5. The first example
(Section [D.I)) demonstrates the depth decrement of the ADTA, while the second example (Section
[D-2) showcases its depth increment.

D.1 DEPTH DECREMENT

In this example, illustrated through four stages in Figure [6] after running the proposed learning
automaton for a certain period in the environment, the probability vector of the VASLA converges
to [0.3,0.3,0.4]. This indicates a 30% probability for the *Grow’ action, 30% for the *Stop’ action,
and 40% for the ’Shrink’ action. The resulting probability vector suggests that the ADTA is inclined
to reduce its depth.

Initially, let’s assume the ADTA switches its action to action number 2, positioning itself at node
¢(2,2), as depicted in Figure 6al It is important to note that two key variables, zransition_counter and
depth_counter, are reset to 0 at this starting point.

In the second stage, the ADTA performs action number 2. This action is successful, and the learning
automaton receives a reward from the environment. This reward affects both the transition_counter

18

Under review as a conference paper at ICLR 2025

and depth_counter variables. Since the reward causes the ADTA to move to the inner node ¢, 1,
and this transition is a depth transition, the depth_counter variable increases by one. Additionally,
because a transition occurs, the transition_counter also increases by one. This process is illustrated

in Figure [6b]

In the third stage, the ADTA performs action 2 again. Unlike the previous stage, the environment
deems this action unsuccessful, necessitating a penalty for the ADTA. As a result, the ADTA moves
backward to node ;). This transition is not a depth transition, so the depth_counter remains
unchanged. However, since a transition does occur, the transition_counter increases by one. Figure
[6c]illustrates the outcome of the third stage.

In the final stage, the ADTA performs action 2 once more. Similar to the previous stage, the chosen
action is unsuccessful, resulting in a penalty. Since the ADTA is at an outer node, it will switch its
action. According to the clockwise policy of the ADTA, it will select action 3 and move to the first
node of action 3. There are no transitions to a depth node at action 2, so the depth_counter remains
unchanged. However, the transition to new action will increase the transition_counter by one.

In the ADTA, changing the action triggers the activation of VASLA to update the depth of the inner
TA. Initially, the VASLA receives feedback regarding its previous depth selection. The feedback

R for VASLA is calculated as m%, indicating that the previous action of VASLA was
moderately effective. Subsequently, the VASLA uses this feedback to update its probability vector
for selecting the next action. In this instance, it opts for the *Shrink’ action to decrease the depth, as

depicted in Figure [6d] marking the final stage.

The process continues iteratively until the ADTA determines the appropriate depth that accommo-
dates both the environment and its evolving conditions.

D.2 DEPTH INCREMENT

In this example, which consists of three stages illustrated in Figure 7] the VASLA converges to the
probability vector [0.8,0.1,0.1], indicating an 80% probability for the *Grow’ action, and 10% each
for the ’Stop’ and *Shrink’ actions. As the probability vector shows, the VASLA tends to favor the
’Grow’ action.

At the first stage, the ADTA is positioned at node ¢4 ;) for the first time, initiating action 4, as de-
picted in Figure[7al Since this is the first encounter, both the transition_counter and depth_counter
variables are set to 0.

In the second stage, the ADTA performs action 2, which is rewarded by the environment. This
reward returns the ADTA to node ¢4 ;) once more. However, since this transition involves a depth
transition, both the transition_counter and depth_counter variables are incremented by one. This is

depicted in Figure

In the final stage, the ADTA performs action 2 again, but this time receives a penalty from the
environment. As a result, it should change its action. The transition from action 4 to action 1
triggers the VASLA, which then receives feedback regarding its prior depth selection. The feedback

R is calculated as —depti-counter=1_y56in0 this feedback, the VASLA updates its probability vector

transition_counter=?2

for selecting the next action, resulting in the new vector [0.66,0.17,0.17]. In this case, the VASLA
chooses the *Grow’ action, increasing the depth from 1 to 2, as shown in Figure[7c]

Additionally, since the ADTA was positioned at the edge node @4 1), it transitions to the next action
following the clockwise policy, moving to node ¢(; 7). As this transition does not involve a depth
change, the depth_counter remains unchanged, while the transition_counter is incremented by one.

E MISSING PROOFS

E.1 PROOF OF THE RL AGENT CONVERGENCE USING VASLA

Before exploring the proof, we highly recommend familiarizing yourself with the VSLA family, as
it is further explained in Section

19

Under review as a conference paper at ICLR 2025

Clockwise
depth_counter = 0
transition_counter = 0

Grow Stop Shrink

Clockwise
depth_counter =1
transition_counter = 1

Grow Stop Shrink

(a) Stage one of example

Clockwise

depth_counter =1
transition_counter =2

Grow Stop _Shrink

H

D2

D1

(c) Stage three of example

(b) Stage two of example

Figure 7: Three stages of depth increment

Proof. To demonstrate the convergence of VASLA to the desired action, we begin by considering
the general case where K actions are defined. Subsequently, we focus specifically on VASLA with
three actions. The proof initiates by examining the conditional expectation of selecting the desired

action (the i’ action) as expressed in (24).

K
E[pi(n+1)|pi(n)] = Y E[pi(n+1)|pi(n) NA(r) = aj]p;(n)

j=1

(24)

Looking at the main updating equations of VASLA and (23) and the conditional expectation value in (24)

will lead us to (23) as a piece-wise function.

[(1 = cin)pi ()] [pi(m) + 2 (1= ()] R(n) = LA() =
] T)pin)] R(n) = 0,A(n) = a

Elpin e Dlpin] = v (1=) (1= 2)pypitn) R(n) = 1,A() = ;
Y7 i (n)pj(m)pi(n) R(n) = 0,4(n) = a

20

(25)

Under review as a conference paper at ICLR 2025

Summation of the above conditional expected value expresses the desired one like ([26).

E[pi(n+1)|pi(n)]:[(I—Ci()pi(n))][pi(n) + A1 (1 = pi(n))] (26)
+ei(n)pi +Z (1—=cj(n))(1 = A1)pj(n)pi(n)
JFi
K
+Y cj(n)p;(n)pi(n)
J#i

Taking the expected value from both sides leads to (7).

E[pi(n+1)] =4 ch pi(m]+ (1 —ici(n))Elpi(n)] @27)

If E[pi(n)p;j(n)] is substituted with the corresponding covariance term, and for the sake of simplifi-
cation, cov(p;(n), pj(n)) = pij(n) and E[p;(n)] = p;(n), we will have (28).

Elpi(n+1) xlzc, 191 () + ()] + (1= Aaci(m) E [pi(m)] (28)

Now, it is time to be specific about the number of actions. In our VASLA model, we consider three
actions: 'Grow’, ’Stop’, and ’Shrink’. According to Lemma the penalty probabilities cGon (1),
Cstop(n), and csprink(n) converge to the constant values Win—Grow, Wini—Stop> and Wins—shrink T€Spec-
tively. Moreover, since Win—siop = 0, equations @]) and @) can be derived directly from the
general form of the conditional expected value.

HGrow (n + 1) = Yint—GrowPGrow,Grow (n) (29)

+A Vint—Grow HGrow (”)2 + A Vint—Shrink PGrow,Shrink (n)
+A Vint—Shrink MGrow (n),uShrink (n) + UGrow (I’l) (1 -M l//im—Grow)

HShrink (n + 1) =LA Yint—GrowPShrink,Grow (n) (30)
+A Vint—Grow HShrink (I’l) UGrow (I’l) +A Vint —Shrink PShrink Shrink (I’l)
+A Winthhrink.uShrink(n)z + Ushrink () (1 = A1 Wine—Shrink)
To apply the Lyapunov stability theorem and the contraction mapping theorem in definitions (§)) and
, € function is defined with input values of HGrow and Ugprink- To apply the deﬁmtlonl we should

prove that & (UGrow, Ushrink) 18 @ contraction using the absolute-value norm(L1 norm). This condition
is summarized in (31)) and

||§(“Grow“u5hrink)”1 < H.LLGrow(n)”l + H“Shrink(n)”l 31

| |5 (:uGrowa .u-Shrink)| |1 = UGrow (I’l) (1 - afl l/’int—Grow) (32)

+)~l Yint—Grow [mew,Grow (I’l) + HGrow (”)2 + pShrink,Grow (I’l)
+ Ushrink (n>l-LGrow (n)} + UShrink (n) (1-X4 lVint7Shrink)

+A Wint—Shrink [Pus,l,,-,,k (n),Shrink (I’l) + Ushrink (”) 2 + PGrow,Shrink (I’l)
+UGrow (n)“Shrink(n)]

21

Under review as a conference paper at ICLR 2025

dext2

Cext-2
/\}02»4;&‘}0:»4; ®zz /\}Qz,x)
Aext2

dext2

Figure 8: The transition among states in ADTA with 2 actions after the RL agent converges to the
’Stop’ action and N is chosen for each action

Furthermore, the inequality of (33) can be inferred from the expectation value properties.

Elpi(n)*]+ E[ui(n)u(n)] = Elpi(n)* + wi(n)p(n)] (33)
= Efui(n)(ti(n) + pj(n))] < E{pi(n)]

Thus, equality of & (Ugrow, Ushrink) turns into an inequality which is described in .

| |§ ("lGrOWa .uShrink)| |1 < UGrow (n)(l -)Ll Winthmw) (34)
+1 Yint—Grow MHGrow (l’l) + UShrink (n)(l - M lI/inthhrink)
+ll Wint —Shrink MShrink (I’l)
Finally, it is proved that:

||€ (.uGrowv .uShrink) | |1 < UGrow (l’l) + UShrink (I’l) (35)

As a result, we can claim that & (UGow, Ushrink) i @ contraction mapping function, and due to the
definitions[8]and[9] this function will converge to 0 approximately. On the other hand, since the sum
of all probabilities equals to 1, the expected value of the *Stop’ action will converge to 1. O

E.2 PROOF OF THE RL AGENT ENTROPY

Proof. By referring to definition of entropy (H), the entropy of the RL agent (Hgy agens) Will be
calculated as follows:

K
=—Y pilogpi (36)
i=1
Hgy, Agent = — (mew log pGrow + PStop log DPStop 1 PShrink log pShrink) 37
let lim pGrw=lim pgyipe =0 =
PGrow—0 PShrink=
Hpp Agent = lim - [pGrow log pGrow

pGrow‘)(]vahrink*)()

+(1 - (mew + pShrink)) IOg(l - (pGrow + pShrink))

+PShrink 108 PShrink) (38)
HRL agent =0 (39
O

E.3 PROOF OF LEARNING CAPABILITY
Proof. Now, if the learning ability of the TA is demonstrated, the learning capacity of ADTA will

also be established. To achieve this, the average penalty M(n) for the TA must be calculated. Fur-
thermore, based on Definitions [T to [] it is essential to determine the probability of each action.

22

Under review as a conference paper at ICLR 2025

Since the behavior of the TA can be represented using a Markov chain, we employ Markov analysis
in the following sections to compute the probability associated with each action.

Considering the transition matrix of the associated TA in Figure [§] we observe that it comprises
2N x 2N elements, as dictated by the memory size of 2N. Within this matrix, node transitions
resulting in a successful reward acquisition are denoted as d,y;, corresponding to the relevant action.
Conversely, if the transition does not lead to success, the element is labeled as c., based on the
action. If neither of these conditions apply, the element is set to 0.

dext -1 Cextl
dext 1 0 Cextl
0 d(/xt 1 0 Cext1
0 0 0 dext -1 . Cext—1
T= : . : . dext—1 0 . : . . : Cext—1
. . dexi—2 Cexi—2
dext -2 0 Cext—2
d(’xt -2 0 Cext—2
0 0 0 dext—2 . Cext—2
Cext—2 : . . . dext—2 0

Steady-state calculation of Markov chain with the mentioned transition matrix will yield to the M (n)
as follows:

M(n)=cip1+cap2

. N N . N N
1 (Cext—1 —dext—1 + 1 X(‘ext—Z —dext—2
c lel Coxt—1—dext—1 c szl Cext—2ext—2
M (n)=Cest= . et : _
¢ N_g4g N ¢ N_g4 N
- x(ext—1 ext—1)+ L (Cext—2 ext—2
Cort—1N Coxt—1—ext—1 Cor—oN Coxt—2~Aext—2

To establish TA’s learning capability with 2 actions and 2 x N states, we explore three scenarios
for M(n) based on cey—1 and cey—n values: 1) When coy—1 < Coy—2 < %, Coxt—1 < dey—1 and
Cext—2 < dexs—2, leading to lim,_, 1« M(n) reaching 0. Thus, ADTA’s M(n) is below My, indicat-
ing its learning capability. 2) For ¢y < % < Cext—2, limy,_, 1o M (n) converges to ¢y, which is less
than My, confirming ADTA’s learning ability. 3) In cases of coy—1 > %7cex,,2 > %, lim,,—, o M (n)
is determined by 46“'5;:;:1_253?:;:;””2, emphasizing the influence of ¢,y and c,_» values on
ADTA’s learning capability. O

F NON-STATIONARY ENVIRONMENTS EXPERIMENTS

In this section, we present additional synthetic experiments on more complex environments known
as non-stationary environments. In these environments, where the penalty probability c¢; changes
over time, fixed strategies used by learning automaton may become ineffective or result in frequent
penalties Narendra & Thathachar (2012). To succeed in such conditions, learning automaton must
demonstrate adaptability. Non-stationary environments can be analyzed by dividing them into time
intervals with constant penalty probabilities, resembling the process of learning in multiple random
environments. We focus on two types of non-stationary environments: Markovian switching and
State-dependent. In these cases, the learning automaton operates within a finite set of environments,
denoted as Ey, E,...,Ep Narendra & Thathachar| (2012). To maintain consistency with other sec-
tions of the paper that utilize learning automaton theory, we employ the VASLA as the reinforcement
learning agent.

F.1 MARKOVIAN SWITCHING ENVIRONMENT

In a Markovian switching environment, each environment E;; (1 < i < D) corresponds to a distinct
state of a Markov chain. If the chain is ergodic, the learning automaton interacting with this en-
vironment will occupy each state with a fixed probability, dictated by the asymptotic probability
distribution of the ergodic chain|Narendra & Thathachar| (2012); Thathachar & Sastry|(2003).

23

Under review as a conference paper at ICLR 2025

F.1.1

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 9: Four scenarios of Markovian switching environment

SIMPLE MARKOV CHAIN

These experiments consist of four distinct scenarios, each representing a unique Markovian switch-
ing environment governed by a two-state Markov chain. All scenarios are illustrated in Figure [9]
The scenarios include the following:

®

(i)

(iii)

(iv)

The transition from one state to another changes the action with the higher reward prob-
ability, as shown in Figure Dal The likelihood of remaining in the current state is greater
than transitioning between states. Steady-state analysis converts this environment into a
stationary one with action probabilities of [0.5,0.5].

Transitioning between states completely alters the action with the highest reward probabil-
ity, with a high likelihood of state changes (Figure Ob). Steady-state analysis converts this
environment into a stationary one with action probabilities of [0.45,0.54].

State transitions affect the reward probabilities, but the action with the highest reward prob-
ability remains unchanged. There is a high tendency to stay in the current state (Figure[9c).
Steady-state analysis converts this environment into a stationary one with action probabili-
ties of [0.75,0.24].

The action with the highest reward probability remains consistent across states, but state
transitions can affect the likelihood of receiving a reward for that action. Changing states is
relatively easy (Figure[9d). Steady-state analysis converts this environment into a stationary
one with action probabilities of [0.74,0.26].

In all four scenarios, common configurations were applied: the inner VASLA followed the Lg_;
model with A; = 0.01 and A, = 0; and the initial depth was set to 1, 2, 3, 5, or 7. The reported
results are based on 20 realizations, with each realization consisting of 10000 iterations.

The results in Table 2] demonstrate the superiority of the ADTA over the TA and HLA in most
experiments. This advantage is due to the adaptive nature of the ADTA in finding an appropriate
depth to balance exploration and exploitation. In the first two scenarios (i and ii), the environment
is random, so we don’t expect the learning automata to perform exceptionally well, as evidenced by
achieving around 5000 rewards out of 10000 rounds. However, this changes in scenarios iii and iv,

24

Under review as a conference paper at ICLR 2025

Table 2: The experimental results of a Simple Markov Chain with respect to cumulative reward

Model N=1 N=2 N=3 N=5 N=17
Scenario(i)

TA 4974.15+87.45 4977.35+£83.78 4985.55+89.01 4997.8+74.18 4972.55£65.35

HIA 4982.05+67.43 4997.85+89.20 4996.6+71.97 5001.45+111.68 5008.2+90.50

ADTA 5016.7+114.44 5008.4+98.83 5039.45+107.0 5030.95+78.46 5007.8+106.47
Scenario(ii)

TA 4572.7+£49.47 4578.7+£34.95 4562.55+33.45 4549.1+£45.91 4568.3+29.40

HIA 4563.35+47.94 4566.7+48.29 4560.95+38.94 4573.11+46.22 4544.3 £45.37

ADTA 4576.4+3797 45749+38.73 4576.75+49.98 4575.3+47.28 4578.151+49.69
Scenario(iii)

TA 7503.8+£49.69 7503.65+42.99 7505.3+£39.29 7492.754+44.76 7505.05+41.46

HIA 7505.45+32.93 7503.6+43.55 7493.6+47.33 7510.1£47.90 7492.85+35.75

ADTA 7512.35+47.01 7513.15+47.36 7529.85+35.21 7519.35+49.00 7515.35+33.17
Scenario(iv)

TA 7430.1+£49.72 7423.954+34.94 7423.854+39.89 7420.65+37.67 7429.3 £36.44

HIA 7435.55+40.93 7415.75+£55.47 7423.61+38.56 7418.15£33.98 7423.85+£39.08

ADTA 7437.55+32.15 7438.91+42.62 7445.25+51.07 7430.65+40.01 7432.1+33.92

where one action is dominant, and the LAs, particularly the ADTA, are able to identify this action
with a higher reward probability.

F.1.2 COMPLEX MARKOV CHAIN

This experiment aims to evaluate the performance of the proposed learning automaton in a complex
Markovian switching environment, focusing on the cumulative reward metric. The environment
consists of a Markov chain with four states, as depicted in Figure[T0} The transition matrix (7') and
the reward matrix (R), which define the reward probabilities, are as follows:

03 02 0.1 04
01 02 05 02
T=1 02 02 02 06 (40)

02 05 0.1 02

09 01 03 07 0.1
0.1 09 07 06 0.2
03 07 05 05 03
09 09 09 04 06

(41)

To achieve our goals in this experiment, the inner VASLA adopts the Lr_; method with parameters
A1 =0.01 and A, = 0. Five actions are allowed, and the initial depths considered are N = 1,2,3,5,7.

Before analyzing the results presented in Table [3] for 20 realizations, each consisting of 10000 it-
erations, the Markovian switching environment is transformed into a stationary environment using
steady-state analysis. This conversion yields reward probabilities of [0.52,0.68,0.62,0.52,0.31] for
actions 1 to 5, respectively.

Table 3: The experimental results of a Complex Markov Chain with respect to cumulative reward

Model N=1 N=2 N=3 N=5 N=17
TA 5821.5+174.53 6053.95+53.42 6278.0+£70.35 6536.9+£79.76 6716.85+ 118.58
HLA 6568.65+£152.50 6538.1+£132.71 6486.65+112.93 6625.95+101.96 6748.45+ 118.58
ADTA 6688.7+174.53 6650.25+208.94 6701.7+£130.76 6701.55+188.26 6750.75+159.94

25

Under review as a conference paper at ICLR 2025

Y —
0.2
— — —> 0.2
0.3 <
0.1
Ny /
<« 0.2 .
0.5
0.2 0.1 N N 0.2 0.5

S
T\>

0.4

02 N

<& : A —
) N
0.6
= > 0.2
0.1)
C D N
02

Figure 10: The designed environment for Markovian switching experiment

The ADTA outperforms both the base method (TA) and the state-of-the-art method (HLA) in terms
of rewards obtained. This superior performance is attributed to the ADTA’s ability to select the
appropriate depth. When examining the probability vector after reaching a steady-state, it becomes
evident that no single action has a significantly higher probability of being rewarded than the others.
In such situations, the ADTA effectively adjusts its depth to maximize its rewards.

F.2 STATE-DEPENDENT ENVIRONMENT

In a State-dependent environment, when the learning automaton performs action a; (1 < i < K)
during the n'" iteration, the probability ¢; associated with that action increases. In contrast, the prob-
abilities of the other actions decrease. Consequently, the performed action becomes less favorable
in subsequent stages, whereas the other actions become more advantageous over time Narendra &
Thathachar| (2012)).

Mathematically, this environment is described by the following equations:

ciln)=ci(n)+Gn) i=j
{ cj(n)=cj(n)—x;(n) i#j (42)

In the given equation, &;(n) and x;(n) (i, j = 1,2, ...,K) are constants associated with the n'" iteration.
The next equation represents the constant value of §;(rn), which will increase the probability of the
chosen action:

iln) = { . ciln)+ G <1 43)

1—ci(n) ow

And x;(n) represents a constant value that decreases the probability of other actions, as described
by the following equation:

xi(n) = {Xj cj(n)—x(n) =0 (44)

I—cj(n) ow

26

Under review as a conference paper at ICLR 2025

F.3 STATE-DEPENDENT EXPERIMENT

This experiment focuses on assessing the performance of the ADTA in a State-dependent envi-
ronment, comparing it with the base model (TA) and the state-of-the-art model (HLA) using the
cumulative reward metric.

To design the State-dependent environment, three sets of ({, x) tuples are considered:
(0.0002,0.00002), (0.0005,0.0005), and (0.00002,0.0002) for scenarios 1 to 3, respectively. Ad-
ditionally, the initial action probabilities in this environment are set to [0.9,0.1], which can dynami-
cally change based on the values of { and y.

The inner VASLA adopts the Lg_; strategy with A; = 0.01 and A, = 0. Initial depths of 1, 2, 3, 5,
and 7 are considered for various configurations. The reported results are based on 20 realizations,
with each realization consisting of 1000 iterations.

Table 4: The experimental results of a state-dependent environment concerning cumulative reward

Model N=1 N=2 N=3 N=5 N=17
Scenario 1 — (§ = 0.0002, x = 0.00002)

TA 700.75+£19.01 770.15+13.35 784.454+11.90 795.55+13.59 801.3+14.69

HIA 748.54+14.36 773.95+£14.94 788.5£14.46 795.45+12.18 797.954+13.20

ADTA 796.1+£14.12 799.6+14.11 794.15+15.35 800.0+13.22 803.85+11.50
Scenario 2 — (§ = 0.0005, x = 0.0005)

TA 637.45+16.15 653.2+12.97 657941243 656.85+£12.20 655.05+19.65

HIA 655941588 656.45+10.80 657.5£13.37 657.95+10.47 657.654+14.50

ADTA 660.2+16.46 662.4+16.35 665.35+13.87 663.75+14.60 661.45+10.11
Scenario 3 — (§ = 0.00002, x = 0.0002)

TA 821.25+13.61 880.6£10.01 888.54+9.68 884.0+9.61 891.6+10.31

HIA 844.35+12.41 874.85+£13.99 887.05+8.44 888.651+9.48 889.85+10.51

ADTA 88595+11.10 883.8+9.46 889.3+12.66 891.55+7.62 892.35+9.92

The results are presented in Table] 1In the first scenario, the probability of being penalized in-
creases by £ = 0.0002, meaning the optimal action weakens after some iterations while other actions
strengthen at a rate of y = 0.00002. In the second scenario, the weakening of the optimal action
occurs at a lower rate, equal to the strengthening rate of other actions ({ = x = 0.0002). In the third
scenario, the dominant action is minimally affected ({ = 0.00002). In all conditions, the ADTA
demonstrates superiority over TA and HLA in terms of cumulative reward, attributed to the effective
configuration of the depth parameter.

G VARIOUS RL AGENTS

In most sections of this paper, we use VASLA as the RL agent since the primary focus of this work is
on learning automaton. However, in this section, we explore the impact of substituting other multi-
armed bandit algorithms [Lattimore & Szepesvari| (2020); Kalvit & Zeevi| (2021) for the RL agent.
Specifically, we experiment with UCB-1|Amani & Thrampoulidis|(2021), Thompson Sampling Jin
et al.[(2022), Softmax [Elena et al.|(2021)), and € — greedy|/Hossain et al.|(2021)) from the multi-armed
bandit family to investigate their effects on ADTA’s performance.

For this experiment, we consider a stationary environment where one action is randomly dominant,
with its probability drawn from a Normal distribution .4"(0.8,0.05), while the other actions are
drawn from .#7(0.05,0.02). The ADTA is configured with 20 actions and an initial depth of N = 1,
making it more challenging for ADTA to identify the appropriate depth.

The results in Figure [TT]demonstrate that € — greedy outperforms other RL agents in terms of both
cumulative reward and cumulative regret. This superior performance can be attributed to its effective
balance between exploration and exploitation. While VASLA and Softmax also show relatively

27

Under review as a conference paper at ICLR 2025

| === ADTA(VASLA)
ADTA(UCB-1)
=== ADTA(Thompson Sampling)
| =—— ADTA(Softmax)
= ADTA(e — Greedy)

| == ADTA(VASLA)
ADTA(UCB-1)

=== ADTA(Thompson Sampling)

= ADTA(Softmax)

== ADTA(g) — Greedy

400

3004

Cumulative Reward
Cumulative Regret

100 -

(] 200 400 600 800 1000 (] 200 400 600 800 1000

Iteration Iteration
(a) Cumulative Reward (b) Cumulative Regret

Figure 11: The experimental results of various RL agents acting as a depth controller

good results, UCB-1 and Thompson Sampling lag behind, likely due to over-exploration or slower
adaptation to the environment. These findings highlight the simplicity and balanced nature of &€ —
greedy, making it an effective agent for the ADTA in this particular scenario.

H APPLICATION : DROPOUT TECHNIQUE

Addressing overfitting in deep neural networks, especially in large architectures, presents a
formidable challenge. The dropout technique (Srivastava et al.,[2014)), introduced to mitigate this is-
sue, involves randomly omitting neurons and connections during network training to curb excessive
co-adaptation. It employs random unit dropping with a fixed retention probability, typically within
the [0.5, 1] range. This fixed probability lacks adaptability and requires extensive experimentation to
determine suitable values for various network configurations. (Gholami et al., [2023)) pioneered the
application of LA to this problem, incorporating a three-action HLA, with ’increase,” ’decrease,” and
’stop’ actions to adjust dropout probabilities. The HLA avoids exceeding preset bounds. Thinned
networks are sampled by the HLA during training, and employed in forward and back-propagation
within mini-batches. A single HLA manages dropout probability, adjusted per mini-batch. Gradi-
ents are averaged within mini-batches, and LA reinforcement signals depend on thinned network
loss values.

Table 5: Dropout Results

Model Config 1 Config 2 Config 3 Config 4 Config 5
Mean Std Mean Std Mean Std Mean Std Mean Std
N=1

HLA 09579 0.0055 0.9599 0.0073 0.9588 0.0057 0.9598 0.0046 0.9593 0.0065
ADTA 0.9626 0.0036 0.9629 0.0038 0.9619 0.0036 0.9601 0.0049 0.9632 0.0021
N=3
HLA 09603 0.0039 0.9576 0.0075 0.9615 0.0044 0.9591 0.0049 0.9588 0.0059
ADTA 09622 0.0046 0.9608 0.0051 0.9620 0.0048 0.9618 0.0041 0.9615 0.0035
N=5
HLA 09552 0.0077 0.9594 0.0073 0.9578 0.0055 0.9620 0.0042 0.9596 0.0068
ADTA 0.9622 0.0049 0.9606 0.0047 0.9619 0.0033 0.9620 0.0030 0.9624 0.0033
N=7
HLA 09568 0.0059 0.9597 0.0063 0.9571 0.0074 0.9599 0.0073 0.9575 0.0071
ADTA 09626 0.0033 0.9614 0.0044 0.9630 0.0033 0.9613 0.0055 0.9626 0.0035

28

Under review as a conference paper at ICLR 2025

ADTA’s evaluation involves replacing HLA with ADTA in a feedforward neural network using the
MNIST dataset. Initial depths of 1, 3, 5, and 7 were explored along with 5 distinct inner VASLA
configurations. Configurations included PCA (config 1 with A} = A; = 0), Lg_; (config 2 with A4; =
0.01, A2 = 0), Lp_; (config 3 with A; =0, A; =0.01), Lg_p (config 4 with A; = 0.01, A, = 0.01),
and Lg_¢p (config 5 with A; = 0.1, A, = 0.01). The simulation results, depicted in Table present
mean accuracy and standard deviation. The findings underline ADTA’s performance superiority over
HLA, concerning mean accuracy and standard deviation.

I APPLICATION : BLOCKCHAIN SECURITY

The Bitcoin network is inherently dynamic, making it challenging to arrive at deterministic de-
cisions. Therefore, a probabilistic decision-making mechanism is essential for critical decision-
making in this environment. Given the vast state space, it is more efficient to employ a single-state
decision-maker. As a result, we leverage ADTA to design a novel defense mechanism, named Nik
Nikhalat-Jahromi et al.| (2024; 2023)), aimed at countering the selfish mining attack [Eyal (2015));
Eyal & Sirer| (2018)) in Bitcoin Nakamoto (2008)); Wang et al.|(2019); Babaioff et al.| (2012).

We begin with a brief introduction to relevant concepts such as Bitcoin mining and selfish mining.
Following this, we detail the experiments conducted to evaluate the automaton’s performance in this
complex setting. Additionally, the developed simulator is available on GitHu

I.1 CONCEPTS

Bitcoin Nakamotol (2008]), introduced by Satoshi Nakamoto in 2009, is a decentralized cryptocur-
rency that has gained significant attention due to its decentralized nature Wang et al.[(2019).

Transactions in the Bitcoin network are recorded in blocks, and creating a new block requires solving
a cryptographic puzzle, which comes with a dedicated reward. Participants who contribute resources
to solve these puzzles are known as miners Nakamoto|(2008); Eyal & Sirer(2018); Nikhalat-Jahromi
et al.[(2024; 2023)); Wang et al.|(2019).

The mining process incentivizes the safety of Bitcoin by rewarding miners based on their shared
resources, ensuring the network’s decentralization Wang et al.|(2019)).

However, maintaining Bitcoin’s decentralization is a challenging task, as attacks like selfish mining
Eyal & Sirer (2018) threaten its fundamental properties. Selfish miners keep newly discovered
blocks private and reveal them selectively to maximize their rewards.

‘When selfish miners reveal their withheld blocks, a fork occurs in the blockchain. In such situations,
the honest branch of the fork, resulting from valid work, is discarded, and consensus is reached on
the selfish branch [Wang et al.|(2021).

Our proposed automaton presents a novel approach to address this issue in Bitcoin. Our goal is to
simplify the problem by making decisions among the forked branches within each distributed miner.
This approach aims to overcome the challenges posed by selfish mining and ensure the integrity of
the Bitcoin network.

1.2 PROPOSED DEFENSE

In this section, we introduce our novel defense mechanism that leverages the power of learning
automaton to address the challenge of selfish mining in Bitcoin. The learning automaton serves as a
decision-maker at each node, assisting in the selection of a branch from the forked blockchain, even
in the presence of selfishly mined branches. To make informed decisions, predefined criteria based
on branch characteristics are employed:

* Branch Length (L): It represents the number of blocks in a specific branch of the fork.

* Branch Weight (W): Calculated by comparing the blocks of a branch with the same height
in other branches. The branch with the most recent creation time is incremented by one at
each iteration.

I'The link has been removed due to the blind review

29

Under review as a conference paper at ICLR 2025

To facilitate branch selection, the following parameters are taken into consideration:

* Fail-Safe Parameter (8): This parameter helps miners choose a branch based on L or W.
If the length of a branch in the fork exceeds the others by a threshold of &, that branch is
chosen. Otherwise, the branch with the highest weight, as determined by W, is selected.

* Decision-Making Time (7): This refers to the duration a miner takes to check for existing
forks and make a decision. If a fork is detected, the miner considers the A parameter for
branch selection.

* Time Window Parameter (0): It configures the next value of A using the learning au-
tomaton. Each 0 consists of multiple 7 intervals.

The decision-making algorithm for branch selection involves the following steps:

1. Calculation of L for each branch.
2. Calculation of W for each branch.

3. Sorting the branches in descending order based on length. If the difference between the
length of the longest and second-longest branch is greater than J, the longest branch is
chosen. Otherwise, the branch with the highest weight is selected.

4. When 7 reaches its end, the learning automaton determines the next value of §. Typically, &
oscillates between a minimum value (8,,;;) and a maximum value (8y,qx). The learning au-
tomaton has three options: 1) ”Grow” to increase é by one, 2) ”Stop” to keep 0 unchanged,
and 3) ”Shrink” to decrease A by one.

5. When 6 reaches its end, the learning automaton receives feedback from the environment.
We have designed a virtual environment to provide information about the learning automa-
ton’s decision. The reward (R) is computed by dividing the number of decisions made
based on W by the total number of decisions, which includes decisions based on length and
weight. The following equation demonstrates the R parameter of the learning automaton.

_ Number of Weight Decisions
~ Total Number of Decisions

(45)

By following these steps, the proposed defense mechanism enables miners to make informed deci-
sions in the presence of selfish mining, ensuring the integrity and security of the Bitcoin network.

1.3 EVALUATION

The performance evaluation of the learning automaton against the selfish mining attack considers
two metrics:

1. Relative Revenue: This metric measures a miner’s revenue in comparison to others. The
calculation is based on the ratio of the number of blocks mined by the " miner to the total
number of mined blocks [Eyal & Sirer| (2018)).

2. Lower Bound Threshold: This metric determines the minimum computational power that
a selfish miner must possess to initiate an attack |[Eyal & Sirer| (2018).

1.4 EXPERIMENT

This experiment evaluates the proposed defense mechanism, implemented using the ADTA, in com-
parison to the well-known tie-breaking defense and previous VASLA-based defense. Tie-breaking
Eyal & Sirer| (2018) involves miners randomly selecting a branch when encountering a fork. The
study examines the effectiveness of the defense from the perspective of selfish miners, who form a
separate group and deviate from the honest miners following the standard Bitcoin protocols.

For the experiment, 10000 blocks are generated in each of the 20 runs, with the parameter § varying
between Oy, = 1 and 8,0 = 3. The type of VASLA used is Lg_¢p with A} = 0.1 and A, = 0.01.

The results shown in Figure [T2] demonstrate that the ADTA effectively adapts to complex envi-
ronments like blockchain, even without prior information. This adaptability leads to the proposed

30

Under review as a conference paper at ICLR 2025

100 | === Nik Defense(VASLA)
=== Nik Defense(ADTA)
= Tie Breaking
80 { ™ No Defense
==+ Ideal Defense
Upper Bound

60 -

Relative Revenue

aw0{ L

201

T T T T T T
0.25 0.30 0.35 0.40 0.45 0.50
Pool size

Figure 12: Performance comparison of the proposed defense mechanism against tie-breaking and
other learning automaton-based solutions, measured in terms of relative revenue.

defense’s superiority over the VASLA-based solution Nikhalat-Jahromi et al.| (2024} 2023), as the
relative revenue of selfish miners is significantly reduced. Additionally, the proposed defense out-
performs the tie-breaking defense, indicating its potential to strengthen the proof-of-work consensus
algorithm.

Furthermore, the lower bound threshold metric is examined. In Figure @ this metric is defined
as the intersection point of the defense plots (Tie-breaking, Nik Defense (VASLA), and Nik Defense
(ADTA)) with the Ideal Defense plot. Evidently, the proposed defense using the ADTA increases the
threshold from approximately 0.25 in tie-breaking to 0.4. The ADTA achieves this by effectively
detecting when a decision is needed for a fork based on the weight or height parameter, enabling it
to make informed decisions in unknown environments like blockchain.

31

	Introduction
	Contributions
	Problem Formulation
	Related Works

	Adaptive Depth Tsetlin Automaton
	Environment Separation
	Required Definitions
	Internal Environment Analysis
	External Environment Analysis

	Experiments
	Internal Environment
	External Environment

	Discussion
	Conclusion
	Notations
	Additional Related Works
	More About VSLA Family
	Variable Structure Learning Automaton (VSLA)
	Variable Action Set Learning Automaton (VASLA)

	Numerical Example
	Depth Decrement
	Depth Increment

	Missing proofs
	Proof Of The RL Agent Convergence Using VASLA
	Proof Of The RL Agent Entropy
	Proof Of Learning Capability

	Non-stationary Environments Experiments
	Markovian Switching Environment
	Simple Markov Chain
	Complex Markov Chain

	State-Dependent Environment
	State-Dependent Experiment

	Various RL Agents
	Application : Dropout Technique
	Application : Blockchain Security
	Concepts
	Proposed Defense
	Evaluation
	Experiment

