
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE DEPTH TSETLIN AUTOMATON

Anonymous authors
Paper under double-blind review

ABSTRACT

The Tsetlin Automaton (TA) is a foundational single-state reinforcement learning
model, but its fixed depth parameter (N) poses a significant limitation for navigat-
ing the exploration and exploitation dilemma. Despite remarkable advancements,
existing TA models lack adaptability in real-world scenarios where dynamic depth
adjustments are essential. In this paper, we introduce the Adaptive Depth Tsetlin
Automaton (ADTA), a novel solution addressing this challenge. ADTA integrates
TA with a reinforcement agent capable of dynamically modifying N. We ana-
lyze ADTA using Lyapunov stability theorem and Markov chain analysis within a
dual-environment framework: the outer environment, where TA operates to max-
imize rewards, and the inner environment, where a reinforcement learning agent
evaluates TA’s performance based on N. Through actions like ’Grow,’ ’Shrink,’
and ’Stop,’ the inner agent configures N dynamically. Unlike conventional TA
configurations with fixed N, our approach demonstrates improved reward maxi-
mization and regret minimization. Furthermore, we present numerical simulations
that corroborate our theoretical results.

1 INTRODUCTION

The Tsetlin Automaton (TA) (Tsetlin, 1961; Narendra & Thathachar, 2012) is an innovative con-
cept in a single-state reinforcement learning (Sutton & Barto, 2018; Çalışır & Pehlivanoğlu, 2019;
Zhang et al., 2022), designed to capture the intricate nature of human decision-making and calcula-
tion Narendra & Thathachar (2012). Inspired by principles from psychology, it emulates human-like
learning strategies within computational frameworks. Notably, the TA represents a pioneering so-
lution to the well-known multi-armed bandit problem (Yuan et al., 2022; Amani & Thrampoulidis,
2021; Ramponi et al., 2021) and serves as the first learning algorithm in the Learning Automaton
(LA) (Granmo, 2018; Abeyrathna et al., 2020; Belaid et al., 2023) family.

The TA (Narendra & Thathachar, 2012; Granmo, 2018) is characterized by its state-machine archi-
tecture, featuring a grid-like configuration of K actions and a fixed depth parameter N for each action
(number of nodes in each action), illustrated in Figure 1. Within the TA, each node corresponds to
a specific action and is identified by a unique pair. This design allows the automaton to transition
between nodes based on rewards from its environment seamlessly. When receiving a reward, the
chosen action is reinforced by transitioning from higher-numbered nodes to lower-numbered nodes
within the action’s depth, thereby increasing its likelihood of selection. Conversely, in case of a
penalty, the transition occurs from lower-numbered nodes to higher-numbered ones within the ac-
tion. If the highest-numbered node is reached and a penalty is incurred, the next action is chosen
according to a clockwise policy for the subsequent iteration. For example, φ(3,2) denotes the first
node of action 3. Upon receiving a reward, the TA transitions to φ(3,1) to increase the likelihood of
selecting action 3 twice. Conversely, a penalty leads the TA to transition to φ(4,2), indicating that
selecting action 3 was incorrect and its selection chances are exhausted. This structured framework
enables the TA to effectively capture and represent the nuances of the learning process within a fixed
architecture.

TAs are typically employed in online learning decision-making scenarios, making it impractical to
adjust their depth using offline data (Narendra & Thathachar, 2012; Granmo, 2018). Therefore, an
online mechanism is essential for adapting the TA’s depth based on specific problem requirements,
allowing for incremental, decremental, or unchanged adjustments. This mechanism will help the
TA to explore and exploit the environment efficiently. Lower depth values may result in more ex-
ploration and frequent action switching. Conversely, higher depth values may lead to challenges in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Φ(1,2)Φ(1,1)

Φ(2,2)

Φ(2,1)Clockwise

Φ(3,2) Φ(3,1)

Φ(4,2)

Φ(4,1)

r = 1

r = 1

r = 1

r = 1

r = 1 r = 0

r
=

1
r = 1

r = 0r = 0

r = 0

r
=

0
r = 0

r = 1

r = 0r = 0

Figure 1: A four-action Tsetlin Automaton with depth two for each action

learning, as it becomes difficult to modify actions effectively, more exploitation toward sub-optimal
action and diminishing the TA’s efficacy. Given this critical challenge in the current implementation,
it is essential to adaptively adjust the TA’s depth to optimize performance (Narendra & Thathachar,
2012).

Moreover, from the perspective of Automated Machine Learning (AutoML) (He et al., 2021; Feurer
et al., 2015; Kübler et al., 2022), the TA lacks internal mechanisms or tools to discern whether
the selected depth is suitable or requires adjustment based on environmental conditions (Narendra
& Thathachar, 2012; Granmo, 2018; Abeyrathna et al., 2020). Hence, there is a need for another
learning agent to be integrated with the TA. This auxiliary agent can assist the TA in modifying its
depth based on rewards and penalties received from the environment.

In this paper, we introduce the Adaptive Depth Tsetlin Automaton (ADTA), a novel approach that
intelligently learns the appropriate depth for the TA. By employing a central reinforcement learning
agent, the ADTA dynamically adjusts the depth of all actions within the automaton. This self-
adaptive, flexible methodology enables the TA to strike an ideal balance between exploration and
exploitation, significantly improving its performance and adaptability in a wide range of complex
environments.

1.1 CONTRIBUTIONS

• We identify a critical parameter N, which represents the depth parameter in the TA. This
parameter poses a challenge in balancing the exploration and exploitation capabilities of
the TA.

• We propose a learning algorithm aimed at dynamically adjusting the depth parameter within
the TA. This algorithm is devised by integrating the TA with an RL agent. During each
epoch, the algorithm assesses the current value of N, and when the TA seeks to alter its
action, the RL agent intervenes to adjust the depth accordingly.

• We offer a theoretical analysis that demonstrates the learning ability of the ADTA using a
combination of Markov process and Lyapunov stability theorem.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We complement our theoretical results with numerical simulations and corresponding dis-
cussions on the performance of our algorithm.

• We illustrate ADTA’s practical versatility by applying it to the dropout problem in deep
neural networks, effectively countering overfitting concerns.

• We demonstrate the effectiveness of our learning model in a highly relevant and practical
context by applying ADTA to Bitcoin, a leading decentralized cryptocurrency. ADTA is
deployed as a distributed, real-time decision-making mechanism to mitigate the impact of
selfish mining attacks.

1.2 PROBLEM FORMULATION

TA Model. The TA consists of K actions denoted as a1,a2, . . . ,aK , and KN nodes represented by
φ(1,1),φ(1,2), . . . ,φ(1,N), . . . ,φ(K,N). Each node is defined by an ordered pair (i, j), where 1 ≤ i ≤ K
indicates the action number, and 1 ≤ j ≤ N denotes the node number. When the TA is in node
φ(i, j), it performs action A(n) = ai in the nth iteration. The environment will respond to the TA
with r, where r ∈ R = {0,1}. In the event of an unfavorable response (i.e., R(n) = r = 0), the state
transitions occur as follows: {

φ(i, j)→ φ(i, j+1) (1≤ j ≤ N−1)
φ(i, j)→ φ(i+1, j) (j = N)

(1)

Similarly, in the case of a favorable response (i.e., R(n) = r = 1), the state transitions are determined
by: {

φ(i, j)→ φ(i, j−1) (2≤ j ≤ N)

φ(i,1)→ φ(i,1) (j = 1)
(2)

The selection of the next action in this automaton follows a clockwise pattern (φ(i, j)→ φ(i+1, j)).

Goal. In scenarios where the TA requires a change in action due to receiving a penalty from the
environment (φ(i, j)→ φ(i+1, j)), the current depth parameter N may not be appropriately configured.
Thus, the main objective becomes either to increase (N ← N + 1) for exploitation, decrease (N ←
N−1) for exploration, or maintain the depth unchanged in such situations.

1.3 RELATED WORKS

Tsetlin Automaton. Drawing inspiration from Sutton and Barto’s influential book (Sutton & Barto,
2018) on reinforcement learning, the exploration of learning automaton (LA) has played a pivotal
role in shaping modern research, particularly in the domain of trial-and-error learning. Among the
variants of LA, the TA (Granmo, 2018; Granmo et al., 2019) stands out as a prominent model that
offers valuable insights into human decision-making processes and cognitive mechanisms. Notably,
its recent integration with Neural Networks (Sharma et al., 2023; Seraj et al., 2022; Abeyrathna et al.,
2021b; Bhattarai et al., 2022; Darshana Abeyrathna et al., 2020; Phoulady et al., 2019; Abeyrathna
et al., 2021a; 2020; Glimsdal & Granmo, 2021; Bhattarai et al., 2023) has gained remarkable at-
tention from researchers. Furthermore, over its renowned half-century existence, it has demon-
strated its versatility and applicability across a wide spectrum of fields (Narendra & Thathachar,
2012) including: decentralized control (Tung & Kleinrock, 1996), searching on the line (Oommen,
1997), equi-partitioning (Oommen & Ma, 1988), streaming sampling for social activity networks
(Ghavipour & Meybodi, 2018), faulty dichotomous search (Yazidi & Oommen, 2018), learning in
deceptive environments (Zhang et al., 2016), and routing in telecommunication networks (Oommen
et al., 2007).

Despite the TA’s effectiveness in uncertain and stochastic environments where problems require
quick trial-and-error solutions, it faces two fundamental challenges affecting its performance across
various applications (Narendra & Thathachar, 2012): (1) The clockwise policy for selecting the next
action; (2) The fixed depth value.

Hybrid Tsetlin Automaton. Gholami et al. (Gholami et al., 2023) proposed a solution to replace
the clockwise policy of choosing the next action in TA by integrating it with an RL agent. This
method is called the Hybrid Learning Automaton or HLA. In this method, an RL agent will learn

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Shrink

Clockwise

RL Agent Stop

Grow

Φ3,3 Φ3,2 Φ3,1Φ1,1 Φ1,2 Φ1,3

Φ2,3

Φ2,2

Φ2,1

Φ4,1

Φ4,2

Φ4,3

(a) ADTA with the RL agent modifying TA’s structure:
The RL agent’s action can increase depth (Green), main-
tain current depth (Yellow), or decrease depth (Red) of
TA.

RL Agent

Fusion Manager

TA

Environment

RT N AT

A

R

RA AA

Update_Structure

(b) Architecture of ADTA

Figure 2: An overview of ADTA

how to choose the next action in order to maximize the cumulative reward of HLA without changing
the structure of the TA, especially N. Despite the proposed model does not solve the fixed depth
problem, it can be considered as the state-of-the-art method in the TA field.

For a deeper exploration of the LA family and its position within the realm of model-free reinforce-
ment learning, please refer to Sections Appendix B and Appendix C.

2 ADAPTIVE DEPTH TSETLIN AUTOMATON

In this section, we introduce two key quantities: (1) N, the depth of the ADTA, representing the
number of nodes in each action of the ADTA; (2) Transition, denoted by →, illustrating how the
ADTA moves from one node to another. There are four types of transitions: (i) φ(i, j) → φ(i, j−1)
indicates a traverse to deeper nodes due to a reward; (ii) φ(i, j) → φ(i, j+1) indicates a traverse from
deeper nodes to outer nodes due to a penalty; (iii) φ(i,N) → φ(i+1,N) indicates a traverse from one
action to the next; (iv) φ(i,1) → φ(i,1) or φ(i,2) → φ(i,1) indicates depth traversal. For instance, in
Figure 2a, the TA of ADTA has three actions with a depth (N) of three. Considering the transitions
in (3): transition (1) is of type (i); transitions (2) and (3) are of type (iv); transitions (4) and (5) are
of type (ii); and transition (6) is of type (iii).

φ(3,3)
(1)−→ φ(3,2)

(2)−→ φ(3,1)
(3)−→ φ(3,1)

(4)−→ φ(3,2)
(5)−→ φ(3,3)

(6)−→ φ(4,3) (3)

Based on these considerations, we propose an adaptive TA algorithm called ADTA. The ADTA
comprises three units (Figure 2b): (i) TA, serving as the foundation of ADTA; (ii) an RL agent
tasked with controlling the depth of the TA; and (iii) Fusion Manager, which acts as the coordinator
between the TA and the RL agent to set an appropriate depth.

TA. This unit operates similarly to the Tsetlin Automaton, as described in detail in Section 1.2. It
selects action AT based on the current node (φ(i, j)) and communicates this choice to the Fusion
Manager unit. In response to its selected action, it receives RT ∈ {0,1}.
RL Agent. This unit comprises an RL agent with three actions: ′Grow′,′ Stop′,′ Shrink′. Choosing
the ’Grow’ action leads to N ← N + 1, while selecting ’Stop’ maintains N constant, and opting for
’Shrink’ yields to N ← N− 1. The Fusion Manager unit evaluates the selected depth and provides

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 ADTA Learning Algorithm
Notation: TA with K actions and N nodes, the RL Agent
1: Begin
2: for all episodes do
3: Play AT ∈ {1, ...,K} of the TA through A ∈ {1, ...,K}
4: Observe R ∈ {0,1} from the environment
5: Compute RT ∈ {0,1} for TA
6: Observe Action Traverse (φ(i,N)→ φ(i+1,N))
7: if Action Traverse then
8: Activate the RL agent
9: Compute RA ∈ [0,1] using (4)
10: Observe the last value of N
11: Play AA ∈ {′Grow′,′ Stop′,′ Shrink′}
12: Play U pdate Structure with new N
13: end if
14: end for
15: End

reward or penalty feedback via RA ∈ [0,1] using (4).

RRL Agent =
Number o f Depth Transitions in ith Action
Total Number o f Transitions in ith Action

(4)

Fusion Manager. This unit coordinates the collaboration between the TA and the RL agent. In each
epoch, it receives AT from the TA unit, which it then designates as the final action of the ADTA
(A in Figure 2b). The environment responds to this action in the form of R ∈ {0,1}. Initially, the
Fusion Manager relays this response to the TA unit, prompting the TA to transition to a new node. If
this transition changes the selected action, N is transmitted to the Fusion Manager, which computes
RA. Subsequently, it awaits the RL agent unit to receive the updated N value, triggering a structural
adjustment in the TA (Update Structure in Figure 2b).

With the above definitions and explanations, we are now ready to summarize ADTA in Algorithm
1. Moreover, to provide a visual representation, Figure 2a illustrates a ADTA with initially four
actions and two nodes per action (Without considering dotted nodes at first). This configuration
corresponds to TA with K = 4 and N = 2, where action 1 is chosen (highlighted in blue). In the
event of an unfavorable response, the ADTA needs to rotate clockwise and select action 2. However,
prior to that, the RL agent determines the appropriate depth for ADTA. If the RL agent opts for
’Grow’, the number of states per action will increase by one, transforming ADTA with N = 2 into
ADTA with N = 3 (indicated by the green state in Figure 2a). Conversely, selecting ’Shrink’ by
the RL agent will change ADTA with N = 2 to ADTA with N = 1 (represented by the red state in
Figure 2a). Lastly, choosing ’Stop’ will maintain the existing structure (depicted by the yellow state
in Figure 2a). For clearer illustration, numerical examples are provided in Section D.

In the subsequent sections, we conduct a theoretical analysis of our proposed learning algorithm.
In Section 2.1, we partition the ADTA’s environment into internal, relating to the RL agent, and
external, concerning the TA. Section 2.2 outlines the necessary definitions. We explore the theoret-
ical foundation for determining the convergence point of the RL agent and analyzing the internal
environment in Section 2.3. Lastly, we prove the learning capability of ADTA through theoretical
analysis of the external environment in Section 2.4.

2.1 ENVIRONMENT SEPARATION

The ADTA integrates two distinct RL agents: the TA and an RL agent with three actions. To assess
its learning capacity, we conduct a theoretical analysis in two discrete environments, termed as
internal and external (as illustrated in Figure 3). By going deeper into the internal environment, we
aim to identify the RL agent’s convergence point using Lyapunov stability theorem. This insight
enables the evaluation of TA’s learning capability after determining the appropriate depth through
Markov analysis. It’s worth noting that we assume ADTA has two actions and an initial depth of N.

2.2 REQUIRED DEFINITIONS

This section has been dedicated to introducing some prerequisite definitions of the proof. All of
these definitions are related to the concept of learning ability in the Tsetlin Automaton.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Φ1,2
Grow Stop ShrinkΦ1,1

Φ2,2

Φ2,1

Clockwise

Φ3,2 Φ3,1

Φ4,2

Φ4,1

Internal
Environment

RL Agent

ADTA

External
Environment

A R

AA

RA

Figure 3: Separation of external and internal environment from each other in ADTA

Definition 1. M(n) is defined as the average penalty of a Tsetlin Automaton with K actions and
action probability p(n) in a stationary environment. The environment provides responses of R(n) ∈
{0,1} in the nth iteration, where a response of 0 indicates a penalty and 1 indicates a reward. The
penalty probabilities are constant and denoted as {c1,c2, ...,cK}. The M(n) is calculated as follows:

M(n) = E[R(n)|p(n)] (5)

=
K

∑
i=1

Pr[R(n) = 0|A(n) = ai]︸ ︷︷ ︸
Constant value equals to ci

Pr[A(n) = ai]︸ ︷︷ ︸
Probability o f each action

M(n) =
K

∑
i=1

ci pi(n) (6)

Definition 2. The Pure Chance Automaton (PCA) is an automaton in which each action is chosen
with equal probability. The action probability vector p(n) for a PCA with K actions is defined as
follows:

pi(n) =
1
K

i ∈ {1,2, · · · ,K} (7)

Definition 3. For a pure chance automaton with K actions, M(n) becomes a constant parameter
denoted as M0, defined by:

M0 =
1
K

K

∑
i=1

ci (8)

This value equals 1
2 (c1 + c2) for a pure chance automaton with two actions.

Definition 4. A Tsetlin Automaton is capable to learn if

lim
n→∞

E[M(n)]< M0 (9)

2.3 INTERNAL ENVIRONMENT ANALYSIS

Firstly, we start our analysis by introducing the concept of the internal environment in which the RL
agent interacts with the TA. Then, we aim to find the convergence point of the RL agent at which
the appropriate depth for TA is chosen.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Definition 5. The internal environment is defined as the environment in which the RL agent interacts
with the TA by switching from the current action to a new action. This process continues as the agent
makes decisions about the new depth of the TA. The internal environment of the RL agent with three
actions is defined as follows:

Cint = {cint−Grow,cint−Stop,cint−Shrink} (10)

Additionally, each item (for instance jth item) in Cint is a function:

cint− j(n) = f (n,Cext ,T,N) (11)

In the above function, n denotes the iteration number, Cext denotes an external environment, T
denotes the number of transitions (depth and total transitions in the ith action), and N denotes the
depth of the Tsetlin Automaton in the current iteration.

Assumption 1. Let ∆ be a threshold according to the properties of the internal environment in
Definition 5. Then, for all n≥ ∆, the internal environment turns into an environment with negligible
changes in the penalty probability. These changes can be expressed as follows:

∃∆, |cint− j(n+1)− cint− j(n)|= 0 ∀n≥ ∆ (12)

Lemma 1. Let ∆ exists for the internal environment, then for n ≥ ∆, the internal environment can
be a stationary environment in which the penalty set will be defined as follows:

Cint = {ψint−Grow,ψint−Stop,ψint−Shrink} (13)

Proof. According to the assumption 1, since n ≥ ∆, thus n exceeds the defined boundary criteria.
This leads to the assumption that the internal environment has turned into a stationary environment.
Therefore, we can consider the penalty probability of each RL agent’s action equal to the ψ j constant
value. As we know before from definition 5, the penalty set is compromised of three values that will
be replaced by ψ j constants named ψint−Grow, ψint−Stop, and ψint−Shrink.

Since it is proved that the internal environment has turned to the stationary environment, we can
claim that the impact of the internal environment on the RL agent is independent of the iteration
number. Therefore, the RL agent can be analyzed as a Markov process. Also, we will assume that
the internal environment has an absorbing state.
Definition 6. The state space of Markov process for the RL agent is defined to be:

Ω = {p | [pGrow, pStop, pShrink],0≤ pGrow ≤ 1, 0≤ pStop ≤ 1,
0≤ pShrink ≤ 1, pGrow + pStop + pShrink = 1} (14)

Definition 7. ith state of a Markov process over Ω state space is called absorbing if it is impossible
to leave it. Actually from n ≥ n0 in which n0 is an arbitrary instance of time, the probability of ith
state is 1. Consequently, the probability vector will converge to [0,1,0] unit vector.

Assumption 2. Let the internal environment be a stationary environment, then there exists n∗ such
that for n≥ n∗ ≥ ∆, ψint−Stop will be 0.

Definition 8. Consider a discrete-time system with the following definition:

x(n+1) = f (x(n)) (15)

Here, x and f are vectors, f (0) = 0, and x ̸= 0. Suppose a continuous scalar function V (x) exists
that satisfies the following conditions:

• V (x)> 0 for all x ̸= 0

• ∆V (x) < 0 for all x ̸= 0, where ∆V (x(n+ 1)) = V (x(n+ 1))−V (x(n)) = V (f (x(n)))−
V (x(n))

• V (0) = 0

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• V (x)→ ∞ if ||x|| → ∞

Then, V (x) is a Lyapunov function, and the system is stable asymptotically around x = 0.
Definition 9. The function in the definition 8 is said to be contraction if:

|| f (x)||< ||x|| & f (0) = 0 (16)

Given a non-zero set of values x and a specific norm, the system described above is stable asymp-
totically. Furthermore, the Lyapunov function of this system is given by:

V (x) = ||x|| (17)

Lemma 2. Assume that the internal environment is a stationary environment which is defined in the
assumption 2, then the RL agent will converge to the ’Stop’ action.

Proof. For this proof, we consider VASLA (detailed definition in Appendix C.2). However, since
our model is generalizable, other forms of reinforcement learning agents such as multi-armed bandits
and Q-learning can also be applied. The comprehensive proof is provided in Appendix E.1.

Lemma 3. If the RL agent, using the defined RRL Agent , converges to the unit vector [0,1,0] (indicat-
ing 0 probability for both ’Grow’ and ’Shrink’ actions, and full probability for the ’Stop’ action),
the entropy will approach 0.

Proof. This lemma has been proved through the definition of entropy. See Appendix E.2.

Remark 1. Crucially, the RL agent’s convergence to the ’Stop’ action signifies the discovery of the
appropriate TA depth, indicated as Ń.

2.4 EXTERNAL ENVIRONMENT ANALYSIS

Before beginning the analysis of the external environment, we should wrap up what has been done so
far. We know that n≥ n∗ ≥ ∆, as a result, the RL agent converges to the ’Stop’ action (Assumption
2 and Lemma 2). On the other hand, this convergence leads to the choosing the constant depth Ń for
the TA (Remark 1).
Definition 10. External environment is an outer environment with which the TA will interact. The
following set of penalty constants, which have a constant value between 0 and 1 for actions a1 to
aK , represents the external environment.

Cext = {cext−1,cext−2, ...,cext−K} (18)

Proposition 1. It is obvious that the probability of being rewarded (d) is the complement of the
penalty probability (c). Hence, dext− j = 1− cext− j.
Theorem 1. If n≥ n∗ ≥ ∆ and the RL agent, using the defined RRL Agent , has converged to the ’Stop’
action, then the ADTA, with two actions and a constant depth of Ń, will be able to learn.

Proof. To prove this theorem, we leverage the steady-state analysis of the Markov chain associated
with the transition matrix of the ADTA. This approach is particularly effective when the ADTA
reaches a stable depth Ń, allowing us to apply steady-state Markov analysis. For a detailed explana-
tion of the proof, see Appendix E.3.

3 EXPERIMENTS

We present numerical simulations to complement and validate our theoretical findings, comparing
the ADTA with state-of-the-art methods in the field of TA. We explore three distinct environments
representative of many real-world scenarios, including both stationary and non-stationary settings
(see Appendix Section F). Synthetic data from stationary environments is used to test our learning
algorithm from both internal and external perspectives. Additionally, we evaluate ADTA with var-
ious RL agents in Appendix Section G. To further demonstrate ADTA’s practical effectiveness, we
apply it to two real-world domains: the dropout problem in deep neural networks and blockchain
systems. The detailed results of these applications are provided in Appendix H and I, respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Iteration

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
ep

th
(N

)

(a) Depth of the ADTA

0 50 100 150 200
RL Agent Activated Times

0.5

0.6

0.7

0.8

0.9

1.0

En
tr

op
y

(b) Entropy of the RL agent

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

600

700

800

Cu
m

ul
at

iv
e

Re
w

ar
d

N = 1
PCA
TA
HLA
ADTA

(c) Cumulative Reward (N=1)

0 200 400 600 800 1000
Iteration

0

200

400

600

800

Cu
m

ul
at

iv
e

Re
w

ar
d

N = 2
PCA
TA
HLA
ADTA

(d) Cumulative Reward (N=2)

0 200 400 600 800 1000
Iteration

0

200

400

600

800

Cu
m

ul
at

iv
e

Re
w

ar
d

N = 3
PCA
TA
HLA
ADTA

(e) Cumulative Reward (N=3)

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

600

700

Cu
m

ul
at

iv
e

Re
gr

et

N = 1
PCA
TA
HLA
ADTA

(f) Cumulative Regret (N=1)

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

600

700

800

Cu
m

ul
at

iv
e

Re
gr

et

N = 2
PCA
TA
HLA
ADTA

(g) Cumulative Regret (N=2)

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

600

700

800

Cu
m

ul
at

iv
e

Re
gr

et

N = 3
PCA
TA
HLA
ADTA

(h) Cumulative Regret (N=3)

Figure 4: Experimental results of the ADTA considering both internal and external environments

3.1 INTERNAL ENVIRONMENT

To explore how the RL agent sets the depth of ADTA, we designed a synthetic environment where
we deployed VASLA as the RL agent (detailed explanation in Appendix C.2). This experiment
was conducted 10000 times with initial values of N = 1. Figure 4a illustrates the exploration and
exploitation of the RL agent in finding an appropriate depth. As per Assumptions 1 and 2, around
iteration 6000, the RL agent identifies n∗ and ∆ (Assumptions 1 and 2), indicating convergence to
the ’Stop’ action (Lemma 2) and starting point for exploitation. The probability vector of the RL
agent is [0.10,0.82,0.08]. Notably, as suggested by Remark 1, the RL agent identifies Ń = 3. This
behavior aligns with our theoretical findings in Section 2.3. Finally, Figure 4b illustrates the entropy
of the RL agent throughout 10000 iterations of ADTA, with the RL agent activated approximately
200 times for exploration purposes. As exploration increases, the entropy decreases until it reaches
zero, confirming its decline as described in Lemma 3.

3.2 EXTERNAL ENVIRONMENT

This experiment validates our theoretical findings from Section 2.4 by comparing our approach with
a Pure Chance Automaton (PCA, Definition 2) and benchmarking it against the base TA and HLA,
which is considered state-of-the-art. The presented results are averages of 20 runs, each with 1000
iterations, using a relatively high number of actions (K = 50) and initial N values set to 1, 2, and 3,
respectively. In the environment, one action is randomly dominant, with its probability drawn from a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Normal distribution N (0.8,0.05), while the other actions are drawn from N (0.05,0.02). Through
comprehensive evaluation, a depth of three is found to be optimal for this experiment. Figures 4c
to 4h demonstrate that ADTA outperforms PCA in terms of both cumulative reward and cumulative
regret, supporting our theoretical conclusions in Theorem 1. Additionally, at N = 1 and N = 2
(Figures 4c, 4d, 4f, and 4g), TA and HLA exhibit excessive exploration due to their fixed depths,
while ADTA adapts dynamically to N = 3, thereby avoiding over-exploration. As shown in Figures
4e and 4h, since N = 3 represents the appropriate depth, all three learning agents perform similarly
at this level.

4 DISCUSSION

We consider the depth parameter, N, in the TA to develop a new learning agent, ADTA, capable of
adapting to a wide range of environments, including both stationary and non-stationary scenarios.
The ADTA can be analyzed from multiple perspectives, as outlined below.

Regarding the number of iterations, the ADTA inherently requires more iterations compared to
standard TA due to its adaptive mechanism designed to balance exploration and exploitation. Unlike
TA, which operates with a fixed depth and may continue doing so even when inappropriate, the
ADTA dynamically adjusts its depth, reducing the risk of suboptimal performance.

As demonstrated in our experiments, ADTA’s performance is particularly prominent at lower depths.
An inappropriate depth setting leads to excessive exploration, causing the learning agent to receive
fewer rewards. However, ADTA’s integrated reinforcement learning mechanism effectively tunes
the depth, allowing the agent to converge on the appropriate depth value. At higher depths, the per-
formance gap between ADTA and other learning automaton agents narrows, as the system naturally
approaches a near-optimal depth configuration.

Our approach leverages a large number of actions to showcase the scalability of ADTA, setting it
apart from traditional learning agents within the learning automaton family. This highlights ADTA’s
ability to adapt to more complex and dynamic environments effectively.

The inclusion of a reinforcement learning agent, such as VASLA or multi-armed bandits, introduces
minimal structural changes to the TA, requiring only the addition of a vector to track the probabilities
for ’Grow’, ’Stop’, and ’Shrink’ actions.

The model is highly flexible in terms of RL agent selection. Multiple RL agents, including multi-
armed bandits and Q-learning, can be utilized as depth controllers. However, employing these agents
may introduce additional parameters, such as λ1 and λ2 in VASLA or the ε parameter in the ε-greedy
multi-armed bandit, adding a layer of complexity to the learning process.

5 CONCLUSION

In this paper, we introduce the ADTA as a solution to the explore-exploit dilemma inherent in tradi-
tional TA approaches. This dilemma arises from the challenge of selecting an optimal depth for the
TA. The ADTA addresses this issue by autonomously adjusting its depth in unknown environments
through integration with an RL agent. Leveraging Lyapunov stability theorem and Markov chain
processes, we investigate ADTA’s learning capabilities. Our comprehensive evaluations consistently
demonstrate ADTA’s superiority over traditional TA methods and state-of-the-art techniques like
HLA. Interesting future research directions include providing stronger proof for ADTA’s effective-
ness in complex scenarios, exploring the integration of ADTA with HLA to jointly address depth
and action selection policies, and investigating asymmetric depth adjustments for the ADTA.

REFERENCES

K Darshana Abeyrathna, Ole-Christoffer Granmo, Rishad Shafik, Alex Yakovlev, Adrian Wheel-
don, Jie Lei, and Morten Goodwin. A novel multi-step finite-state automaton for arbitrarily de-
terministic tsetlin machine learning. In International Conference on Innovative Techniques and
Applications of Artificial Intelligence, pp. 108–122. Springer, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

K Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. Extending the tsetlin ma-
chine with integer-weighted clauses for increased interpretability. IEEE Access, 9:8233–8248,
2021a.

Kuruge Darshana Abeyrathna, Bimal Bhattarai, Morten Goodwin, Saeed Rahimi Gorji, Ole-
Christoffer Granmo, Lei Jiao, Rupsa Saha, and Rohan K Yadav. Massively parallel and asyn-
chronous tsetlin machine architecture supporting almost constant-time scaling. In International
Conference on Machine Learning, pp. 10–20. PMLR, 2021b.

Sanae Amani and Christos Thrampoulidis. Ucb-based algorithms for multinomial logistic regression
bandits. Advances in Neural Information Processing Systems, 34:2913–2924, 2021.

Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On bitcoin and red balloons. In
Proceedings of the 13th ACM conference on electronic commerce, pp. 56–73, 2012.

Mohamed-Bachir Belaid, Jivitesh Sharma, Lei Jiao, Ole-Christoffer Granmo, Per-Arne Andersen,
and Anis Yazidi. Generalized convergence analysis of tsetlin machines: A probabilistic approach
to concept learning. arXiv preprint arXiv:2310.02005, 2023.

Bimal Bhattarai, Ole-Christoffer Granmo, and Lei Jiao. Convtexttm: An explainable convolutional
tsetlin machine framework for text classification. In Proceedings of the Thirteenth Language
Resources and Evaluation Conference, pp. 3761–3770, 2022.

Bimal Bhattarai, Ole-Christoffer Granmo, Lei Jiao, Rohan Yadav, and Jivitesh Sharma.
Tsetlin machine embedding: Representing words using logical expressions. arXiv preprint
arXiv:2301.00709, 2023.

Sinan Çalışır and Meltem Kurt Pehlivanoğlu. Model-free reinforcement learning algorithms: A
survey. In 2019 27th signal processing and communications applications conference (SIU), pp.
1–4. IEEE, 2019.

K Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and Morten Goodwin. The
regression tsetlin machine: a novel approach to interpretable nonlinear regression. Philosophical
Transactions of the Royal Society A, 378(2164):20190165, 2020.

Gangan Elena, Kudus Milos, and Ilyushin Eugene. Survey of multiarmed bandit algorithms applied
to recommendation systems. International Journal of Open Information Technologies, 9(4):12–
27, 2021.

Ittay Eyal. The miner’s dilemma. In 2015 IEEE symposium on security and privacy, pp. 89–103.
IEEE, 2015.

Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. Communica-
tions of the ACM, 61(7):95–102, 2018.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. Advances in neural information pro-
cessing systems, 28, 2015.

Sara Ghanavati, Jemal Abawajy, and Davood Izadi. Automata-based dynamic fault tolerant task
scheduling approach in fog computing. IEEE Transactions on Emerging Topics in Computing, 10
(1):488–499, 2020.

Mina Ghavipour and Mohammad Reza Meybodi. A streaming sampling algorithm for social activity
networks using fixed structure learning automata. Applied Intelligence, 48:1054–1081, 2018.

Saber Gholami, Ali Mohammad Saghiri, SM Vahidipour, and MR Meybodi. Hla: a novel hybrid
model based on fixed structure and variable structure learning automata. Journal of Experimental
& Theoretical Artificial Intelligence, 35(2):231–256, 2023.

Sondre Glimsdal and Ole-Christoffer Granmo. Coalesced multi-output tsetlin machines with clause
sharing. arXiv preprint arXiv:2108.07594, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ole-Christoffer Granmo. The tsetlin machine–a game theoretic bandit driven approach to optimal
pattern recognition with propositional logic. arXiv preprint arXiv:1804.01508, 2018.

Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian W Omlin, and
Geir Thore Berge. The convolutional tsetlin machine. arXiv preprint arXiv:1905.09688, 2019.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622, 2021.

Safwan Hossain, Evi Micha, and Nisarg Shah. Fair algorithms for multi-agent multi-armed bandits.
Advances in Neural Information Processing Systems, 34:24005–24017, 2021.

Amirhossein Jamalian and Shamim Mehrabi. Emotional learning automaton. In 2022 IEEE 21st
International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 99–
105. IEEE, 2022.

Tianyuan Jin, Pan Xu, Xiaokui Xiao, and Anima Anandkumar. Finite-time regret of thompson
sampling algorithms for exponential family multi-armed bandits. Advances in Neural Information
Processing Systems, 35:38475–38487, 2022.

Anand Kalvit and Assaf Zeevi. A closer look at the worst-case behavior of multi-armed bandit
algorithms. Advances in Neural Information Processing Systems, 34:8807–8819, 2021.

Mohammad R Khojasteh and Mohammad R Meybodi. Using learning automata in cooperation
among agents in a team. In 2005 portuguese conference on artificial intelligence, pp. 306–312.
IEEE, 2005.

Jonas M Kübler, Vincent Stimper, Simon Buchholz, Krikamol Muandet, and Bernhard Schölkopf.
Automl two-sample test. Advances in Neural Information Processing Systems, 35:15929–15941,
2022.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Yongshuai Liu, Avishai Halev, and Xin Liu. Policy learning with constraints in model-free reinforce-
ment learning: A survey. In The 30th International Joint Conference on Artificial Intelligence
(IJCAI), 2021.

Mohammad Reza Meybodi and Hamid Beigy. A note on learning automata-based schemes for
adaptation of bp parameters. Neurocomputing, 48(1-4):957–974, 2002.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Satoshi Nakamoto, 2008.

Kumpati S Narendra and Mandayam AL Thathachar. Learning automata: an introduction. Courier
corporation, 2012.

Ali Nikhalat-Jahromi, Ali Mohammad Saghiri, and Mohammad Reza Meybodi. Nik defense: An
artificial intelligence based defense mechanism against selfish mining in bitcoin. arXiv preprint
arXiv:2301.11463, 2023.

Ali Nikhalat-Jahromi, Ali Saghiri, and Mohammad Meybodi. Q-defense: When q-learning comes
to help proof-of-work against the selfish mining attack. In Proceedings of the 16th International
Conference on Agents and Artificial Intelligence - Volume 1: ICAART, pp. 37–46. INSTICC,
SciTePress, 2024. ISBN 978-989-758-680-4. doi: 10.5220/0012378600003636.

B John Oommen. Stochastic searching on the line and its applications to parameter learning in non-
linear optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
27(4):733–739, 1997.

B. John Oommen and Daniel C. Y. Ma. Deterministic learning automata solutions to the equiparti-
tioning problem. IEEE Transactions on Computers, 37(1):2–13, 1988.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B John Oommen, Sudip Misra, and Ole-Christoffer Granmo. Routing bandwidth-guaranteed paths
in mpls traffic engineering: A multiple race track learning approach. IEEE Transactions on
Computers, 56(7):959–976, 2007.

Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ahmady Phoulady. The
weighted tsetlin machine: compressed representations with weighted clauses. arXiv preprint
arXiv:1911.12607, 2019.

Jorge Ramı́rez, Wen Yu, and Adolfo Perrusquı́a. Model-free reinforcement learning from expert
demonstrations: a survey. Artificial Intelligence Review, pp. 1–29, 2022.

Giorgia Ramponi, Alberto Maria Metelli, Alessandro Concetti, and Marcello Restelli. Learning
in non-cooperative configurable markov decision processes. Advances in Neural Information
Processing Systems, 34:22808–22821, 2021.

Alireza Rezvanian, Ali Mohammad Saghiri, Seyed Mehdi Vahidipour, Mehdi Esnaashari, and Mo-
hammad Reza Meybodi. Recent advances in learning automata, volume 754. Springer, 2018.

Fatemeh Safara, Alireza Souri, and Sara Fathipour Deiman. Super peer selection strategy in peer-
to-peer networks based on learning automata. International Journal of Communication Systems,
33(6):e4296, 2020.

Raihan Seraj, Jivitesh Sharma, and Ole-Christoffer Granmo. Tsetlin machine for solving contextual
bandit problems. Advances in Neural Information Processing Systems, 35:30194–30205, 2022.

Jivitesh Sharma, Rohan Yadav, Ole-Christoffer Granmo, and Lei Jiao. Drop clause: Enhancing per-
formance, robustness and pattern recognition capabilities of the tsetlin machine. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 13547–13555, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

MAL Thathachar and Bhaskar R Harita. Learning automata with changing number of actions. IEEE
transactions on systems, man, and cybernetics, 17(6):1095–1100, 1987.

Mandayam AL Thathachar and Pidaparty S Sastry. Networks of learning automata: Techniques for
online stochastic optimization. Springer Science & Business Media, 2003.

Michael Lvovitch Tsetlin. On behaviour of finite automata in random medium. Avtomat. i Telemekh,
22(10):1345–1354, 1961.

Brian Tung and Leonard Kleinrock. Using finite state automata to produce self-optimization and
self-control. IEEE transactions on parallel and distributed systems, 7(4):439–448, 1996.

Taotao Wang, Soung Chang Liew, and Shengli Zhang. When blockchain meets ai: Optimal mining
strategy achieved by machine learning. International Journal of Intelligent Systems, 36(5):2183–
2207, 2021.

Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping Wang, Yonggang
Wen, and Dong In Kim. A survey on consensus mechanisms and mining strategy management in
blockchain networks. Ieee Access, 7:22328–22370, 2019.

Anis Yazidi and B John Oommen. On the analysis of a random walk-jump chain with tree-based
transitions and its applications to faulty dichotomous search. Sequential Analysis, 37(1):31–46,
2018.

Anis Yazidi, Nourredine Bouhmala, and Morten Goodwin. A team of pursuit learning automata for
solving deterministic optimization problems. Applied Intelligence, 50(9):2916–2931, 2020.

Fengji Yi, Wenlong Fu, and Huan Liang. Model-based reinforcement learning: A survey. 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hui Yuan, Chengzhuo Ni, Huazheng Wang, Xuezhou Zhang, Le Cong, Csaba Szepesvári, and
Mengdi Wang. Bandit theory and thompson sampling-guided directed evolution for sequence
optimization. Advances in Neural Information Processing Systems, 35:38291–38304, 2022.

JunQi Zhang and MengChu Zhou. Learning Automata and Their Applications to Intelligent Systems.
John Wiley & Sons, 2023.

Junqi Zhang, Yuheng Wang, Cheng Wang, and Mengchu Zhou. Symmetrical hierarchical stochastic
searching on the line in informative and deceptive environments. IEEE transactions on cybernet-
ics, 47(3):626–635, 2016.

Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh Agarwal, and Wen Sun.
Efficient reinforcement learning in block mdps: A model-free representation learning approach.
In International Conference on Machine Learning, pp. 26517–26547. PMLR, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A NOTATIONS

Table 1: Table of notations

Notation Description

Main Text and ADTA’s Proof (Section E)

n The iteration number
K The number of actions
N The depth or the number nodes in each action of TA

φ(i, j) The jth node of TA’s ith action
φ(i, j)→ φ(a,b) The transition from node φ(i, j) to node φ(a,b)

A The action set of ADTA
R The reward of ADTA from the environment

AT The chosen action of TA in ADTA
RT The reward of TA in ADTA
AA The chosen action of the RL agent in ADTA
RA The reward of the RL agent from the environment

M(n) The average penalty of the TA
ci The penalty of environment to the ith action
∆ A threshold in which the property of the internal environment can be analyzed as a stationary environment
ψ The constant value of penalty in the internal environment for n≥ ∆

Ω The state space of a Markov process
n∗ The convergence point of the internal environment to the ’Stop’ action

V (x) The Lyapunov function
p(n) The probability vector of a learning automaton
λ1 The reward rate of VSLA
λ2 The penalty rate of inner VSLA

µi(n) The expected value of the probability for each action
ρi j(n) cov(pi(n), p j(n))

Non-stationary Environments (Section F)

Ei Each stationary part of a non-stationary environment
T The transition matrix of a Markov chain
R The reward matrix of a Markov chain
ζ The increment value of the penalty probability in the State-dependent environment
χ The decrement value of the penalty probability in the State-dependent environment

Application : Blockchain Security (Section I)

L Length of a branch in a fork
W Weight of a branch in a fork
δ Fail-safe parameter

δmin The minimum value of the fail-safe parameter
δmax The maximum value of the fail-safe parameter

τ Decision-making time
θ Time Window parameter

B ADDITIONAL RELATED WORKS

Reinforcement learning, a pivotal paradigm in machine learning, can be categorized into two main
types (Sutton & Barto, 2018): model-based (Moerland et al., 2023; Yi et al., 2018) and model-
free (Çalışır & Pehlivanoğlu, 2019; Ramı́rez et al., 2022; Liu et al., 2021) approaches (Figure 5).
In model-based RL, agents construct an internal model of the environment to plan and optimize
actions. In contrast, model-free RL involves agents learning directly from interactions with the
environment, refining actions through trial-and-error. The choice between these approaches depends
on task characteristics, with model-based methods suited for environments where a reliable model is
available, and model-free methods excelling in complex and uncertain environments. In this paper,
we chose learning automaton from the model-free category.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Reinforcement
Learning

Model-Free Model-Based

Q-Learning
Learning

Automaton
Learn the

Model
Multi-armed

Bandit
Given the

Model

Fixed
Structure

Variable
Structure

Hybrid
Structure

HLA ADTA Krinsky VASLATA(LKN,K) VSLAKrylov

Figure 5: The taxonomy of reinforcement learning algorithms based on the model

Fixed Structure. The first class of the learning automaton family is fixed structure. The domain of
fixed structure learning automaton (Rezvanian et al., 2018; Zhang & Zhou, 2023) is expansive, en-
compassing various branches such as Tsetlin (LKN,K) (Granmo, 2018; Seraj et al., 2022; Abeyrathna
et al., 2021b), Krinsky (Meybodi & Beigy, 2002; Jamalian & Mehrabi, 2022), and Krylov (Khojasteh
& Meybodi, 2005). Each learning automaton is dedicated to specific decision-making paradigms,
aligning with diverse cognitive abilities observed in human behavior. While the Tsetlin Automaton
incorporates rewards and penalties, other models explore cognitive aspects such as impulsivity and
greed.

Variable Structure. Variable Structure Learning Automaton (Narendra & Thathachar, 2012; Yazidi
et al., 2020; Safara et al., 2020; Ghanavati et al., 2020), belonging to the second class of learning
automaton, exhibits various types, with VSLA and VASLA being the most significant branches. In
VSLA, interaction with the surrounding environment updates a probability vector. VASLA, similar
to VSLA, differs in that, in certain situations, not all actions are accessible, resulting in a variable
number of actions based on the prevailing circumstances.

Hybrid Structure. Representing a notable departure from prior literature, Gholami et al. introduced
a significant modification to the TA (Gholami et al., 2023) by combining the fixed structure and
variable structure families, thereby establishing the third class and the state-of-the-art family of
learning automaton. This alteration specifically targeted the optimization of action switching by
learning the best next action.

C MORE ABOUT VSLA FAMILY

In this section, we expand upon the concept of the variable structure family of learning automata, as
its utilization is integral to various sections of our paper.

C.1 VARIABLE STRUCTURE LEARNING AUTOMATON (VSLA)

Variable structure learning automaton (Narendra & Thathachar, 2012; Yazidi et al., 2020; Safara
et al., 2020; Ghanavati et al., 2020) can be defined mathematically by a quintuple < A,R,P,λ1,λ2 >,
where A = {a1,a2, · · · ,aK} denotes the finite action set from which the automaton can select the
intended action, R denotes the reward of the environment (R ∈ [0,1]), P = {p1, p2, · · · , pK} denotes
the action probability vector, such that pi is the probability of choosing the ai action (1 ≤ i ≤ K),
λ1, and λ2 indicate the reward and penalty parameters that determine the amount of increase and
decrease of the action probabilities at epoch n.

λ1 and λ2 can have different values. Based on these values, the updating rule of the probability
vector can be categorized as follows:

• LR−PLR−PLR−P: This updating scheme, which is called ”linear reward-penalty,” comes from the
equality of the reward and penalty parameters (λ1 = λ2). When both are the same, the
probability vector of the learning automaton increases or decreases at a monotonic rate.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• LR−εPLR−εPLR−εP: This updating scheme, which is called ”linear reward-ε penalty,” leads to a much
greater value of the reward parameter in relation to the penalty parameter (λ1 >> λ2).

• LR−ILR−ILR−I : When there is no penalty in an updating scheme (0 < λ1 < 1,λ2 = 0), this updating
scheme is called ”linear reward-Inaction.” The probability vector of the learning automaton
will not change upon receiving an unfavorable response from the environment.

• LP−ILP−ILP−I : If the conducted probability vector in the learning automaton doesn’t change by
receiving the favorable action, this updating scheme is called ”linear penalty-Inaction”
(λ1 = 0,0 < λ2 < 1).

• Pure Chance: An updating scheme in which there is no penalty and reward parameter
(λ1 = λ2 = 0) is called ”Pure Chance.” In this updating scheme, the probability vector of
the automaton will not change in any conditions.

The automaton performs its chosen action on the environment at epoch n. If the learning automaton
chooses its intended action (i = j), the probability vector will update using (19).

pi(n+1) = pi(n)+λ1(1−R(n))(1− pi(n))−λ2R(n)pi(n) (19)

On the other hand, the probability vector for the other actions (i ̸= j) that are not chosen will update
due to the (20).

p j(n+1) = p j(n)−λ1(1−R(n))p j(n)+R(n)(
λ2

K−1
−λ2 p j(n)) (20)

C.2 VARIABLE ACTION SET LEARNING AUTOMATON (VASLA)

Under some circumstances, the number of available actions of the learning automaton varies at each
instant. To overcome this constraint, a subset of the variable structure learning automaton called
the variable action set learning automaton Thathachar & Harita (1987); Narendra & Thathachar
(2012) is defined. Like the variable structure, this automaton can be formulated by a quintu-
ple < A,R,P,λ1,λ2 >, where A = {a1,a2, · · · ,aK} denotes the finite action set from which the
automaton can select the intended action, R denotes the reward of the environment (R ∈ [0,1]),
P = {p1, p2, · · · , pK} denotes the action probability vector, such that pi is the probability of choos-
ing the ai action (1 ≤ i ≤ K), λ1, and λ2 indicate the reward and penalty parameters that determine
the amount of increase and decrease of the action probabilities at epoch n. Various values for λ1 and
λ2 are defined in Section C.1.

At each epoch, the action subset Â ⊆ A is available for the learning automaton to choose from. Let
U(n) = ∑Ai∈Â(n) Pi(n) present the sum of probabilities of the available actions in subset Â. Before
choosing an action, the available action probability vector is scaled using the (21).

P̂i(n) =
pi(n)
U(n)

∀ai (21)

If the learning automaton chooses its intended action (i = j), the probability vector will update using
(22).

pi(n+1) = pi(n)+λ1R(n)(1− pi(n))−λ2(1−R(n))pi(n) (22)

Conversely, the probability vector for the other actions (i ̸= j) that are not chosen will update due to
the (23).

p j(n+1) = p j(n)−λ1R(n)p j(n)+λ2(1−R(n))[
1

K−1
− p j(n)] (23)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Φ1,2 0.3 0.3 0.4

Grow Stop Shrink

Φ1,1

Φ2,2

Φ2,1Clockwise

Φ3,2 Φ3,1

Φ4,2

Φ4,1

depth_counter = 0
transition_counter = 0

r = 0

(a) Stage one of example

Φ1,2 0.3 0.3 0.4

Grow Stop Shrink

Φ1,1

Φ2,2

Φ2,1Clockwise

Φ3,2 Φ3,1

Φ4,2

Φ4,1

depth_counter = 1
transition_counter = 1

r = 1

(b) Stage two of example

Φ1,2 0.3 0.3 0.4

Grow Stop Shrink

Φ1,1

Φ2,2

Φ2,1Clockwise

Φ3,2 Φ3,1

Φ4,2

Φ4,1

depth_counter = 1
transition_counter = 2

r = 0

(c) Stage three of example

Φ1,1 0.32 0.32 0.36

Grow Stop Shrink

Φ2,1

Clockwise

Φ3,1

Φ4,1

depth_counter = 1
transition_counter = 3

r = 0

(d) Stage four of example

Figure 6: Four stages of depth decrement

D NUMERICAL EXAMPLE

This section presents two numerical examples to illustrate the effectiveness of the proposed learning
automaton. In these examples, we consider an ADTA with four actions (K = 4) and a depth of
two (N = 2). The RL agent employed is an LR−P VASLA, with λ1 = λ2 = 0.5. The first example
(Section D.1) demonstrates the depth decrement of the ADTA, while the second example (Section
D.2) showcases its depth increment.

D.1 DEPTH DECREMENT

In this example, illustrated through four stages in Figure 6, after running the proposed learning
automaton for a certain period in the environment, the probability vector of the VASLA converges
to [0.3,0.3,0.4]. This indicates a 30% probability for the ’Grow’ action, 30% for the ’Stop’ action,
and 40% for the ’Shrink’ action. The resulting probability vector suggests that the ADTA is inclined
to reduce its depth.

Initially, let’s assume the ADTA switches its action to action number 2, positioning itself at node
φ(2,2), as depicted in Figure 6a. It is important to note that two key variables, transition counter and
depth counter, are reset to 0 at this starting point.

In the second stage, the ADTA performs action number 2. This action is successful, and the learning
automaton receives a reward from the environment. This reward affects both the transition counter

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

and depth counter variables. Since the reward causes the ADTA to move to the inner node φ(2,1),
and this transition is a depth transition, the depth counter variable increases by one. Additionally,
because a transition occurs, the transition counter also increases by one. This process is illustrated
in Figure 6b.

In the third stage, the ADTA performs action 2 again. Unlike the previous stage, the environment
deems this action unsuccessful, necessitating a penalty for the ADTA. As a result, the ADTA moves
backward to node φ(2,2). This transition is not a depth transition, so the depth counter remains
unchanged. However, since a transition does occur, the transition counter increases by one. Figure
6c illustrates the outcome of the third stage.

In the final stage, the ADTA performs action 2 once more. Similar to the previous stage, the chosen
action is unsuccessful, resulting in a penalty. Since the ADTA is at an outer node, it will switch its
action. According to the clockwise policy of the ADTA, it will select action 3 and move to the first
node of action 3. There are no transitions to a depth node at action 2, so the depth counter remains
unchanged. However, the transition to new action will increase the transition counter by one.

In the ADTA, changing the action triggers the activation of VASLA to update the depth of the inner
TA. Initially, the VASLA receives feedback regarding its previous depth selection. The feedback
R for VASLA is calculated as depth counter=1

transition counter=3 , indicating that the previous action of VASLA was
moderately effective. Subsequently, the VASLA uses this feedback to update its probability vector
for selecting the next action. In this instance, it opts for the ’Shrink’ action to decrease the depth, as
depicted in Figure 6d, marking the final stage.

The process continues iteratively until the ADTA determines the appropriate depth that accommo-
dates both the environment and its evolving conditions.

D.2 DEPTH INCREMENT

In this example, which consists of three stages illustrated in Figure 7, the VASLA converges to the
probability vector [0.8,0.1,0.1], indicating an 80% probability for the ’Grow’ action, and 10% each
for the ’Stop’ and ’Shrink’ actions. As the probability vector shows, the VASLA tends to favor the
’Grow’ action.

At the first stage, the ADTA is positioned at node φ(4,1) for the first time, initiating action 4, as de-
picted in Figure 7a. Since this is the first encounter, both the transition counter and depth counter
variables are set to 0.

In the second stage, the ADTA performs action 2, which is rewarded by the environment. This
reward returns the ADTA to node φ(4,1) once more. However, since this transition involves a depth
transition, both the transition counter and depth counter variables are incremented by one. This is
depicted in Figure 7b.

In the final stage, the ADTA performs action 2 again, but this time receives a penalty from the
environment. As a result, it should change its action. The transition from action 4 to action 1
triggers the VASLA, which then receives feedback regarding its prior depth selection. The feedback
R is calculated as depth counter=1

transition counter=2 . Using this feedback, the VASLA updates its probability vector
for selecting the next action, resulting in the new vector [0.66,0.17,0.17]. In this case, the VASLA
chooses the ’Grow’ action, increasing the depth from 1 to 2, as shown in Figure 7c.

Additionally, since the ADTA was positioned at the edge node φ(4,1), it transitions to the next action
following the clockwise policy, moving to node φ(1,2). As this transition does not involve a depth
change, the depth counter remains unchanged, while the transition counter is incremented by one.

E MISSING PROOFS

E.1 PROOF OF THE RL AGENT CONVERGENCE USING VASLA

Before exploring the proof, we highly recommend familiarizing yourself with the VSLA family, as
it is further explained in Section C.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Φ1,1 0.8 0.1 0.1

Grow Stop Shrink

Φ2,1

Clockwise

Φ3,1

Φ4,1

depth_counter = 0
transition_counter = 0

r = 0

(a) Stage one of example

Φ1,1 0.8 0.1 0.1

Grow Stop Shrink

Φ2,1

Clockwise

Φ3,1

Φ4,1

depth_counter = 1
transition_counter = 1

r = 1

(b) Stage two of example

Φ1,2 0.66 0.17

Grow Stop Shrink

Φ1,1

Φ2,2

Φ2,1Clockwise

Φ3,2 Φ3,1

Φ4,2

Φ4,1

depth_counter = 1
transition_counter = 2

0.17

r = 0

(c) Stage three of example

Figure 7: Three stages of depth increment

Proof. To demonstrate the convergence of VASLA to the desired action, we begin by considering
the general case where K actions are defined. Subsequently, we focus specifically on VASLA with
three actions. The proof initiates by examining the conditional expectation of selecting the desired
action (the ith action) as expressed in (24).

E[pi(n+1)|pi(n)] =
K

∑
j=1

E[pi(n+1)|pi(n)∧A(n) = a j]p j(n) (24)

Looking at the main updating equations of VASLA (22) and (23) and the conditional expectation value in (24)
will lead us to (25) as a piece-wise function.

E[pi(n+1)|pi(n)] =


[(1− ci(n)pi(n))][pi(n)+λ1(1− pi(n))] R(n) = 1,A(n) = ai

[ci(n)pi(n)][pi(n)] R(n) = 0,A(n) = ai

∑
r
j ̸=i(1− c j(n))(1−λ1)p j(n)pi(n) R(n) = 1,A(n) = a j

∑
r
j ̸=i c j(n)p j(n)pi(n) R(n) = 0,A(n) = a j

(25)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Summation of the above conditional expected value expresses the desired one like (26).

E[pi(n+1)|pi(n)] = [(1− ci(n)pi(n))][pi(n)+λ1(1− pi(n))] (26)

+[ci(n)pi(n)][pi(n)]+
K

∑
j ̸=i

(1− c j(n))(1−λ1)p j(n)pi(n)

+
K

∑
j ̸=i

c j(n)p j(n)pi(n)

Taking the expected value from both sides leads to (27).

E[pi(n+1)] = λ1

K

∑
j=1

c j(n)E[pi(n)p j(n)]+(1−λ1ci(n))E[pi(n)] (27)

If E[pi(n)p j(n)] is substituted with the corresponding covariance term, and for the sake of simplifi-
cation, cov(pi(n), p j(n)) = ρi j(n) and E[pi(n)] = µi(n), we will have (28).

E[pi(n+1)] = λ1

K

∑
j=1

c j(n)[ρi j(n)+µ j(n)]]+(1−λ1ci(n))E[pi(n)] (28)

Now, it is time to be specific about the number of actions. In our VASLA model, we consider three
actions: ’Grow’, ’Stop’, and ’Shrink’. According to Lemma 1, the penalty probabilities cGrow(n),
cStop(n), and cShrink(n) converge to the constant values ψint−Grow, ψint−Stop, and ψint−Shrink respec-
tively. Moreover, since ψint−Stop = 0, equations (29) and (30) can be derived directly from the
general form of the conditional expected value.

µGrow(n+1) = λ1ψint−GrowρGrow,Grow(n) (29)

+λ1ψint−GrowµGrow(n)2 +λ1ψint−ShrinkρGrow,Shrink(n)
+λ1ψint−ShrinkµGrow(n)µShrink(n)+µGrow(n)(1−λ1ψint−Grow)

µShrink(n+1) = λ1ψint−GrowρShrink,Grow(n) (30)
+λ1ψint−GrowµShrink(n)µGrow(n)+λ1ψint−ShrinkρShrink,Shrink(n)

+λ1ψint−ShrinkµShrink(n)2 +µShrink(n)(1−λ1ψint−Shrink)

To apply the Lyapunov stability theorem and the contraction mapping theorem in definitions (8) and
(9), ξ function is defined with input values of µGrow and µShrink. To apply the definition 8, we should
prove that ξ (µGrow,µShrink) is a contraction using the absolute-value norm(L1 norm). This condition
is summarized in (31) and (32).

||ξ (µGrow,µShrink)||1
?
< ||µGrow(n)||1 + ||µShrink(n)||1 (31)

||ξ (µGrow,µShrink)||1 = µGrow(n)(1−λ1ψint−Grow) (32)

+λ1ψint−Grow[ρGrow,Grow(n)+µGrow(n)2 +ρShrink,Grow(n)
+µShrink(n)µGrow(n)]+µShrink(n)(1−λ1ψint−Shrink)

+λ1ψint−Shrink[ρµShrink(n),Shrink(n)+µShrink(n)2 +ρGrow,Shrink(n)

+µGrow(n)µShrink(n)]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 1 0

Grow Stop Shrink

Φ2,Ń Φ2,Ń-1

RL Agent

...Φ2,Ń-2
Φ2,2 Φ2,1Φ1,1 Φ1,2 ... Φ1,Ń-1 Φ1,ŃΦ1,Ń-2

Ń Ń
cext-1

cext-1cext-1cext-1

dext-1
dext-1

dext-1

dext-1

cext-2 cext-2 cext-2
dext-2

dext-2 dext-2 dext-2

cext-2

Figure 8: The transition among states in ADTA with 2 actions after the RL agent converges to the
’Stop’ action and Ń is chosen for each action

Furthermore, the inequality of (33) can be inferred from the expectation value properties.

E[µi(n)2]+E[µi(n)µ j(n)] = E[µi(n)2 +µi(n)µ j(n)] (33)
= E[µi(n)(µi(n)+µ j(n))]< E[µi(n)]

Thus, equality of ξ (µGrow,µShrink) turns into an inequality which is described in (34).

||ξ (µGrow,µShrink)||1 < µGrow(n)(1−λ1ψint−Grow) (34)
+λ1ψint−GrowµGrow(n)+µShrink(n)(1−λ1ψint−Shrink)

+λ1ψint−ShrinkµShrink(n)

Finally, it is proved that:

||ξ (µGrow,µShrink)||1 < µGrow(n)+µShrink(n) (35)

As a result, we can claim that ξ (µGrow,µShrink) is a contraction mapping function, and due to the
definitions 8 and 9, this function will converge to 0 approximately. On the other hand, since the sum
of all probabilities equals to 1, the expected value of the ’Stop’ action will converge to 1.

E.2 PROOF OF THE RL AGENT ENTROPY

Proof. By referring to definition of entropy (H), the entropy of the RL agent (HRL Agent) will be
calculated as follows:

H =−
K

∑
i=1

pi log pi (36)

HRL Agent =−(pGrow log pGrow + pStop log pStop + pShrink log pShrink) (37)
let lim

pGrow→0
pGrow = lim

pShrink→0
pShrink = 0 =⇒

HRL Agent = lim
pGrow→0,pShrink→0

−[pGrow log pGrow

+(1− (pGrow + pShrink)) log(1− (pGrow + pShrink))

+pShrink log pShrink] (38)
HRL Agent = 0 (39)

E.3 PROOF OF LEARNING CAPABILITY

Proof. Now, if the learning ability of the TA is demonstrated, the learning capacity of ADTA will
also be established. To achieve this, the average penalty M(n) for the TA must be calculated. Fur-
thermore, based on Definitions 1 to 4, it is essential to determine the probability of each action.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Since the behavior of the TA can be represented using a Markov chain, we employ Markov analysis
in the following sections to compute the probability associated with each action.

Considering the transition matrix of the associated TA in Figure 8, we observe that it comprises
2Ń × 2Ń elements, as dictated by the memory size of 2Ń. Within this matrix, node transitions
resulting in a successful reward acquisition are denoted as dext , corresponding to the relevant action.
Conversely, if the transition does not lead to success, the element is labeled as cext based on the
action. If neither of these conditions apply, the element is set to 0.

T =



dext−1 cext1 · · · ·
dext1 0 cext1 · · ·

0 dext1 0 cext1 · ·
...

.
...

0 0 0 dext−1 · cext−1
· · · · dext−1 0

· · · · · ·
· · · · · ·
· · · · · ·
...

.
...

· · · · · ·
· · · · · cext−1

· · · · · ·
· · · · · ·
· · · · · ·
...

.
...

· · · · · ·
· · · · · cext−2

dext−2 cext−2 · · · ·
dext−2 0 cext−2 · · ·

0 dext−2 0 cext−2 · ·
...

.
...

0 0 0 dext−2 · cext−2
· · · · dext−2 0


Steady-state calculation of Markov chain with the mentioned transition matrix will yield to the M(n)
as follows:

M(n) = c1 p1 + c2 p2

M(n)=

1
cext−1

Ń−1
×(

cext−1
Ń−dext−1

Ń

cext−1−dext−1
)+ 1

cext−2
Ń−1

×(
cext−2

Ń−dext−2
Ń

cext−2−dext−2
)

1
cext−1

Ń
×(

cext−1
Ń−dext−1

Ń

cext−1−dext−1
)+ 1

cext−2
Ń
×(

cext−2
Ń−dext−2

Ń

cext−2−dext−2
)

To establish TA’s learning capability with 2 actions and 2× Ń states, we explore three scenarios
for M(n) based on cext−1 and cext−2 values: 1) When cext−1 < cext−2 < 1

2 , cext−1 < dext−1 and
cext−2 < dext−2, leading to limn→+∞ M(n) reaching 0. Thus, ADTA’s M(n) is below M0, indicat-
ing its learning capability. 2) For cext−1 <

1
2 < cext−2, limn→+∞ M(n) converges to c1, which is less

than M0, confirming ADTA’s learning ability. 3) In cases of cext−1 >
1
2 ,cext−2 >

1
2 , limn→+∞ M(n)

is determined by 4cext−1cext−2−cext−1−cext−2
2cext−1+2cext−2−2 , emphasizing the influence of cext−1 and cext−2 values on

ADTA’s learning capability.

F NON-STATIONARY ENVIRONMENTS EXPERIMENTS

In this section, we present additional synthetic experiments on more complex environments known
as non-stationary environments. In these environments, where the penalty probability ci changes
over time, fixed strategies used by learning automaton may become ineffective or result in frequent
penalties Narendra & Thathachar (2012). To succeed in such conditions, learning automaton must
demonstrate adaptability. Non-stationary environments can be analyzed by dividing them into time
intervals with constant penalty probabilities, resembling the process of learning in multiple random
environments. We focus on two types of non-stationary environments: Markovian switching and
State-dependent. In these cases, the learning automaton operates within a finite set of environments,
denoted as E1,E2, ...,ED Narendra & Thathachar (2012). To maintain consistency with other sec-
tions of the paper that utilize learning automaton theory, we employ the VASLA as the reinforcement
learning agent.

F.1 MARKOVIAN SWITCHING ENVIRONMENT

In a Markovian switching environment, each environment Ei;(1 ≤ i ≤ D) corresponds to a distinct
state of a Markov chain. If the chain is ergodic, the learning automaton interacting with this en-
vironment will occupy each state with a fixed probability, dictated by the asymptotic probability
distribution of the ergodic chain Narendra & Thathachar (2012); Thathachar & Sastry (2003).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

State 1
[0.8, 0.2]

State 2
[0.2, 0.8]

0.1

0.1

0.9
0.9

(a) Scenario 1

State 1
[0.8, 0.2]

State 2
[0.2, 0.8]

0.8

0.6

0.2
0.4

(b) Scenario 2

State 1
[0.8, 0.2]

State 2
[0.7, 0.3]

0.1

0.1

0.9 0.9

(c) Scenario 3

State 1
[0.8, 0.2]

State 2
[0.7, 0.3]

0.8

0.6

0.2 0.4

(d) Scenario 4

Figure 9: Four scenarios of Markovian switching environment

F.1.1 SIMPLE MARKOV CHAIN

These experiments consist of four distinct scenarios, each representing a unique Markovian switch-
ing environment governed by a two-state Markov chain. All scenarios are illustrated in Figure 9.
The scenarios include the following:

(i) The transition from one state to another changes the action with the higher reward prob-
ability, as shown in Figure 9a. The likelihood of remaining in the current state is greater
than transitioning between states. Steady-state analysis converts this environment into a
stationary one with action probabilities of [0.5,0.5].

(ii) Transitioning between states completely alters the action with the highest reward probabil-
ity, with a high likelihood of state changes (Figure 9b). Steady-state analysis converts this
environment into a stationary one with action probabilities of [0.45,0.54].

(iii) State transitions affect the reward probabilities, but the action with the highest reward prob-
ability remains unchanged. There is a high tendency to stay in the current state (Figure 9c).
Steady-state analysis converts this environment into a stationary one with action probabili-
ties of [0.75,0.24].

(iv) The action with the highest reward probability remains consistent across states, but state
transitions can affect the likelihood of receiving a reward for that action. Changing states is
relatively easy (Figure 9d). Steady-state analysis converts this environment into a stationary
one with action probabilities of [0.74,0.26].

In all four scenarios, common configurations were applied: the inner VASLA followed the LR−I
model with λ1 = 0.01 and λ2 = 0; and the initial depth was set to 1, 2, 3, 5, or 7. The reported
results are based on 20 realizations, with each realization consisting of 10000 iterations.

The results in Table 2 demonstrate the superiority of the ADTA over the TA and HLA in most
experiments. This advantage is due to the adaptive nature of the ADTA in finding an appropriate
depth to balance exploration and exploitation. In the first two scenarios (i and ii), the environment
is random, so we don’t expect the learning automata to perform exceptionally well, as evidenced by
achieving around 5000 rewards out of 10000 rounds. However, this changes in scenarios iii and iv,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 2: The experimental results of a Simple Markov Chain with respect to cumulative reward

ModelModelModel N = 1N = 1N = 1 N = 2N = 2N = 2 N = 3N = 3N = 3 N = 5N = 5N = 5 N = 7N = 7N = 7

Scenario(i)Scenario(i)Scenario(i)
TATATA 4974.15±87.45 4977.35±83.78 4985.55±89.01 4997.8±74.18 4972.55±65.35
HLAHLAHLA 4982.05±67.43 4997.85±89.20 4996.6±71.97 5001.45±111.68 5008.2±90.505008.2±90.505008.2±90.50
ADTAADTAADTA 5016.7±114.445016.7±114.445016.7±114.44 5008.4±98.835008.4±98.835008.4±98.83 5039.45±107.05039.45±107.05039.45±107.0 5030.95±78.465030.95±78.465030.95±78.46 5007.8±106.47

Scenario(ii)Scenario(ii)Scenario(ii)
TATATA 4572.7±49.47 4578.7±34.954578.7±34.954578.7±34.95 4562.55±33.45 4549.1±45.91 4568.3±29.40
HLAHLAHLA 4563.35±47.94 4566.7±48.29 4560.95±38.94 4573.1±46.22 4544.3±45.37
ADTAADTAADTA 4576.4±37.974576.4±37.974576.4±37.97 4574.9±38.73 4576.75±49.984576.75±49.984576.75±49.98 4575.3±47.284575.3±47.284575.3±47.28 4578.15±49.694578.15±49.694578.15±49.69

Scenario(iii)Scenario(iii)Scenario(iii)
TATATA 7503.8±49.69 7503.65±42.99 7505.3±39.29 7492.75±44.76 7505.05±41.46
HLAHLAHLA 7505.45±32.93 7503.6±43.55 7493.6±47.33 7510.1±47.90 7492.85±35.75
ADTAADTAADTA 7512.35±47.017512.35±47.017512.35±47.01 7513.15±47.367513.15±47.367513.15±47.36 7529.85±35.217529.85±35.217529.85±35.21 7519.35±49.007519.35±49.007519.35±49.00 7515.35±33.177515.35±33.177515.35±33.17

Scenario(iv)Scenario(iv)Scenario(iv)
TATATA 7430.1±49.72 7423.95±34.94 7423.85±39.89 7420.65±37.67 7429.3±36.44
HLAHLAHLA 7435.55±40.93 7415.75±55.47 7423.6±38.56 7418.15±33.98 7423.85±39.08
ADTAADTAADTA 7437.55±32.157437.55±32.157437.55±32.15 7438.9±42.627438.9±42.627438.9±42.62 7445.25±51.077445.25±51.077445.25±51.07 7430.65±40.017430.65±40.017430.65±40.01 7432.1±33.927432.1±33.927432.1±33.92

where one action is dominant, and the LAs, particularly the ADTA, are able to identify this action
with a higher reward probability.

F.1.2 COMPLEX MARKOV CHAIN

This experiment aims to evaluate the performance of the proposed learning automaton in a complex
Markovian switching environment, focusing on the cumulative reward metric. The environment
consists of a Markov chain with four states, as depicted in Figure 10. The transition matrix (T) and
the reward matrix (R), which define the reward probabilities, are as follows:

T =

 0.3 0.2 0.1 0.4
0.1 0.2 0.5 0.2
0.2 0.2 0.2 0.6
0.2 0.5 0.1 0.2

 (40)

R =

 0.9 0.1 0.3 0.7 0.1
0.1 0.9 0.7 0.6 0.2
0.3 0.7 0.5 0.5 0.3
0.9 0.9 0.9 0.4 0.6

 (41)

To achieve our goals in this experiment, the inner VASLA adopts the LR−I method with parameters
λ1 = 0.01 and λ2 = 0. Five actions are allowed, and the initial depths considered are N = 1,2,3,5,7.

Before analyzing the results presented in Table 3 for 20 realizations, each consisting of 10000 it-
erations, the Markovian switching environment is transformed into a stationary environment using
steady-state analysis. This conversion yields reward probabilities of [0.52,0.68,0.62,0.52,0.31] for
actions 1 to 5, respectively.

Table 3: The experimental results of a Complex Markov Chain with respect to cumulative reward

ModelModelModel N = 1N = 1N = 1 N = 2N = 2N = 2 N = 3N = 3N = 3 N = 5N = 5N = 5 N = 7N = 7N = 7

TATATA 5821.5±174.53 6053.95±53.42 6278.0±70.35 6536.9±79.76 6716.85±118.58
HLAHLAHLA 6568.65±152.50 6538.1±132.71 6486.65±112.93 6625.95±101.96 6748.45±118.58
ADTAADTAADTA 6688.7±174.536688.7±174.536688.7±174.53 6650.25±208.946650.25±208.946650.25±208.94 6701.7±130.766701.7±130.766701.7±130.76 6701.55±188.266701.55±188.266701.55±188.26 6750.75±159.946750.75±159.946750.75±159.94

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

State1
[0.9, 0.1, 0.3, 0.7, 0.1]

State2

[0.1, 0.9, 0.7, 0.6, 0.2]
0.3

0.2

State3

[0.3, 0.7, 0.5, 0.5, 0.3]

State4

[0.9, 0.9, 0.9, 0.4, 0.6]

0.2

0.1

0.4

0.1

0.5

0.20.2

0.2

0.2

0.6

0.2

0.5

0.1
0.2

Figure 10: The designed environment for Markovian switching experiment

The ADTA outperforms both the base method (TA) and the state-of-the-art method (HLA) in terms
of rewards obtained. This superior performance is attributed to the ADTA’s ability to select the
appropriate depth. When examining the probability vector after reaching a steady-state, it becomes
evident that no single action has a significantly higher probability of being rewarded than the others.
In such situations, the ADTA effectively adjusts its depth to maximize its rewards.

F.2 STATE-DEPENDENT ENVIRONMENT

In a State-dependent environment, when the learning automaton performs action ai (1 ≤ i ≤ K)
during the nth iteration, the probability ci associated with that action increases. In contrast, the prob-
abilities of the other actions decrease. Consequently, the performed action becomes less favorable
in subsequent stages, whereas the other actions become more advantageous over time Narendra &
Thathachar (2012).

Mathematically, this environment is described by the following equations:{
ci(n) = ci(n)+ζi(n) i = j
c j(n) = c j(n)−χ j(n) i ̸= j

(42)

In the given equation, ζi(n) and χ j(n) (i, j = 1,2, ...,K) are constants associated with the nth iteration.
The next equation represents the constant value of ζi(n), which will increase the probability of the
chosen action:

ζi(n) =
{

ζi ci(n)+ζi(n)≤ 1
1− ci(n) o.w

(43)

And χ j(n) represents a constant value that decreases the probability of other actions, as described
by the following equation:

χ j(n) =
{

χ j c j(n)−χ j(n)≥ 0
1− c j(n) o.w

(44)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F.3 STATE-DEPENDENT EXPERIMENT

This experiment focuses on assessing the performance of the ADTA in a State-dependent envi-
ronment, comparing it with the base model (TA) and the state-of-the-art model (HLA) using the
cumulative reward metric.

To design the State-dependent environment, three sets of (ζ , χ) tuples are considered:
(0.0002,0.00002), (0.0005,0.0005), and (0.00002,0.0002) for scenarios 1 to 3, respectively. Ad-
ditionally, the initial action probabilities in this environment are set to [0.9,0.1], which can dynami-
cally change based on the values of ζ and χ .

The inner VASLA adopts the LR−I strategy with λ1 = 0.01 and λ2 = 0. Initial depths of 1, 2, 3, 5,
and 7 are considered for various configurations. The reported results are based on 20 realizations,
with each realization consisting of 1000 iterations.

Table 4: The experimental results of a state-dependent environment concerning cumulative reward

ModelModelModel N = 1N = 1N = 1 N = 2N = 2N = 2 N = 3N = 3N = 3 N = 5N = 5N = 5 N = 7N = 7N = 7

Scenario 1− (ζ = 0.0002, χ = 0.00002)Scenario 1− (ζ = 0.0002, χ = 0.00002)Scenario 1− (ζ = 0.0002, χ = 0.00002)
TATATA 700.75±19.01 770.15±13.35 784.45±11.90 795.55±13.59 801.3±14.69
HLAHLAHLA 748.5±14.36 773.95±14.94 788.5±14.46 795.45±12.18 797.95±13.20
ADTAADTAADTA 796.1±14.12796.1±14.12796.1±14.12 799.6±14.11799.6±14.11799.6±14.11 794.15±15.35794.15±15.35794.15±15.35 800.0±13.22800.0±13.22800.0±13.22 803.85±11.50803.85±11.50803.85±11.50

Scenario 2− (ζ = 0.0005, χ = 0.0005)Scenario 2− (ζ = 0.0005, χ = 0.0005)Scenario 2− (ζ = 0.0005, χ = 0.0005)
TATATA 637.45±16.15 653.2±12.97 657.9±12.43 656.85±12.20 655.05±19.65
HLAHLAHLA 655.9±15.88 656.45±10.80 657.5±13.37 657.95±10.47 657.65±14.50
ADTAADTAADTA 660.2±16.46660.2±16.46660.2±16.46 662.4±16.35662.4±16.35662.4±16.35 665.35±13.87665.35±13.87665.35±13.87 663.75±14.60663.75±14.60663.75±14.60 661.45±10.11661.45±10.11661.45±10.11

Scenario 3− (ζ = 0.00002, χ = 0.0002)Scenario 3− (ζ = 0.00002, χ = 0.0002)Scenario 3− (ζ = 0.00002, χ = 0.0002)
TATATA 821.25±13.61 880.6±10.01 888.5±9.68 884.0±9.61 891.6±10.31
HLAHLAHLA 844.35±12.41 874.85±13.99 887.05±8.44 888.65±9.48 889.85±10.51
ADTAADTAADTA 885.95±11.10885.95±11.10885.95±11.10 883.8±9.46883.8±9.46883.8±9.46 889.3±12.66889.3±12.66889.3±12.66 891.55±7.62891.55±7.62891.55±7.62 892.35±9.92892.35±9.92892.35±9.92

The results are presented in Table 4. In the first scenario, the probability of being penalized in-
creases by ζ = 0.0002, meaning the optimal action weakens after some iterations while other actions
strengthen at a rate of χ = 0.00002. In the second scenario, the weakening of the optimal action
occurs at a lower rate, equal to the strengthening rate of other actions (ζ = χ = 0.0002). In the third
scenario, the dominant action is minimally affected (ζ = 0.00002). In all conditions, the ADTA
demonstrates superiority over TA and HLA in terms of cumulative reward, attributed to the effective
configuration of the depth parameter.

G VARIOUS RL AGENTS

In most sections of this paper, we use VASLA as the RL agent since the primary focus of this work is
on learning automaton. However, in this section, we explore the impact of substituting other multi-
armed bandit algorithms Lattimore & Szepesvári (2020); Kalvit & Zeevi (2021) for the RL agent.
Specifically, we experiment with UCB-1 Amani & Thrampoulidis (2021), Thompson Sampling Jin
et al. (2022), Softmax Elena et al. (2021), and ε−greedy Hossain et al. (2021) from the multi-armed
bandit family to investigate their effects on ADTA’s performance.

For this experiment, we consider a stationary environment where one action is randomly dominant,
with its probability drawn from a Normal distribution N (0.8,0.05), while the other actions are
drawn from N (0.05,0.02). The ADTA is configured with 20 actions and an initial depth of N = 1,
making it more challenging for ADTA to identify the appropriate depth.

The results in Figure 11 demonstrate that ε−greedy outperforms other RL agents in terms of both
cumulative reward and cumulative regret. This superior performance can be attributed to its effective
balance between exploration and exploitation. While VASLA and Softmax also show relatively

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

600

700
Cu

m
ul

at
iv

e
Re

w
ar

d
ADTA(VASLA)
ADTA(UCB-1)
ADTA(Thompson Sampling)
ADTA(Softmax)
ADTA(Greedy)

(a) Cumulative Reward

0 200 400 600 800 1000
Iteration

0

100

200

300

400

500

Cu
m

ul
at

iv
e

Re
gr

et

ADTA(VASLA)
ADTA(UCB-1)
ADTA(Thompson Sampling)
ADTA(Softmax)
ADTA() Greedy

(b) Cumulative Regret

Figure 11: The experimental results of various RL agents acting as a depth controller

good results, UCB-1 and Thompson Sampling lag behind, likely due to over-exploration or slower
adaptation to the environment. These findings highlight the simplicity and balanced nature of ε −
greedy, making it an effective agent for the ADTA in this particular scenario.

H APPLICATION : DROPOUT TECHNIQUE

Addressing overfitting in deep neural networks, especially in large architectures, presents a
formidable challenge. The dropout technique (Srivastava et al., 2014), introduced to mitigate this is-
sue, involves randomly omitting neurons and connections during network training to curb excessive
co-adaptation. It employs random unit dropping with a fixed retention probability, typically within
the [0.5, 1] range. This fixed probability lacks adaptability and requires extensive experimentation to
determine suitable values for various network configurations. (Gholami et al., 2023) pioneered the
application of LA to this problem, incorporating a three-action HLA, with ’increase,’ ’decrease,’ and
’stop’ actions to adjust dropout probabilities. The HLA avoids exceeding preset bounds. Thinned
networks are sampled by the HLA during training, and employed in forward and back-propagation
within mini-batches. A single HLA manages dropout probability, adjusted per mini-batch. Gradi-
ents are averaged within mini-batches, and LA reinforcement signals depend on thinned network
loss values.

Table 5: Dropout Results

Model Config 1 Config 2 Config 3 Config 4 Config 5
Mean Std Mean Std Mean Std Mean Std Mean Std

N=1
HLA 0.9579 0.0055 0.9599 0.0073 0.9588 0.0057 0.9598 0.0046 0.9593 0.0065
ADTA 0.9626 0.0036 0.9629 0.0038 0.9619 0.0036 0.9601 0.0049 0.9632 0.0021

N=3
HLA 0.9603 0.0039 0.9576 0.0075 0.9615 0.0044 0.9591 0.0049 0.9588 0.0059
ADTA 0.9622 0.0046 0.9608 0.0051 0.9620 0.0048 0.9618 0.0041 0.9615 0.0035

N=5
HLA 0.9552 0.0077 0.9594 0.0073 0.9578 0.0055 0.9620 0.0042 0.9596 0.0068
ADTA 0.9622 0.0049 0.9606 0.0047 0.9619 0.0033 0.9620 0.0030 0.9624 0.0033

N=7
HLA 0.9568 0.0059 0.9597 0.0063 0.9571 0.0074 0.9599 0.0073 0.9575 0.0071
ADTA 0.9626 0.0033 0.9614 0.0044 0.9630 0.0033 0.9613 0.0055 0.9626 0.0035

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

ADTA’s evaluation involves replacing HLA with ADTA in a feedforward neural network using the
MNIST dataset. Initial depths of 1, 3, 5, and 7 were explored along with 5 distinct inner VASLA
configurations. Configurations included PCA (config 1 with λ1 = λ2 = 0), LR−I (config 2 with λ1 =
0.01, λ2 = 0), LP−I (config 3 with λ1 = 0, λ2 = 0.01), LR−P (config 4 with λ1 = 0.01, λ2 = 0.01),
and LR−εP (config 5 with λ1 = 0.1, λ2 = 0.01). The simulation results, depicted in Table 5, present
mean accuracy and standard deviation. The findings underline ADTA’s performance superiority over
HLA, concerning mean accuracy and standard deviation.

I APPLICATION : BLOCKCHAIN SECURITY

The Bitcoin network is inherently dynamic, making it challenging to arrive at deterministic de-
cisions. Therefore, a probabilistic decision-making mechanism is essential for critical decision-
making in this environment. Given the vast state space, it is more efficient to employ a single-state
decision-maker. As a result, we leverage ADTA to design a novel defense mechanism, named Nik
Nikhalat-Jahromi et al. (2024; 2023), aimed at countering the selfish mining attack Eyal (2015);
Eyal & Sirer (2018) in Bitcoin Nakamoto (2008); Wang et al. (2019); Babaioff et al. (2012).

We begin with a brief introduction to relevant concepts such as Bitcoin mining and selfish mining.
Following this, we detail the experiments conducted to evaluate the automaton’s performance in this
complex setting. Additionally, the developed simulator is available on GitHub1.

I.1 CONCEPTS

Bitcoin Nakamoto (2008), introduced by Satoshi Nakamoto in 2009, is a decentralized cryptocur-
rency that has gained significant attention due to its decentralized nature Wang et al. (2019).

Transactions in the Bitcoin network are recorded in blocks, and creating a new block requires solving
a cryptographic puzzle, which comes with a dedicated reward. Participants who contribute resources
to solve these puzzles are known as miners Nakamoto (2008); Eyal & Sirer (2018); Nikhalat-Jahromi
et al. (2024; 2023); Wang et al. (2019).

The mining process incentivizes the safety of Bitcoin by rewarding miners based on their shared
resources, ensuring the network’s decentralization Wang et al. (2019).

However, maintaining Bitcoin’s decentralization is a challenging task, as attacks like selfish mining
Eyal & Sirer (2018) threaten its fundamental properties. Selfish miners keep newly discovered
blocks private and reveal them selectively to maximize their rewards.

When selfish miners reveal their withheld blocks, a fork occurs in the blockchain. In such situations,
the honest branch of the fork, resulting from valid work, is discarded, and consensus is reached on
the selfish branch Wang et al. (2021).

Our proposed automaton presents a novel approach to address this issue in Bitcoin. Our goal is to
simplify the problem by making decisions among the forked branches within each distributed miner.
This approach aims to overcome the challenges posed by selfish mining and ensure the integrity of
the Bitcoin network.

I.2 PROPOSED DEFENSE

In this section, we introduce our novel defense mechanism that leverages the power of learning
automaton to address the challenge of selfish mining in Bitcoin. The learning automaton serves as a
decision-maker at each node, assisting in the selection of a branch from the forked blockchain, even
in the presence of selfishly mined branches. To make informed decisions, predefined criteria based
on branch characteristics are employed:

• Branch Length (LLL): It represents the number of blocks in a specific branch of the fork.
• Branch Weight (WWW): Calculated by comparing the blocks of a branch with the same height

in other branches. The branch with the most recent creation time is incremented by one at
each iteration.

1The link has been removed due to the blind review

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

To facilitate branch selection, the following parameters are taken into consideration:

• Fail-Safe Parameter (δδδ): This parameter helps miners choose a branch based on L or W .
If the length of a branch in the fork exceeds the others by a threshold of δ , that branch is
chosen. Otherwise, the branch with the highest weight, as determined by W , is selected.

• Decision-Making Time (τττ): This refers to the duration a miner takes to check for existing
forks and make a decision. If a fork is detected, the miner considers the ∆ parameter for
branch selection.

• Time Window Parameter (θθθ): It configures the next value of ∆ using the learning au-
tomaton. Each θ consists of multiple τ intervals.

The decision-making algorithm for branch selection involves the following steps:

1. Calculation of L for each branch.
2. Calculation of W for each branch.
3. Sorting the branches in descending order based on length. If the difference between the

length of the longest and second-longest branch is greater than δ , the longest branch is
chosen. Otherwise, the branch with the highest weight is selected.

4. When τ reaches its end, the learning automaton determines the next value of δ . Typically, δ

oscillates between a minimum value (δmin) and a maximum value (δmax). The learning au-
tomaton has three options: 1) ”Grow” to increase δ by one, 2) ”Stop” to keep δ unchanged,
and 3) ”Shrink” to decrease ∆ by one.

5. When θ reaches its end, the learning automaton receives feedback from the environment.
We have designed a virtual environment to provide information about the learning automa-
ton’s decision. The reward (R) is computed by dividing the number of decisions made
based on W by the total number of decisions, which includes decisions based on length and
weight. The following equation demonstrates the R parameter of the learning automaton.

R =
Number o f Weight Decisions
Total Number o f Decisions

(45)

By following these steps, the proposed defense mechanism enables miners to make informed deci-
sions in the presence of selfish mining, ensuring the integrity and security of the Bitcoin network.

I.3 EVALUATION

The performance evaluation of the learning automaton against the selfish mining attack considers
two metrics:

1. Relative Revenue: This metric measures a miner’s revenue in comparison to others. The
calculation is based on the ratio of the number of blocks mined by the ith miner to the total
number of mined blocks Eyal & Sirer (2018).

2. Lower Bound Threshold: This metric determines the minimum computational power that
a selfish miner must possess to initiate an attack Eyal & Sirer (2018).

I.4 EXPERIMENT

This experiment evaluates the proposed defense mechanism, implemented using the ADTA, in com-
parison to the well-known tie-breaking defense and previous VASLA-based defense. Tie-breaking
Eyal & Sirer (2018) involves miners randomly selecting a branch when encountering a fork. The
study examines the effectiveness of the defense from the perspective of selfish miners, who form a
separate group and deviate from the honest miners following the standard Bitcoin protocols.

For the experiment, 10000 blocks are generated in each of the 20 runs, with the parameter δ varying
between δmin = 1 and δmax = 3. The type of VASLA used is LR−εP with λ1 = 0.1 and λ2 = 0.01.

The results shown in Figure 12 demonstrate that the ADTA effectively adapts to complex envi-
ronments like blockchain, even without prior information. This adaptability leads to the proposed

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.25 0.30 0.35 0.40 0.45 0.50
Pool size

0

20

40

60

80

100

Re
la

ti
ve

 R
ev

en
ue

Nik Defense(VASLA)
Nik Defense(ADTA)
Tie Breaking
No Defense
Ideal Defense
Upper Bound

Figure 12: Performance comparison of the proposed defense mechanism against tie-breaking and
other learning automaton-based solutions, measured in terms of relative revenue.

defense’s superiority over the VASLA-based solution Nikhalat-Jahromi et al. (2024; 2023), as the
relative revenue of selfish miners is significantly reduced. Additionally, the proposed defense out-
performs the tie-breaking defense, indicating its potential to strengthen the proof-of-work consensus
algorithm.

Furthermore, the lower bound threshold metric is examined. In Figure 12, this metric is defined
as the intersection point of the defense plots (Tie-breaking, Nik Defense (VASLA), and Nik Defense
(ADTA)) with the Ideal Defense plot. Evidently, the proposed defense using the ADTA increases the
threshold from approximately 0.25 in tie-breaking to 0.4. The ADTA achieves this by effectively
detecting when a decision is needed for a fork based on the weight or height parameter, enabling it
to make informed decisions in unknown environments like blockchain.

31

	Introduction
	Contributions
	Problem Formulation
	Related Works

	Adaptive Depth Tsetlin Automaton
	Environment Separation
	Required Definitions
	Internal Environment Analysis
	External Environment Analysis

	Experiments
	Internal Environment
	External Environment

	Discussion
	Conclusion
	Notations
	Additional Related Works
	More About VSLA Family
	Variable Structure Learning Automaton (VSLA)
	Variable Action Set Learning Automaton (VASLA)

	Numerical Example
	Depth Decrement
	Depth Increment

	Missing proofs
	Proof Of The RL Agent Convergence Using VASLA
	Proof Of The RL Agent Entropy
	Proof Of Learning Capability

	Non-stationary Environments Experiments
	Markovian Switching Environment
	Simple Markov Chain
	Complex Markov Chain

	State-Dependent Environment
	State-Dependent Experiment

	Various RL Agents
	Application : Dropout Technique
	Application : Blockchain Security
	Concepts
	Proposed Defense
	Evaluation
	Experiment

