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Abstract
In this work, we provide a mathematical proof
that diffusion models encode data manifolds by
approximating their normal bundles. Based on
this observation we propose a novel method for
extracting the intrinsic dimension of the data man-
ifold from a trained diffusion model. Our insights
are based on the fact that a diffusion model ap-
proximates the score function i.e. the gradient
of the log density of a noise-corrupted version of
the target distribution for varying levels of cor-
ruption. We prove that as the level of corruption
decreases, the score function points towards the
manifold, as this direction becomes the direction
of maximal likelihood increase. Therefore, at
low noise levels, the diffusion model provides us
with an approximation of the manifold’s normal
bundle, allowing for an estimation of the man-
ifold’s intrinsic dimension. To the best of our
knowledge our method is the first estimator of
intrinsic dimension based on diffusion models
and it outperforms well established estimators in
controlled experiments on both Euclidean and
image data. The code is available at https:
//github.com/GBATZOLIS/ID-diff.

1. Introduction
Many modern real-world datasets contain a large number of
variables, often exceeding the number of observations. This
poses a major challenge in modelling them, due to the curse
of dimensionality. Despite this complexity, due to the nu-
merous relationships and symmetries among variables, even
high-dimensional data often concentrates around a lower-
dimensional manifold, a concept known as the manifold
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hypothesis (Fefferman et al., 2013). The dimension of this
manifold is called intrinsic dimension (ID), while the high-
dimensional space in which the data resides is known as the
ambient space, with its dimensionality called the ambient
dimension.

The manifold hypothesis has guided the development of
modern high-dimensional data modelling techniques, such
as Variational auto-encoders (VAEs) (Kingma and Welling,
2013), Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) and M-flows (Brehmer and Cranmer,
2020).

The estimation of ID holds significant importance in the
machine learning community due to its applicability in both
theoretical and practical problems (Campadelli et al., 2015).
From a theoretical perspective, the ID is essential as it di-
rectly affects the convergence rates of fundamental statisti-
cal quantities (Weed and Bach, 2019). The higher the ID, the
more data is needed for a model to generalize well beyond
the training set (Campadelli et al., 2015; Pope et al., 2021),
hence knowing the ID has numerous implications for the
generalization and data efficiency of machine learning mod-
els (Kim et al., 2019; Kpotufe, 2011). From practical point
of view, ID is crucial for a wide range of dimensionality
reduction methods (Campadelli et al., 2015). Additionally,
understanding the data’s ID can help in fine-tuning the latent
dimension of models such as GANs, VAEs or M-flows.

In recent years, diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020a) emerged as a new class of deep
generative models capable of capturing complex high-
dimensional distributions without relying on the notion of
data manifold or prior knowledge of the data’s ID. Our re-
search reveals that diffusion models encode data manifolds
via their normal bundle. Intriguingly, we find that while dif-
fusion models do not explicitly rely on the ID, these models
estimate it implicitly.

As discussed in (Song et al., 2020; Ho et al., 2020a), diffu-
sion models perform score matching (Hyvärinen, 2005) and,
therefore, contain the information about the gradient of the
log-density of the data distribution. We prove that near the
data manifold, the gradient of the log-density is orthogonal
to the manifold itself. This key observation serves as a tool
for deducing the manifold’s dimension.

In our study, we investigate three categories of ID estima-
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tors: traditional statistical methods (such as PCA and Near-
est Neighbor based approaches), normalizing flow-based
methods, and our innovative diffusion-based approach. We
evaluate the performance of ID estimators on synthetic Eu-
clidean and image datasets, where the dimension of the data
manifold is known a priori. Moreover, we apply ID estima-
tors to the MNIST dataset (LeCun and Cortes, 2010) (where
the ID is unknown), and compare the estimated IDs with the
reconstruction error of auto-encoders trained with different
latent dimensions.

Our findings indicate that in datasets of high ID, methods
that exploit the inductive biases of neural networks are the
most effective. Our proposed method stands out by yielding
the best results. This success is attributed to utilizing dif-
fusion models, which offer enhanced training stability and
avoid the architectural limitations associated with normaliz-
ing flows (Behrmann et al., 2021).

To summarize our contributions are as follows:

• We elucidate a geometric connection between diffusion
models and data manifolds, by proving that a diffusion
model encodes the data manifold by approximating its
normal bundle.

• Based on this observation we propose a novel method
for extracting the ID of the data manifold from a trained
diffusion model.

• We perform an extensive evaluation of our novel
method as well as several prominent existing meth-
ods for ID estimation on a wide range of datasets.

2. Related Work
The relationship between diffusion models and manifold
hypothesis has been explored in several recent works. In
(Pidstrigach, 2022) author examines theoretical conditions
under which diffusion models produce samples from the
underlying data manifold. In (Oko et al., 2023) and (Chen
et al., 2023) authors analyze approximation and generaliza-
tion abilities of diffusion models under manifold hypothesis.
They establish that the data efficiency of training a diffu-
sion model depends on the intrinsic dimension of the data
manifold rather than the ambient dimension. This further
motivates the importance of ID estimation.

The problem of estimating the intrinsic dimensionality has
been widely studied. The two main lines of research are
PCA based and nearest neighbour based approaches. In an
early work (Fukunaga and Olsen, 1971) the authors suggest
an approach based on using local Karhunen–Loève expan-
sion. In following years many PCA based approaches have
been developed. Most notably, in (Minka, 2000) the author
suggests an intrinsic dimensionality estimator based on the

Figure 1. The data manifold (in blue) and the neural approximation
of the score field ∇x ln pt0(x) obtained from a diffusion model.
Near the manifold the score field is perpendicular to the manifold
surface.

Figure 2. The red dot shows a point x0 on the data manifold where
we wish to estimate the dimension. We sample K blue points x(i)

t

in a close neighbourhood of the red point and evaluate the score
field. The resulting vectors sθ(x(i)

ϵ , ϵ) will point in the normal
direction. We put the vectors into a matrix and perform SVD
to detect the dimension of the normal space. The dimension of
the manifold will be equal to the number of (almost) vanishing
singular values.
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probabilistic PCA (PPCA) framework (Bishop and Tipping,
2001). In (Fan et al., 2010) a local PCA method has been
suggested. In (Pettis et al., 1979) authors suggested an esti-
mator based on nearest neighbour information. In (Levina
and Bickel, 2004) authors introduce a maximum likelihood
(MLE) procedure based on the distance to m nearest neigh-
bours. Their method has been further improved in the work
of (Haro et al., 2008). The MLE method has been recently
applied by (Pope et al., 2021) in the estimation of the intrin-
sic dimensionality of modern image datasets such as MNIST
(LeCun and Cortes, 2010), CIFAR (Krizhevsky, 2012) and
ImageNet (Deng et al., 2009). Other works explored geo-
metric approaches using fractal-based methods (Camastra
and Vinciarelli, 2002) or packing numbers (Kégl, 2002).
We refer to (Campadelli et al., 2015) for a comprehensive
survey of statistical approaches to ID estimation.

The aforementioned ID estimators do not leverage the induc-
tive bias introduced by modern neural network architectures,
which is a crucial reason for the success of modern deep
leaning systems (Goyal and Bengio, 2022). Therefore, their
statistical efficiency may be insufficient to deal with datasets
of high ID. This limitation has been observed in (Campadelli
et al., 2015; Horvat and Pfister, 2022) and is confirmed by
our experimental findings.

The limitations of traditional statistical estimators have re-
cently led to the development of deep learning-based in-
trinsic dimensionality (ID) estimators such as LIDL (Tem-
pczyk et al., 2022) and ID-NF (Horvat and Pfister, 2022).
These methods, which extract ID from trained normalizing
flows, outperform their statistical counterparts by leverag-
ing the inductive biases inherent in modern deep neural
network architectures. Despite their advantages, they face
challenges as they rely on normalizing flows which are in-
vertible neural networks. Normalizing flows are subject to a
trade-off between stability and expressivity, as discussed in
(Behrmann et al., 2021),(Jaini et al., 2020), (Cornish et al.,
2020),(Laszkiewicz et al., 2021). Expressive normalizing
flow architectures often face stability problems during train-
ing or evaluation, risking the reliability of post-training ID
estimation due to potential loss of numerical invertibility.
On the other hand, Lipschitz constrained normalizing flow
architectures, while more stable, tend to be less expressive,
potentially limiting their capacity to accurately estimate the
ID of complex, high-dimensional data manifolds.

In contrast, our proposed methodology, which utilizes diffu-
sion models, effectively sidesteps these expressivity limita-
tions as diffusion models do not suffer from similar stability
issues. Our method allows for more effective leveraging of
the powerful inductive biases of modern deep neural net-
work architectures, resulting in a more reliable and robust
estimation of the ID of complex, high-dimensional data man-
ifolds. This claim is further substantiated by our experimen-

tal findings, which show that our proposed diffusion-based
estimation method accurates estimes the ID in challenging
data manifolds where normalizing flow-based methods fail
due to reduced expressivity.

3. Proposed Method for Estimation of
Intrinsic Dimension

Algorithm 1 Estimate the intrinsic dimension at x0

Input: sθ - trained diffusion model (score),
t0 - sampling time,
K - number of score vectors.

Sample x0 ∼ p0(x) from the data set
d← dim(x0)
S ← empty matrix
for i = 1, ...,K do

Sample x(i)t0 ∼ N (xt0 |x0, σ
2
t0I)

Append sθ(x
(i)
t0 , t0) as a new column to S

end for
(si)

d
i=1, (vi)

d
i=1, (wi)

d
i=1← SVD(S)

k̂(x0)← d− argmaxi=1,..,d−1(si − si+1)

output k̂(x0)
(si)

d
i=1, (vi)

d
i=1, (wi)

d
i=1 denote singular values, left and

right singular vectors respectively.

In (Song et al., 2020) score-based (Hyvärinen, 2005) and
diffusion-based (Sohl-Dickstein et al., 2015; Ho et al.,
2020a) generative models were unified into a single
continuous-time score-based framework. The diffusion
process is represented by a stochastic differential equation
(SDE), which perturbs data distribution p0 resulting in a
series of progressively noise-corrupted distributions pt. Dif-
fusion models are trained to approximate the score function
∇xt ln pt(xt) with a neural network sθ(xt, t). Once the score
function is approximated, the diffusion SDE can be reversed
to generate samples from p0. Additional details on train-
ing and sampling from diffusion models are described in
Appendix A.

Consider a dataset D = {x(i)}Ni=0 ∼ p0(x) which consists
of N independent d-dimensional vectors x(i) ∈ Rd drawn
from distribution p0(x). The distribution p0(x) is supported
on a k-dimensional manifold M, which is embedded in
a space of ambient dimension d. Our goal is to infer the
dimension k of the manifoldM from D.

We perturb the data according to the variance exploding
SDE dxt = g(t)dwt (Song et al., 2020) and train a neural
network sθ(xt, t) to approximate the score function of the
noise perturbed target distribution, i.e. ∇xt ln pt(xt) for a
range of levels of perturbation indexed by diffusion time
t. We train the model using the weighted denoising score
matching objective with likelihood weighting, see (Song
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et al., 2021). More details about the training of the diffusion
model can be found in Appendix B.

Consider a datapoint x0 on a manifoldM and its perturba-
tion into the ambient space xt0 obtained from the transition
kernel pt0(xt0 |x0) = N (xt0 |x0, σ

2
t0I)1 of the forward pro-

cess at a small time t0. As shown in the next section, at
xt0 the score vector sθ(xt0 , t0) will point towards its orthog-
onal projection onto M, making it almost orthogonal to
Tx0M (the tangent space at x0). This means that the pro-
jection of the score vector onto the normal space Nx0M
will be significantly larger than its projection onto the tan-
gent space Tx0M. Therefore, with enough samples, the
spectrum obtained from the singular value decomposition
of S = [sθ(x

(1)
t0 , t0), ..., sθ(x

(K)
t , t0)] will have Nd large

singular values and Td very small singular values, where
Nd = dim(Nx0M) and Td = dim(Tx0M). This will be
the case because the projection of the score vector at every
perturbed point considered is much larger on the normal
space than on the tangent space. In our method, we sample
K = 4d diffused points at time t0 = ϵ and calculate the
SVD of S. The number of vanishing singular values is the
estimate of the intrinsic dimension k̂(x0).

The resulting spectrum shows a significant drop exactly or
very close to the dimension of the normal space. The remain-
ing non-zero, but much smaller singular values correspond
to the tangential component of the score vector. This be-
haviour is expected as the score vector will unavoidably have
a very small tangential component, for reasons explained
in the following sections. The choice of the cut-off point
k̂(x0) is usually very clear visually, but can be automated
by choosing the point of largest drop in the spectrum:

k̂(x0) = d− argmax
i=1,..,d−1

si − si+1

When selecting x0, we ideally want a point with high score
approximation quality, minimal tangential component, and
low manifold curvature. However, since these factors are
uncontrollable, we randomly choose multiple x(j)0 values
and plot a spectrum for each. For simple distributions, the
score spectra look similar, with drops at accurate values. For
more complex distributions, the drop location varies with
x(j)
0 choice. We find that the maximum estimated k̂ gives

the best estimate. Theoretical understanding of the method
supports this, as discussed in later sections.

4. Theoretical Analysis
Here, we provide a theoretical justification for our approach.
We demonstrate that, given a collection of points xi ∈ Rd

1The transition kernels of the variance exploding SDE have
this structure, where σt is an increasing function determined by
g(t) with σt −−−→

t→0
0.

sufficiently close2 to the manifoldM with orthogonal pro-
jection π(xi) ∈M, the space spanned by the score vectors
∇x ln pt(xi) converges to the normal space at π(xi) in the
small t limit. To build intuition, consider a uniform data
density on the manifold surface M. The gradient along
this density is zero, indicating that for x close to M tan-
gential components of the score ∇x ln pt(x) will also be
approximately zero and the score will be mostly contained
in the normal bundle NM. If the density is non-uniform
on the manifold surface however, the score will have a tan-
gential component. Fortunately, for sufficiently small t the
change in log-density from moving orthogonally towards
the manifold dominates the change from moving tangen-
tially alongside the manifold. This results in the tangential
component becoming negligible, and the score still being
approximately contained in NM.

Specifically, we show in the following theorem that for any
point x sufficiently close to the data manifold and t→ 0, the
score∇x ln pt(x) points directly at the orthogonal projection
π(x)3.

Theorem 4.1. Suppose that the support of the data distribu-
tion P0 is contained in a compact embedded sub-manifold
M ⊆ Rd and let Pt be the distribution of samples from
P0 diffused for time t. Then, under mild assumptions (see
Appendix D), for any point x ∈ Rd sufficiently close to
M with orthogonal projection onM given by π(x), and
n = (π(x)− x)/ ∥π(x)− x∥, we have:

Scos(n,∇x ln pt(x)) −−−→
t→0

1

where Scos denotes the cosine similarity, defined as
Scos(a,b) = a·b

∥a∥∥b∥ . In other words, for sufficiently small t
the score ∇x ln pt(x) points directly at the projection of x
on the manifold.

This theorem leads to the conclusion that this score is con-
tained within the normal space of the manifold, as we show
with the following corollary:

Corollary 4.2. The ratio of the projection of the score
∇x ln pt(x) on the tangent space of the data manifold
Tπ(x)M to the projection on the normal space Nπ(x)M
approaches zero as t approaches zero, i.e.

∥T∇x ln pt(x)∥
∥N∇x ln pt(x)∥

→ 0, as t→ 0.

where N and T are projection matrices on Nπ(x)M and
Tπ(x)M respectively. Therefore for sufficiently small t the

2Within the tubular neighbourhood of M to the manifold M.
See Appendix D.

3Every compact embedded sub-manifold M has a tubular
neighbourhood, and every point x in the tubular neighbourhood
of the manifold has a unique orthogonal projection π(x) onto the
manifold. See Appendix D for more details.
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score ∇x ln pt(x) is (effectively) contained in the normal
space Nπ(x)M.

Proof. The full proof of the theorem and corollary can be
found in the Appendix D.

In practice we choose small t > 0, and for each cho-
sen x0 ∈ M we sample points x(i)t around it from
pt(xt|x0) = N (xt|x0, σ2

t I). With over 99% probability
x(i)
t ∈ B(x0, 3σt), and so as we decrease t most of our xt

will become very close to x0. For B(x0, 3σt) sufficiently
small, the effect of curvature of M becomes negligible
inside B(x0, 3σt), and so the normal spaces N

π(x(i)t )
M

will all be approximately equal to Nx0M. Under this as-
sumption, we can outline the practical implications of these
theoretical results. Assuming t > 0 small and a trained
score approximation sθ(x, t) ≈ ∇x ln pt(x), the score ma-
trix S = [sθ(x

(1)
t , t), ..., sθ(x

(4d)
t , t)] has the following prop-

erties:

1. The columns of S are approximately contained in the
normal space Nx0M

2. The columns of S approximately span the normal space
Nx0M

3. The singular values of S corresponding to singular
vectors in the normal space are large relative to those
corresponding to tangent singular vectors

The first point is a direct consequence of Corollary 4.2.
For the second point, denote nx := π(x)−x

∥π(x)−x∥ , and assume
that t is sufficiently small such that N

π(x(i)t )
M ≈ Nx0M.

Then locally, the vectors
{
nx(1)t

, . . . , nx(K)
t

}
are indepen-

dent Gaussian perturbations from a linear subspace. With
probability one this set contains Nd = dim(Nx0M) lin-
early independent vectors spanning Nx0M, so by Theorem
4.1 the score vectors

{
∇x ln pt

(
x(1)t

)
, . . . ,∇x ln pt

(
x(K)
t

)}
must therefore also span Nx0M. For the third point note
that if the columns of S span Nx0M, then S has rank Nd,
and its SVD yields singular values si > 0 for i ≤ Nd cor-
responding to singular vectors in Nx0M, and sj = 0 for
j > Nd. In practice we fix some small t > 0 and so small
components of Tx0M are introduced to the score by factors
such as non-uniform distribution of data samples on M,
therefore in applications the SVD of S yields small singular
values sj > 0 for j > Nd, however we still observe that
si ≫ sj where i ≤ Nd.

To formalize the idea of "approximately spanning the normal
space" and N

π(x(i)t )
M ≈ Nx0M, we use the concept of

cosine similarity and the angle between subspaces. Cosine
similarity measures the cosine of the angle between two

vectors, which helps quantify how closely two vectors (or
subspaces) align.

Let v1, . . . , vk be vectors sampled from the normal space
Nx0M. We define the cosine similarity between two vectors
vi and vj as:

cos(θij) =
vi · vj
∥vi∥∥vj∥

,

where θij is the angle between vi and vj .

For subspacesNx0M andN
π(x(i)t )

M, we consider the prin-
cipal angles θ1, . . . , θk between them. If the cosine of these
angles is close to 1, the subspaces are well-aligned:

cos(θk) ≈ 1 implies N
π(x(i)t )

M≈ Nx0M.

Thus, by evaluating the cosine similarities and the angles
between the subspaces, we can quantify the approximation
quality of spanning the normal space. This formalization
supports the intuitive claims by providing a measurable
criterion for the alignment of normal spaces.

5. Limitations
In section 4, we established that given a perfect score ap-
proximation for sufficiently low t our method produces the
correct estimation of the dimension. However, in practice,
our method may encounter two types of errors: approxima-
tion error and geometric error. The approximation error
arises as a result of having an imperfect score approxima-
tion sθ(x, t) ≈ ∇x ln pt(x). Geometric error arises if the
selected sampling time t isn’t sufficiently small, potentially
impacting our method’s accuracy for two reasons. Firstly, it
may result in an increased tangential component of the score
vector. Secondly, if x(i)t lies too distant fromM, the man-
ifold’s curvature may create a difference between normal
spaces N

π(x(i)t )
M across varying i.

We empirically assess our method’s robustness to approxi-
mation error and find it robust to minor inaccuracies in score
approximation. Additionally, we analyze our method’s sen-
sitivity to p0 non-uniformity, which could induce a minor
tangential score component for t > 0. We discover that
using the maximum k̂(x(j)0 ) allows our method to accom-
modate varying levels of non-uniformity over the manifold
surface, displaying superior robustness compared to other
non-linear estimators without the need for reducing t. De-
tails are in Appendix G

We note that Theorem 4.1 assumes that the data distribu-
tion’s support is exclusively within a manifold. Therefore,
we empirically investigate the method’s applicability when
data is concentrated around, but not entirely within, a mani-
fold. We discover that for a k-sphere, our method remains
reliable as long as the data is closely concentrated around
the manifold. Details are available in Appendix G.
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6. Experiments
We examine the effectiveness of our method on a multitude
of manifold datasets, each embedded in a high-dimensional
ambient space. The datasets fall into two categories: Eu-
clidean datasets consisting of points from manifolds em-
bedded in a high-dimensional Euclidean space and image
datasets consisting of synthetic manifolds of images. In
each case we know the intrinsic dimension of the manifold
a priori. Additionally, we apply our method to the MNIST
dataset, where the true intrinsic dimension is unknown. We
assess its performance via comparison with the reconstruc-
tion error of auto-encoders with various latent dimensions.
For each dataset we train a diffusion model, and then ap-
ply our method to estimate the intrinsic dimension of the
data manifold. Details on hyperparameters and architectures
used in our experiments can be found in Appendix B.

We compare our method against established approaches
to intrinsic dimensionality estimation: the nearest neigh-
bour based maximum likelihood estimator (MLE) (Levina
and Bickel, 2004), (Haro et al., 2008), Local PCA (Fan
et al., 2010) and Probabilistic PCA (PPCA) (Minka, 2000)
(Bishop and Tipping, 2001). Additionally, we compare our
method against ID-NF (Horvat and Pfister, 2022), which
is the best performing method for extracting the ID from
pretrained normalizing flows. The details about the imple-
mentation of the benchmarks are in the Appendix C.

Our method consistently yields the best estimate or close
to the best estimate among considered approaches. In the
following subsections we present a detailed discussion of
each experiment. The results are summarised in Table 2.

6.1. Experiments on Euclidean datasets

Embedded k-spheres: We examined our method on k
dimensional spheres embedded in a d = 100 dimensional
ambient space via a random isometric embedding4. We
consider two cases k1 = 10 and k2 = 50. The spectra
of resulting score matrices are presented in Figure 3. Our
method gives estimates of k̂1 = 11 and k̂2 = 51, which
are very close to the true intrinsic dimensionality of the
manifolds.

Spaghetti line: The intrinsic dimensionality of k-spheres
could be well approximated by a linear dimensionality detec-
tion methods such as (Minka, 2000). This is because these
manifolds are contained in a low dimensional linear sub-
space. In order to showcase the advantage of the non-linear

4To obtain a random isometric embedding we first generate the
k sphere in a k + 1 dimensional small ambient space. Then we
sample a random d × (k + 1) Gaussian matrix A. We perform
a QR decomposition A = QR. Finally we use the d × (k + 1)
isometry matrix Q to embed the small k + 1 dimensional space
containing our manifold in the large d dimensional ambient space.

Figure 3. Singular values for the scores of k-sphere for k = 10, 50.
In both cases around k singular values almost vanish, clearly indi-
cating the dimensionality of the manifold. Each line shows a score
spectrum at different x(j)

0 .
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nature of our method we consider a spaghetti line mani-
fold. That is a curve τ 7→ (sin(τ), sin(2τ), ..., sin(100τ))
in a 100 dimensional ambient space, which is not contained
in any low dimensional linear subspace (cf. Figure 9 in
Appendix F.1). As expected, the linear method (Minka,
2000) greatly overstates the intrinsic dimension with a re-
sult of k̂PPCA = 98. Yet, our approach utilizes the non-linear
knowledge from the diffusion model to accurately predict
an intrinsic dimensionality of one. The score spectrum is
presented in Figure 10 in Appendix F.1.

Union of k-spheres: Due to the local nature of our method,
we are able to generate an estimate k̂(x0) of the intrinsic
dimension around a given point x0. This allows us to apply
our approach to a union of manifolds and identify the dimen-
sion of each component. We illustrate this feature with the
following experiment. We embed two spheres of different
radii and dimensions in a 100 dimensional ambient space.
First sphere has dimension k1 = 10 and radius r1 = 1 and
the second sphere has k2 = 30 and radius r2 = 0.255. We
apply our method to this data using multiple x(i)

0 randomly
sampled from the dataset. We observe that our method pro-
duces a spectrum with two visible, separated drops. This
indicates that the data comes from the union of manifolds of
different dimensions. The resulting estimates are k̂1 = 10

and k̂2 = 31 depending on the chosen x(j)0 . The score spec-
tra and the histogram of estimated dimensions are presented
in Figures 11 and 12 in Appendix F.1.

6.2. Experiments on image datasets

Synthetic image manifolds: In this experiment, we investi-
gated our method’s ability to infer the dimension of synthetic
image manifolds with known dimension. We crafted two
synthetic image manifolds with controllable intrinsic dimen-
sion k: the "k squares images manifold" and the "k Gaussian
blobs images manifold". The construction of these mani-
folds is detailed in Appendix E. We evaluated our method
on k =10, 20, and 100 dimensional manifolds for both
types, with the score spectra and histograms of estimated
dimensions for numerous data points displayed in Figures
13 and 14 in Appendix F.2.

On the squares image manifold, our method, ID-NF and
PPCA consistently yielded accurate dimension estimates.
PPCA’s success on this dataset was anticipated since the
manifold resides within a k-dimensional linear subspace.

On the more complex Gaussian blobs image manifold, our
method stood out as the sole technique to consistently de-
liver accurate dimension estimates. The accuracy of our
method was not compromised by the manifold’s increased
complexity, unlike other methods. However, the estimation

5One can intuitively think of this manifold as a high-
dimensional analog of a planet with a ring around it.

Figure 4. Auto-encoder reconstruction error on MNIST for differ-
ent latent space dimensions. Vertical lines mark different estima-
tions of intrinsic dimension.

for the 100-dimensional manifold introduced some uncer-
tainty, as indicated by a more leveled histogram and a less
abrupt spectrum collapse (c.f. Figure 14). This is attributed
to the manifold’s increased complexity and the inherent
challenges in optimization, resulting in greater geometric
and approximation errors.

MNIST: In our study, we additionally applied the proposed
technique to estimate the intrinsic dimension of the well-
known MNIST dataset - an image dataset with an as-of-yet-
undetermined intrinsic dimension. Our findings suggest that
there exists a variation in the intrinsic dimensions across
different digits. For instance, the digit ‘1’ yielded an es-
timated dimension of 66, whereas the digit ‘9’ exhibited
a significantly higher estimated dimension of 152. This
discrepancy can be attributed to the increased geometric
complexity inherent to the digit ‘9’. Figure 5 elucidates
these observations by displaying the score spectra which
yielded the maximum estimated dimensions for each digit.
We present the estimated dimension for each digit in Ta-
ble 1 and the complete set of spectra for each digit in the
Appendix F.3.

We validate our estimates by comparing them with the recon-
struction error of auto-encoders trained with different latent
dimensions. As demonstrated in Figure 4, the ID estimate
of our method is in close agreement with that of the ID-NF
method, and both correlate with the point of diminishing
returns on the reconstruction loss curve. This point marks
a plateau in the effectiveness of additional latent dimen-
sions to significantly reduce reconstruction error, further
suggesting this point as the dataset’s intrinsic dimension. In
constrast, estimates produced by MLE and Local PCA are
significantly lower, corresponding to regions of the curve
where the reconstruction loss is still steeply decreasing. This
suggests these methods underestimate the manifold dimen-
sion. These findings call for a careful interpretation of the

7
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intrinsic dimension estimates of popular machine learning
datasets provided by (Pope et al., 2021), as they rely on the
MLE method, which we have found to consistently under-
estimate manifold dimensions. On the other hand, PPCA
notably overestimated the dimension, with k̂PPCA = 706.

7. Conclusions and further directions
In this work, we proved theoretically and confirmed ex-
perimentally that diffusion models can infer the intrinsic
dimension from the data. We introduced an approach that
estimates the intrinsic dimension of the data manifold from
a pre-trained diffusion model. This approach capitalizes
on the observation that, the diffusion model evaluated at
sufficiently small diffusion time approximates the normal
bundle of the data manifold. Our work offers a twofold
contribution: it highlights that diffusion model detects the
lower dimensional structure of data and provides a rigorous
method for intrinsic dimension estimation.

We conducted a rigorous comparison of three types of ID
estimators: traditional statistical methods, normalizing flow-
based techniques, and our diffusion-based approach. Our
findings consistently show that for high-ID datasets, meth-
ods leveraging neural networks’ inductive biases are supe-
rior. Notably, our diffusion-based method emerges as the
most effective, owing to its enhanced training stability and
freedom from the architectural constraints of normalizing
flows.

Furthermore, our research introduces new estimates for the
MNIST’s dimensionality, demonstrating strong alignment
with the predictions of an auto-encoder trained across a
range of latent dimensions.

Our work opens new paths for understanding and estimating
intrinsic data dimension, with potential implications across
the field of machine learning. Future research should ex-
plore this method’s applicability to other data types and its
potential across various domains.
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Figure 5. MNIST score spectra that yielded the highest estimated dimension for each digit

0 1 2 3 4 5 6 7 8 9

113 66 131 120 107 129 126 100 148 152

Table 1. Estimated intrinsic dimension for each MNIST digit

Ground Truth Ours ID-NF MLE (m=5) MLE (m=20) Local PCA PPCA

Euclidean Data Manifolds
10-sphere 10 11 11 9.61 9.46 11 11
50-sphere 50 51 51 35.52 34.04 51 51
Spaghetti line 1 1 1 1.01 1.00 32 98

Image Manifolds
Squares
k = 10 10 11 9.7 8.48 8.17 10 10
k = 20 20 22 19.5 14.96 14.36 20 20
k = 100 100 100 94.2 37.69 34.42 78 99

Gaussian blobs
k = 10 10 12 9.8 8.88 8.67 10 136
k = 20 20 21 17.8 16.34 15.75 20 264
k = 100 100 98 56.3 39.66 35.31 18 985

MNIST N/A 152 182 14.12 13.27 38 706

Table 2. Comparison of dimensionality detection methods on various data manifolds.
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A. Extended background on diffusion models
Setup: In (Song et al., 2020) score-based (Hyvärinen, 2005) and diffusion-based (Sohl-Dickstein et al., 2015; Ho et al.,
2020a) generative models have been unified into a single continuous-time score-based framework where the diffusion
is driven by a stochastic differential equation. This framework relies on Anderson’s Theorem (Anderson, 1982), which
states that under certain Lipschitz conditions on the drift coefficient f : Rnx × R −→ Rnx and on the diffusion coefficient
G : Rnx × R −→ Rnx × Rnx and an integrability condition on the target distribution p0(x0) a forward diffusion process
governed by the following SDE:

dxt = f(xt, t)dt+G(xt, t)dwt (1)

has a reverse diffusion process governed by the following SDE:

dxt = [f(xt, t)−G(xt, t)G(xt, t)T∇xt ln pt(xt)]dt+G(xt, t)dw̄t, (2)

where w̄t is a standard Wiener process in reverse time.

The forward diffusion process transforms the target distribution p0(x0) to a diffused distribution pT (xT ) after diffusion
time T . By appropriately selecting the drift and the diffusion coefficients of the forward SDE, we can make sure that after
sufficiently long time T , the diffused distribution pT (xT ) approximates a simple distribution, such as N (0, I). We refer
to this simple distribution as the prior distribution, denoted by π. The reverse diffusion process transforms the diffused
distribution pT (xT ) to the data distribution p0(x0) and the prior distribution π to a distribution pSDE . The distribution
pSDE is close to p0(x0) if the diffused distribution pT (xT ) is close to the prior distribution π. We get samples from pSDE

by sampling from π and simulating the reverse SDE from time T to time 0.

Sampling: To get samples by simulating the reverse SDE, we need access to the time-dependent score function∇xt ln pt(xt).
In practice, we approximate the time-dependent score function with a neural network sθ(xt, t) ≈ ∇xt ln pt(xt) and simulate
the reverse SDE presented in equation 3 to map the prior distribution π to pSDE

θ .

dxt = [f(xt, t)−G(xt, t)G(xt, t)
T sθ(xt, t)]dt+G(xt, t)dw̄t, (3)

If the prior distribution is close to the diffused distribution and the approximated score function is close to the ground
truth score function, the modeled distribution pSDE

θ is provably close to the target distribution p0(x0). This statement is
formalised in the language of distributional distances in the work of (Song et al., 2021).

Training: A neural network sθ(xt, t) can be trained to approximate the score function ∇xt ln pt(xt) by minimizing the
weighted score matching objective

LSM (θ, λ(·)) := 1

2
Et∼U(0,T )

xt∼pt(xt)
[λ(t) ∥∇xt ln pt(xt)− sθ(xt, t)∥22] (4)

where λ : [0, T ] −→ R+ is a positive weighting function.

However, the above quantity cannot be optimized directly since we don’t have access to the ground truth score∇xt ln pt(xt).
Therefore in practice, a different objective has to be used (Hyvärinen, 2005; Vincent, 2011; Song et al., 2020). In (Song
et al., 2020), the weighted denoising score-matching objective is used, which is defined as

LDSM (θ, λ(·)) := 1

2
Et∼U(0,T )

x0∼p0(x0)
xt∼pt(xt|x0)

[λ(t) ∥∇xt ln pt(xt|x0)− sθ(xt, t)∥22] (5)

The difference between DSM and SM is the replacement of the ground truth score which we do not know by the score of
the perturbation kernel which we know analytically for many choices of forward SDEs. The choice of the weighted DSM
objective is justified because the weighted DSM objective is equal to the SM objective up to a constant that does not depend
on the parameters of the model θ. The reader can refer to (Vincent, 2011) for the proof.
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B. Training details
We trained the score model using the weighted denoising score matching objective (Song et al., 2020), presented in eq. 6.
We used the likelihood weighting function, i.e. λ(t) = g(t)2, where g(t) is the diffusion coefficient of the forward SDE.

LDSM (θ, λ(·)) := 1

2
Et∼U(0,T )Ex0∼p0(x0)Ext∼pt(xt|x0)[λ(t) ∥∇xt ln pt(xt|x0)− sθ(xt, t)∥22] (6)

B.1. Euclidean data

For all of our experiments on Euclidean data, we used a fully connected network with 5 hidden layers and 2048 nodes in
each hidden layer to approximate the score function. The input and output dimension is the same as the ambient dimension.
For the optimisation of the model, we used the Adam algorithm with a learning rate of 2e−5 and exponential moving
average (EMA) on the weights of the model with a decay rate of 0.9999. Moreover, we chose the variance exploding SDE
(Song et al., 2020) as the forward process with σmin = 0.01 and σmax = 4.

B.2. Image data

For all our of our experiments on image data, we used the DDPM architecture (Ho et al., 2020b) with variance exploding
SDE (Song et al., 2020) and hyperparameters indicated in Table 3.

B.3. Auto-encoder

The encoder and decoder encoder architectures are based on the DDPM U-Net (Ho et al., 2020a), which we call half-U nets.

For the encoder we used the downsampling part of the U-Net and removed the upsampling part and the skip connections.
The downscaled tensor is flattened and mapped to the latent dimension with an additional linear layer.

For the decoder we start by linearly transforming the latent vector and reshaping it into a tensor of appropriate dimension.
Then we used the upsampling part of the DDPM U-Net.

We used the Adam optimizer and EMA rate 0.999. We used learning rate scheduler reducing the loss on plateau starting
form 10−4 and stopping at 10−5. We trained the auto-encoder for each latent dimension for 36h on NVIDIA A-100 GPU.
At the end we used checkpoints which minimized the validation loss to evaluate the reconstruction error.

All other hyperparameters are included in Table 3.

Hyper-parameter MNIST Synthetic Image data
Number of filters 128 128
Channel multipliers (1, 2, 2, 4) (1, 2, 2, 2)
Dropout 0.1 0.1
EMA rate 0.999 0.999
Normalization GroupNorm GroupNorm
Nonlinearity Swish Swish
Number of residual blocks 4 4
Attention resolution 16 16
Convolution size 3 3
σmin 0.009 0.01
σmax 50 50
Learning rate Scheduler(10−4, 10−5) 2 · 10−4

Table 3. DDPM Model Parameters

C. Benchmarking
We compared our method against well established approaches to intrinsic dimensionality estimation: the MLE estimator
(Levina and Bickel, 2004), (Haro et al., 2008), Local PCA (Fan et al., 2010) and Probabilistic PCA (Minka, 2000)
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(Bishop and Tipping, 2001). For MLE estimator and local PCA we used the implementation provided in the R package
INTRINSICDIMENSION (Johnsson, 2016). The MLE estimator has an important hyperparameter m - the number of nearest
neighbour distances that should be used for the dimension estimation. We used values m = 5 and 20 since these are extremal
values considered in (Pope et al., 2021). For PPCA we used the SCIKIT-LEARN implementation (Pedregosa et al., 2011).
The code for reproducing the benchmarking experiments is included in our codebase.

For the ID-NF method (Horvat and Pfister, 2022), we used the official implementation available at https://github.
com/chrvt/ID-NF. For the Euclidean data, we utilized the "vector data" folder, which employs block neural autoregres-
sive flows to learn the normalizing flows, from which the intrinsic dimension is extracted using the ID-NF method. For the
synthetic image data and MNIST, we used the "images" folder, which uses rational quadratic splines to train the normalizing
flows.

D. Proofs
Here we provide full proofs for the statements in Section 4. First, we show that for any point x sufficiently close to the data
manifold and sufficiently small t the score ∇x ln pt(x) points directly at the manifold. We demonstrate this by showing that
projection of the score in any direction ν ⊥ n vanishes in proportion to the projection on n = (π(x)−x)

∥π(x)−x∥ as t → 0. Then
Theorem 4.1 and Corollary 4.2 will follow easily from this result.

Theorem D.1. Suppose that the the support of the data distribution P0 is contained in a compact embedded sub-manifold
M⊆ Rd and let Pt be the distribution of samples from P0 diffused for time t. Then, under mild assumptions, for any point
x ∈ Rd sufficiently close toM, with orthogonal projection onM, given by π(x). Let n be a unit vector pointing from x to
π(x), then we have that for any unit vector ν orthogonal to n:

νT∇x ln pt(x)
nT∇x ln pt(x)

→ 0, as t→ 0.

Assumptions

1. The distribution P0 has a smooth density p0 wrt the volume measure on the manifold.

2. The density p0 is bounded away from zero on the manifold.

Illustrative simple case

We first present an illustrative proof of a simple case ofM being a linear subspace with k = 1 and d = 2. This case gives
all of the essential ideas behind the general proof without much of the technicality. For the more interested reader, we then
provide a proof of the result for a general manifold, using tools such as the notion of tubular neighbourhoods and some
results from Morse theory.

Without the loss of generality assume thatM = {(x1, x2) ∈ R2 : x2 = 0} the line given by the x1-axis. Pick a point
x ∈ R2. The score at point x is given by

∇x ln pt(x) =
1

σ2
t pt(x)

∫
M
(y− x)N (y|x, σ2

t I)p0(y)dy.

Notice that N ((y1, y1)|(x1, x2), σ
2
t I)6 is a bivariate normal distribution and its restriction to M is equal to

N ((y1, 0)|(x1, x2), σ
2
t I) = N (0|x2, σ

2
t )N (y1|x1, σ

2
t ). Therefore

∇x ln pt(x) =
N (0|x2, σ

2
t )

σ2
t pt(x)

∫
M
(y− x)N (y1|x1, σ

2
t )p0(y)dy.

This means that the score is the weighted average of vectors pointing from x to y over all choices of points y on the manifold,
with weights given by w(y;σt) := N (y1|x1, σ

2
t )p0(y) (see Figure 6 for visual explanation). For small σt these weights

6In component-wise notation y = (y1, y2) and x = (x1, x2).
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Figure 6. The score is the weighted average of vectors pointing from x to y with weights given by w(y;σt). As σt decreases weights
w(y;σt) concentrate around π(x) and the influence of points y away from projection π(x) becomes insignificant. Therefore, the direction
of the score tends to a align with π(x) − x. (Norm of the score vectors on the figure was scaled for better visibility. The direction is
preserved.)

concentrate around π(x) = (x1, 0) the projection of x on M, and vanishing far away from it. Consider a ratio of the
tangential part to the normal part of the score:

νT∇x ln pt(x)
nT∇x ln pt(x)

=

∫
M νT (y− x)N (y1|x1, σ

2
t )p0(y)dy∫

M nT (y− x)N (y1|x1, σ2
t )p0(y)dy

−−−→
σt→0

∫
M νT (y− x)δx1

(y1)p0(y)dy∫
M nT (y− x)δx1

(y1)p0(y)dy

=
νT ((x1, 0)− x)
nT ((x1, 0)− x)

=
(1, 0)T (0,−x2)

(0, 1)T (0,−x2)
= 0

where ν and n are unit vectors in tangential and normal directions respectively. This implies,

Scos(n,∇x ln pt(x)) =
nT∇x ln pt(x)
∥∇x ln pt(x)∥

=
nT∇x ln pt(x)√

(nT∇x ln pt(x))2 + (νT∇x ln pt(x))2

=
1√

1 +
(νT∇x ln pt(x)

nT∇x ln pt(x)

)2 −−−→t→0
1.

This establishes the theorem for the simple case. The corollary follows immediately since in the simple case we have
T = νT and N = nT .

Deriving the formula for the density of Pt

LetM be a compact k-dimensional manifold embedded in Rd. Let A ⊆ Rd. We define the measure P0 on Rd as

P0(A) :=

∫
A∩M

p0(y)dy (7)
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where dy is the volume form7 on M and p0 is a smooth function onM 8 such that
∫
M p0(y)dy = 1. Let f : Rd → R be a

P0-measurable function. By approximating f with simple functions (linear combination of indicator functions) we conclude
that: ∫

A

fdP0 =

∫
A∩M

f(y)p0(y)dy (8)

Consider a measure Pt as a convolution of P0 with a normal distribution on Rd. For any measurable A ⊆ Rd we have

(P0 ∗ N0,t)(A) :=

∫
Rd

∫
A−y

dN0,t(x)dP0(y) =
∫
Rd

∫
A−y
N (x|0, σ2

t I)dxdP0(y)

=

∫
Rd

∫
A

N (x− y|0, σ2
t I)dxdP0(y) =

∫
Rd

∫
A

N (y|x, σ2
t I)dxdP0(y)

=

∫
A

∫
Rd

N (y|x, σ2
t I)dP0(y)dx (8)

=

∫
A

∫
M
N (y|x, σ2

t I)p0(y)dydx

where dy is a volume form on M and dx is a volume form on Rd. Therefore the measure Pt has a density on Rd given by:

pt(x) =
∫
M
N (y|x, σ2

t I)p0(y)dy. (9)

Note the N (y|x, σ2
t I) here. Typically one would write this as N (x|y, σ2

t I) and think of (9) as the quantity of probability
mass at point x after diffusing for time t with initial distribution p0(y). We instead write it this way as it will be more
intuitive to think of (9) as the average probability mass that intersects the manifold after diffusing from a delta distribution at
x (where the average is taken over p0(y)). These are of course equivalent as N (x|y, σ2

t I) is symmetric is x and y.

Tubular Neighbourhoods

First we need to ensure that the point x has a unique projection onM. This is always true for an x sufficiently close to
M. We can formalize this with the notion of tubular neighbourhood - a tube aroundM such that every point x inside can
be uniquely represented as a sum of the point on the manifold and a vector from the normal bundle i.e. x = y + v where
y ∈M and v ∈ NyM. Formally:

Definition D.2. Endpoint Map
The endpoint map Y : NM −→ Rd is defined by Y (y, v) = y + v for y ∈M and v ∈ NyM.

Definition D.3. Tubular Neighbourhood
A (uniform) tubular neighbourhood ofM is a neighbourhood UR ofM in Rd that is a diffeomorphic image under the
endpoint map of an open subset VR ⊆ NM of the form:

VR = {(y, v) ∈ NM : ∥v∥2 < R}

Since Y restricted to VR is a diffeomorphism9, it follows that every point x = (y, v) in the tubular neighbourhood has a
unique orthogonal projection onM given by y. We will denote this projection as π(x).

Conveniently, it turns out that every compact embedded submanifold of Rd has a tubular neighborhood.

Theorem D.4. Tubular Neighborhood Theorem [Theorem 5.25](Lee, 2019)
Every compact embedded submanifold of Rd has a uniform tubular neighborhood.

Preliminary lemmas and Morse theory

In this section we will establish that for every x in the tubular neighbourhood ofM there exists an open neighbourhood E
of π(x) such that:

7Integrating over A using the volume form of M can be thought of as taking an appropriately re-scaled Lebesgue integral over A.
That is P0(A) =

∫
A∩M p0(y)dy =

∫
A

∫
Rd δ(s − y)p̂0(s)dsdy. Where the latter are Lebesgue integrals and p̂0(s) = p0(s) for s ∈ M

and zero otherwise.
8i.e. for any chart ϕ : Rk ⊇ U −→ M the composition p0 ◦ ϕ : Rk ⊇ U −→ R is smooth.
9so in particular it is a bijection

16



Diffusion models encode the intrinsic dimension of data manifolds

1. nT (y− x) > ∥π(x)− x∥2 − ε on E .

2. |νT (y− x)| < ε on E.

3. The mass of a Gaussian centred at x is concentrated in E,∫
M\E N (y|x, σ2

t I)dy∫
E
N (y|x, σ2

t I)dy
→ 0 as t→ 0.

We begin by defining an E which satisfies the first two conditions.

Lemma D.5. Choose E contained in a ball of radius 0 < ε < ∥x− π(x)∥ around π(x). Let y ∈ E, and let vε := y− π(x).
Then

1. nT (y− x) > ∥π(x)− x∥2 − ε on E .

2. |νT (y− x)| < ε on E.

Proof. By direct computation

nT (y− x) = nT ((x− π(x)) + vε)

= nT (x− π(x)) + nT vε
= ∥x− π(x)∥2 + nT vε
≥ ∥x− π(x)∥ − ∥vε∥2 .

We have that ∥vε∥ < ε, hence for all y in E we have that nT (y− x) ≥ ∥x− π(x)∥ − ε > 0. For the second inequality

|νT (y− x)| ≤ |νT ((x− π(x))|+ |νT vε|
≤ ∥vε∥2
≤ ε.

Now to find E which also satisfies the last condition we proceed by recalling some elementary definitions and results of
Morse theory.

Theorem D.6. Morse lemma [Corollary 1.17](Nicolaescu, 2011)
If y0 is a non-degenerate critical point of index γ of a smooth function f :M−→ R, then there exist a chart ϕ = (ϕi)

k
i=1 in

a neighbourhood U of y0 such that ϕ(y0) = 0, and in this chart we have the equality:

f(y) = f(y0)−
γ∑

i=1

ϕi(y)2 +
k∑

i=γ+1

ϕi(y)2

Let fx(y) :M−→ R denote the squared distance function from x given by fx(y) = ∥x− y∥22. We will establish that if x is
in a tubular neighbourhood, then its projection π(x) is a non-degenerate critical point of fx of index zero.

Definition D.7. Focal point
A point x = Y (y, v) in the image of the endpoint map Y , is called a non-focal point ofM with respect to y if dY (y, v) is
an isomorphism. Otherwise it is called a focal point.

Theorem D.8. Critical points and focal points (Palais and Terng, 1988)
LetM be an embedded submanifold of Rd, y ∈M , v ∈ NyM, and x = Y (y, v) = y + v. Then

1. y is a critical point of fx.

2. y is a non-degenerate critical point of fx if and only if x is a non-focal point.
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3. Index of fa at y is equal to the number of focal points ofM with respect to y on the line segment joining y to x.

Because the restriction of the endpoint map Y to the tubular neighbourhood is a diffeomorphism, the differential dY is
an isomorphism for every point in the tubular neighbourhood. Therefore there are no focal points ofM in the tubular
neighbourhood. Hence, it follows directly from the above theorem, that if x is in the tubular neighbourhood, then the
projection π(x) is a non-degenerate critical point of fx of index zero. Now we are ready to prove the following lemma.
Lemma D.9. There exists a connected open neighbourhood E of π(x) satisfying conditions of lemma D.5 and such that,∫

M\E N (y|x, σ2
t I)dy∫

E
N (y|x, σ2

t I)dy
→ 0 as t→ 0. (10)

Proof. Fix ε > 0. Then conditions of lemma D.5 are satisfied inside B(π(x), ε). We have demonstrated that π(x)
fulfills the criteria stipulated by the Morse lemma. Consequently, we can pick Ũ as the neighborhood and ϕ as the
coordinate system that the Morse lemma provides. Now let U = Ũ ∩ B(π(x), ε). SinceM is compact and U is open,
there exists m = minM\U fx(y) and by uniqueness of projection fx(π(x)) < m. Let r =

√
m− (fx(π(x)))/2 and let

E = ϕ−1(B(0, r)). For all y ∈ E we have:

fx(y) = fx(π(x)) + ∥ϕ(y)∥2 < fx(π(x)) + r2 < m.

Notice that for every y ∈ U \ E we have fx(y) ≥ fx(π(x)) + r2. Therefore we have established that

∀y∈E∀ỹ∈M\Efx(y) < fx(ỹ). (11)

Computing directly, we have ∫
M\E N (y|x, σ2

t I)dy∫
E
N (y|x, σ2

t I)dy
=

∫
M\E exp{−fx(y)/2σ2

t }dy∫
E
exp{−fx(y)/2σ2

t }dy
(12)

By the mean value theorem there exists y∗ ∈ E and ỹ∗ ∈M \ E such that∫
E

exp{−fx(y)/2σ2
t }dy = Vol(E) exp{−fx(y∗)/2σ2

t }∫
M\E

exp{−fx(y)/2σ2
t }dy = Vol(M\ E) exp{−fx(ỹ∗)/2σ2

t }

We can use this to evaluate (12) to give,∫
M\E N (y|x, σ2

t I)dy∫
E
N (y|x, σ2

t I)dy
=

Vol(M\ E) exp{−fx(ỹ∗)/2σ2
t }

Vol(E) exp{−fx(y∗)/2σ2
t }

=
Vol(M\ E)

Vol(E)
exp

{
−fx(ỹ∗)− fx(y∗)

2σ2
t

}
Since by (11) fx(ỹ∗)− fx(y∗) > 0 the above goes to zero as σt goes to zero. Moreover, since E ⊆ U ⊆ B(π(x), ε), the
conditions of lemma D.5 are also satisfied.

Proof of Theorem D.1

Fix ε > 0. Assume that x is in a tubular neighbourhood ofM, so that the projection π(x) exists.

νT∇x ln pt(x)
nT∇x ln pt(x)

=
νT∇xpt(x)
nT∇xpt(x)

=

∫
M νT (y− x)N (y|x, σ2

t I)p0(y)dy∫
M nT (y− x)N (y|x, σ2

t I)p0(y)dy
(13)

SplitM into two parts: E andM\ E, where E = B(x, r) ∩M is an open neighbourhood of π(x) inM satisfying the
conditions of Lemma D.9 and Lemma D.5 for a chosen ε > 0, then we have that (13) is equal to e choose sufficiently small
E such that:

1. The mass of a Gaussian centred at x is concentrated in E,∫
M\E N (y|x, σt)dy∫
E
N (y|x, σt)dy

→ 0 as t→ 0.
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2. nT (y− x) > ∥π(x)− x∥ − ε on E .

3. |νT (y− x)| < ε on E.

Where E is chosen based on ε.

We proved in the last section that such E exists. For now let us continue from (13),∫
E
νT (y− x)N (y|x, σ2

t I)p0(y)dy∫
M nT (y− x)N (y|x, σ2

t I)p0(y)dy
+

∫
M\E νT (y− x)N (y|x, σ2

t I)p0(y)dy∫
M nT (y− x)N (y|x, σ2

t I)p0(y)dy
. (14)

We begin by bounding the first term:∫
E
νT (y− x)N (y|x, σ2

t I)p0(y)dy∫
M nT (y− x)N (y|x, σ2

t I)p0(y)dy
=

∫
E
νT (y− x)N (y|x, σ2

t I)p0(y)dy∫
E

nT (y− x)N (y|x, σ2
t I)p0(y)dy +

∫
M\E nT (y− x)N (y|x, σ2

t I)p0(y)dy

=

∫
E

νT (y−x)N (y|x,σ2
t I)p0(y)dy∫

E
nT (y−x)N (y|x,σ2

t I)p0(y)dy

1 +

∫
M\E nT (y−x)N (y|x,σ2

t I)p0(y)dy∫
E

nT (y−x)N (y|x,σ2
t I)p0(y)dy

=:
At

1 +Bt

For At we have

|At| =
∣∣∣∣
∫
E
νT (y− x)N (y|x, σ2

t I)p0(y)dy∫
E

nT (y− x)N (y|x, σ2
t I)p0(y)dy

∣∣∣∣.
Using the fact that nT (y− x) is positive and bounded away from zero and applying the triangle inequality we obtain

|At| ≤
∫
E
|νT (y− x)|N (y|x, σ2

t I)p0(y)dy∫
E

nT (y− x)N (y|x, σ2
t I)p0(y)dy

≤
εpmax

∫
E
N (y|x, σ2

t I)dy
(∥π(x)− x∥ − ε)pmin

∫
E
N (y|x, σ2

t I)dy

=
pmax

pmin

ε

∥π(x)− x∥ − ε
,

where in the second inequality we used that 0 < pmin < p0(y) < pmax , |νT (y− x)| < ε and nT (y− x) > ∥π(x)− x∥ − ε
on E. Since ε was arbitrary this term can be made arbitrary small. Now we move to Bt. Let D = maxy∈M ∥x− y∥, by the
triangle and Cauchy Schwarz inequalities we have

|Bt| ≤

∫
M\E |n

T (y− x)|N (y|x, σ2
t I)p0(y)dy∫

E
nT (y− x)N (y|x, σ2

t I)p0(y)dy

≤ pmaxD

pmin(∥π(x)− x∥ − ε)

∫
M\E N (y|x, σ2

t I)dy∫
E
N (y|x, σ2

t I)dy
.

which goes to zero as t goes to zero. Finally we move to the second term in (14), we start with the same steps as with the
first term ∫

M\E νT (y− x)N (y|x, σ2
t I)p0(y)dy∫

M nT (y− x)N (y|x, σ2
t I)p0(y)dy

=

∫
M\E νT (y−x)N (y|x,σ2

t I)p0(y)dy∫
E

nT (y−x)N (y|x,σ2
t I)p0(y)dy

1 +

∫
M\E nT (y−x)N (y|x,σ2

t I)p0(y)dy∫
E

nT (y−x)N (y|x,σ2
t I)p0(y)dy

=:
Ct

1 +Bt

so we only need to examine Ct. By the triangle and Cauchy Schwarz inequalities again, we have

|Ct| ≤

∫
M\E |ν

T (y− x)|N (y|x, σ2
t I)p0(y)dy∫

E
nT (y− x)N (y|x, σ2

t I)p0(y)dy

≤ pmaxD

pmin(∥π(x)− x∥ − ε)

∫
M\E N (y|x, σ2

t I)dy∫
E
N (y|x, σ2

t I)dy
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which goes to zero as t goes to zero. Putting all together

|νT∇x ln pt(x)|
|nT∇x ln pt(x)|

=
|At + Ct|
|1 +Bt|

≤ 1

|1 +Bt|

(
pmax

pmin

ε

∥π(x)− x∥ − ε
+ |Ct|

)
−−−→
t→0

pmax

pmin

ε

∥π(x)− x∥ − ε

Since ε can be chosen arbitrarily small this finishes the proof.

Proof of Theorem 4.1

Beginning with n and extending to an orthonormal basis (n, ν1, ... , νd−1) of Rd, we have

Scos(n,∇x ln pt(x)) =
nT∇x ln pt(x)
∥∇x ln pt(x)∥

=
nT (∇x ln pt(x))√

(nT∇x ln pt(x))2 +
∑d−1

i=1 (ν
T
i ∇x ln pt(x))2

=
1√

1 +
∑d−1

i=1

(νT
i ∇x ln pt(x)

nT∇x ln pt(x)

)2 −−−→t→0
1,

where in taking the limit we applied the Theorem D.1.

Proof of Corollary 4.2

Let (τ 1, ..., τ k) be an orthonormal basis of the tangent space Tπ(x)M and extend n to an orthonormal basis
(n,η1, ...,ηd−k−1) of the normal space Nπ(x)M. Then the projection of the score on the tangent space is given by
T∇x ln pt(x) =

∑k
i=1(τ

T
i ∇x ln pt(x))τ i, while the projection on the normal space is N∇x ln pt(x) = (nT∇x ln pt(x))n +∑d−k−1

i=1 (ηT
i ∇x ln pt(x))ηi. Therefore

∥T∇x ln pt(x)∥
∥N∇x ln pt(x)∥

=

√√√√ ∑k
i=1(τ

T
i ∇x ln pt(x))2

(nT∇x ln pt(x))2 +
∑d−k−1

i=1 (ηT
i ∇x ln pt(x))2

=

√√√√√ ∑k
i=1

(τT
i ∇x ln pt(x)

nT∇x ln pt(x)

)2
1 +

∑d−k−1
i=1

(ηT
i ∇x ln pt(x)

nT∇x ln pt(x)

)2 −−−→t→0
0

where in taking the limit we applied the Theorem D.1.
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E. Details on the design of synthetic image manifolds
Squares image manifold: We generated the k-squares dataset whose intrinsic dimension is controllable and is set to k.
This dataset comprises 32 × 32 pixel images of squares, generated by first establishing fixed square center locations and side
lengths (either 3 or 5 units) across all datapoints. For each square in a given image, we uniformly sampled a brightness value
from the unit interval for all pixels within the square’s boundary, summing values at points of intersection. The dimension of
this manifold is equal to the number of squares k and the ambient space dimension is 32× 32 = 1024. We provide samples
in Figure 7.

Gaussian blobs image manifold: The Squares image manifold is contained in a low dimensional linear subspace which
allowed PPCA to estimate the dimension very well. For this reason, we constructed a synthetic image manifold of known
dimension, which cannot be contained in any low dimensional linear subspace. We replace the squares by Gaussian blobs
(i.e. brightness of pixels withing each blob is proportional to a Gaussian pdf). We randomly pick the centers of the Gaussian
blobs which remain fixed for all datapoints. For each datapoint, we sample the standard deviation of each Gaussian blob
uniformly from the interval [1, 5]. The dimension of this manifold is equal to the number of Gaussian blobs. We provide
samples in Figure 8.

Figure 7. Nine samples from Squares image manifolds of dimensions 10, 20 and 100 (from left to right).

Figure 8. Nine samples from Gaussian blob image manifolds of dimensions 10, 20 and 100 (from left to right).
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F. Additional Experimental Results
F.1. Euclidean Data

Figure 9. Projection of the spaghetti line on the first three
dimensions.

Figure 10. Score spectrum of the spaghetti line. The last sin-
gular value clearly vanishes indicating that the intrinsic dimen-
sionality of the manifold is equal to one.

Figure 11. Score spectrum for the union of k-spheres (k1 =
10, k2 = 30). The separated drops in the spectra clearly
show that the data comes form the union of two manifolds of
different dimensions.

Figure 12. The histogram of estimated dimensions for the
union of k-spheres (k1 = 10, k2 = 30). The counts are
taken over estimates k̂(x(i)

0 ) at different points x(i)
0 .
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F.2. Synthetic Image Data

Figure 13. Score spectra and histogram of estimated dimen-
sion based on the score spectrum of the Squares image mani-
fold of dimensions 10, 20 and 100.

Figure 14. Score spectra and histogram of estimated dimen-
sion based on the score spectrum of the Gaussian blobs image
manifold of dimensions 10, 20 and 100.

F.3. MNIST

In Figure 15 we present 500 score spectra evaluated at 500 different instances for each digit. We observe that a considerable
number of spectra indicate lower manifold dimension than the dimension documented in Table 1. This deviation can be
attributed to amplified geometrical and statistical error at the respective evaluation points.

We choose the maximum estimated dimension as our conjecture of the intrinsic dimension under the premise that a collapse
of the spectrum at a smaller dimension than the dimension of the normal space is extremely unlikely from a probabilistic
standpoint. However, it is feasible to encounter a spectrum collapse suggesting a higher normal space dimension, hence a
lower intrinsic dimension, due to the intensified geometric and approximation error at the point of evaluation. It is noteworthy
that our estimation strategy locates the drop at the position of the maximal gradient, a practice that may marginally inflate
the intrinsic dimension estimate, as exemplified in the Squares and Gaussian blobs manifolds. Therefore, if our reported
dimension for each MNIST digit is not precise, it is either a minor overestimation or a lower limit of the true dimension.

23



Diffusion models encode the intrinsic dimension of data manifolds

G. Robustness analysis
G.1. Robustness to score approximation error

As we discussed in the previous sections, our method is guaranteed to work given a perfect score approximation for
sufficiently small t. However, in practice there will be an approximation error resulting from finite training data, limited
model capacity and imperfect optimization. Therefore, we conduct an empirical analysis of the influence of the error in
score approximation on the produced estimate of the dimension. We train a model sθ on a uniform distribution on 25-sphere
and then we corrupt the output of the model with a Gaussian perturbation e ∼ N (0, σ2

eI). Then, we produce score spectra
by applying our method to the resulting corrupted scores. We repeat this experiment for different intensities of noise σe. We
pick σe so that the noise norm to score norm ratio r = E[∥e∥]/Ext0∼pt0 (xt0 |x0)[∥s(xt0 , t0)∥] has a prescribed value. We
find that as we increase the intensity of noise singular values corresponding to the tangential component start to increase
causing the gap in the score spectrum to diminish. This is expected since the noise added to the score vectors has a tangential
component. However, for values of r < 0.5 our method is still producing a visible drop in the spectrum at the correct point.
The results are presented in Figure 16.
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G.2. Robustness to non-uniform distribution on the manifold

Uniform α = 1 α = 0.75 α = 0.5

Ground Truth 10 10 10 10

Ours 11 10 10 7

MLE (m=5) 9.61 5.37 4.83 4.12

MLE (m=20) 9.46 4.99 4.49 3.82

Local PCA 11 5 4 3

PPCA 11 11 11 11

Table 4. Dimensionality detection for non-uniform distribution. For our method
the maximum over pointwise estimates k̂(x0) is considered.

We examine the robustness to our method
to non-unifomity in data distribution on the
manifold surface. Under perfect score ap-
proximation and sufficiently small t0 our
method is guaranteed to work, but we con-
duct an empirical study to investigate the be-
haviour in the presence of score approxima-
tion error and t0 > 0 used in practice in
diffusion models. We consider a k-sphere
and sample the surface of the sphere in a non-
uniform fashion. We obtain points on the
k-sphere by sampling vectors θθθ of k − 1 an-
gles (in radians) from a Gaussian distribution
N (0, αI), where α ∈ R is a constant that de-
termines the degree of non-uniformity. Then,

we embed the resulting points via a random isometry in a 100 dimensional ambient space. We sample n = 1000 points
x(j)
0 from the manifold and at each point we estimate the dimensionality k̂(x(j)

0 ) via the score spectrum. The pointwise
estimates are presented in Figure 17 and final estimates are shown in Table 4. For values of α ∈ {1, 0.75}, we can
still obtain an accurate estimate of the dimension if we take k̂ = maxj=1,...,1000 k̂(x

(j)
0 ) the maximum over point-wise

estimates. For an extremely concentrated distribution with α = 0.5 the method underestimates the dimension, which
indicates that the tangential component of the score was not approximately constant in the neighborhoods used to sample
the scores. This problem could be further mitigated by approximating the score closer to the manifold and using smaller
sampling neighborhoods (i.e. for smaller t0) or sampling more points x(j)0 . Notice that taking the maximum over k̂(x(j)

0 ) is
theoretically justified (as long as we assume we are dealing with a connected manifold) since our method can underestimate
due to geometric or approximation error (cf. sections 4 and 5, but it is unlikely to significantly overestimate.

G.3. Relaxing the strict manifold assumption

The proof of the Theorem 4.1 assumes that p0 is strictly contained on the data manifoldM, however in practice it is possible
that the data distribution is concentrated aroundM rather then being contained within. Therefore, we conduct an empirical
analysis, which examines how our method works in the case of the data contained around the manifold. We start with p0 a
uniform distribution on a unit 25-sphere embedded in a 100 dimensional space and convolve it with a Gaussian distribution
N (0, σI) to obtain a distribution pσ0 that concentrates aroundM. As σ increases the distribution is blurred out more and
more into the ambient space. We train score model on each of the resulting distributions and use our method to estimate the
dimension. We find that our method produces correct estimation for for small values of σ i.e. when pσ0 is still concentrated
tightly aroundM. This is expected since of high values of σ the distribution isn’t really concentrated around any manifold
and therefore the notion of intrinsic dimension doesn’t make any sense. The results are presented in Figure 18.
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Diffusion models encode the intrinsic dimension of data manifolds

Figure 15. MNIST score spectra for all digits
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Diffusion models encode the intrinsic dimension of data manifolds

Figure 16. Score spectra for noise corrupted score model on 25-sphere.
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Diffusion models encode the intrinsic dimension of data manifolds

Figure 17. Dimensionality estimates for uniform and non-uniform distributions on a 10-sphere. On the right we present histograms
showing how many points x(j)

0 result in a given k̂(x(j)
0 ). Taking k̂ = maxj k̂(x(j)

0 ) allows for robust estimation for moderate values of
the concentration parameter α.
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Diffusion models encode the intrinsic dimension of data manifolds

Figure 18. Score spectra for score models on 25-sphere trained on noisy manifold data.
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