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Abstract

Large Language Models (LLMs) excel at many
NLP tasks, but struggle with multi-hop reason-
ing and factual consistency, limiting their ef-
fectiveness on knowledge-intensive tasks like
complex question answering (QA). Linking
Knowledge Graphs (KG) and LLMs has shown
promising results, but LLMs generally lack
the ability to reason efficiently over graph-
structured information. To tackle this prob-
lem, we propose a novel retrieval approach
that integrates textual knowledge graphs into
the LLM reasoning process via query decom-
position. Our method decomposes complex
questions into sub-questions, retrieves relevant
textual subgraphs, and composes a question-
specific knowledge graph to guide answer gen-
eration. For that, we use a weighted similarity
function that focuses on both the complex ques-
tion and the generated subquestions to extract
a relevant subgraph, which allows efficient and
precise retrieval for complex questions and im-
proves the performance of LLMs on multi-hop
QA tasks. This structured reasoning pipeline
enhances factual grounding and interpretabil-
ity while leveraging the generative strengths
of LLMs. We evaluate our method on stan-
dard multi-hop QA benchmarks and show that
it achieves comparable or superior performance
to competitive existing methods, using smaller
models and fewer LLM calls. Source code will
be available upon acceptance.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable success across a wide range of
natural language processing (NLP) tasks (Brown
et al. (2020), Chowdhery et al. (2023), Touvron
et al. (2023a), Ouyang et al. (2022)), including
question answering (Kamalloo et al., 2023),
summarization (Liu et al., 2024), and machine
translation (Zhang et al., 2023). As LLMs have
grown in size and have been trained on increasingly
diverse and large datasets, their emergent ability
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Figure 1: Illustration of our decompositional retrieval-
based reasoning method. Our method decomposes the
question into sub-questions, performs iterative, context-
aware retrieval conditioned on previous answers, and
merges the resulting subgraphs for guided reasoning.

to perform different types of reasoning (Wei
et al. (2022a), Zhou et al. (2023)), ranging from
arithmetic (Imani et al., 2023) and neurosymbolic
reasoning (Fang et al., 2024) to commonsense
inference (Zhao et al., 2023), has become a central
focus of recent research. This has opened new
possibilities for solving complex problems that
traditionally required structured or symbolic
approaches (Pan et al. (2023), He-Yueya et al.
(2023)). However, despite their broad capabilities,
LLMs still struggle with tasks requiring multi-hop
reasoning (Yang et al., 2024), factual grounding,
or explicit access to structured knowledge. These
models are prone to hallucinations and logical
inconsistencies, particularly when operating in
knowledge-intensive domains (Ji et al. (2023b),
Huang et al. (2025). This is partially due to the



high reliance on implicit knowledge stored in
parameters (Hu et al., 2024b), and the lack of
explicit mechanisms for integrating or reasoning
over structured information. Recent work on
retrieval-augmented generation (Lewis et al.,
2020), graph-augmented LLMs (Yasunaga et al.,
2021), and neurosymbolic reasoning (Fang et al.,
2024) has aimed to bridge this gap.

In this work, we address these issues by propos-
ing a method for knowledge-guided decomposi-
tional reasoning with LLMs. Our method injects
structured knowledge into the reasoning process us-
ing textualized knowledge graphs. Specifically, we
decompose complex questions into sub-questions,
retrieve relevant subgraphs from a textual knowl-
edge graph, and merge them for structured and
reasoning-enhanced retrieval (Figure 1). The ob-
tained graph is then used to guide LLMs toward
generating more accurate and interpretable answers.
This hybrid approach enhances both the factual
correctness and the transparency of LLM predic-
tions, particularly in settings requiring multi-step
reasoning over domain knowledge. To verify the
effectiveness of our approach, we conduct exten-
sive experiments on benchmark datasets for com-
plex question answering, namely CWQ (Talmor
and Berant, 2018) and WebQSP (Yih et al., 2016).
We compare our method against standard prompt-
ing techniques, as well as existing state-of-the-art
approaches that combine LLMs with knowledge
graphs. Results show that our method achieves
consistent improvements in accuracy without in-
creasing the number of parameters for the LLM
or the number of LLM calls, which shows the ef-
ficiency of our method. Our contributions are as
follows:

* We develop a novel knowledge graph retrieval
method that uses query decomposition, help-
ing the LLM to reason over structured data for
complex questions.

* We introduce a hybrid similarity function that
uses the complex question and its decomposi-
tion to guide the retrieval process.

* We demonstrate improvements in accuracy
and factual consistency on multi-hop QA
benchmarks.

¢ Our method reduces the number of LLM-calls
compared to other baselines, achieving a 3 x
to 5x reduction for both datasets.

2 Background

2.1 Can LLMs reason ?

LLMs such as GPT-3 (Brown et al., 2020),
PalLM (Chowdhery et al., 2023), and LLaMA
(Touvron et al., 2023a) have demonstrated strong
performance across a wide range of language
tasks, including reasoning-based benchmarks.
Their ability to generalize in zero-shot (Kojima
et al., 2022) and few-shot settings has led to the
emergence of new prompting techniques, such as
Chain-of-Thought (CoT) reasoning (Wei et al.,
2022b), which improves multi-step reasoning
by encouraging models to generate intermediate
reasoning steps. Variants like self-consistency
(Wang et al., 2023) further refines this by sampling
multiple reasoning paths and aggregating answers
for improved robustness. More recently, reinforce-
ment learning has been used to entirely train new
models (DeepSeek-Al et al., 2025) or improve
model prompting (Pternea et al., 2024), showing
great potential for the future.

Despite these advances, LLMs remain prone
to hallucinations—generating fluent but factu-
ally incorrect or logically inconsistent outputs
(Huang et al., 2025), (Srivastava et al., 2023), (Ji
et al., 2023b). This is especially problematic in
knowledge-intensive tasks requiring factual ground-
ing, multi-hop reasoning, or domain-specific exper-
tise (Ji et al. (2023a), Opsahl (2024)). These issues
stem in part from the implicit nature of knowledge
storage in model parameters, which limits their abil-
ity to verify facts or reason explicitly over external
knowledge (Petroni et al. (2019), Bommasani et al.
(2021)). Recent work has explored augmenting
LLMs with tool use, such as code interpreters (Pi
et al., 2022), equation solvers (He-Yueya et al.,
2023) or symbolic solvers (Lam et al., 2024) (Pan
et al., 2023), to externalize and validate parts of the
reasoning process.

2.2 LLMs and graphs

Graphs offer a natural and interpretable way
to represent real-world data through entities
and their structured relationships. Integrating
knowledge graphs with Large Language Models
(LLMs) is a promising research direction that
enables models to better handle real-life scenarios
with structured data (Li et al., 2024) (Hu et al.,
2024a). Knowledge graphs can enhance LLMs
by providing explicit, grounded context, which
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Figure 2: Overview of our retrieval method: the complex question is first decomposed into smaller subquestions, for
which we iteratively perform retrieval and answer generation; once the retrieval is done for all subquestions, we
merge the subgraphs and give the result as a hard (textualized graph) and a soft prompt (graph encoder output) to

the model.

helps mitigate hallucinations (Li et al., 2024)
(Agrawal et al., 2024), but also makes the model
dependent on the noise or incompleteness of the
graph (Dong et al., 2025). By grounding the
generation process in a textualized or symbolic
knowledge graph, LLMs can produce responses
that are more accurate and aligned with real-world
facts. This is especially useful in tasks such as
question answering (Baek et al., 2023) (Yasunaga
et al., 2021), logical reasoning (Choudhary and
Reddy, 2024), or dialogue systems (Kang et al.,
2023) where factual precision is crucial.

LLMs and graph neural networks (GNNs) can
also be used together (Xu et al., 2024) (He et al.,
2024a), each complementing the other. Graphs
can be used to inject knowledge into LLMs via
methods like structured prompting (Baek et al.,
2023) (Zhang et al., 2024) or retrieval-based aug-
mentation (Lewis et al., 2020) (Peng et al., 2024).
LLM:s can support and enhance graph-centred tasks
(Pan et al., 2024) by performing entity linking, re-
lation extraction, or even link prediction (Shu et al.,
2025), which largely improves the graph’s cover-
age. LLMs have also been explored as genera-
tors of graph-structured outputs or as interpretable
reasoning agents over graphs using intermediate

symbolic steps. In such hybrid frameworks, LLMs
benefit from the structure and factual reliability of
graphs, while graphs gain from the generalization
and language understanding ability of LLMs (Pan
et al., 2024). Nonetheless, most existing methods
remain heuristic and lack a principled understand-
ing of how best to align symbolic and neural repre-
sentations (Cheng et al., 2025).

3 Related Work

Different methods have already demonstrated
promising results on Knowledge Graph Question
Answering (KGQA) tasks. He et al. (2024b) re-
trieves a subgraph from a textual knowledge graph
and feeds it to the LLM without any explicit rea-
soning step, which can hinder performance on com-
plex questions. Other existing techniques introduce
some reasoning mechanisms within their frame-
work: Sun et al. (2024) performs iterative entity and
relation explorations, and directly reasons on the
obtained paths. Similarly, Chen et al. (2024) uses
task decomposition and then performs multiple cy-
cles of exploration, memory updating, and evalu-
ation. Performing iterative calls to the LLM has
many advantages, but both mentioned techniques
require using a relatively large model (LLaMa-2-
70B, GPT-3.5 / GPT-4...) for planning and evalua-



tion. In contrast, our method focuses on retrieving
a more pertinent graph rather than answering it-
eratively, and uses fewer LLM calls—which can
be controlled by the number of generated subques-
tions. Other methods like Luo et al. (2024) first pre-
dict reasoning paths as plans and search for those
paths within the knowledge graph. Given that the
LLM does not have any prior knowledge of the re-
lations within the knowledge graph, the technique
requires knowledge distillation into the LLM to
generate faithful relation paths. Our method does
not require any fine-tuning on the LL.M, which re-
duces the cost of usage and the preprocessing time
for new datasets.

4 Method

The overall pipeline for our method is presented in
Figure 2. In order to tackle complex questions, we
first decompose a complex question into a set of
logically ordered subquestions. We then perform
an iterative retrieval cycle by performing retrieval
on the graph for each subquestion that we obtain.
The results for the multiple retrievals are then com-
bined into a single graph, which is then used to
generate the final answer to the complex question.

4.1 Subquestions Generation

Given a complex question (), we want to obtain a
set of subquestions {q1, ..., ¢, }. The subquestions
must be logically ordered (answering ¢; is neces-
sary to answer g2, etc.), atomic (can not be split into
smaller subquestions), and cover all aspects of the
complex question. Therefore, answering all sub-
questions in the given order should be equivalent
to answering the complex question. In our work,
we generate the subquestions using an LLM, lever-
aging its semantic understanding and its implicit
knowledge capabilities. Using an LLM provides
a flexible framework for decomposing complex
questions, independent of the domain or the ques-
tion type. To fulfill all the mentioned conditions
above, we prompt the model with specific instruc-
tions about subquestions; we also provide some
manually generated examples of decomposition to
guide the model’s behavior (see Appendix B for
details about prompting).

4.2 Hybrid Entity Retrieval

For the retrieval part of the generation pipeline, we
want to obtain a subgraph for each subquestion.
Considering each subquestion independently
might lead to very distinct subgraphs; moreover,

the subquestions can lack sufficient contextual
information on their own to retrieve all the relevant
nodes and edges from the knowledge graph. To
address this, we introduce a hybrid retrieval
method that combines both the subquestion and
the original complex question, allowing the model
to benefit from the specificity of the former and
retain the broader context provided by the latter.
Our hybrid retrieval mechanism is implemented
through a weighted similarity function, controlled
by a parameter o, which balances the influence of
both components. Figure 3 presents the equations
for both node and edge retrieval.

When performing retrieval on the graph for the
subquestion ¢;, we keep track of the previous an-
swer (answer a;_; to subquestion ¢;_1). This is
crucial, as the answer to ¢; might depend on the
answer to ¢;_1. Before retrieval, we embedded
our complex question, the subquestions, and the
textual attributes of the nodes/edges in the graph us-
ing a Sentence Transformer embedding model (see
Appendix B for details). After having retrieved
all necessary nodes and edges, we build a con-
nected subgraph from these elements, following
work done in He et al. (2024b). The connectivity
of the graph is enforced by the Prize-Collecting
Steiner Tree (PCST) algorithm (Bienstock et al.,
1993), which optimizes the selection of a subgraph
of maximum value based on node/edge weights
and query similarity, under a size constraint.

Vi.! = argtopk [ cos(2i, zn) + (1 — @) cos(z2q, zn)]
nev

E)." = argtopk [a cos(zi, ze) + (1 — @) cos(zq, 2 )]
ecE

Figure 3: Hybrid retrieval: V;’ and Ej;" denote the
top nodes and edges from G = (V, E), ranked by a
weighted similarity to the subquestion ¢; and original
question Q. z;, 2, Zn, and z, are the embeddings of ¢;,
@, node n, and edge e, respectively.

4.3 Subgraphs Merging

After retrieving subgraphs corresponding to each
subquestion, we proceed to merge them in order to
link relevant information and remove redundancy.
Each subgraph is initially connected, as it is con-
structed using the PCST algorithm. To form the
final graph, we take the union of all distinct nodes
and edges across all subgraphs. Importantly, we
do not directly enforce full connectivity during this
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Figure 4: Model Accuracy (Hit@1) against the value of the o parameter for both CWQ and WebQSP datasets.

merging step, as doing so would require introduc-
ing virtual edges, which could potentially compro-
mise the semantic integrity of the graph or resort to
computationally expensive graph expansion meth-
ods.

4.4 Answer Generation

Once we obtained the merged graph for the com-
plex question, we pass it to our LLM in two dif-
ferent ways, following the generation process de-
scribed in He et al. (2024b): we provide a textual-
ized version of the graph in the prompt, and also
pass the graph through a trained graph encoder
(Shi et al., 2021) followed by a linear projection
layer. Providing the encoded graph as a soft prompt
guides the LLM’s response by feeding a trained
embedding vector to the self-attention layers of
the language model. When answering the com-
plex question, we include the merged graph and
its textual description in the prompt; we chose not
to include the answers to the subquestions in the
final prompt, as a single prior error can force the
model to give a wrong answer, even when the graph
contains the correct answer.

5 Experiments

5.1 Benchmarks

We evaluate our method on two different Question-
Answering (QA) benchmarks to assess the quality
of our results: CWQ (ComplexWebQuestions) (Yih
et al., 2016) and WebQSP (WebQuestionsSeman-
ticParses) (Talmor and Berant, 2018), which are
both based on the Freebase (Bollacker et al., 2008)
knowledge base. CWQ is a complex QA bench-
mark that focuses on multi-hop questions. As it
needs the integration of multiple facts, it benefits

from compositional reasoning, making it a suitable
benchmark for our approach. WebQSP, on the other
hand, contains a wide range of simple and factual
questions. It also includes SPARQL annotations
that we do not use in this work. We use the prepro-
cessed version of the dataset provided in Luo et al.
(2024).

5.2 Evaluation Metrics

We use the standard QA evaluation metrics found
in related work. We report performance using ac-
curacy and F1 scores. Accuracy measures exact
matches, while F1 allows a more nuanced eval-
uation, especially when predictions are partially
correct. In line with previous studies (Chen et al.
(2024), Sun et al. (2024), Luo et al. (2024)), we
use Hit@]1 as our primary accuracy metric. Hit@1
determines whether the top prediction matches the
ground truth and is widely used in QA evaluation.
We report both Hit@1 and F1, enabling direct com-
parison with prior work.

5.3 Choice of language models

Our method requires two distinct capabilities, each
handled by different classes of models. First, strong
decompositional reasoning is needed to break down
the complex question into logically ordered, com-
prehensive, and atomic subquestions. There, we
use a Qwen-32B model distilled from Deepseek-R1
(DeepSeek-Al et al., 2025) for its advanced reason-
ing abilities. Second, we need efficient models to
answer the subquestions and generate the final an-
swer. For this, we experiment both with LLaMA-2-
7B and LLaMA-2-13B (Touvron et al., 2023b). We
also propose a "Hybrid 7B/13B" setting in which
the 7B model answers the subquestions, while the



13B model handles the final complex question an-
swer. The rationale is that atomic subquestions
are simple and can be handled by a smaller model,
while the final answer—requiring the integration
of the full merged graph—benefits from the greater
capacity of a larger model. This setting leverages
model efficiency by allocating larger capacity only
where necessary. We evaluate both uniform and
hybrid settings in Section 6.

5.4 Balancing the Retrieval Query

Using only an atomic subquestion for retrieval can
lead to ineffective results, as it lacks the broader
context of the original complex question. To ad-
dress this, we propose balancing the influence of
the complex question and the current subquestion
in the retrieval query embedding. We introduce an
« parameter (Section 4.2) that controls this trade-
off via a weighted average of their respective query
embeddings. As shown in Figure 3, « determines
the contribution of each: lower values (close to
0) emphasize the subquestion, while higher values
shift focus toward the original complex question.
When o = 1, retrieval is based solely on the com-
plex question, without any decompositional reason-
ing, as in He et al. (2024b) (see Figure 4).

6 Results

6.1 Influence of o parameter

During retrieval, we use both the complex question
and its subquestions, with the « parameter
controlling their relative importance in the query
(Figure 3). We vary « and report model accuracy
in Figure 4. We observe that using a larger model
(13B) in the final answer stage (7B/13B and 13B
setups) significantly outperforms the 7B-only
setup, however using such a model for answering
the subquestions offers no clear benefit, as we
see, the hybrid 7B/13B and 13B-only setups yield
similar results. Across all setups, extreme « values
(near 0 or 1) underperform, and intermediate
values work best. This supports the need to balance
focus between subquestions and the main question
during retrieval. In the rest of the paper, we use
a=0."7.

Varying « also impacts the structure of the
retrieved graph, potentially affecting the connec-
tivity constraint previously ensured for subgraphs
by the PCST algorithm. Higher o leads to more
connected and denser merged graphs (Figures 9,
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Figure 5: Model Accuracy (Hit@1) for connected and
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10), while lower values produce more distinct
subgraphs and a sparser, occasionally disconnected
graph. Although we observe connected graphs
empirically yield better performance (Figure 5),
disconnected ones remain rare in proportion
(Figure 9). Despite the drop in performance
in these cases, results remain competitive with
state-of-the-art methods (Table 1). We discuss
the statistical significance of these results in
Appendix A.

Since our focus is on improving retrieval, we
report the Exact Matching scores for different «
values. Exact Matching score is defined as the per-
centage of graphs containing a node that exactly
matches the answer label. We observe in Figure 6
that focusing on the subquestions rather leads to
Exact Matching scores. Setting v = 1 serves as a
sanity check to verify that we obtain similar metrics
to He et al. (2024b). Additional results for Exact
Matching can be found in Appendix A. We observe



similar results for the Matching score: we define
this metric as the percentage of retrieved graphs
that contain a node very similar to the answer label
(based on a cosine similarity between embeddings,
using a similarity threshold of 0.9). This more flex-
ible metric allows to check the presence of highly
related nodes in the retrieved graph.

6.2 Graph size

K, and K, correspond respectively to the number
of relevant nodes and edges that we consider to
build the connected subgraph with PCST. At the
retrieval step, we set the values of K, and K, to
extract a certain number of relevant entities in
the original graph (Figure 3). Choosing higher
values of K,, and K. leads to a higher quantity
of retrieved information, which improves the
probability of retrieved relevant nodes and edges,
but also increases potential noise in the subgraph
that we are building. Logically, choosing higher
values of K, produces significantly larger graphs
(Figure 12 in Appendix A), which can be harder to
handle for the LLM.

CwWQ
549 546
55 541 533
50
S
= 45
®
=
40
35
310
30
2 3 5 10 20
K n

Figure 7: Accuracy (Hit@ 1) against the value of the K,
parameter (retrieved nodes), for the CWQ benchmark.
Those results were obtained for our 7B model.

We also show (see Figure 7) that setting a
high value for K, (or K.) does not lead to better
performances for our 7B model. This observation
has also been made in He et al. (2024b) on
the WebQSP dataset. Setting K, too low (e.g.
K,, = 2) does not allow the model to retrieve
enough knowledge in the graph; but setting K,
too high (above 5 empirically for our method) will
add noise (non-relevant nodes) to the retrieved
subgraphs and can disrupt the correctness of the
generated answers. If we use a larger model (see
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Figure 8: Model Accuracy (Hit@1) for different model
sizes, for the CWQ benchmark. In default setting, we
use K,, = 3, K. = 5; for "larger graphs", we use
K,=5K,=T1.

Figure 8), the difference between using K,, = 3,
K. =5)and K,, = 5, K. = 7 ( denoted as "larger
graphs") does not lead to significant improvement;
although we have a higher change of retrieving
important nodes and edges, this observation
highlights the presence of noise within the larger
retrieved graphs. For the evaluation of our method,
we use the default values of K,, = 3 and K, = 5.

6.3 Main Results

For our main evaluation, we consider various
baselines and model configurations. In particular,
we highlight the "Hybrid 7B/13B" setting, where
a 7B model answers each subquestion and a
13B model handles final answer generation (as
described in Section 5.3).

Across both CWQ and WebQSP benchmarks
(Table 1), our method achieves strong performance
compared to approaches using similar model sizes
and no fine-tuning. On CWQ, which features
multi-hop questions, we observe a significant
improvement over prior non-finetuned baselines,
including those using larger models like Sun
et al. (2024) (70B) and He et al. (2024b) (13B).
On WebQSP, a simpler QA dataset, our method
still outperforms related methods, though the
margin is smaller—Ilikely because decomposition
is less helpful for single-hop questions. In both
cases, only methods relying on dataset-specific
fine-tuning or very large models (e.g., GPT-3.5
in (Chen et al.,, 2024)) achieve better scores,
highlighting the value of simple decompositional



Method CWQ WebQSP
Hit@1 F1 Hit@1 F1
10 prompt (ChatGPT) 37.6 - 63.3 -
CoT (ChatGPT) 38.8 - 62.2 -
StructGPT (ChatGPT) 54.3 - 72.6 -
ToG (LLaMa-2-70B) 53.6 - 63.7 -
ToG (ChatGPT) 57.1 - 76.2 -
RoG (LLaMa-2-7B + FT) 62.6 56.2 85.7 70.8
PoG (GPT-3.5) 63.2 - 82 -
G-R (LLaMa-2-7B) 52.1 44.8 70.5 51.7
Ours (LLaMa-2-7B) 54.9 46 71.9 52.4
G-R (LLaMa-2-13B) 54.6 46.9 76.5 57.2
Ours (Hybrid 7B/13B) 579 50.3 77.9 58.2
Ours (LLaMa-2-13B) 58.1 50.8 77.4 56.4

Table 1: Performance comparison on the CWQ and WebQSP benchmarks. Bold indicates best results; underlined
values indicate second-best. Results are sourced from the original papers: Brown et al. (2020), Wei et al. (2022b),
Jiang et al. (2023), Sun et al. (2024), Luo et al. (2024), Chen et al. (2024), He et al. (2024b).

reasoning at the retrieval stage. A key observation
is that our "Hybrid 7B/13B" setup performs
comparably to a full 13B pipeline, suggesting that
most of the benefits come from decompositional
retrieval, not simply model scale. Figure 8
highlights this efficiency: we maintain competitive
performance while using fewer resources, by
relying on a lightweight model for subquestions
and a larger one only for the final answer.

Finally, Table 2 compares the average number
of LLM-calls for our method and compares it with
baselines (Sun et al. (2024), Chen et al. (2024))
that made this data available. These methods use
iterative cycles to answer the complex question,
which does not give any upper-bound for the
number of calls to the model. In our case, the
number of calls to the model directly depends
on the number of generated subquestions, which
can ultimately be controlled via prompting at the
decomposition step. We achieve state-of-the-art
accuracy while reducing LLM usage for both
CWQ and WebQSP, showing the efficiency of our
decompositional retrieval method.

Since we use a single LLM call for both decom-
position and final answer generation, we can de-
duce the average number of subquestions generated.
Without setting a limit on the number of subques-
tions, we obtained an average of 2.8 subquestions
for CWQ and 2.3 for WebQSP; this demonstrates

Method CWQ WebQSP

ToG 22.6 15.9
PoG 13.3 9.0
Ours 4.8 4.3

Table 2: Average number of LLM calls per question on
the CWQ and WebQSP datasets

that more complex questions result in more sub-
questions.

7 Conclusion

In this work, we introduced a novel graph re-
trieval method using decompositional reasoning
with LLMs. By leveraging textual knowledge
graphs and a hybrid retrieval mechanism that bal-
ances subquestion-specific and global context, our
method enhances both the accuracy and inter-
pretability of multi-hop QA. We demonstrated
the effectiveness of our approach on complex QA
benchmarks such as CWQ and WebQSP, achieving
improved performance over strong baselines with-
out increasing model size. Our results highlight
the value of structured knowledge and explicit rea-
soning steps in addressing the limitations of LLMs
in knowledge-intensive tasks. Future work may
explore adding reasoning mechanisms at the gener-
ation step for improved model capabilities.



Limitations

Although our method demonstrated state-of-the-art
results with smaller LLMs, we can mention
some limitations of our method. Our method
is mostly adapted to complex QA datasets, as
the decomposition works best on difficult and
multi-hop questions that can be transformed
into a set of simple and atomic questions. The
decomposition is not systematic, and we prompt
the LLM to not decompose a question if it is
considered to be simple enough; this approach can
work on simple QA datasets (shown in Table 1
for the WebQSP dataset), but there is no guaranty
that the model will not force the decomposition of
simple questions.

We decompose complex questions using an
LLM with a specific prompting technique shown
in Appendix B. This method is advantageous for
preprocessing an entire dataset, but it requires the
use of a large enough LLM (we use Deepseek-R1-
Distill-Qwen-32B, which is still relatively small
compared to other baselines used for direct reason-
ing). Also, it is hard to control the quality of the
decomposition; manual evaluation has been con-
ducted to control the quality of the decomposition.
It has been observed that some generated subques-
tions were redundant or irrelevant to the final goal,
which can act as noise when providing them to the
model.

Ethical Considerations

This work improves the reasoning abilities of large
language models by using structured knowledge
from textual graphs. While this improves the
model’s ability to make consistent and transparent
predictions, it does not eliminate risks such as the
propagation of biases present in the training data
or the underlying knowledge graphs. We do not
train new language models or use user-generated
content. Our experiments are conducted using pub-
licly available datasets. No personal or sensitive
data is used. Nevertheless, caution should be exer-
cised when deploying such systems in high-stakes
or real-world applications, as flawed reasoning over
structured data can result in factually inaccurate
outputs.
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A Experimental Results

The value of the o parameter, which controls the
hybrid retrieval mechanism, can cause the retrieved
graphs to be more or less connected. We see on Fig-
ure 9 that with a lower value of o, we sometimes
produce disconnected graphs; at a higher value of
a, most (if not all) graphs become naturally con-
nected. Figure 5 suggests that the model better
handles the connected graphs, as they lead to better
results, but the low number of disconnected graphs
questions the statistical significance of this hypoth-
esis. We observe that for some alpha values, the p-
value is less than 0.05. We also use a Beta law to es-
timate the posterior distribution of p, the parameter
for the Binomial law that represents the accuracy of
our predictions. Over the different alpha values, we
obtain P(connected > disconnected) = 0.919,
which indicates the plausibility of our claim.
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Figure 9: Graph connectivity against the value of the «
parameter, for the CWQ benchmark.
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Figure 10: Graph density against the value of the «
parameter, for the CWQ benchmark.
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We make a similar observation with graph den-
sity; as shown in Figure 10, a lower « produces
less dense graphs, but the retrieved graphs will
be denser as the value of the parameter increases
towards 1. Evidently, a = 1 produces identical
results to He et al. (2024b), as we only use the com-
plex question. The density of a graph G = (V, E)
is given by Figure 11 :

2-|E|

PO = =D

Figure 11: Graph density formula (undirected graph).
|V| and |E| denote the number of nodes and edges
in the graph G = (V, E). Density quantifies how
many edges exist compared to the maximum possible
number of edges in the graph.
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Figure 12: Graph size against the value of the K, pa-
rameter (retrieved nodes), for the CWQ benchmark.

Figure 12 shows how changing K, (similar
effects with K.) acts on the size of the final
merged graph. As we perform retrieval for each
subquestion (multiple times for each complex
question), a small increase in the value of K,
will result in a much larger merged graph (each
subgraph is larger). This effect will naturally have
an impact on the performance of our method, as
the model needs to process larger graphs.

The Exact Matching score is a metric that de-
scribes how often the exact answer to the complex
question is found within the retrieved graph. We
test the performance of our retrieval method with
different models and retrieval settings (X, and K.),
controlling the size of retrieved graphs. Overall,
we observe that the o parameter has a high influ-
ence on the metric, which shows that our method
improves the presence of target entities in the re-
trieved graphs. Also, regardless of the value of



a, all experiments show that we obtain higher Ex-
act Matching than by simply using the complex
question.
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Figure 13: Exact matching (%) as a function of the «
parameter on the CWQ benchmark for the 7B model
with K,, =3 and K, =5
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Figure 14: Exact matching (%) as a function of the «
parameter on the CWQ benchmark for the 7B model
with K,, =5and K, =7
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Figure 15: Exact matching (%) as a function of the «
parameter on the CWQ benchmark for the 13B model
with K,, =3 and K, =5
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Figure 16: Exact matching (%) as a function of the «
parameter on the CWQ benchmark for the 13B model
with K,, =5and K, =7
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Figure 17: Matching (%) as a function of the o param-
eter on the CWQ benchmark for the 7B model with
K,=3and K, =5
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Figure 18: Matching (%) as a function of the o param-
eter on the CWQ benchmark for the 7B model with
K,=5and K, =7
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Figure 19: Matching (%) as a function of the o param-
eter on the CWQ benchmark for the 13B model with
K,=3and K., =5
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Figure 20: Matching (%) as a function of the o param-
eter on the CWQ benchmark for the 13B model with
K,=5and K, =7

Another useful metric to asses the quality of our
retrieval method is the Matching metric. Compared
to the Exact Matching, this metric allows for more
flexibility and can evaluate the presence of highly
similar entities (compared to the ground-truth an-
swer) within the retrieved graph. We run experi-
ments using a similarity threshold of 0.95 with the
cosine similarity function. We make similar obser-
vations as for the Exact Matching metric, and we
empirically show that our method achieves better
Matching than previous methods.

We ablate key components of our pipeline on
CWQ using LLaMa-2-7B (see Figure 3). Remov-
ing the graph encoder or textual representation
leads to substantial drops in Hit@1 (-12.1, -9.1
points respectively), confirming the importance of
both structured and textual graph information for
accurate generation. At the graph retrieval stage,
we measure the impact of treating the subquestions
dependency or connecting subgraphs. Removing
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Configuration Hit@1 Impact
Full Pipeline 54.9 -
w/o Graph Encoding 42.8 -12.1
w/o Textual Graph 35.8 9.1
w/o Subquestions Dependency  36.3 -18.6
w/o Graph Connectivity 43.7 -10.2

Table 3: Ablation study showing the impact of various
components from the pipeline. The results provided
were obtained on CWQ using LLaMa-2-7B.

the dependency between subquestions is equivalent
to the case where subquestions don’t have access
to previous subquestions and answers. Again, we
observe the importance of both steps at the retrieval
stage for the QA pipeline on complex questions.

B Experimental Setup

At the retrieval step, we encode all nodes and edges
using Sentence-BERT model; we use a version
based on the roberta-large model !. For the lan-
guage models, we use Deepseek-R1-Distill-Qwen-
32B ? (DeepSeek-Al et al., 2025) for preprocessing
(complex questions decomposition); for inference,
we use both LLaMa-2-7B and LLaMa-2-13B (Tou-
vron et al., 2023b). At all steps (question decompo-
sition and answer generation), we use the models in
a greedy setting (setting the temperature parameter
to 0). For the generation pipeline and the choice
of hyperparameters, we follow work done in He
et al. (2024b) 3. We set the maximum input text
length of the model to 512 tokens and the maxi-
mum output size to 32 tokens. For prompt tuning,
we set the number of virtual tokens to 10. The
setup of the language models, along with the de-
terministic nature of the hybrid retrieval process,
allows for reproducible results for identical runs.
All reported results for our method correspond to
a single run, and not a mean of different runs. For
the graph encoder, we follow Shi et al. (2021) (4
layers, 4 attention heads per layer, hidden dimen-
sion of 1024); the following projection layer is a
simple feedfoward neural network (2 linear layers,
1 activation layer), where the output size needs to
match the hidden representation dimension for the
LLM which is being used. For training the graph

"https://huggingface.co/sentence-transformers/all-
roberta-large-v1

Zhttps://huggingface.co/deepseek-ai/DeepSeek-R 1-
Distill-Qwen-32B

3code used is under MIT license



Prompt for Subquestion Generation

You are an expert at decomposing
complex questions into smaller, atomic
subquestions. If the question can’t be
decomposed into smaller questions, leave
it as it is. Decompose the following ques-
tion into a list of simpler subquestions
that:

- Are atomic (addressing only one piece
of information at a time)

- Are logically ordered

- Have access to answers from previous
subquestions

- Cover all necessary aspects of the
original question

- Can be answered with a single entity

- Lead to the answer in the last subques-
tion

You must strictly format your answer
as a valid JSON array; do NOT include
explanations or reasoning.

Now decompose the following question
in JSON format.

Complex Question:

"Which city is the birthplace of the author
of the novel “1984” 2"

Subquestions:

1. Who is the author of the novel “1984”?
2. Where was this author born?

Figure 21: Example of decomposition prompt for a
complex question.

encoder, we use the AdamW optimizer (Loshchilov
and Hutter, 2017); we train the graph encoder with
a batch size of 4 for 10 epochs (with early stop-
ping). The initial learning rate is set to 10>, with
a weight decay of 0.05. At the retrieval step, when
creating a connected graph using PCST, we choose
to use the default values of K, = 3 and K, = 5.
For the datasets, we work with the preprocessed
versions of CWQ 4 and WebQSP > obtained by
Luo et al. (2024). For the dataset split, we use the
default train and test sets proposed in the indicated

*https://huggingface.co/datasets/rmanluo/RoG-cwq
Shttps://huggingface.co/datasets/rmanluo/RoG-webgsp
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Few-shot Prompting

Examples:

Input: What is the capital of the country
that exports the most honey ?

Output: ["Which country exports the
most honey ?", "What is the capital of
that country ?"]

Input: What sports team does Michael’s
best friend support ?

Output: ["Who is Michael’s best friend
7", "What sports team does he support ?"]

Input: What fruits grow in the hottest
countries from the largest continent in the
world ?

Output: ["What is the largest continent in
the world ?", "What countries are hottest
on this continent ?", "What fruits grow in
those countries ?"]

Input: How old is Obama ?
Output: ["How old is Obama ?"]

Now decompose the following question
in JSON format.

Figure 22: Example of possible few-shot prompting

versions.

We propose an example of a prompt used for
decomposing a complex question into multiple
atomic and logically ordered subquestions. See
Figure 21 for an illustration. Additionally, we pro-
vide examples of decomposition to the model to
clarify the task and the expected output format. Fig-
ure 22 presents some decomposition examples on
made-up complex questions; we also choose to add
simple questions to show that decomposition is not
always necessary.

C Compute Resources and Energy
Consumption

We compute the total energy consumption for both
CWQ and WebQSP datasets. For each model
used, we use a single A100 40GB GPU. The
LLaMa-2-13B model consumes more energy and
also takes longer to run compared to LLaMa-2-7B.
Our hybrid setup is a combination of both models,



where we use LLaMa-2-7B for the subquestions,
and LLaMa-2-13B only for the final question
answering. We showed that we obtain similar
accuracy results for the Hybrid 7B/13B model
and for LLaMa-2-13B; but Table 4 shows that
the hybrid option is much more economical, as
we are able to reduce energy consumption by
17%. Compared to the LLaMa-2-7B model, the
hybrid option only consumes 6% more energy, all
experiments considered.

Model GPU Energy (kWh)
LLaMa-2-7B A100 40GB 4.62
LLaMa-2-13B  A100 40GB 5.94
Hybrid 7B/13B  A100 40GB 4.95

Table 4: Energy consumption for test-set experiments
across model configurations.

Model Dataset GPU Energy (kWh)
R1-Q-32B  CWQ H100 96GB 3.15
R1-Q-32B  WebQSP  H100 96GB 0.72

Table 5: Energy consumption for question decomposi-
tion (entire dataset preprocessing).

Task CO; Emissions (kgCO;e)
Preprocessing 2.27
Inference 6.2

Table 6: CO4 Emissions (kg) for dataset preprocessing
and model inference.

We also compute the total energy consumption
for dataset preprocessing, which mainly consists of
decomposing all questions in the dataset as a set of
subquestions. For this task, we use a larger model
(DeepSeek-R1-Distill-Qwen-32B), and we report
the total energy consumption for each dataset in
Table 5. Since the CWQ dataset is much larger than
the WebQSP dataset, we observe a large difference
in the energy needed in both cases.

Having given the energy consumption for our
experiments, we compute the corresponding CO,»
emissions (Mass of CO, equivalent, kgCO,e) for
the different compute tasks (Table 6).
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