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Abstract001

Large Language Models (LLMs) excel at many002
NLP tasks, but struggle with multi-hop reason-003
ing and factual consistency, limiting their ef-004
fectiveness on knowledge-intensive tasks like005
complex question answering (QA). Linking006
Knowledge Graphs (KG) and LLMs has shown007
promising results, but LLMs generally lack008
the ability to reason efficiently over graph-009
structured information. To tackle this prob-010
lem, we propose a novel retrieval approach011
that integrates textual knowledge graphs into012
the LLM reasoning process via query decom-013
position. Our method decomposes complex014
questions into sub-questions, retrieves relevant015
textual subgraphs, and composes a question-016
specific knowledge graph to guide answer gen-017
eration. For that, we use a weighted similarity018
function that focuses on both the complex ques-019
tion and the generated subquestions to extract020
a relevant subgraph, which allows efficient and021
precise retrieval for complex questions and im-022
proves the performance of LLMs on multi-hop023
QA tasks. This structured reasoning pipeline024
enhances factual grounding and interpretabil-025
ity while leveraging the generative strengths026
of LLMs. We evaluate our method on stan-027
dard multi-hop QA benchmarks and show that028
it achieves comparable or superior performance029
to competitive existing methods, using smaller030
models and fewer LLM calls. Source code will031
be available upon acceptance.032

1 Introduction033

Large Language Models (LLMs) have demon-034

strated remarkable success across a wide range of035

natural language processing (NLP) tasks (Brown036

et al. (2020), Chowdhery et al. (2023), Touvron037

et al. (2023a), Ouyang et al. (2022)), including038

question answering (Kamalloo et al., 2023),039

summarization (Liu et al., 2024), and machine040

translation (Zhang et al., 2023). As LLMs have041

grown in size and have been trained on increasingly042

diverse and large datasets, their emergent ability043

 :  When did the team that Michael's best friend 
support last win the Championship ?

 : Who is Michael's best friend ?
 : What team does he support ?

: When did that team last win the Championship ?
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Figure 1: Illustration of our decompositional retrieval-
based reasoning method. Our method decomposes the
question into sub-questions, performs iterative, context-
aware retrieval conditioned on previous answers, and
merges the resulting subgraphs for guided reasoning.

to perform different types of reasoning (Wei 044

et al. (2022a), Zhou et al. (2023)), ranging from 045

arithmetic (Imani et al., 2023) and neurosymbolic 046

reasoning (Fang et al., 2024) to commonsense 047

inference (Zhao et al., 2023), has become a central 048

focus of recent research. This has opened new 049

possibilities for solving complex problems that 050

traditionally required structured or symbolic 051

approaches (Pan et al. (2023), He-Yueya et al. 052

(2023)). However, despite their broad capabilities, 053

LLMs still struggle with tasks requiring multi-hop 054

reasoning (Yang et al., 2024), factual grounding, 055

or explicit access to structured knowledge. These 056

models are prone to hallucinations and logical 057

inconsistencies, particularly when operating in 058

knowledge-intensive domains (Ji et al. (2023b), 059

Huang et al. (2025). This is partially due to the 060
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high reliance on implicit knowledge stored in061

parameters (Hu et al., 2024b), and the lack of062

explicit mechanisms for integrating or reasoning063

over structured information. Recent work on064

retrieval-augmented generation (Lewis et al.,065

2020), graph-augmented LLMs (Yasunaga et al.,066

2021), and neurosymbolic reasoning (Fang et al.,067

2024) has aimed to bridge this gap.068

069

In this work, we address these issues by propos-070

ing a method for knowledge-guided decomposi-071

tional reasoning with LLMs. Our method injects072

structured knowledge into the reasoning process us-073

ing textualized knowledge graphs. Specifically, we074

decompose complex questions into sub-questions,075

retrieve relevant subgraphs from a textual knowl-076

edge graph, and merge them for structured and077

reasoning-enhanced retrieval (Figure 1). The ob-078

tained graph is then used to guide LLMs toward079

generating more accurate and interpretable answers.080

This hybrid approach enhances both the factual081

correctness and the transparency of LLM predic-082

tions, particularly in settings requiring multi-step083

reasoning over domain knowledge. To verify the084

effectiveness of our approach, we conduct exten-085

sive experiments on benchmark datasets for com-086

plex question answering, namely CWQ (Talmor087

and Berant, 2018) and WebQSP (Yih et al., 2016).088

We compare our method against standard prompt-089

ing techniques, as well as existing state-of-the-art090

approaches that combine LLMs with knowledge091

graphs. Results show that our method achieves092

consistent improvements in accuracy without in-093

creasing the number of parameters for the LLM094

or the number of LLM calls, which shows the ef-095

ficiency of our method. Our contributions are as096

follows:097

• We develop a novel knowledge graph retrieval098

method that uses query decomposition, help-099

ing the LLM to reason over structured data for100

complex questions.101

• We introduce a hybrid similarity function that102

uses the complex question and its decomposi-103

tion to guide the retrieval process.104

• We demonstrate improvements in accuracy105

and factual consistency on multi-hop QA106

benchmarks.107

• Our method reduces the number of LLM-calls108

compared to other baselines, achieving a 3×109

to 5× reduction for both datasets.110

2 Background 111

2.1 Can LLMs reason ? 112

LLMs such as GPT-3 (Brown et al., 2020), 113

PaLM (Chowdhery et al., 2023), and LLaMA 114

(Touvron et al., 2023a) have demonstrated strong 115

performance across a wide range of language 116

tasks, including reasoning-based benchmarks. 117

Their ability to generalize in zero-shot (Kojima 118

et al., 2022) and few-shot settings has led to the 119

emergence of new prompting techniques, such as 120

Chain-of-Thought (CoT) reasoning (Wei et al., 121

2022b), which improves multi-step reasoning 122

by encouraging models to generate intermediate 123

reasoning steps. Variants like self-consistency 124

(Wang et al., 2023) further refines this by sampling 125

multiple reasoning paths and aggregating answers 126

for improved robustness. More recently, reinforce- 127

ment learning has been used to entirely train new 128

models (DeepSeek-AI et al., 2025) or improve 129

model prompting (Pternea et al., 2024), showing 130

great potential for the future. 131

132

Despite these advances, LLMs remain prone 133

to hallucinations—generating fluent but factu- 134

ally incorrect or logically inconsistent outputs 135

(Huang et al., 2025), (Srivastava et al., 2023), (Ji 136

et al., 2023b). This is especially problematic in 137

knowledge-intensive tasks requiring factual ground- 138

ing, multi-hop reasoning, or domain-specific exper- 139

tise (Ji et al. (2023a), Opsahl (2024)). These issues 140

stem in part from the implicit nature of knowledge 141

storage in model parameters, which limits their abil- 142

ity to verify facts or reason explicitly over external 143

knowledge (Petroni et al. (2019), Bommasani et al. 144

(2021)). Recent work has explored augmenting 145

LLMs with tool use, such as code interpreters (Pi 146

et al., 2022), equation solvers (He-Yueya et al., 147

2023) or symbolic solvers (Lam et al., 2024) (Pan 148

et al., 2023), to externalize and validate parts of the 149

reasoning process. 150

2.2 LLMs and graphs 151

Graphs offer a natural and interpretable way 152

to represent real-world data through entities 153

and their structured relationships. Integrating 154

knowledge graphs with Large Language Models 155

(LLMs) is a promising research direction that 156

enables models to better handle real-life scenarios 157

with structured data (Li et al., 2024) (Hu et al., 158

2024a). Knowledge graphs can enhance LLMs 159

by providing explicit, grounded context, which 160
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Figure 2: Overview of our retrieval method: the complex question is first decomposed into smaller subquestions, for
which we iteratively perform retrieval and answer generation; once the retrieval is done for all subquestions, we
merge the subgraphs and give the result as a hard (textualized graph) and a soft prompt (graph encoder output) to
the model.

helps mitigate hallucinations (Li et al., 2024)161

(Agrawal et al., 2024), but also makes the model162

dependent on the noise or incompleteness of the163

graph (Dong et al., 2025). By grounding the164

generation process in a textualized or symbolic165

knowledge graph, LLMs can produce responses166

that are more accurate and aligned with real-world167

facts. This is especially useful in tasks such as168

question answering (Baek et al., 2023) (Yasunaga169

et al., 2021), logical reasoning (Choudhary and170

Reddy, 2024), or dialogue systems (Kang et al.,171

2023) where factual precision is crucial.172

173

LLMs and graph neural networks (GNNs) can174

also be used together (Xu et al., 2024) (He et al.,175

2024a), each complementing the other. Graphs176

can be used to inject knowledge into LLMs via177

methods like structured prompting (Baek et al.,178

2023) (Zhang et al., 2024) or retrieval-based aug-179

mentation (Lewis et al., 2020) (Peng et al., 2024).180

LLMs can support and enhance graph-centred tasks181

(Pan et al., 2024) by performing entity linking, re-182

lation extraction, or even link prediction (Shu et al.,183

2025), which largely improves the graph’s cover-184

age. LLMs have also been explored as genera-185

tors of graph-structured outputs or as interpretable186

reasoning agents over graphs using intermediate187

symbolic steps. In such hybrid frameworks, LLMs 188

benefit from the structure and factual reliability of 189

graphs, while graphs gain from the generalization 190

and language understanding ability of LLMs (Pan 191

et al., 2024). Nonetheless, most existing methods 192

remain heuristic and lack a principled understand- 193

ing of how best to align symbolic and neural repre- 194

sentations (Cheng et al., 2025). 195

3 Related Work 196

Different methods have already demonstrated 197

promising results on Knowledge Graph Question 198

Answering (KGQA) tasks. He et al. (2024b) re- 199

trieves a subgraph from a textual knowledge graph 200

and feeds it to the LLM without any explicit rea- 201

soning step, which can hinder performance on com- 202

plex questions. Other existing techniques introduce 203

some reasoning mechanisms within their frame- 204

work: Sun et al. (2024) performs iterative entity and 205

relation explorations, and directly reasons on the 206

obtained paths. Similarly, Chen et al. (2024) uses 207

task decomposition and then performs multiple cy- 208

cles of exploration, memory updating, and evalu- 209

ation. Performing iterative calls to the LLM has 210

many advantages, but both mentioned techniques 211

require using a relatively large model (LLaMa-2- 212

70B, GPT-3.5 / GPT-4...) for planning and evalua- 213
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tion. In contrast, our method focuses on retrieving214

a more pertinent graph rather than answering it-215

eratively, and uses fewer LLM calls—which can216

be controlled by the number of generated subques-217

tions. Other methods like Luo et al. (2024) first pre-218

dict reasoning paths as plans and search for those219

paths within the knowledge graph. Given that the220

LLM does not have any prior knowledge of the re-221

lations within the knowledge graph, the technique222

requires knowledge distillation into the LLM to223

generate faithful relation paths. Our method does224

not require any fine-tuning on the LLM, which re-225

duces the cost of usage and the preprocessing time226

for new datasets.227

4 Method228

The overall pipeline for our method is presented in229

Figure 2. In order to tackle complex questions, we230

first decompose a complex question into a set of231

logically ordered subquestions. We then perform232

an iterative retrieval cycle by performing retrieval233

on the graph for each subquestion that we obtain.234

The results for the multiple retrievals are then com-235

bined into a single graph, which is then used to236

generate the final answer to the complex question.237

4.1 Subquestions Generation238

Given a complex question Q, we want to obtain a239

set of subquestions {q1, ..., qn}. The subquestions240

must be logically ordered (answering q1 is neces-241

sary to answer q2, etc.), atomic (can not be split into242

smaller subquestions), and cover all aspects of the243

complex question. Therefore, answering all sub-244

questions in the given order should be equivalent245

to answering the complex question. In our work,246

we generate the subquestions using an LLM, lever-247

aging its semantic understanding and its implicit248

knowledge capabilities. Using an LLM provides249

a flexible framework for decomposing complex250

questions, independent of the domain or the ques-251

tion type. To fulfill all the mentioned conditions252

above, we prompt the model with specific instruc-253

tions about subquestions; we also provide some254

manually generated examples of decomposition to255

guide the model’s behavior (see Appendix B for256

details about prompting).257

4.2 Hybrid Entity Retrieval258

For the retrieval part of the generation pipeline, we259

want to obtain a subgraph for each subquestion.260

Considering each subquestion independently261

might lead to very distinct subgraphs; moreover,262

the subquestions can lack sufficient contextual 263

information on their own to retrieve all the relevant 264

nodes and edges from the knowledge graph. To 265

address this, we introduce a hybrid retrieval 266

method that combines both the subquestion and 267

the original complex question, allowing the model 268

to benefit from the specificity of the former and 269

retain the broader context provided by the latter. 270

Our hybrid retrieval mechanism is implemented 271

through a weighted similarity function, controlled 272

by a parameter α, which balances the influence of 273

both components. Figure 3 presents the equations 274

for both node and edge retrieval. 275

276

When performing retrieval on the graph for the 277

subquestion qi, we keep track of the previous an- 278

swer (answer ai−1 to subquestion qi−1). This is 279

crucial, as the answer to qi might depend on the 280

answer to qi−1. Before retrieval, we embedded 281

our complex question, the subquestions, and the 282

textual attributes of the nodes/edges in the graph us- 283

ing a Sentence Transformer embedding model (see 284

Appendix B for details). After having retrieved 285

all necessary nodes and edges, we build a con- 286

nected subgraph from these elements, following 287

work done in He et al. (2024b). The connectivity 288

of the graph is enforced by the Prize-Collecting 289

Steiner Tree (PCST) algorithm (Bienstock et al., 290

1993), which optimizes the selection of a subgraph 291

of maximum value based on node/edge weights 292

and query similarity, under a size constraint. 293

Vk
i = argtopk

n∈V
[α cos(zi, zn) + (1− α) cos(zQ, zn)]

Ek
i = argtopk

e∈E
[α cos(zi, ze) + (1− α) cos(zQ, ze)]

Figure 3: Hybrid retrieval: Vk
i and Ek

i denote the
top nodes and edges from G = (V,E), ranked by a
weighted similarity to the subquestion qi and original
question Q. zi, zQ, zn, and ze are the embeddings of qi,
Q, node n, and edge e, respectively.

4.3 Subgraphs Merging 294

After retrieving subgraphs corresponding to each 295

subquestion, we proceed to merge them in order to 296

link relevant information and remove redundancy. 297

Each subgraph is initially connected, as it is con- 298

structed using the PCST algorithm. To form the 299

final graph, we take the union of all distinct nodes 300

and edges across all subgraphs. Importantly, we 301

do not directly enforce full connectivity during this 302

4



0 0.2 0.4 0.6 0.8 1

52

53

54

55

56

57

58

Ours (7B) G-Retriever (7B)
Ours (Hybrid 7B / 13B) G-Retriever (13B)
Ours (13B)

CWQ

alpha

H
it@

1 
(%

)

(a) CWQ benchmark

0 0.2 0.4 0.6 0.8 1
70

72

74

76

78

Ours (7B) G-Retriever (7B)
Ours (Hybrid 7B / 13B) G-Retriever (13B)
Ours (13B)

WebQSP

alpha

H
it@

1 
(%

)

(b) WebQSP benchmark

Figure 4: Model Accuracy (Hit@1) against the value of the α parameter for both CWQ and WebQSP datasets.

merging step, as doing so would require introduc-303

ing virtual edges, which could potentially compro-304

mise the semantic integrity of the graph or resort to305

computationally expensive graph expansion meth-306

ods.307

4.4 Answer Generation308

Once we obtained the merged graph for the com-309

plex question, we pass it to our LLM in two dif-310

ferent ways, following the generation process de-311

scribed in He et al. (2024b): we provide a textual-312

ized version of the graph in the prompt, and also313

pass the graph through a trained graph encoder314

(Shi et al., 2021) followed by a linear projection315

layer. Providing the encoded graph as a soft prompt316

guides the LLM’s response by feeding a trained317

embedding vector to the self-attention layers of318

the language model. When answering the com-319

plex question, we include the merged graph and320

its textual description in the prompt; we chose not321

to include the answers to the subquestions in the322

final prompt, as a single prior error can force the323

model to give a wrong answer, even when the graph324

contains the correct answer.325

5 Experiments326

5.1 Benchmarks327

We evaluate our method on two different Question-328

Answering (QA) benchmarks to assess the quality329

of our results: CWQ (ComplexWebQuestions) (Yih330

et al., 2016) and WebQSP (WebQuestionsSeman-331

ticParses) (Talmor and Berant, 2018), which are332

both based on the Freebase (Bollacker et al., 2008)333

knowledge base. CWQ is a complex QA bench-334

mark that focuses on multi-hop questions. As it335

needs the integration of multiple facts, it benefits336

from compositional reasoning, making it a suitable 337

benchmark for our approach. WebQSP, on the other 338

hand, contains a wide range of simple and factual 339

questions. It also includes SPARQL annotations 340

that we do not use in this work. We use the prepro- 341

cessed version of the dataset provided in Luo et al. 342

(2024). 343

5.2 Evaluation Metrics 344

We use the standard QA evaluation metrics found 345

in related work. We report performance using ac- 346

curacy and F1 scores. Accuracy measures exact 347

matches, while F1 allows a more nuanced eval- 348

uation, especially when predictions are partially 349

correct. In line with previous studies (Chen et al. 350

(2024), Sun et al. (2024), Luo et al. (2024)), we 351

use Hit@1 as our primary accuracy metric. Hit@1 352

determines whether the top prediction matches the 353

ground truth and is widely used in QA evaluation. 354

We report both Hit@1 and F1, enabling direct com- 355

parison with prior work. 356

5.3 Choice of language models 357

Our method requires two distinct capabilities, each 358

handled by different classes of models. First, strong 359

decompositional reasoning is needed to break down 360

the complex question into logically ordered, com- 361

prehensive, and atomic subquestions. There, we 362

use a Qwen-32B model distilled from Deepseek-R1 363

(DeepSeek-AI et al., 2025) for its advanced reason- 364

ing abilities. Second, we need efficient models to 365

answer the subquestions and generate the final an- 366

swer. For this, we experiment both with LLaMA-2- 367

7B and LLaMA-2-13B (Touvron et al., 2023b). We 368

also propose a "Hybrid 7B/13B" setting in which 369

the 7B model answers the subquestions, while the 370
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13B model handles the final complex question an-371

swer. The rationale is that atomic subquestions372

are simple and can be handled by a smaller model,373

while the final answer—requiring the integration374

of the full merged graph—benefits from the greater375

capacity of a larger model. This setting leverages376

model efficiency by allocating larger capacity only377

where necessary. We evaluate both uniform and378

hybrid settings in Section 6.379

5.4 Balancing the Retrieval Query380

Using only an atomic subquestion for retrieval can381

lead to ineffective results, as it lacks the broader382

context of the original complex question. To ad-383

dress this, we propose balancing the influence of384

the complex question and the current subquestion385

in the retrieval query embedding. We introduce an386

α parameter (Section 4.2) that controls this trade-387

off via a weighted average of their respective query388

embeddings. As shown in Figure 3, α determines389

the contribution of each: lower values (close to390

0) emphasize the subquestion, while higher values391

shift focus toward the original complex question.392

When α = 1, retrieval is based solely on the com-393

plex question, without any decompositional reason-394

ing, as in He et al. (2024b) (see Figure 4).395

6 Results396

6.1 Influence of α parameter397

During retrieval, we use both the complex question398

and its subquestions, with the α parameter399

controlling their relative importance in the query400

(Figure 3). We vary α and report model accuracy401

in Figure 4. We observe that using a larger model402

(13B) in the final answer stage (7B/13B and 13B403

setups) significantly outperforms the 7B-only404

setup, however using such a model for answering405

the subquestions offers no clear benefit, as we406

see, the hybrid 7B/13B and 13B-only setups yield407

similar results. Across all setups, extreme α values408

(near 0 or 1) underperform, and intermediate409

values work best. This supports the need to balance410

focus between subquestions and the main question411

during retrieval. In the rest of the paper, we use412

α = 0.7.413

414

Varying α also impacts the structure of the415

retrieved graph, potentially affecting the connec-416

tivity constraint previously ensured for subgraphs417

by the PCST algorithm. Higher α leads to more418

connected and denser merged graphs (Figures 9,419

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

42

44

46

48

50

52

54

56

Connected Graphs Disconnected Graphs

CWQ

alpha

H
it@

1 
(%

)

Figure 5: Model Accuracy (Hit@1) for connected and
disconnected graphs against the value of the α parameter
for the CWQ dataset.
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Figure 6: Exact Matching against the value of the α
parameter, for the CWQ benchmark.

10), while lower values produce more distinct 420

subgraphs and a sparser, occasionally disconnected 421

graph. Although we observe connected graphs 422

empirically yield better performance (Figure 5), 423

disconnected ones remain rare in proportion 424

(Figure 9). Despite the drop in performance 425

in these cases, results remain competitive with 426

state-of-the-art methods (Table 1). We discuss 427

the statistical significance of these results in 428

Appendix A. 429

430

Since our focus is on improving retrieval, we 431

report the Exact Matching scores for different α 432

values. Exact Matching score is defined as the per- 433

centage of graphs containing a node that exactly 434

matches the answer label. We observe in Figure 6 435

that focusing on the subquestions rather leads to 436

Exact Matching scores. Setting α = 1 serves as a 437

sanity check to verify that we obtain similar metrics 438

to He et al. (2024b). Additional results for Exact 439

Matching can be found in Appendix A. We observe 440
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similar results for the Matching score: we define441

this metric as the percentage of retrieved graphs442

that contain a node very similar to the answer label443

(based on a cosine similarity between embeddings,444

using a similarity threshold of 0.9). This more flex-445

ible metric allows to check the presence of highly446

related nodes in the retrieved graph.447

6.2 Graph size448

Kn and Ke correspond respectively to the number449

of relevant nodes and edges that we consider to450

build the connected subgraph with PCST. At the451

retrieval step, we set the values of Kn and Ke to452

extract a certain number of relevant entities in453

the original graph (Figure 3). Choosing higher454

values of Kn and Ke leads to a higher quantity455

of retrieved information, which improves the456

probability of retrieved relevant nodes and edges,457

but also increases potential noise in the subgraph458

that we are building. Logically, choosing higher459

values of Kn produces significantly larger graphs460

(Figure 12 in Appendix A), which can be harder to461

handle for the LLM.462

463
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Figure 7: Accuracy (Hit@1) against the value of the Kn

parameter (retrieved nodes), for the CWQ benchmark.
Those results were obtained for our 7B model.

We also show (see Figure 7) that setting a464

high value for Kn (or Ke) does not lead to better465

performances for our 7B model. This observation466

has also been made in He et al. (2024b) on467

the WebQSP dataset. Setting Kn too low (e.g.468

Kn = 2) does not allow the model to retrieve469

enough knowledge in the graph; but setting Kn470

too high (above 5 empirically for our method) will471

add noise (non-relevant nodes) to the retrieved472

subgraphs and can disrupt the correctness of the473

generated answers. If we use a larger model (see474

Llama-2-7B Llama-2-7B + 13B Llama-2-13B
48
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Figure 8: Model Accuracy (Hit@1) for different model
sizes, for the CWQ benchmark. In default setting, we
use Kn = 3, Ke = 5; for "larger graphs", we use
Kn = 5, Ke = 7.

Figure 8), the difference between using Kn = 3, 475

Ke = 5) and Kn = 5, Ke = 7 ( denoted as "larger 476

graphs") does not lead to significant improvement; 477

although we have a higher change of retrieving 478

important nodes and edges, this observation 479

highlights the presence of noise within the larger 480

retrieved graphs. For the evaluation of our method, 481

we use the default values of Kn = 3 and Ke = 5. 482

483

6.3 Main Results 484

For our main evaluation, we consider various 485

baselines and model configurations. In particular, 486

we highlight the "Hybrid 7B/13B" setting, where 487

a 7B model answers each subquestion and a 488

13B model handles final answer generation (as 489

described in Section 5.3). 490

491

Across both CWQ and WebQSP benchmarks 492

(Table 1), our method achieves strong performance 493

compared to approaches using similar model sizes 494

and no fine-tuning. On CWQ, which features 495

multi-hop questions, we observe a significant 496

improvement over prior non-finetuned baselines, 497

including those using larger models like Sun 498

et al. (2024) (70B) and He et al. (2024b) (13B). 499

On WebQSP, a simpler QA dataset, our method 500

still outperforms related methods, though the 501

margin is smaller—likely because decomposition 502

is less helpful for single-hop questions. In both 503

cases, only methods relying on dataset-specific 504

fine-tuning or very large models (e.g., GPT-3.5 505

in (Chen et al., 2024)) achieve better scores, 506

highlighting the value of simple decompositional 507
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Method CWQ WebQSP
Hit@1 F1 Hit@1 F1

IO prompt (ChatGPT) 37.6 - 63.3 -
CoT (ChatGPT) 38.8 - 62.2 -

StructGPT (ChatGPT) 54.3 - 72.6 -
ToG (LLaMa-2-70B) 53.6 - 63.7 -
ToG (ChatGPT) 57.1 - 76.2 -
RoG (LLaMa-2-7B + FT) 62.6 56.2 85.7 70.8
PoG (GPT-3.5) 63.2 - 82 -

G-R (LLaMa-2-7B) 52.1 44.8 70.5 51.7
Ours (LLaMa-2-7B) 54.9 46 71.9 52.4
G-R (LLaMa-2-13B) 54.6 46.9 76.5 57.2
Ours (Hybrid 7B/13B) 57.9 50.3 77.9 58.2
Ours (LLaMa-2-13B) 58.1 50.8 77.4 56.4

Table 1: Performance comparison on the CWQ and WebQSP benchmarks. Bold indicates best results; underlined
values indicate second-best. Results are sourced from the original papers: Brown et al. (2020), Wei et al. (2022b),
Jiang et al. (2023), Sun et al. (2024), Luo et al. (2024), Chen et al. (2024), He et al. (2024b).

reasoning at the retrieval stage. A key observation508

is that our "Hybrid 7B/13B" setup performs509

comparably to a full 13B pipeline, suggesting that510

most of the benefits come from decompositional511

retrieval, not simply model scale. Figure 8512

highlights this efficiency: we maintain competitive513

performance while using fewer resources, by514

relying on a lightweight model for subquestions515

and a larger one only for the final answer.516

517

Finally, Table 2 compares the average number518

of LLM-calls for our method and compares it with519

baselines (Sun et al. (2024), Chen et al. (2024))520

that made this data available. These methods use521

iterative cycles to answer the complex question,522

which does not give any upper-bound for the523

number of calls to the model. In our case, the524

number of calls to the model directly depends525

on the number of generated subquestions, which526

can ultimately be controlled via prompting at the527

decomposition step. We achieve state-of-the-art528

accuracy while reducing LLM usage for both529

CWQ and WebQSP, showing the efficiency of our530

decompositional retrieval method.531

532

Since we use a single LLM call for both decom-533

position and final answer generation, we can de-534

duce the average number of subquestions generated.535

Without setting a limit on the number of subques-536

tions, we obtained an average of 2.8 subquestions537

for CWQ and 2.3 for WebQSP; this demonstrates538

Method CWQ WebQSP

ToG 22.6 15.9
PoG 13.3 9.0
Ours 4.8 4.3

Table 2: Average number of LLM calls per question on
the CWQ and WebQSP datasets

that more complex questions result in more sub- 539

questions. 540

7 Conclusion 541

In this work, we introduced a novel graph re- 542

trieval method using decompositional reasoning 543

with LLMs. By leveraging textual knowledge 544

graphs and a hybrid retrieval mechanism that bal- 545

ances subquestion-specific and global context, our 546

method enhances both the accuracy and inter- 547

pretability of multi-hop QA. We demonstrated 548

the effectiveness of our approach on complex QA 549

benchmarks such as CWQ and WebQSP, achieving 550

improved performance over strong baselines with- 551

out increasing model size. Our results highlight 552

the value of structured knowledge and explicit rea- 553

soning steps in addressing the limitations of LLMs 554

in knowledge-intensive tasks. Future work may 555

explore adding reasoning mechanisms at the gener- 556

ation step for improved model capabilities. 557
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Limitations558

Although our method demonstrated state-of-the-art559

results with smaller LLMs, we can mention560

some limitations of our method. Our method561

is mostly adapted to complex QA datasets, as562

the decomposition works best on difficult and563

multi-hop questions that can be transformed564

into a set of simple and atomic questions. The565

decomposition is not systematic, and we prompt566

the LLM to not decompose a question if it is567

considered to be simple enough; this approach can568

work on simple QA datasets (shown in Table 1569

for the WebQSP dataset), but there is no guaranty570

that the model will not force the decomposition of571

simple questions.572

573

We decompose complex questions using an574

LLM with a specific prompting technique shown575

in Appendix B. This method is advantageous for576

preprocessing an entire dataset, but it requires the577

use of a large enough LLM (we use Deepseek-R1-578

Distill-Qwen-32B, which is still relatively small579

compared to other baselines used for direct reason-580

ing). Also, it is hard to control the quality of the581

decomposition; manual evaluation has been con-582

ducted to control the quality of the decomposition.583

It has been observed that some generated subques-584

tions were redundant or irrelevant to the final goal,585

which can act as noise when providing them to the586

model.587

Ethical Considerations588

This work improves the reasoning abilities of large589

language models by using structured knowledge590

from textual graphs. While this improves the591

model’s ability to make consistent and transparent592

predictions, it does not eliminate risks such as the593

propagation of biases present in the training data594

or the underlying knowledge graphs. We do not595

train new language models or use user-generated596

content. Our experiments are conducted using pub-597

licly available datasets. No personal or sensitive598

data is used. Nevertheless, caution should be exer-599

cised when deploying such systems in high-stakes600

or real-world applications, as flawed reasoning over601

structured data can result in factually inaccurate602

outputs.603
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A Experimental Results977

The value of the α parameter, which controls the978

hybrid retrieval mechanism, can cause the retrieved979

graphs to be more or less connected. We see on Fig-980

ure 9 that with a lower value of α, we sometimes981

produce disconnected graphs; at a higher value of982

α, most (if not all) graphs become naturally con-983

nected. Figure 5 suggests that the model better984

handles the connected graphs, as they lead to better985

results, but the low number of disconnected graphs986

questions the statistical significance of this hypoth-987

esis. We observe that for some alpha values, the p-988

value is less than 0.05. We also use a Beta law to es-989

timate the posterior distribution of p, the parameter990

for the Binomial law that represents the accuracy of991

our predictions. Over the different alpha values, we992

obtain P (connected > disconnected) = 0.919,993

which indicates the plausibility of our claim.994
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Figure 9: Graph connectivity against the value of the α
parameter, for the CWQ benchmark.
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Figure 10: Graph density against the value of the α
parameter, for the CWQ benchmark.

We make a similar observation with graph den- 995

sity; as shown in Figure 10, a lower α produces 996

less dense graphs, but the retrieved graphs will 997

be denser as the value of the parameter increases 998

towards 1. Evidently, α = 1 produces identical 999

results to He et al. (2024b), as we only use the com- 1000

plex question. The density of a graph G = (V,E) 1001

is given by Figure 11 : 1002

D(G) =
2 · |E|

|V | · (|V | − 1)

Figure 11: Graph density formula (undirected graph).
|V | and |E| denote the number of nodes and edges
in the graph G = (V,E). Density quantifies how
many edges exist compared to the maximum possible
number of edges in the graph.
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Figure 12: Graph size against the value of the Kn pa-
rameter (retrieved nodes), for the CWQ benchmark.

Figure 12 shows how changing Kn (similar 1003

effects with Ke) acts on the size of the final 1004

merged graph. As we perform retrieval for each 1005

subquestion (multiple times for each complex 1006

question), a small increase in the value of Kn 1007

will result in a much larger merged graph (each 1008

subgraph is larger). This effect will naturally have 1009

an impact on the performance of our method, as 1010

the model needs to process larger graphs. 1011

1012

The Exact Matching score is a metric that de- 1013

scribes how often the exact answer to the complex 1014

question is found within the retrieved graph. We 1015

test the performance of our retrieval method with 1016

different models and retrieval settings (Kn and Ke), 1017

controlling the size of retrieved graphs. Overall, 1018

we observe that the α parameter has a high influ- 1019

ence on the metric, which shows that our method 1020

improves the presence of target entities in the re- 1021

trieved graphs. Also, regardless of the value of 1022
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α, all experiments show that we obtain higher Ex-1023

act Matching than by simply using the complex1024

question.1025
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Figure 13: Exact matching (%) as a function of the α
parameter on the CWQ benchmark for the 7B model
with Kn = 3 and Ke = 5
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Figure 14: Exact matching (%) as a function of the α
parameter on the CWQ benchmark for the 7B model
with Kn = 5 and Ke = 7
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Figure 15: Exact matching (%) as a function of the α
parameter on the CWQ benchmark for the 13B model
with Kn = 3 and Ke = 5
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Figure 16: Exact matching (%) as a function of the α
parameter on the CWQ benchmark for the 13B model
with Kn = 5 and Ke = 7
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Figure 17: Matching (%) as a function of the α param-
eter on the CWQ benchmark for the 7B model with
Kn = 3 and Ke = 5
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Figure 18: Matching (%) as a function of the α param-
eter on the CWQ benchmark for the 7B model with
Kn = 5 and Ke = 7
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Figure 19: Matching (%) as a function of the α param-
eter on the CWQ benchmark for the 13B model with
Kn = 3 and Ke = 5

0 0.2 0.4 0.6 0.8 1

80

85

90

95

100

Ours (13B) G-Retriever (13B)

K_n = 5, K_e = 7

alpha

M
at

ch
in

g 
(%

)

Figure 20: Matching (%) as a function of the α param-
eter on the CWQ benchmark for the 13B model with
Kn = 5 and Ke = 7

Another useful metric to asses the quality of our1026

retrieval method is the Matching metric. Compared1027

to the Exact Matching, this metric allows for more1028

flexibility and can evaluate the presence of highly1029

similar entities (compared to the ground-truth an-1030

swer) within the retrieved graph. We run experi-1031

ments using a similarity threshold of 0.95 with the1032

cosine similarity function. We make similar obser-1033

vations as for the Exact Matching metric, and we1034

empirically show that our method achieves better1035

Matching than previous methods.1036

We ablate key components of our pipeline on1037

CWQ using LLaMa-2-7B (see Figure 3). Remov-1038

ing the graph encoder or textual representation1039

leads to substantial drops in Hit@1 (-12.1, -9.11040

points respectively), confirming the importance of1041

both structured and textual graph information for1042

accurate generation. At the graph retrieval stage,1043

we measure the impact of treating the subquestions1044

dependency or connecting subgraphs. Removing1045

Configuration Hit@1 Impact

Full Pipeline 54.9 -
w/o Graph Encoding 42.8 -12.1
w/o Textual Graph 35.8 -9.1
w/o Subquestions Dependency 36.3 -18.6
w/o Graph Connectivity 43.7 -10.2

Table 3: Ablation study showing the impact of various
components from the pipeline. The results provided
were obtained on CWQ using LLaMa-2-7B.

the dependency between subquestions is equivalent 1046

to the case where subquestions don’t have access 1047

to previous subquestions and answers. Again, we 1048

observe the importance of both steps at the retrieval 1049

stage for the QA pipeline on complex questions. 1050

B Experimental Setup 1051

At the retrieval step, we encode all nodes and edges 1052

using Sentence-BERT model; we use a version 1053

based on the roberta-large model 1. For the lan- 1054

guage models, we use Deepseek-R1-Distill-Qwen- 1055

32B 2 (DeepSeek-AI et al., 2025) for preprocessing 1056

(complex questions decomposition); for inference, 1057

we use both LLaMa-2-7B and LLaMa-2-13B (Tou- 1058

vron et al., 2023b). At all steps (question decompo- 1059

sition and answer generation), we use the models in 1060

a greedy setting (setting the temperature parameter 1061

to 0). For the generation pipeline and the choice 1062

of hyperparameters, we follow work done in He 1063

et al. (2024b) 3. We set the maximum input text 1064

length of the model to 512 tokens and the maxi- 1065

mum output size to 32 tokens. For prompt tuning, 1066

we set the number of virtual tokens to 10. The 1067

setup of the language models, along with the de- 1068

terministic nature of the hybrid retrieval process, 1069

allows for reproducible results for identical runs. 1070

All reported results for our method correspond to 1071

a single run, and not a mean of different runs. For 1072

the graph encoder, we follow Shi et al. (2021) (4 1073

layers, 4 attention heads per layer, hidden dimen- 1074

sion of 1024); the following projection layer is a 1075

simple feedfoward neural network (2 linear layers, 1076

1 activation layer), where the output size needs to 1077

match the hidden representation dimension for the 1078

LLM which is being used. For training the graph 1079

1https://huggingface.co/sentence-transformers/all-
roberta-large-v1

2https://huggingface.co/deepseek-ai/DeepSeek-R1-
Distill-Qwen-32B

3code used is under MIT license
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Prompt for Subquestion Generation

You are an expert at decomposing
complex questions into smaller, atomic
subquestions. If the question can’t be
decomposed into smaller questions, leave
it as it is. Decompose the following ques-
tion into a list of simpler subquestions
that:

- Are atomic (addressing only one piece
of information at a time)
- Are logically ordered
- Have access to answers from previous
subquestions
- Cover all necessary aspects of the
original question
- Can be answered with a single entity
- Lead to the answer in the last subques-
tion

You must strictly format your answer
as a valid JSON array; do NOT include
explanations or reasoning.

Now decompose the following question
in JSON format.

Complex Question:
"Which city is the birthplace of the author
of the novel “1984”?"
Subquestions:
1. Who is the author of the novel “1984”?
2. Where was this author born?

Figure 21: Example of decomposition prompt for a
complex question.

encoder, we use the AdamW optimizer (Loshchilov1080

and Hutter, 2017); we train the graph encoder with1081

a batch size of 4 for 10 epochs (with early stop-1082

ping). The initial learning rate is set to 10−5, with1083

a weight decay of 0.05. At the retrieval step, when1084

creating a connected graph using PCST, we choose1085

to use the default values of Kn = 3 and Ke = 5.1086

For the datasets, we work with the preprocessed1087

versions of CWQ 4 and WebQSP 5 obtained by1088

Luo et al. (2024). For the dataset split, we use the1089

default train and test sets proposed in the indicated1090

4https://huggingface.co/datasets/rmanluo/RoG-cwq
5https://huggingface.co/datasets/rmanluo/RoG-webqsp

Few-shot Prompting

Examples:

Input: What is the capital of the country
that exports the most honey ?
Output: ["Which country exports the
most honey ?", "What is the capital of
that country ?"]

Input: What sports team does Michael’s
best friend support ?
Output: ["Who is Michael’s best friend
?", "What sports team does he support ?"]

Input: What fruits grow in the hottest
countries from the largest continent in the
world ?
Output: ["What is the largest continent in
the world ?", "What countries are hottest
on this continent ?", "What fruits grow in
those countries ?"]

Input: How old is Obama ?
Output: ["How old is Obama ?"]

Now decompose the following question
in JSON format.

Figure 22: Example of possible few-shot prompting

versions. 1091

We propose an example of a prompt used for 1092

decomposing a complex question into multiple 1093

atomic and logically ordered subquestions. See 1094

Figure 21 for an illustration. Additionally, we pro- 1095

vide examples of decomposition to the model to 1096

clarify the task and the expected output format. Fig- 1097

ure 22 presents some decomposition examples on 1098

made-up complex questions; we also choose to add 1099

simple questions to show that decomposition is not 1100

always necessary. 1101

C Compute Resources and Energy 1102

Consumption 1103

We compute the total energy consumption for both 1104

CWQ and WebQSP datasets. For each model 1105

used, we use a single A100 40GB GPU. The 1106

LLaMa-2-13B model consumes more energy and 1107

also takes longer to run compared to LLaMa-2-7B. 1108

Our hybrid setup is a combination of both models, 1109
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where we use LLaMa-2-7B for the subquestions,1110

and LLaMa-2-13B only for the final question1111

answering. We showed that we obtain similar1112

accuracy results for the Hybrid 7B/13B model1113

and for LLaMa-2-13B; but Table 4 shows that1114

the hybrid option is much more economical, as1115

we are able to reduce energy consumption by1116

17%. Compared to the LLaMa-2-7B model, the1117

hybrid option only consumes 6% more energy, all1118

experiments considered.1119

1120

Model GPU Energy (kWh)

LLaMa-2-7B A100 40GB 4.62
LLaMa-2-13B A100 40GB 5.94
Hybrid 7B/13B A100 40GB 4.95

Table 4: Energy consumption for test-set experiments
across model configurations.

Model Dataset GPU Energy (kWh)

R1-Q-32B CWQ H100 96GB 3.15
R1-Q-32B WebQSP H100 96GB 0.72

Table 5: Energy consumption for question decomposi-
tion (entire dataset preprocessing).

Task CO2 Emissions (kgCO2e)

Preprocessing 2.27
Inference 6.2

Table 6: CO2 Emissions (kg) for dataset preprocessing
and model inference.

We also compute the total energy consumption1121

for dataset preprocessing, which mainly consists of1122

decomposing all questions in the dataset as a set of1123

subquestions. For this task, we use a larger model1124

(DeepSeek-R1-Distill-Qwen-32B), and we report1125

the total energy consumption for each dataset in1126

Table 5. Since the CWQ dataset is much larger than1127

the WebQSP dataset, we observe a large difference1128

in the energy needed in both cases.1129

Having given the energy consumption for our1130

experiments, we compute the corresponding CO21131

emissions (Mass of CO2 equivalent, kgCO2e) for1132

the different compute tasks (Table 6).1133
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