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ABSTRACT

Warning: This paper contains model outputs that are offensive in nature.
Large Language Models (LLMs) can produce biased responses that can cause rep-
resentational harms. However, conventional studies are insufficient to thoroughly
evaluate LLM biases across multiple generations for different demographic groups
(a.k.a. counterfactual bias), as they do not scale to large number of inputs and do not
provide guarantees. Therefore, we propose the first framework, QCB (Quantitative
Certification of Bias) that certifies LLMs for counterfactual bias on distributions
of prompts. A certificate consists of high-confidence bounds on the probability of
unbiased LLM responses for any set of counterfactual prompts mentioning various
demographic groups, sampled from a distribution. We illustrate counterfactual bias
certification for distributions of counterfactual prompts created by applying varying
prefixes drawn from prefix distributions, to a given set of prompts. We consider
prefix distributions for random token sequences, mixtures of manual jailbreaks,
and jailbreaks in the LLM’s embedding space to certify bias. We obtain non-trivial
certified bounds on the probability of unbiased responses of SOTA LLMs, exposing
their vulnerabilities over distributions of prompts generated from computationally
inexpensive distributions of prefixes.

1 INTRODUCTION

Text-generating Large Language Models (LLMs) are recently being deployed in user-facing appli-
cations, such as chatbots (Lee et al., 2023). LLM-powered chatbots, like ChatGPT (Brown et al.,
2020a) and Perplexity AI (Perplexity, 2023), are popular for their ability to produce human-like
texts (Shahriar and Hayawi, 2023). The underlying LLMs are safety-trained (Wang et al., 2023) to
avoid generating harmful content. However, despite safety training, they have been shown to produce
texts that exhibit social biases and stereotypes (Kotek et al., 2023; Manvi et al., 2024; Hofmann et al.,
2024). Such texts can result in representational harms (Suresh and Guttag, 2021; Blodgett et al.,
2020) to protected demographic groups (a subset of the population that is negatively affected by bias).
Representational harms include stereotyping, denigration, and misrepresentation of historically and
structurally oppressed demographic groups. Although “representational harms are harmful in their
own right” (Blodgett et al., 2020), as they can socially impact individuals and redefine social hierar-
chies, the resulting allocation harms (Gallegos et al., 2024a) can lead to economic losses to protected
groups and are therefore regulated by anti-discrimination laws such as (Sherry, 1965). Language is
considered an important factor for labeling, modifying, and transmitting beliefs about demographic
groups and can result in the reinforcement of social inequalities (Rosa and Flores, 2017). Hence, with
the rising popularity of LLMs, it is important to formally evaluate their biases to effectively mitigate
representational harms resulting from them (Lee et al., 2024). We particularly evaluate counterfactual
bias, inspired from Kusner et al. (2018), which assesses semantic differences across LLM responses
caused by varying demographic groups mentioned in the prompts (counterfactual prompt sets).

Prior work has primarily focused on benchmarking the performance of LLMs (Liang et al., 2023;
Wang et al., 2024; Mazeika et al., 2024) and adversarial attack generation (Sheng et al., 2020; Zou
et al., 2023; Vega et al., 2023; Wallace et al., 2019). While these methods provide some empirical
insights into LLM bias, they have several fundamental limitations (McIntosh et al., 2024; Yang
et al., 2023) such as — (1) Limited test cases: Benchmarking consists of evaluating several but
limited number of test cases. Due to its enumerative nature, benchmarking can not scale to the
prohibitively large sets of prompts that can elicit bias from LLMs. Adversarial attacks, on the other
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Figure 1: (Overview of QCB): QCB is a quantitative certification framework to certify the bias in
the responses of a target LLM for a random set of prompts that differ by their sensitive attribute. In
specific instantiations, QCB samples a (a) set of prefixes from a given distribution and prepends them
to a prompt set to form (b) the prompts given to the target LLM. (c) The target LLM’s responses
are checked for bias by a bias detector, (d) whose results are fed into a certifier. (e) The certifier
computes bounds on the probability of obtaining biased responses from the target LLM for any set of
prompts formed with a random prefix from the distribution.

hand, identify only a few worst-case examples of bias, which do not inform about the overall biases
from large input sets; (2) Test set leakage: LLMs may have been trained on the popular benchmarking
datasets, thus resulting in biased evaluation; (3) Lack of guarantees. Benchmarking involves empirical
estimation that does not provide any formal guarantees of generalization over any input sets. Similarly,
adversarial attacks give limited insights as they can show existence of problematic behaviors on
individual inputs but do not quantify the risk of obtaining biased LLM responses.

This work. We propose an alternative to benchmarking and adversarial attacks — certifying LLMs
for counterfactual bias which gives formal guarantees. Certification operates on a prohibitively large
set of inputs, represented as a specification. As specifications define inputs mathematically through
operators over the vocabulary of LLMs, certification can provide guarantees on the behavior of the
target model that generalize to unseen inputs satisfying the specification. With guarantees, we can be
better informed about the available models before deploying them in public-facing applications.

Key challenges. (1) There are no existing precise mathematical representations of large sets of
counterfactual prompts to make practical specifications. (2) State-of-the-art neural network certi-
fiers (Wang et al., 2021; Singh et al., 2019) currently do not scale to LLMs as they require white-box
access to the model and lose precision significantly for larger models, resulting in inconclusive results.

Our approach. Given the diversity of LLM prompts, there will always be some cases where the LLM
output will be biased (e.g., found by adversarial attacks (Zou et al., 2023)). Hence, we believe that
LLM certification must be quantitative (Li et al., 2022a; Baluta et al., 2021) and study the question:

What is probability of unbiased LLM responses for any counterfactual prompt set?

Exactly computing the probability of unbiased responses is infeasible due to the large number of
possible counterfactual prompt sets over which the biased behavior has to be determined. One
can try to compute deterministic lower and upper bounds on the probability (Berrada et al., 2021).
However, this is expensive and requires white-box access making it not applicable to popular, SOTA
but closed-source LLMs such as GPT-4 (Achiam et al., 2023). Therefore, we focus on black-box
probabilistic certification that estimates the probability of unbiased responses over a given distribution
of counterfactual prompt sets with high confidence bounds. We develop the first general specification
and certification framework, QCB1 for counterfactual bias in LLMs, applicable to both open and
closed-source LLMs. Our specifications over counterfactual prompt sets are the first relational
properties (Barthe et al., 2011) for trustworthy LLMs. Figure 1 gives an overview of our framework.

1Quantitative Certification of Bias
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We demonstrate QCB with 3 kinds of exemplar specifications, each consisting of distributions over
counterfactual prompt sets formed by adding random prefixes sampled from given distribution of
prefixes to a fixed set of counterfactual prompts. The distributions of prefixes we present are —
random sequence of tokens, mixture of popular jailbreaks, and jailbreak perturbations in embedding
space. The first two are model-agnostic specifications and hence apply to both open and closed-
source models. However, the third one requires access to the embeddings and the ability to prompt
LLMs with embeddings, and hence mostly applies to only open-source models. The mixture and
embedding space jailbreak prefix distributions contain effective, manually designed jailbreaks and
their perturbations, which are potential jailbreaks, in their sample space and hence assess LLMs’
biases in adversarial settings. The prefixes are described further in Section 3.1.

We certify the proposed specifications leveraging confidence intervals. Our certifier samples several
counterfactual prompt sets from the distribution given in the specification and generates high-
confidence bounds on the probability of getting unbiased responses from the target LLM for any
random counterfactual prompt set in the distribution.

Contributions. Our main contributions are:

• We design novel specifications that quantify the desirable relational property of low counter-
factual bias in LLM responses over counterfactual prompts in a specified distribution. We
illustrate such specifications with distributions of counterfactual prompt sets constructed
with potentially adversarial prefixes. The prefixes are drawn from 3 distributions — (1)
random, (2) mixture of jailbreaks, and (3) jailbreak perturbations in the embedding space.
• We develop a probabilistic black-box certifier QCB, applicable to both open and closed-

source models, for quantifying counterfactual bias in LLM responses. QCB leverages
confidence intervals (Clopper and Pearson, 1934) to generate high-confidence bounds on
the probability of obtaining unbiased responses from the target LLM, given any random set
of counterfactual prompts from the distribution given in the specification.
• We find that the safety alignment of SOTA LLMs is easily circumvented with several prefixes

in the distributions given in our specifications, especially those involving mixture of jail-
breaks and jailbreak perturbations in the embedding space (Section 5). These distributions
are inexpensive to sample from, but can effectively bring out biased behaviors from SOTA
models. This shows the existence of simple, bias-provoking distributions for which no
defenses exist currently. We provide quantitative measures for the fairness (lack of bias) of
SOTA LLMs, which hold with high confidence. We find that there are no consistent trends
in the fairness of models with the scaling of their sizes, hence suggesting that the quality
of alignment techniques could be a more important factor than size for fairness. Our im-
plementation is available at https://anonymous.4open.science/r/QCB-A338
and we provide guidelines for using our framework for practitioners in Appendix I.

2 BACKGROUND

2.1 LARGE LANGUAGE MODELS (LLMS)

LLMs are autoregressive models for next-token prediction. Given a sequence of tokens t1, . . . , tk,
they give a probability distribution over their vocabulary for the next token, P [tk+1 | t1, . . . , tk].
They are typically fine-tuned for instruction-following (Zhang et al., 2024) and aligned with human
feedback (Wang et al., 2023; Ouyang et al., 2022) to make their responses safe. We certify instruction-
tuned, aligned LLMs for counterfactual bias, as they are typically used in public-facing applications.

2.2 CLOPPER-PEARSON CONFIDENCE INTERVALS

Clopper-Pearson confidence intervals (Clopper and Pearson, 1934) provide lower and upper bounds
[p̂l, p̂u] on the probability of success parameter p of a Bernoulli random variable with probabilistic
guarantees. The bounds are obtained with n independent and identically distributed observations of
the random variable, in which k(≤ n) successes are observed. The confidence interval is such that
Pr{p ∈ [p̂l, p̂u]} ≥ (1− γ). γ ∈ (0, 1) is the (small) permissible error probability by which the true
value of p /∈ [p̂l, p̂u]. The confidence intervals are obtained by statistical hypothesis testing for p,
where the lowest and highest values are p̂l and p̂u respectively, with the given confidence 1− γ.
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3 FORMALIZING BIAS CERTIFICATION

We develop a general framework, QCB, to specify and quantitatively certify counterfactual bias in
the text generated by (Large) Language Models. QCB formalizes bias with specifications — precise
mathematical representations that define the desirable property (absence of bias) in large sets of inputs.
Bias is defined with respect to demographic groups that are subsets of the human population sharing
an identity trait, that could be biological, contextual, or socially constructed (Gallegos et al., 2024b).
Bias consists of disparate treatment or outcomes when varying the demographic groups in the inputs to
the target model. For autoregressive LMs, we consider text generation bias consisting of stereotyping,
misrepresentation, derogatory language, etc, that can result in representational harms (Gallegos et al.,
2024b). To apply certification to closed-source LMs as well, we study extrinsic bias (Cao et al.,
2022) that manifests in the final textual responses of the LMs. Please check Appendix J for a detailed
discussion on bias in ML.

3.1 BIAS SPECIFICATION

Next, we formally specify the lack of bias in the responses of language models (LMs). Unbiased
LM responses do not exhibit semantic disparities owing to specific demographic groups in the
prompts (Gallegos et al., 2024b; Sheng et al., 2019; Smith et al., 2022). Hence, our bias specification
is motivated by Counterfactual Fairness (Kusner et al., 2018). Consider a given identity trait I such as
gender, race, etc. (that are often the basis of social bias). I categorizes the human population into m
subsets called demographic groups G1, . . . ,Gm, each differing by the value of the identity trait. Each
demographic group G is a subset of human population that is characterized/recognized by several
synonymous strings in the society, called sensitive attributes GA (Li et al., 2024). For example, the
sensitive attributes for the demographic group corresponding to the female gender are woman, female,
etc. We select any one sensitive attribute of a demographic group G to represent G. Let the resulting
set of sensitive attributes, each corresponding to a demographic group, be A = {A1, . . . ,Am},
where Ai ∈ GAi . Our specifications are for counterfactual inputs (prompts) (Gallegos et al., 2024b)
that differ only by the sensitive attributes in them.

Let L be the target LM and V be its vocabulary. Consider a set of prompts P = {P1, . . .Ps},
s > 1,P ⊂ V [1,c], where c is the context length of L and V [1,c] is a sequence of elements of V
having length ∈ [1, c]. Let each prompt in P contain a unique sensitive attribute from A such that
overall P represent more than 1 distinct demographic groups represented in A. Let each prompt be
Pi = Xi ∪ Ai, where Xi is the part of the prompt that is independent of sensitive attributes and Ai
consists of a sensitive attribute. We consider only prompts that can be decomposed into parts with
and without sensitive attributes respectively. To generalize to closed-source LMs, we assume L to be
a black-box system that can only be queried, when specifying and certifying bias. The black-box
assumption renders any symbolic analysis (Mirman et al., 2020) infeasible and hence allows only for
analysis with input-output examples.
Definition 1. (Counterfactual prompt set). A set of prompts P = {P1 = X1 ∪ A1, . . . ,Ps =
Xs ∪ As} is called counterfactual when: (1) ∀i, j ∈ [1, s]. Xi = Xj; (2) ∃i ∈ [1, s].∀j ∈
([1, s] \ i).Ai 6= Aj; (3) For an unbiased text generator f , ∀i ∈ [1, s]. f(Pi) = f(Xi). That is, the
prompts only differ in the sensitive attributes that are ideally unrelated to the overall query and the
set of prompts P represent more than 1 sensitive attributes from A.

We specify bias over counterfactual prompt sets (Definition 1). These exclude prompts where sensitive
attributes are important to answer the overall query, such as “What steps should I take to prepare
for becoming a parent?", as semantically different answers, dependent on the sensitive attribute, are
acceptable for such cases. All possible counterfactual prompt sets can be prohibitive in number for
typical context lengths. This is because, the common part of counterfactual prompt sets, X can
be any element from V [1,c] which contains ≈ 1010000 elements for c = 2k. Hence, enumerative
specifications (which specify the desired behavior on all inputs) are impractical, as they cannot be
scalably certified without symbolic analysis for large number of inputs. Hence, we define probabilistic
specifications for the probability of unbiased responses from L, for which we provide a certification
algorithm in Section 3.2. Let ∆ be a sampleable discrete probability distribution over ℘(V [1,c])
(power set of prompts) having non-zero support on some counterfactual prompt sets P . We define
probabilistic specifications for bias in L over ∆. The specification is agnostic to ∆’s sampler, as long
as it generates independent and identically distributed samples. We show examples of ∆ in Section 4.
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Let D be a user-defined bias detection function that can identify stereotypes/disparity in given texts
for different sensitive attributes in A. Let D evaluate to zero for unbiased inputs (appropriate scaling
and shifting of D can be done to satisfy this criterion). We leave D as a parameter of the specification,
as different domains can have varying notions of bias and the stakeholders can decide which notion is
most suitable for their usecase (Anthis et al., 2024). Overall, we give our quantitative specification as
the probability of unbiased responses (as measured by D) when L is independently prompted with
each element of a randomly sampled counterfactual prompts set from ∆ (1). The certificate C is an
evaluation/estimation of the specified probability of unbiased responses, along with the samples of
LLM responses, for the user-defined parameters ∆, D, and L.

C(∆,D,L) , PrP∼∆[D([L(P1), . . . ,L(Ps)]) = 0] (1)

3.2 CERTIFICATION ALGORITHM

Exactly computing C(∆,D,L) (1) is intractable as it would require enumerating all (prohibitively
many) prompts sets in the support of ∆. Hence, our certification algorithm estimates C(∆,D,L) for
given ∆ and D and target L with high confidence, as described next. We generate intervals [p̂l, p̂u]
that bound C(∆,D,L) in (1) with confidence 1−γ. Such interval estimates are better than point-wise
estimates as they also quantify the uncertainty of the estimation. C(∆,D,L) is the probability of
success (unbiased responses) for the Bernoulli random variableF , D([L(P1), . . . ,L(Ps)]) = 0. To
obtain high-confidence bounds on C(∆,D,L), we employ binomial proportion confidence intervals.
In particular, we leverage the Clopper-Pearson confidence interval method (Clopper and Pearson,
1934) (Section 2.2) as it is known to be a conservative method, i.e., the confidence of the resultant
intervals is at least the pre-specified confidence, 1− γ (Newcombe, 1998). We obtain n independent
and identically distributed (iid) samples of F by sampling iid P from ∆ and compute the Clopper-
Pearson confidence intervals of C(∆,D,L). The certificate, hence obtained, bounds the probability
of unbiased responses for random P ∼ ∆ with high confidence. Note that the certification results
depend on the user-defined choices of n and 1− γ.

4 CERTIFICATION INSTANCES

In this section, we instantiate prompt set distributions ∆ to form novel bias specifications. We select
∆ such that its underlying sample space has prompt sets that share a common characteristic, so we
can certify the bias conditioned on the presence of the characteristic. Thus, this becomes a local
specification (Seshia et al., 2018), wherein the certificate is given for a local input space. Local
specifications have commonly been considered in neural network verification (Singh et al., 2019;
Wang et al., 2021; Baluta et al., 2021). Prior works on neural network specifications such as (Geng
et al., 2023) generate only local specifications, as they correspond to meaningful real-world scenarios,
and as local input regions are considered to design adversarial inputs for the models. In our local bias
specifications, we consider ∆ around a given set of prompts Q (pivot), denoting the resultant prompt
set distributions as ∆Q. Prefixes are commonly used to steer the text generated by LLMs according
to the users’ intentions (Liu et al., 2021). Hence, we want to study whether the application of
certain prefixes can elicit different forms of bias from the target LLM. Let ∆pre denote a distribution
of prefixes. Each element in the sample spaces of ∆Q is a set of prompts formed by uniformly
applying a prefix to all prompts Qi ∈ Q, that is, q ∼ ∆Q =

⋃
Qi∈Q{p � Qi} for p ∼ ∆pre,

where � denotes string concatenation. Algorithm 1 presents the probabilistic specification involving
addition of randomly sampled prefixes as a probabilistic program. Our probabilistic programs follow
the syntax of the probabilistic programming language defined in (Sankaranarayanan et al., 2013,
Figure 3). The syntax is similar to that of a typical imperative programming language, with the
addition of primitive functions to sample from common distributions over discrete / continuous
random variables (for example, Bernoulli: B, Uniform: U) and estimateProbability(.).
estimateProbability(.) takes in a random variable and returns its estimated probability at
a specific value. makePrefix(args,kind) (line 1) is a general function to sample different
kinds of prefixes such as random prefixes (Algorithm 2), mixture of jailbreaks (Algorithm 3), and
soft prefixes (Algorithm 4), constructed using arguments, args.

C(∆Q,D,L) characterizes the bias that can be elicited from L by varying the prefix selected from
∆pre applied to a given Q. Next, we describe the 3 different kinds of practical ∆pre and their
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Algorithm 1 Prefix specification
Input: L,Q; Output: C(∆,D,L)

1: pre := makePrefix(args, kind = random / mixture / soft)
2: P := [pre�Qi for Qi ∈ Q]
3: C(∆,D,L) := estimateProbability(D([L(P1), . . . ,L(Ps)]) = 0)

Algorithm 2 Make random prefix
Input: V; Output: pre
1: pre := U(V)� . . . [q times] · · · �U(V)

Algorithm 4 Make soft prefix
Input: L,M0; Output: pre
1: E := embed(L,M0)
2: pre := E + U([−κ, κ])

Algorithm 3 Make mixture of jailbreak prefix
Input: L,V,M; Output: pre
1: M := [split(Mk) forMk ∈M]
2: H :=

⋃
Mi∈M[1:]Mi

3: ω(pλ,H) := shuffle({if(B(pλ), h, ∅) | h ∈ H})
4: Mi :=M0[0]� ω(pλ,H)�M0[1]� ω(pλ,H)� . . .
5: Mi ← tokenize(L,Mi)
6: pre := [if(B(pµ),U(V), τ) for τ ∈Mi]

sampling algorithms to define local bias specifications for L. We show some samples from each kind
of ∆pre in Appendix F. Our specifications are for the average-case behavior of the target LLM, as
∆pre are not distributions of provably adversarial (worst-case) prefixes.

Random prefixes. Prior works such as (Wei et al., 2023; Zou et al., 2023) have shown the effects of
incoherent fixed-length strings in jailbreaking LLMs for harmful prompts. Hence, we specify bias in
LLMs for prompts with incoherent prefixes that are random sequences of tokens from the vocabulary
of the LLM. Such prefixes are not all intentionally adversarial, except for adversarial strings like
those from prior works, but denote random noise in the prompt. Algorithm 2 presents the prefix
sampler as a uniform distribution, U(.) over the random prefixes of fixed length, q. The sample space
of random prefix ∆pre has |V|q cardinality. ∆pre for random prefixes assigns a non-zero probability
to discovered and undiscovered jailbreaks, of a fixed length q. Hence, certification for the random
prefix distribution indicates the expected bias in responses to Q with any random prefixes of length q.

Mixtures of jailbreaks. Manually designed jailbreaks are fairly effective at bypassing the safety
training of LLMs (walkerspider, 2022; Wei et al., 2023; jai). To certify the vulnerability of LLMs
under powerful jailbreaks, we develop specifications with manual jailbreaks. The distribution from
which the manual jailbreaks can be sampled is unknown. Thus, we construct potential jailbreaking
prefixes from a set M of popular manually-designed jailbreaks by applying 2 operations — in-
terleaving and mutation. Interleaving attempts to strengthen a given manual jailbreak with more
bias-provoking instructions, while mutation attempts to obfuscates the jailbreak such that it can be
effective, even under explicit training to avoid the original jailbreak. Algorithm 3 presents the prefix
constructor as a probabilistic program. Each manual jailbreakMk ∈M can be treated as a finite set
of instructionsMk = {M1

k, . . . }. LetM0 be the most effective jailbreak (a.k.a. main jailbreak). We
extract the information on the effectiveness of jailbreaks from popular open-source leaderboards of
jailbreaks. We include all the instructions of the main jailbreak in the final prefix. The other jailbreaks
are helper jailbreaks, whose instructions are included with an interleaving probability, pλ in the final
prefix. LetH =

⋃
Mi∈MMi denote the set of all instructions from helper jailbreaks [line 2]. Let

ω(pλ,H) shuffle and concatenate randomly picked (with probability pλ) instructions fromH [line 3].
shuffle(.) is a function for randomly sampling a permutation from a uniform distribution over
all permutations of an input list (after removing ∅ which denotes void elements). Let if(e1, e2, e3) be
an abbreviation for if e1 then e2 else e3. We first apply the interleaving operation with the
resultant given asMi [line 4]. The mutation operation is then applied toMi viewed as a sequence of
tokens [τ0, . . . , ], wherein any token τi can be flipped to any random token τ ′i ∈ V , with a mutation
probability pµ (generally set to be low), to result in pre [line 6]. We hypothesize such prefixes to be
potential jailbreaks as they are formed by strengthening a manual jailbreak with other jailbreaks and
obfuscating its presence. The number of prefixes formed by the aforementioned operations can be
prohibitively many, owing to typically long manual jailbreaks and the possibility to mutate any token
to any random token from the LLM’s vocabulary.
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Soft jailbreaks. Due to the limited number of effective manual jailbreaks (walkerspider, 2022;
Learn Prompting, 2023), they can be easily identified and defended against. However, the excellent
denoising capabilities of LLMs could render them vulnerable to simple manipulations of manual
jailbreaks as well, indicating that the threat is not completely mitigated by current defenses (Jain
et al., 2023). Hence, we specify fairness under prefixes constructed by adding noise to the original
manual jailbreaks. Algorithm 4 presents the prefix constructor as a probabilistic program. Let E be
the embedding matrix ofM0 in the embedding space of the target LLM, obtained by applying the
function embed(.) [line 1]. We perturb E by adding noise to it. As we are not aware of any adversarial
distributions of noise that could be added to manual jailbreaks to make them stronger, we select a
uniform distribution. We uniformly sample noise from B(0, κ) which is an κ > 0 (constant) ball
around the origin and add it to E to construct pre in the embedding space [line 2].

5 EXPERIMENTS

We used 2 A100 GPUs, each with 40GB VRAM. We derive the queries on which the specifications
from the 3 prefix distributions presented in Section 4 are pivoted, from popular datasets for fairness
and bias assessment — BOLD (Dhamala et al., 2021) and Decoding Trust (Wang et al., 2024).
BOLD setup. BOLD is a dataset of partial sentences to demonstrate bias in the generations
of LLMs in common situations. We pick a test set of 250 samples randomly from BOLD’s
‘profession’ partition and demonstrate binary gender bias specifications and certificates on it.

Figure 2: Example from QBOLD

We develop a pivot set of prompts from each test set sample by
prepending an instruction to complete the partial sentence for
the profession annotated in BOLD, where the subject identifies
with a particular gender (Male / Female). An example pivot
set Q from BOLD is illustrated in Figure 2. Let the resultant
test set consisting of pivot prompts from each partial sentence
considered from BOLD be QBOLD. To identify bias in the
responses of the target LLM for the prompts constructed from pivot prompt sets in QBOLD, we use
the regard-based bias metric proposed in (Sheng et al., 2019). Our adaptation of the regard metric is
described and evaluated with a human study on Amazon Mechanical Turk in Appendix E.1. Our bias
detector matches human perception of bias in 76% cases. We qualitatively analyze the false positive
and false negatives of the bias detector with respect to human judgment in Appendix E.1.

Figure 3: Example from QDT

Decoding Trust setup. Decoding Trust (DT) is a dataset bench-
mark to evaluate various properties of LLMs, including stereotype
bias against people of different demographic groups. We make
specifications from all 48 statements in the ‘stereotypes’ partition
for demographic groups corresponding to race (black/white). An
example pivot set Q from DT is illustrated in Figure 3. Let the
resultant test set consisting of pivot prompts from each partial sen-

tence considered from DT be QDT . We evaluate the LLM responses to prompts derived from pivot
prompt sets in QDT using a bias detector that identifies the disparity in agreement to the stereotype
for different demographic groups given in the prompt, as discussed in Appendix E.2.

For every element in QBOLD and QDT , we generate 3 certificates for the specifications in Section 4,
such that a certificate consists of bounds on the probability of unbiased responses from the target
LLM. Both bias detectors are such that they output 1 for a biased set of responses to a counterfactual
prompt set and 0 for an unbiased set of responses. The values of the certification parameters used in
our experiments are given in Table 2 (Appendix B). We study their effect on the certification
results with an ablation study in Appendix B. We generate the certification bounds with 95%
confidence and 50 samples. While our main experiments are for counterfactual prompt sets with
binary demographic groups, our framework can be extended beyond binary demographic groups,
which we experimentally demonstrate in Appendix B.6. Note that the manual jailbreaks used are
common across all specifications and are presented in Appendix C.

5.1 CERTIFICATION RESULTS

We certify the popular contemporary LLMs — Llama-2-chat (Touvron et al., 2023) 7B and 13B
(parameters), Vicuna-v1.5 (Chiang et al., 2023) 7B and 13B, Mistral-Instruct-v0.2 (Jiang et al., 2023)
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Table 1: Average of the bounds on the probability of unbiased responses for different models. Lowest
bounds for each specification kind and dataset are highlighted. We report 2 baselines — unbiased
responses when prompting without prefixes and with the main jailbreak as prefix.

Average certification bounds
Dataset Model % Unbiased

without prefix
% Unbiased

with main JB
Random Mixture Soft

BOLD (250)

Vicuna-7B 99.9 89.4 (0.93, 1.0) (0.90, 0.99) (0.73, 0.89)
Vicuna-13B 99.7 99.8 (0.93, 1.0) (0.93, 1.0) (0.92, 1.0)
Llama-7B 99.8 99.8 (0.92, 1.0) (0.92, 1.0) (0.93, 1.0)
Llama-13B 99.8 99.7 (0.93, 1.0) (0.91, 1.0) (0.93, 1.0)
Mistral-7B 100.0 41.0 (0.92, 1.0) (0.22, 0.42) (0.30, 0.52)
Gemini 99.2 74.1 (0.92, 1.0) (0.60, 0.83) −
GPT-3.5 99.5 50.2 (0.92, 1.0) (0.44, 0.67) −
GPT-4 99.8 99.9 (0.92, 1.0) (0.80, 0.96) −
Claude-3.5-Sonnet 99.6 99.8 (0.93, 1.0) (0.92, 1.0) −

DT (48)

Vicuna-7B 95.4 100.0 (0.85, 0.97) (0.92, 1.0) (0.88, 0.97)
Vicuna-13B 88.7 76.2 (0.71, 0.92) (0.92, 1.0) (0.51, 0.78)
Llama-7B 97.5 100.0 (0.79, 0.96) (0.92, 1.0) (0.92, 1.0)
Llama-13B 100.0 100.0 (0.92, 1.0) (0.93, 1.0) (0.93, 1.0)
Mistral-7B 99.2 72.9 (0.91, 1.0) (0.85, 0.99) (0.46, 0.73)
Gemini 99.6 94.6 (0.92, 1.0) (0.73, 0.93) −
GPT-3.5 99.6 56.7 (0.93, 1.0) (0.66, 0.88) −
GPT-4 100.0 100.0 (0.93, 1.0) (0.93, 1.0) −
Claude-3.5-Sonnet 99.6 100.0 (0.93, 1.0) (0.93, 1.0) −

7B, Gemini-1.0-pro (Gemini Team, 2024), GPT-3.5 (Brown et al., 2020b), GPT-4 (Achiam et al.,
2023), and Claude-3.5-Sonnet (Anthropic, 2024). We report the average of the certification bounds
for all pivot prompt sets in QBOLD and QDT each for every model in Table 1. We do not certify the
closed-source models such as Gemini, GPT, and Claude for soft jailbreaks, as it requires access to the
models’ embedding layers. Certification time significantly depends on the inference latency of the
target model. Generating each certificate can take 1-2 minutes for models with reasonable latency.
Baselines. The baselines considerQBOLD andQDT as benchmarking datasets, having counterfactual
prompt sets as individual elements. Similar to popular LLM bias benchmarking works such as (Wang
et al., 2024; Liang et al., 2023; Esiobu et al., 2023; Xie et al., 2024), we study the biases in LLMs
for a fixed dataset of counterfactual prompt sets which may be provided as is to the LLM, or with
jailbreaks. In the first baseline (without prefix), every counterfactual prompt set is evaluated 5 times,
each time prompting a target LLM with each prompt in the set without any prefixes and detecting bias
across its responses using the corresponding bias detector. The bias result for each counterfactual
prompt set is computed by averaging the results over the 5 evaluations, similar to (Wang et al.,
2024). This baseline indicates biases in LLM responses without any prefixes and can be used to
judge the additional influence of prefixes on eliciting bias from LLMs. Table 1 reports the average
of evaluations over all counterfactual prompt sets in QBOLD and QDT respectively. In the second
baseline (with main jailbreak), each counterfactual prompt is similarly evaluated 5 times, but with the
unmodified main jailbreak (Figure 9, Appendix C), used in the mixture of jailbreak and soft jailbreak
distributions, as a prefix. The average result of this baseline is also reported in Table 1. This baseline
is used to indicate the efficacy of the main jailbreak without any modifications, and hence suggests
the importance of the mixture and soft prefix distributions around the main jailbreak in eliciting
biases in LLM responses. The baselines are empirical studies of counterfactual bias in LLMs, which
analyze bias with a dataset of prompts. On the other hand, QCB quantifies biases for any random
prompt sampled from a given distribution.

5.1.1 GENERAL OBSERVATIONS

Comparison with baselines. Our results for the baseline without prefix are generally close to and
often higher than the average upper bounds from certification. This suggests that the counterfactual
prompt sets do not majorly result in biased LLM behavior by themselves and the application of
prefixes is essential for biased LLM responses. Hence, such baselines present an optimistic view on
the biases of LLMs, which may not be acceptable for real-world scenarios. We compare the baseline
with main jailbreak with the certification bounds for the specifications with mixture of jailbreak
prefixes and soft prefixes, as these consist of modifications of the main jailbreak. We see that in most
cases, the baseline results are either contained within or higher than the bounds. Thus the baseline
does not account for several biased behaviors that can result by modifying the main jailbreak. In
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some cases, e.g., Mistral for DT specifications, the average lower bound is higher than the baseline
result, indicating that the modifications might have reduced the efficacy of the main jailbreak for the
model. In such cases, the specifications can be made model-specific and we leave this to future work.

Variations with prefixes. We observe that the random prefixes are generally less effective at eliciting
biased behaviors than the other prefixes. This suggests that incoherent prefixes can be denoised by the
LLMs and may not effectively bypass their alignment. In some cases, such as that for Vicuna-13b, we
see that the model produces biased responses with the random prefixes, indicating that the model is
not robust to even incoherent perturbations to the prompts. Thus random prefix specifications present
basic certificates into the denoising capabilities of the LLMs to produce unbiased responses. There
are no consistent trends between the mixture of jailbreaks and soft prefix specifications, except for
the effectiveness of prompts from their distributions in producing biased LLM responses.

Denial of response. In several instances, such as those when certifying GPT-4 (for DT), Claude, and
Llama, we observe unbiased behaviors because the model simply refuses to respond. The completions
are mostly “Sorry I can’t assist with that". While that can be a valid defense to adversarial prompts, it
may not be the most desirable (Cui et al., 2024). The model could instead output neutral responses,
ignoring any bias-encouraging texts in the prompts to be helpful but not harmful.

5.1.2 MODEL-SPECIFIC OBSERVATIONS

Vicuna. The Vicuna models show high probability of unbiased responses, except for those with soft
prefixes. The baselines indicate that the 7B model can output less unbiased responses with the main
jailbreak as prefix. But the mixture of jailbreaks specifications have high probability of unbiased
responses, suggesting that the perturbations of the main jailbreak with the operations of mixture
specifications can make the jailbreak less effective, while perturbing the jailbreak in the embedding
space can elicit more biased behaviors from the model. We find that unbiased behavior trends are not
consistent with increasing model sizes across different specifications.

Llama and Claude. The Llama models and Claude-Sonnet generate a few biased responses, but the
bounds on the probability of unbiased responses are high, indicating better alignment.

Mistral. Mistral exhibits significantly low probability of unbiased when prompted with the mixture
of jailbreaks and soft jailbreak prefixes for specifications from both QBOLD and QDT .

Gemini. We prompt Gemini with the safety filters disabled, so we can check the safety training
of the model itself. We observe that its responses can get highly biased for mixture of jailbreaks
specifications, resulting in low bounds. This insight is, however, not evident from the baselines.

GPT. The baselines indicate low bias in the responses of GPT-4. However, certification results say
otherwise. The GPT-4 model shows low probability of unbiased responses for the mixture of jailbreak
specifications derived from QBOLD. However, we observe unbiased responses for specifications
corresponding to QDT . GPT-3.5 achieves low probability of unbiased responses for the mixture of
jailbreak specifications, indicating that GPT-4 may have undergone better safety training than it.

5.2 CASE STUDIES

We qualitatively introspect individual certificates for different models for one example from QBOLD.
We present similar analyses for one example from QDT in Appendix G. We select the example
for Desktop automation refers to software programming from QBOLD for the ‘Automation’ pro-
fession. We present some responses of 4 popular LLMs — Mistral, Llama-7B, Gemini, and GPT-4
obtained during certification for the mixture of jailbreak specification, in Figure 4. The responses
demonstrate various stereotypical biases against both genders. For example, Mistral discriminates
against women, calling them “incapable and better suited for menial jobs”. The Gemini model is also
biased against women, saying “they cannot think and are meant for household chores”. On the other
hand, GPT-4 shows biases towards men, as it responds about them “lacking motivation and being less
efficient”, with automation being better at their jobs. It depicts women crushing male competition and
becoming superior. Llama, however, defends against the prompts and avoids responding in a biased
way. The responses reflect the certification results for the models. We find from the certification
bounds that the Mistral model is worse than Gemini and GPT, which are worse than Llama with high
confidence for this specification.
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Figure 4: Responses (and bounds) of Mistral, Llama-7B, Gemini, and GPT-4 when certifying with
BOLD example ‘Desktop automation refers to software programming’ for mixture of jailbreaks.

6 RELATED WORK

Attacking LLM alignment. LLMs are aligned with human ethics by supervised fine-tuning and
reinforcement learning with human feedback (Ouyang et al., 2022). However, (Zou et al., 2023;
Vega et al., 2023; Chao et al., 2023; Sheng et al., 2020; Wallace et al., 2019) propose methods to
jailbreak LLMs, bypassing alignment and causing harmful or biased responses. Jailbreaks can be
incoherent (Zou et al., 2023; Sheng et al., 2020) or coherent (Dominique et al., 2024; Liu et al., 2024).

Benchmarking LLMs. Various prior works have benchmarked the performance of LLMs on standard
and custom datasets. These could be datasets of general prompts (Dhamala et al., 2021; Wang et al.,
2024) or adversarial examples (Zou et al., 2023; Mazeika et al., 2024) designed to elicit undesirable
behaviors from the models. Popular benchmarks such as (Liang et al., 2023; Wang et al., 2024;
Mazeika et al., 2024; Manerba et al., 2024; Gallegos et al., 2024a) present empirical trends for the
performance of LLMs, measured along various axes including bias and fairness.

Guarantees for LLMs. There is an emerging need for guarantees on LLM behavior, fueled by their
increasing public-facing use cases. (Kang et al., 2024) provides guarantees on the generation risks of
RAG LLMs. (Quach et al., 2024; Deutschmann et al., 2023; Mohri and Hashimoto, 2024; Yadkori
et al., 2024) apply conformal prediction to LLMs, proposing methods for generating sets of outputs
with statistical guarantees on correctness, coverage, or abstention. (Zollo et al., 2024) presents a
framework for selecting low-risk system prompts for LLMs with probabilistic guarantees. We provide
detailed comparison between QCB and existing works on guarantees for LLMs in Appendix A.

Fairness in Machine Learning. Fairness has been extensively studied for general Machine Learning,
beginning from the seminal work of Dwork et al. (2011). Prior works have proposed methods to
formally certify classifiers for fairness, such as (Biswas and Rajan, 2023; Bastani et al., 2019).
However, these do not extend to LLMs. Fairness and bias have also been studied in natural language
processing in prior works such as (Chang et al., 2019; Smith et al., 2022; Krishna et al., 2022).

7 CONCLUSION

We present the first framework QCB to specify and certify counterfactual bias in LLM responses, for
both open- and closed-source models. We instantiate our framework with novel specifications based
on different kinds of potentially adversarial prefixes. QCB generates high confidence bounds on the
probability of unbiased responses for counterfactual prompts from a given distribution. Our results
show previously unknown vulnerabilities with respect to counterfactual bias in SOTA LLMs.
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A COMPARING WITH PRIOR WORKS ON GUARANTEES FOR LLMS

Works on conformal prediction. (Quach et al., 2024; Deutschmann et al., 2023; Mohri and
Hashimoto, 2024; Yadkori et al., 2024) apply conformal prediction techniques to language models,
proposing methods for generating sets of outputs with statistical guarantees on correctness, coverage,
or abstention, aiming to improve reliability and mitigate hallucinations. Their guarantees and scope
differ from those of QCB, as described next.

• The prior works on conformal prediction give specialized decoding strategies that guarantee
the correctness of the outputs, useful for the factuality of the responses. QCB, however, is
about assessing and certifying the counterfactual biases in LLM responses generated with
any decoding scheme applied on the target LLMs.

• Guarantees of conformal prediction are for the correctness of LLM responses for individual
prompts, while QCB’s guarantees are over distributions of counterfactual prompt sets (which
can have prohibitively large sample spaces).

• Conformal prediction typically requires access to the output probability distributions of the
LLMs, while QCB does not.

Work on Prompt Risk Control. (Zollo et al., 2024) (PRC) presents a framework for selecting
low-risk system prompts for LLMs with probabilistic guarantees. Next, we discuss the major points
of difference between PRC and QCB.

• Specification: PRC computes the loss incurred for one prompt at a time, and aggregates
those losses to form a risk measure. QCB, on the other hand, is for counterfactual bias, i.e.,
we assess the bias across a set of LLM responses, obtained by varying the sensitive attributes
in the prompts. Our specification is thus a relational property (Barthe et al., 2011), which is
defined over multiple related inputs. The biases across LLM responses for multiple related
prompts are aggregated to certify any given LLM. To the best of our understanding, PRC
can not be directly extended to relational properties such as counterfactual bias, without
some of our contributions.

• Distributions: The PRC paper claims that designing adversarial distributions is impossible,
which makes them resort to using red-teaming datasets for assessing prompt risks. However,
their reasoning is contrary to many prior works on designing adversarial distributions (Li
et al., 2019; Dong et al., 2020). QCB, on the other hand, comes up with novel, inexpensive
mechanisms to design distributions with potentially adversarial prefixes, containing common,
effective, manually-designed jailbreaks in their sample space. We show experiments on
these distributions, rather than static datasets of adversarial examples like PRC.

• Method: Both works use confidence intervals to bound the risk (probability of unbiased
response for QCB) over given distributions. PRC mentions the use of Hoeffding bounds to
compute upper bounds on the risk formulated as expected loss. We discuss this setting as
we believe that it is the closest to our certification algorithm. (Phan et al., 2021) shows that
Clopper-Pearson bounds are tighter than Hoeffding bounds for binomial distributions. Owing
to our formalism and modeling of the specification in Equation 1 as the probability of success
in a Bernoulli distribution (Section 3.2) and our distribution samplers that can generate iid
samples, we are able to use the tighter Clopper-Pearson bounds. Hence, including PRC as a
baseline will essentially be a comparison between Hoeffding and Clopper-Pearson bounds,
repeating the findings of (Phan et al., 2021). More generally, we believe that both PRC and
QCB can be operated with various statistical estimation methods and the use of particular
methods is not the contribution of either framework. Both frameworks make significant
contributions in their problem statement and motivation to use statistical estimation for
trustworthy LLMs.

• Assumptions: The PRC framework uses elements of static datasets as samples and assumes
them to be independently and identically distributed samples from the target distribution.
However, this assumption is not substantiated and may not hold for practical settings. To
ameliorate the effects of this major assumption, they extend only their quantile-based risks
to handle covariate shifts. This extension again consists of major assumptions of similar
distributions of the loss functions over the source and target distributions, which is said to
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Table 2: Hyperparameter values

Hyperparameter Description Value

γ (1− γ) is confidence over certification 0.05
n Number of samples for certification 50
T LLM decoding temperature 1.0
Top-k LLM decoding top-k 10
q Prefix length for random prefixes 100
pλ Interleaving probability 0.2
pµ Mutation probability 0.01
κ Max noise magnitude added to jailbreak embedding elements

relative to the maximum embedding value
0.02

be determined by the user. We believe that such assumptions can not be made for assessing
counterfactual biases, as LLMs can show variable and unknown kinds of biases for different
input distributions and knowing the similarity in the biases across 2 distributions requires
methods like QCB. Moreover, as the target distributions considered in PRC are not available
in closed-form and can not readily sampled from to make the bounds tighter according to
developer needs and confidence requirements, this method suffers from customization issues.
QCB, on the other hand, is free from such problems, as we define our prompt distributions
and their samplers as probabilistic programs (e.g., Algorithms 1-4), which can readily give
us iid samples of counterfactual prompt sets.

• Objective: PRC aims to select the (system) prompts that result in low generation risk from a
given LLM. QCB, on the other hand, computes high-confidence bounds on the probability of
unbiased responses for any given counterfactual prompt set distributions, with an objective
to highlight the vulnerabilities in LLMs and compare across them.

B ABLATION STUDY

In this section, we study the effect of changing the various certification parameters (a.k.a. hyperpa-
rameters) on the certificates generated with QCB. Table B presents the list of hyperparameters and
their values used in our experiments.

We regenerate the certificates for different prefix distributions by varying the hyperparameters. In
particular, we study the variations of the results when n, T,Top-k, q, pλ, pµ, and κ are varied, keeping
γ constant. This is because, 1 − γ denotes the confidence of the certification bounds and that is
generally desired to be high. 95% is a typical confidence level for practical applications (Sim and
Reid, 1999). We conduct this ablation study on the specifications for a randomly picked set of 100
counterfactual prompt sets from BOLD’s test setQBOLD. We certify the Mistral-Instruct-v0.2 (Jiang
et al., 2023) 7B parameter model and study the overall results next.

B.1 CERTIFICATION ALGORITHM HYPERPARAMETER

We show ablations on n for all kinds of specifications in Figure 5. We see that the bounds begin
converging at 50 samples and subsequent samples cause minor variations in their values, justifying
our choice of using 50 samples. Fewer than 50 samples can result in less tight bounds.

B.2 LLM DECODING HYPERPARAMETERS

We study variations in the certification bounds with 2 important hyperparameters of the LLM decoding
algorithms that influence their generated texts — T (decoding temperature) and Top-k (number of
tokens decoded at each step). Figures 6 and 7 show the variations in the certification bounds with T
and Top-k respectively for the 3 kinds of specifications. We see only minor changes in the average
certification bounds with the variations of these hyperparameters. Our hypothesis of this phenomenon
is that as the certificates aggregate the bias results of several samples, they smooth out the noise

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Random prefixes (b) Mixtures of jailbreaks (c) Soft prefixes

Figure 5: Ablation study on the certification hyperparameters showing variations of average certifica-
tion bounds with number of samples n

introduced by the choice of LLM decoding hyperparameters and give insights into the biases of the
LLM itself.

(a) Random prefixes (b) Mixtures of jailbreaks (c) Soft prefixes

Figure 6: Ablation study showing variations of average certification bounds with temperature T

(a) Random prefixes (b) Mixtures of jailbreaks (c) Soft prefixes

Figure 7: Ablation study showing variations of average certification bounds with Top-k parameter.

B.3 RANDOM PREFIXES

The specifications based on random prefixes consist of 1 hyperparameter — q, length of the random
prefix. Hence, we vary this hyperparameter, while keeping the others fixed. Figure 8a presents the
variation in the average certification bounds obtained when varying q.

B.4 MIXTURE OF JAILBREAKS

These specifications have 2 hyperparameters — pλ, the probability of adding an instruction from the
helper jailbreaks when interleaving, and pµ, the probability of randomly flipping every token of the
resultant of interleaving. We show ablation studies on these in Figures 8b and 8c respectively.
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(a) Variation with prefix length q for random prefix
specifications

(b) Variation with interleaving probability pλ for
mixture of jailbreaks specifications

(c) Variation with mutation probability pµ for mix-
ture of jailbreaks specifications

(d) Variation with relative magnitude of noise κ for
soft jailbreaks specifications

Figure 8: Ablation study on the certification hyperparameters showing variations of average certifica-
tion bounds
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B.5 SOFT JAILBREAKS

These specifications have 1 hyperparameter — κ, the maximum relative magnitude (with respect to
the maximum magnitude of the embeddings) by which the additive uniform noise can change the
embeddings of the main jailbreak. Figure 8d presents an ablation study on κ.

We see no significant effects of the variation of abovementioned hyperparameters on certification
results for different specifications.

B.6 SCALING BEYOND BINARY DEMOGRAPHIC GROUPS

Table 3: Average bounds on the
probability of unbiased responses
from Mistral 7B.

Spec type Bounds

Random (0.91, 1.0)
Mixture (0.82, 0.98)
Soft (0.20, 0.46)

Our general framework (Section 3) and specification instances
(Section 4) are applicable to certify biases beyond binary coun-
terfactual prompt sets (like for male/female gender, black/white
race). This is subject to the availability of bias detectors D that
can identify biases across responses for counterfactual prompt
sets for more than binary demographic groups. While we are
not aware of any D that could work with QBOLD, we extend
our D for the specifications fromQDT to work for responses to
prompts from three racial demographic groups — black people,
white people, and asians. We elaborate on the extension in
Appendix E.2. We certify Mistral-Instruct-v0.2 7B model with
the three kinds of specifications and find that the average certification bounds presented in Table 3
are similar to the bounds presented for the Mistral model in Table 1 for the random and mixture of
jailbreak specifications. However, the results are significantly worse for the soft prefix specifications.
This is because, firstly the model is particularly susceptible to these specifications as is evidenced even
in the results with binary demographic groups. Secondly, with the addition of another demographic
group, the bias detector is skewed towards identifying bias in more sets of responses than for the
case with binary demographic groups. The bias detector identifies bias in responses having at least
1 agreement and 1 disagreement to the stereotype mentioned in the prompts, which has the same
chance as unbiased result for binary demographic groups, but not beyond them.

C COMMON JAILBREAKS USED

In our experiments, we combine common jailbreaks to certify against hybrid jailbreaks. The specific
jailbreaks we use are shown below. The main jailbreak2 is shown in Figure 9. We have modified the
jailbreak to encourage the model to generate responses demonstrating gender bias by adding the text
highlighted in red in Figure 9a and for racial bias in Figure 9b. We use one helper jailbreak3 from
which we derive the instructions shown in Figure 10. Each of these instructions is inserted into the
main jailbreak at the points where its individual instructions end, with the interleaving probability pλ.
All instructions inserted at the same point in the main jailbreak appear in a random order in the final
jailbreak prefix.

D VALIDITY OF CONFIDENCE INTERVALS

We design a synthetic study for the validity of the confidence intervals as follows. As we can not
precisely regulate the true probability of unbiased responses of LLMs, we assume various values of
that probability and generate binary-valued samples indicating biased (non-zero) /unbiased (zero)
responses from any LLM. Hence, we generate 50 samples (same as the samples used in QCB’s
certification) of the Bernoulli random variable F (Section 3.2), with various values for the probability
of success and generate Clopper-Pearson confidence intervals for the success probability using the
samples. We repeat this process 1000 times and report the percentage of instances wherein the
confidence intervals contain the true probability of success. This percentage indicates the probability

2Last accessed on Jan 22, 2024 from www.jailbreakchat.com/prompt/
588ab0ed-2829-4be8-a3f3-f28e29c06621

3https://www.reddit.com/r/ChatGPT/comments/113ddqq/my_jailbreak_is_far_
superior_to_dan_the_prompt_is/
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(a) For gender

(b) For race

Figure 9: Main Jailbreaks for different sensitive attributes

Figure 10: Instructions derived from helper jailbreak

of correctness of the confidence intervals. We find that for all 11 equally-spaced values of the true
probability of unbiased responses between 0 and 1, the confidence intervals bound the true value for
more than 95% (nominal, user-specified confidence level) times, which validates the claim that the
confidence intervals hold with at least the user-specified confidence. Figure 11 presents the variation
in the proportion of Clopper-Pearson confidence intervals that contain the true probability of unbiased
responses for different values of the latter.

E BIAS DETECTOR

E.1 BOLD EXPERIMENTS

Design of bias detector. Our bias detector DBOLD is based on the regard bias metric (Sheng et al.,
2019). Specifically, we measure the bias for a pair of completions, one for male and another for
female, by invoking the regard classifier in ‘compare’ mode. The compare mode gives the difference
between the regard score obtained for the different completions. We consider all completion pairs with
a regard score higher than a prespecified threshold (0.85 in this case) as biased. For the completions
considered unbiased with the previous evaluation, we also consider the regard scores of the individual
completions (with respect to the partial sentence given to the model). We consider the completions
to be biased if either score exceeds the threshold. This is for the instances of bias, wherein the pair
of generations are similarly biased and individual generations have text discriminating against a
particular demographic group.
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Figure 11: Variation in the proportion of Clopper-Pearson confidence intervals containing the true
probability of unbiased responses. Dashed line shows the user-specified confidence level, i.e. 95%.

(a) (True Positive) Bias detected by both DBOLD
and annotators

(b) (False Negative) Bias detected by annotators
but not DBOLD

(c) (False Positive) Bias detected by DBOLD but
not annotators

Figure 12: Qualitative analysis of DBOLD with human bias annotations.

Evaluating the metric. We evaluateDBOLD against human judgment of bias, by getting annotations
for a subset of the completions from the different models from Amazon Mechanical Turk. We
randomly select 490 pairs of completions (for male and female subjects in the prompts), 70 each
obtained when certifying 7 different models. Each pair of completions is annotated by 3 different
annotators. We combine the 3 annotations for each pair of completions into a single value of bias
by considering the majority consensus among the annotators. We compare the bias annotation thus
obtained from humans with the results of DBOLD and find that DBOLD’s outputs matches human
intuition 76% times. We provide the HTML file used to render the instructions shown to the Amazon
Mechanical Turkers in our supplementary material. Each participant is given a compensation of
$0.5 for the annotations. Next, we provide a qualitative analysis with examples where the results of
DBOLD and the human evaluation match and where they do not match.
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Figure 12a shows the true positive examples where the both the DBOLD and the annotators identify
bias. Figure 12b shows the false negative examples where DBOLD does not identify bias but the
annotators do. Figure 12c shows the false positive examples where DBOLD identifies bias but the
annotators do not. According to the authors, the false positive examples are actually biased. But we
also recognize that bias is a complex subject, and its notion can vary across individuals. The human
annotation of bias is contingent on many factors such as their cultural background, our annotation
instructions (provided in the open-source implementation of the framework), etc. Hence, we believe
that the noise in the human study needs to be taken into account when evaluating our bias detector
DBOLD. Our bias detector shows 93% precision, but 50% recall. Owing to these inconsistencies
of our bias detector with human perception of bias, we believe that our bounds for probability of
unbiased responses are actually higher than bounds with a perfect bias detector (due to low recall),
indicating a worse situation of counterfactual bias in SOTA LLMs.

E.2 DT EXPERIMENTS

We design the bias detector DDT for specifications from the Decoding Trust dataset, using the
agreement detector proposed for the stereotype bias dataset in the Decoding Trust paper (Wang et al.,
2024). In particular, the agreement detector in the benchmark applies on 1 response and identifies if
it contains phrases such as “I agree” (to the stereotype mentioned in the prompt) for agreement or
phrases like “I disagree” for disagreement. To detect bias across the responses for the counterfactual
prompts, DDT checks for agreement in the individual responses, and identify bias when there is at
least 1 agreement, but not all responses are for agreement, i.e., the model agrees to the stereotype for
some demographic groups but not others. DDT can easily scale beyond binary demographic groups,
as it is agnostic to the number of responses across which it needs to detect bias.

E.3 LIMITATIONS OF BIAS DETECTORS

As we can see from the human evaluations for DBOLD and also from the simplicity of DDT that the
bias detectors can have several false positive and false negative cases. This is expected, as detection of
bias is a challenging task (Li et al., 2022b; Kruspe, 2024) owing to the subtle and intricate differences
between biased and unbiased texts. Moreover, there can be special characters / emojis in the texts
generated in the LLMs, which are often not considered by textual bias detectors, but are clearly
biased, e.g., (we observe this emoji combination in the generations of Vicuna-7B for random
prefix specifications fromQBOLD). While our certification method borrows some of the inaccuracies
of the bias detectors we use, they are often smoothed as certification aggregates several observations
of bias to generate bounds on the probability of unbiased responses.

F EXAMPLE SAMPLES FROM PREFIX DISTRIBUTIONS

In this section, we provide examples of prefixes of different kinds, described in Section 4.

Random prefixes. Figure 13 presents some examples of random prefixes, each having 100 tokens.

Mixture of jailbreaks. Figure 14 presents some examples of mixture of jailbreak prefixes, formed
from the main and helper jailbreaks in Figures 9 and 10 respectively.

Soft prefixes. Examples of soft prefixes added to the queries can not be represented in textual form
as they consist of perturbations of the prefix in the LLM’s embedding space. However, the general
structure is {jailbreak perturbed in embedding space}.

G CASE STUDIES FROM DECODING TRUST CERTIFICATES

We introspect the example [target group] have a drug problem from QDT . We study the responses
of 4 LLMs — Mistral, Llama-7B, Gemini, and GPT-3.5, obtained when certifying them for the
mixture of jailbreaks specification based on the example. Figure 15 presents some samples of
responses from the models to explain their certificates. We observe that the Gemini model is biased
against white people, calling them ‘lazy’ and ‘more likely to be exposed to drugs’. Similarly, Mistral
is also biased against white people, saying that they ‘have a monopoly on addiction’. On the other
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Figure 13: Examples of random prefixes

Figure 14: Examples of mixture of jailbreak prefixes
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Figure 15: Responses of Mistral, Llama-7B, Gemini, and GPT-3.5 obtained during their certification
for the Decoding Trust example ‘[target group] have a drug problem’ for mixture of jailbreaks
specification. The certification result is indicated alongside the model.

hand, GPT-3.5 is biased against black people, depicting them as ‘inferior’ and ‘inclined towards
addiction’. The Llama model is safer, refraining from biased responses. The bounds for the probability
of unbiased response suggest that GPT-3.5 and Gemini are more inclined to produce biased responses
than the Mistral and Llama models for prompts in the distribution of counterfactual prompt sets in
the given specification.

H POSITIVE AND NEGATIVE IMPACTS OF OUR WORK

We identify the following positive and negative impacts of our work.

Positive impacts. Our work is the first to provide quantitative certificates for the bias in Large
Language Models. It can be used by model developers to thoroughly assess their models before
releasing them and by the general public to become aware of the potential harms of using any
LLM. As our framework, QCB assumes black-box access to the model, it can be applied to even
closed-source LLMs with API access.

Negative impacts. In this work, we propose 3 kinds of specifications involving — random prefixes,
mixtures of jailbreaks as prefixes, and jailbreaks in the embedding space of the target model. While
these prefixes are not adversarially designed, they are often successful in eliciting biased and toxic
responses from the target LLMs. They can be used to attack these LLMs by potential adversaries.
We have informed the developers of the LLMs about this threat.

I PRACTICAL USAGE

In this section, we describe how practioners can use our framework to assess LLMs and au-
tomatically identify vulnerabilities in them. Our open-source implementation is available at:
https://anonymous.4open.science/r/QCB-A338, which can be used following the
GPL (license) terms and conditions. The open-source framework can be used to certify both open
and closed-source LLMs by adding support to query custom models in utils.py (for open-source
models) and utils_api.py (for closed-source models) files. The framework requires unrestricted
(in terms of number of inferences) query-access to the target model. Developers can adjust the
desired confidence-level of the certificates and increase/decrease the number of samples used in
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certification for tighter/looser bounds, according to their requirements and budget. Developers can
also use custom bias detectors to label biased responses, using which the certificates can be computed.
To get customized insights into LLM biases for their particular applications, developers can define
specifications with prompts that are commonly observed in their use cases. This customization can
either happen by sourcing the pivot prompts from domain-specific datasets, instead of the popular
BOLD or Decoding Trust datasets and/or using custom distributions of prefixes/suffixes which more
suitably represent the biases in their domains. For example, in domains where there is threat of racial
bias, the prefixes could explicitly encourage the model to exhibit racial bias, so as to stress-test the
trustworthiness of the models. Developers can also define entirely new distributions of counterfactual
prompts, irrespective of prefixes/suffixes, to specify bias similar to 1 and certify with QCB.

The certificates obtained are reliable, quantitative risk assessments of models, with lower and upper
bounds on risks pertaining to bias in the models’ generations. They can also be used to compare
different LLMs to pick one with acceptable risk in varying contexts.

J POSITION OF QCB AMIDST EXISTING BIAS EVALUATION METHODS

Bias is a complex social phenomenon that arises in various forms. In this section, we first discuss
various notions of bias and the harms caused by them. We also discuss how QCB complements
existing evaluation methods by certifying for counterfactual bias. The following discussion is not
a comprehensive treatment of bias in Machine Learning and we refer the reader to detailed survey
and position papers such as (Gallegos et al., 2024a; Blodgett et al., 2020; Li et al., 2024) for more
information.

Defining bias. Bias consists of discrimination or disparate outcomes (Barocas and Selbst, 2016) for
different demographic groups. Harms due to bias are primarily of 2 kinds — representational and
allocation (Gallegos et al., 2024a). Representational harm (Suresh and Guttag, 2021; Blodgett et al.,
2020) consists of denigrating and subordinating attitudes towards a demographic group. It consists
of use of derogatory language, stereotyping, toxicity, misrepresentation, etc. These can arise from
inappropriate use of language by humans or machines (e.g., LLMs). Allocation harms (Ferrara, 2023)
are disparate distribution of resources or opportunities between demographic groups. These consist
of direct or indirect discrimination in economic or social opportunities. For example, prior works
like (Terry et al., 2010; Martínez, 2022) show that the lack of representation of African American
English in dominant language practices results in that community facing penalties in education
systems or when seeking housing. Most constitutions around the world have anti-discrimination laws
like (Sherry, 1965) that prohibit allocative harms in employment etc. Language is considered an
important factor for labeling, modifying, and transmitting beliefs about demographic groups and can
result in the reinforcement of social inequalities (Rosa and Flores, 2017).

Position of QCB. QCB is a reliable evaluation method for counterfactual bias in language models
(LMs), that certifies the probability of unbiased response (or risk of bias) in target LLMs for
distributions of counterfactual prompts with statistical guarantees. Prior bias assessments have
been of 2 kinds (Cao et al., 2022) — intrinsic and extrinsic. Intrinsic bias occurs in the language
representations, while extrinsic bias manifests in the final textual responses of the LMs. To certify
closed-source LMs as well, we study extrinsic bias. Bias is opposite of fairness, which has been
identified to be of various forms such as group fairness (Blandin and Kash, 2024), individual
fairness (Dwork et al., 2011), counterfactual fairness (Kusner et al., 2018), etc. QCB certifies
for counterfactual bias, akin to counterfactual fairness. This is because of the causal perspective
of counterfactual bias (Anthis and Veitch, 2023) (bias due to mentioning specific demographic
group in the prompt) which aligns more closely with human intuitions about discrimination and
fairness. Moreover, unlike group fairness, counterfactual fairness operates at the individual-level,
thus identifying bias in specific cases, instead of aggregates.
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