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ABSTRACT

Deep model fusion is an emerging technique that unifies the predictions or param-
eters of several deep neural networks into a single model in a cost-effective and
data-efficient manner. This enables the unified model to take advantage of the orig-
inal models’ strengths, potentially exceeding their performance. Although a variety
of deep model fusion techniques have been introduced, their evaluations tend to
be inconsistent and often inadequate to validate their effectiveness and robustness
against distribution shifts. To address this issue, we introduce FusionBench, which
is the first comprehensive benchmark dedicated to deep model fusion. FusionBench
covers a wide range of tasks, including open-vocabulary image classification, text
classification, and text-to-text generation. Each category includes up to eight tasks
with corresponding task-specific models, featuring both full fine-tuning and LoRA
fine-tuning, as well as models of different sizes, to ensure fair and balanced compar-
isons of various multi-task model fusion techniques across different tasks, model
scales, and fine-tuning strategies. We implement and evaluate a broad spectrum
of deep model fusion techniques. These techniques range from model ensemble
methods, which combine the predictions to improve the overall performance, to
model merging, which integrates different models into a single one, and model mix-
ing methods, which upscale or recombine the components of the original models.
FusionBench now contains a range of CV and NLP tasks, 74 fine-tuned models,
and 19 fusion techniques, and we are committed to consistently expanding the
benchmark with more tasks, models, and fusion techniques. In addition, we offer a
well-documented set of resources and guidelines to aid researchers in understand-
ing and replicating the benchmark results. This includes detailed documentation,
code examples, and tutorials, making FusionBench a user-friendly and accessible
platform for both beginners and experienced researchers.

1 INTRODUCTION

In recent years, a new paradigm called “learn from model” has emerged in the field of deep learning,
which focuses on leveraging the knowledge embedded in existing models to develop new ones (Zheng
et al., 2023). This paradigm has been widely adopted in various scenarios, such as model tuning (He
et al., 2022; Chung et al., 2024), model distillation (Hinton, 2015), model pruning (Han et al., 2015;
Asif et al., 2020), model editing (Mitchell et al., 2021; Zhang et al., 2024), and so on. Among these
methods, deep model fusion is particularly appealing. It merges the parameters or predictions of
multiple models to create a more robust and efficient unified model. Due to its effectiveness and
scalability, many new techniques for deep model fusion have recently been proposed (Li et al., 2023).

Deep model fusion offers both scalability and data efficiency by utilizing the knowledge embedded
in pre-existing models, rather than requiring training from scratch. This approach significantly
accelerates model development, making it a practical solution in the current era dominated by large
foundation models. Despite its potential, the evaluation of deep model fusion techniques often suffers
from inconsistency and inadequacy. Standardized assessments are lacking, making it challenging
to verify their effectiveness and robustness. The potential reasons for this inconsistency include the
rapid development of new techniques, the absence of standardized tasks and models, and the variety
of settings (such as different fine-tuning strategies). Additionally, challenges in implementing or
replicating prior work contribute to these inconsistencies.
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model ensemble

model merging model mixing

(a) model ensemble (b) model merging (c) model mixing

Figure 1: A taxonomy of deep model fusion techniques.

To tackle these challenges, we develop the first comprehensive benchmark dedicated to deep model
fusion, called FusionBench. FusionBench is built to be a modular and extensible platform, comprising
three core modules: the Algorithm Module, the Model Pool Module, and the Task Pool Module. Each
module is configurable, allowing users to easily customize and manage the benchmark settings. In
summary, our main contributions are four-fold:

1. An extensive codebase and configurable interface: Our codebase is structured around
three core modules: the algorithm module, the model pool module, and the task pool
module. Moreover, to facilitate ease of use and flexibility, we provide a unified command
line interface with YAML configuration options for effortless customization.

2. Comprehensive evaluations: We conduct thorough evaluations of the deep model fusion
techniques, assessing their performance across a variety of benchmarks and settings.

3. Extensive analysis and insights: We provide detailed analysis and insights based on the
evaluation results, revealing key factors that influence their effectiveness. This includes
identifying best practices, exploring the impact of fine-tuning strategies, and offering
recommendations for future research.

4. User-friendly resources and guidelines: We offer a well-documented set of resources
and guidelines to aid researchers in understanding and replicating the benchmark results.
This includes detailed documentation, code examples, and tutorials, making FusionBench a
user-friendly and accessible platform for both beginners and experienced researchers.

2 RELATED WORK

Since deep model fusion is a relatively new research area, there is currently no standardized taxonomy.
Different researchers may categorize these techniques in various ways based on their understanding
and points of view. Here, we propose a taxonomy that divides these techniques into three major
categories: Model Ensemble, Model Merging, and Model Mixing. Each of these categories approaches
model fusion from a unique perspective, offering distinct advantages and applicability. In the
following, we provide detailed explanations, formal definitions, and analyze their strengths and
weaknesses. A visualization of the taxonomy is shown in Figure 1.

Model Ensemble methods combine the predictions of multiple models to improve the overall
performance of a machine learning system (Sagi & Rokach, 2018), where the collective knowledge is
often more accurate and reliable than that of any individual model. Mathematically, given a set of
N models {f1, f2, . . . , fN}, which can be homogeneous or heterogeneous, we use their predictions
to obtain a global prediction y = Aensemble(x; f1, f2, . . . , fN ;w), where Aensemble is an ensemble
algorithm and w are the algorithmic parameters. Each model fi can also be associated with a
specification to indicate its weight or importance in the ensemble (Pathak et al., 2010; Zhou, 2016;
Wu et al., 2021; Tang et al., 2023a). Ensemble methods are widely used and effective in improving
performance but are often expensive to use and manage. Recent research has also investigated
efficient techniques for model ensembles (Wen et al., 2020; Chen et al., 2023; Allingham et al., 2021).

Model Merging methods integrate the parameters of multiple models into a unified model, enhancing
efficiency in terms of inference cost and storage, and enabling scalable model fusion. Given a set of
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N isomorphic models {fi(·; θi)}Ni=1, each parameterized with θi, we merge them into a single model
with parameters θ = Amerging(θ1, θ2, . . . , θN ;w), where Amerging : RN×d → Rd is a merging
algorithm and w are the algorithmic parameters. The merged model can be expressed as f(·; θ).
This method can be implemented through linear interpolation in parameter space (Wortsman et al.,
2022; Ilharco et al., 2022; Yadav et al., 2023; Matena & Raffel, 2022; Yu et al., 2024; Chronopoulou
et al., 2023; Rame et al., 2024; Ortiz-Jimenez et al., 2024; Liu & Soatto, 2023), leveraging mode
connectivity (Draxler et al., 2018; Frankle et al., 2020; Benton et al., 2021; Garipov et al., 2018;
Qu & Horvath, 2024), aligning features, parameters or gradients (Liu et al., 2022; Ainsworth et al.,
2022; Jin et al., 2022; Tam et al., 2024; Stoica et al., 2023; Jang et al., 2023; Daheim et al., 2023;
Yang et al., 2024), subspace-based methods (Tang et al., 2023b; Wang et al., 2024; Yi et al., 2024;
Zhu et al., 2024; Xu et al., 2024), and ensemble distillation (Wan et al., 2024a;b). Model merging
methods are often performed in a data-efficient manner, the algorithmic parameters w can also be
learned during test time via test-time adaptation (TTA) training or meta-learning for a more seamless
merging (Yang et al., 2023; Tang et al., 2023b).

Model Mixing methods fuse the components of multiple models to create a new heterogeneous model,
which can be more flexible and adaptive than the original models. Mathematically, given a set of N
models {fi(·; θi)}Ni=1, each parameterized with θi ∈ Rd, we mix their components to obtain a new
model with parameters Θ = Amixing(θ1, θ2, . . . , θN ;w) ∈ Rd′

, where Amixing : RN×d 7→ Rd′

is a mixing algorithm and w is the algorithmic parameters. The mixed model can be expressed
as F (·; Θ), which often has more parameters than the original models, and thus can be more
expressive and powerful to capture the underlying patterns in the data. Model mixing methods can be
implemented through layer recombinations (Hu et al., 2023; Jiang, 2024), model stitching (Lenc &
Vedaldi, 2015; Moschella et al., 2022), or upscale to create a Mixture of Experts (MoE)-based sparse
model (Komatsuzaki et al., 2022; Ye & Xu, 2023; Tang et al., 2024c; Lu et al., 2024; Dai et al., 2024;
Zhao et al., 2024; Ostapenko et al., 2024; Tang et al., 2024b; Yadav et al., 2024).

Although several model fusion methods have been proposed, benchmarks and unified toolkits are still
lacking in this field. A recent notable work, MergeKit (Goddard et al., 2024), provides a collection
of model fusion techniques specifically designed for merging large language models (LLMs), with
a focus on model merging methods and Transformer-based LLMs. However, MergeKit’s scope is
limited to a specific domain and model architecture, while FusionBench is more comprehensive and
covers a wider range of deep model fusion algorithms, as well as tools for evaluating these algorithms.
In general, FusionBench is more research-oriented. It includes a diverse set of fine-tuned models and
tasks to evaluate, making it a more generalized and versatile platform for assessing the performance
of different model fusion approaches across various domains and architectures.

3 OUR BENCHMARK

The general framework of the modularized FusionBench codebase is shown in Figure 2, which
consists of three primary elements: Algorithm Module, Model Pool Module, and Task Pool Module. In
Section 3.1, we introduce the codebase, which is designed to be flexible and modular, allowing users
to easily run experiments and evaluate the performance of model fusion algorithms. In Section 3.2
and Section 3.3, we introduce the implemented model fusion algorithms and the tasks and models
included in FusionBench. Finally, in Section 3.4, we discuss the documentation and tutorials provided
to help users understand the benchmark and effectively use the codebase. In Appendix A, we provide
a flowchart to illustrate the process of running experiments and evaluating the merged models.

3.1 CODEBASE

We’ve constructed a flexible and modular codebase, which serves as the foundation for FusionBench.
As shown in Figure 2, the codebase is composed of three primary elements: Algorithm Module,
Model Pool Module, and Task Pool Module, which are responsible for implementing the model fusion
algorithms, managing the models to be fused, and managing the tasks to be evaluated, respectively.
Additionally, we provide a command line interface (CLI) to facilitate the use of the codebase and to
enable users to easily run experiments and evaluate the performance of model fusion algorithms.

• Algorithm Module is the core component of the codebase, which contains the implementation of
various model fusion algorithms. Each algorithm is implemented as a separate Python class, which
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YAML configurations

Model Pool Task PoolFusion Algorithm

Models, Datasets, and Metrics

Models & Model Warpers Datasets Metrics

Model
Fusion

Model
Evaluation

model ensemble
max-model predictor

model-wise merged models
layer-wise merge models

... ...

image classification datasets
out-of-distribution test set
text classification datasets
prompt-based text datasets

... ...

multi-class accuracy
exact match accuracy

Spearman's 
average aggregation

... ...

full fine-tuned & LoRA fine-tuned
different model size

diverse range of tasks

Unified Command Line Interface

Ensemble
Merging
Mixing Vision tasks, NLP tasks

extensive, configurable
easy to customize

independently
callable

Experimental Results Analysis

ResNet
CLIP
GPT-2
Flan-T5

Figure 2: The general framework of the modularized FusionBench codebase.

Table 1: Implemented model fusion algorithms in FusionBench.

CTGY. METHOD REQUIREMENT

Ensemble
Simple Ensemble (Sagi & Rokach, 2018) -
Weighted Ensemble (Sagi & Rokach, 2018) hyperparameter search
Max-Model Predictor (Wu et al., 2019) -

Merging

Simple Average / Modelsoups (Wortsman et al., 2022) -
Weighted Average (Matena & Raffel, 2022) hyperparameter search
Fisher Merging (Matena & Raffel, 2022) compute weights on labeled data
RegMean (Jin et al., 2022) compute weights on labeled data
Task Arithmetic (Ilharco et al., 2022) hyperparameter search
Ties-Merging (Yadav et al., 2023) hyperparameter search
Task-Wise AdaMerging (Yang et al., 2023) test-time adaptation training
Layer-Wise AdaMerging (Yang et al., 2023) test-time adaptation training
Concrete Subspace (Tang et al., 2023b) test-time adaptation training

Mixing

Depth Upscaling (Kim et al., 2023) pre-training to recover performance
MoE-based Upscaling (Komatsuzaki et al., 2022) pre-training to recover performance
MoE-based Merging (Komatsuzaki et al., 2022) training on the combined model
Weight-Ensemble MoE (Tang et al., 2024c) test-time adaptation training, vision tasks
Pareto-Driven Merging (Tang et al., 2024a) training datasets
SMILE Upscaling (Tang et al., 2024b) -
Model Recombination (Hu et al., 2023) training on the combined model

inherits from the base class ModelFusionAlgorithm. The algorithm classes are designed
to be configurable and independently callable, allowing users to easily instantiate and set up the
algorithms through our CLI or by directly invoking the Python classes in their own code.

• Model Pool Module is responsible for managing the models to be fused. It offers a unified interface
for loading the pre-trained model and fine-tuned models. The module is designed to be extensible,
allowing users to easily add support for new model architectures and add their own models to the
pool. Each model in the pool can also be associated with metadata to meet the requirements of
specific model fusion algorithms, such as the test dataset for test-time adaptation training.

• Task Pool Module is responsible for managing the tasks to be evaluated. Each task comprises a
dataset and a set of evaluation metrics, which are defined in the YAML configuration file. This
module offers a unified interface for loading tasks and assessing the performance of model fusion
algorithms on these tasks. Users can effortlessly add support for new task types and evaluation
metrics, or add new tasks of the same type but with different datasets.
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Table 2: Tasks and models included in FusionBench for evaluating multi-task model fusion algorithms.

DOMAIN TASK TYPE DATASETS MODELS

Computer
Vision

Image
classification
(8 domains)

SUN397, Stanford
Cars (Krause et al., 2013),

RESISC45 (Cheng et al., 2017),
EuroSAT (Helber et al., 2018),

SVHN (Netzer et al., 2011),
GTSRB (Stallkamp et al.,

2012), MNIST (Lecun et al.,
1998), DTD (Cimpoi et al.,

2014)

8×CLIP-ViT-B/32,
24×CLIP-ViT-B/16 (w/ LoRA, L-LoRA),

8×CLIP-ViT-L/14

Sence Understanding
(3 tasks) NYUv2 (Silberman et al., 2012) 3×Resnet-50 models

Natural
Language
Processing

Text
classification
(7 domains)

CoLA, MNLI, MRPC, QNLI,
QQP, RTE, and SST-2 (Wang, 2018) 7×GPT-2

Text-to-text
generation
(8 tasks)

CoLA, MNLI, MRPC, QNLI,
QQP, RTE, SST-2, and

STSB (Wang, 2018)

16×Flan-T5-Base (w/ & w/o LoRA),
8×Flan-T5-Large (w/ LoRA)

(a) Clean (b) Motion (c) Impulse (d) Gaussian (e) Pixelate (f) Spatter (g) Contrast (h) JPEG

Figure 3: Here are eight instances of distorted images from the Stanford Cars dataset, which are used
to assess the robustness and generalization capacity of the TTA-based merging algorithms.

3.2 IMPLEMENTED ALGORITHMS

In our benchmark, we have implemented 16 model fusion algorithms as the initial set. This includes
3 model ensemble methods, 8 model merging methods, and 5 model mixing methods. Our primary
selection criterion for choosing among various algorithms is their applicability and effectiveness
within the realm of deep learning architectures We have also considered the popularity of the
algorithms in the literature and their practical applicability, such as their potential use in large-scale
language models. We list the implemented algorithms in Table 1.

As shown in Table 1, we implemented three kinds of model fusion algorithms. A brief introduction
and formal definition of our taxonomy are provided in Section 2. Model ensemble methods are
effective at enhancing the performance of a machine learning system, but they are computationally
expensive to infer. Model merging methods aim to integrate the advantages of individual models,
making them popular in multi-task model fusion and auxiliary learning. In these scenarios, multiple
single-task models are merged to construct a multi-task model, or models focused on auxiliary tasks
are combined to boost the performance of a primary task. Model mixing methods are frequently
used to scale up a pre-trained model to a larger size or to combine multiple models into a new one.
Consequently, model mixing methods often necessitate additional training after the fusion process.

3.3 TASKS AND MODELS

Model fusion is a versatile technique that can be applied across various machine learning tasks at
different stages of model development. In FusionBench, we specifically provide a diverse array
of tasks and corresponding fine-tuned models to ensure a fair and comprehensive evaluation of
multi-task model fusion algorithms. We have selected tasks from the domains of computer vision
and natural language processing, as these are the most popular and extensively studied areas in deep
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learning research. The tasks included in our benchmark are open-vocabulary image classification,
text classification, and text-to-text generation. We list these tasks and models in Table 2. We make
them publicly available to facilitate reproducibility and further research at HuggingFace.

• Open-vocabulary image classification is a challenging task that requires models to classify images
into a large number of categories. We have selected eight image classification datasets, including
SUN397 (Xiao et al., 2010), Stanford Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017),
EuroSAT (Helber et al., 2018), SVHN (Netzer et al., 2011), GTSRB (Stallkamp et al., 2012),
MNIST (Lecun et al., 1998), DTD (Cimpoi et al., 2014). These datasets cover a wide range of
image classification tasks, including object recognition, satellite image classification, and texture
classification. Customized tasks can be easily added to the benchmark by configuring the YAML
file. We fine-tuned two CLIP-ViT models, CLIP-ViT-B/32 and CLIP-ViT-L/14, on these datasets.
We report accuracy as the evaluation metric for these tasks. Specifically, to assess the robustness of
multi-task model fusion algorithms, particularly those needing test-time adaptation training, we
adopt the techniques recommended by Hendrycks & Dietterich (2019) to create corrupted versions
of the test set for Cars, EuroSAT, RESISC45, and GTSRB. These corruptions are designed to
simulate common image corruptions in real-world scenarios, including motion blur, impulse noise,
Gaussian noise, pixelation, spatter, contrast adjustments, and JPEG compression.

• Scene understanding tasks are performed using the NYUv2 (Silberman et al., 2012) dataset,
which consists of RGB-D images and includes three tasks: 13-class segmentation, depth estimation,
and surface normal estimation. We fine-tuned ResNet-50 models (He et al., 2016) as the backbone
for our experiments. The initial weights for these models were pre-trained on the ImageNet dataset.
We then adapted them to the specific downstream tasks.

• Text classification is a fundamental task in natural language processing that involves categorizing
text data into predefined classes. We have selected seven text classification tasks from the General
Language Understanding Evaluation (GLUE) benchmark (Wang, 2018), including CoLA, MNLI,
MRPC, QNLI, QQP, RTE, and SST-2. We fine-tuned GPT-2 models on these seven tasks, each with
a different head for classification (Radford, 2018). We report accuracy as the evaluation metric.

• Text-to-text generation poses greater challenges compared to text classification, as it necessitates
generating appropriate text outputs rather than mapping hidden representations to logits. Similar to
text classification, we have selected eight text-to-text generation tasks from the GLUE benchmark,
including CoLA, MNLI, MRPC, QNLI, QQP, RTE, SST-2, and STSB. We fine-tuned Flan-T5
models on these tasks, with and without the LoRA adaptation (Hu et al., 2021). The prompt
templates for these tasks are provided in Appendix E. As for the evaluation metric, we report
Spearman’s ρ for STSB and exact match accuracy for other tasks.

3.4 DOCUMENTATION, TUTORIALS, AND THEORETICAL FRAMEWORK OF MODEL FUSION

Documentation and tutorials are essential for beginners to understand the methodology behind the
benchmark, to reproduce the experiments, and to effectively use the codebase. To this end, we offer
comprehensive documentation and tutorials on the project homepage, which guide users through the
fundamentals of model fusion, the steps to run experiments, and the procedures for evaluating the
performance of model fusion algorithms. Additionally, we present some experimental results to shed
light on the performance of different model fusion algorithms across various tasks.

As for the theoretical framework and insight of model fusion, each category of fusion algorithms
operates on distinct theoretical foundations and assumptions, making it challenging to provide a
comprehensive overview within the confines of a single paper. To illustrate: (1) Ensemble methods
are rooted in the “wisdom of the crowd” principle (Sagi & Rokach, 2018). This approach posits that
combining multiple models can yield superior performance compared to any individual model; (2)
Weight interpolation-based model merging methods typically typically based on the findings of linear
mode connectivity in deep neural networks, i.e. The existence of linear paths of low loss between
solutions of optimization (Freeman & Bruna, 2016; Simsek et al., 2021); (3) Mixing methods, such
as MoE-based model upscaling methods (Yadav et al., 2024), are founded on the understanding
that parameter/task interference is a prevalent issue in multi-task model fusion (Yu et al., 2024;
Tang et al., 2024b; Wang et al., 2024). These methods recognize that this interference problem is
difficult to be effectively addressed within the original weight space. This diversity in theoretical
underpinnings highlights the complexity and richness of the model fusion landscape. We provide a
suggested reading list along with the documentation to help users delve deeper into these topics.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) CLIP-ViT-B/32

20
40
60
80
100

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

(b) CLIP-ViT-L/14

20
40
60
80
100

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

Pre-trained
Fine-tuned(STL)

Weight Averaging
Fisher Merging

RegMean
Task Arithmetic

Ties-Merging
task-wise AdaMerging

layer-wise AdaMerging
WEMoE(ModelMixing)

Figure 4: Radar charts comparing the performance of different model fusion methods across multiple
tasks using CLIP-ViT-B/32 and CLIP-ViT-L/14.

Table 3: Multi-task performance when merging CLIP-ViT-B/32 models on all eight tasks.

METHOD SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD AVG.

Reference Methods
Pre-trained 63.2 59.8 60.7 46.0 31.6 32.5 48.2 43.9 48.2
Individual Fine-tuned 75.0 78.3 95.2 99.0 97.3 98.9 99.6 79.7 90.3
Traditional MTL 72.3 76.6 92.2 97.9 95.5 97.7 99.3 77.7 88.6

Multi-Task Model Fusion Methods
Weight Averaging 65.4 62.6 70.8 76.9 64.5 54.9 86.3 50.9 66.5
Fisher Merging 66.7 64.0 72.2 91.6 69.0 64.3 83.5 53.7 70.6
RegMean 67.8 68.9 82.5 94.4 90.6 79.2 97.6 63.2 80.5
Task Arithmetic 57.1 55.7 64.9 76.7 77.9 68.5 96.1 47.2 68.0
Ties-Merging 67.1 64.2 74.1 76.8 77.7 69.4 94.1 54.0 72.2
task-wise AdaMerging 58.6 56.9 69.8 82.4 70.3 58.9 97.2 55.3 68.7
layer-wise AdaMerging 67.9 71.3 83.5 92.7 87.4 92.9 98.2 67.0 82.6
WEMoE (Model Mixing) 73.7 76.8 93.4 98.2 96.8 98.2 99.6 76.6 89.2
SMILE (Model Mixing) 73.6 77.8 92.0 98.3 96.9 98.1 99.6 78.1 89.3

4 EVALUATION AND ANALYSIS

In this section, we evaluate the performance of multi-task model fusion algorithms on a variety of
tasks, as well as analyze the generalization and robustness of these algorithms. We also provide an
ablation study to investigate the impact of hyperparameter selection. Most of the experiments are
conducted with a single NVIDIA RTX 3090 GPU with 24GB memory.

4.1 EXPERIMENTAL SETUP

In this section, we conduct a series of multi-task model fusion experiments on image classification
tasks, text classification tasks, and text-to-text generation tasks to evaluate the performance of multi-
task model fusion algorithms. These tasks are chosen to cover a wide range of NLP and CV tasks, as
described in Section 3.3. Table 2 provides a summary of the tasks and models used in our experiments.

4.2 MULTI-TASK MODEL FUSION

In this evaluation, we begin by comparing multi-task model fusion algorithms under several settings:

1. Image Classification: We use CLIP models from HuggingFace. Results for CLIP-ViT-B/32
are in Table 3 and Figure 4(a), and for CLIP-ViT-L/14 in Table 15 and Figure 4(b).
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Table 4: Experimental results of merging single-task Resnet50 models on three NYUv2 tasks.

METHOD SEGMENTATION DEPTH ESTIMATION NORMAL
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Mean ↓

Single-Task Learning
Segmentation 52.0 73.8 242.8 88.7 82.8

Depth Estimation 2.3 6.2 42.5 17.7 82.8
Normal 2.0 4.9 264.0 98.1 24.7

Multi-Task Model Fusion Methods
Weight Averaging 39.0 67.0 55.1 22.7 30.4

Task Arithmetic (λ = 0.3) 33.6 63.3 56.3 23.2 31.3
Ties-Merging (λ = 0.3) 36.3 61.7 60.5 24.5 33.1

Table 5: Generalization results on two unseen tasks when merging ViT-B/32 models on six tasks.

METHOD Seen Tasks (ACC) Unseen Tasks (ACC)
SUN397 Cars RESISC45 DTD SVHN GTSRB Avg. MNIST EuroSAT Avg.

Pre-trained 63.2 59.9 60.6 43.9 23.5 30.4 46.9 47.6 45.6 46.6

Fisher Merging 65.5 67.2 78.2 57.6 84.2 75.9 71.4 71.8 49.4 60.6
RegMean 68.7 70.0 86.5 65.9 93.9 86.7 78.6 82.2 49.3 65.7
Task Arithmetic 64.3 63.0 73.2 54.9 84.7 79.5 69.9 75.5 42.6 59.1
Ties-Merging 68.3 65.5 76.9 54.9 75.4 72.0 68.9 73.1 47.3 60.2
AdaMerging 68.4 71.9 87.9 69.1 92.2 93.8 80.5 77.7 47.3 62.5
WEMoE 75.4 77.5 94.3 77.0 96.8 98.7 86.6 78.3 44.0 61.1

2. Scene Understanding: Using ResNet-50 models on the NYUv2 dataset for segmentation,
depth estimation, and normal estimation tasks. Results are in Table 4.

3. Text Classification: Results for GPT-2 models on seven tasks are shown in Table 13.
4. Text-to-Text Generation: For LoRA fine-tuned Flan-T5-base and Flan-T5-large models,

after merging and unloading the LoRA adapters, results are in Tables 14 and 16.

In these tables, we compare the performance of different multi-task model fusion algorithms across
various tasks. Pre-trained models’ performance, fine-tuned models’ performance, and traditional
multi-task learning (MTL) methods are provided for reference. In Appendix B, we provide a detailed
description of these fine-tuned single-task models.

We have the following key observations: (1) Multi-task model fusion usually outperforms pre-trained
models, showing it can transfer knowledge from multiple single-task models to enhance performance.
Pre-trained models lack task-specific knowledge as they are not fine-tuned for downstream tasks.
(2) Adaptive method (AdaMerging) and MoE-based method perform best in multi-task model
fusion, showing the effectiveness of adaptive merging and mixture-of-experts approaches. (3) The
performance gap between multi-task model fusion and single-task fine-tuned models (STL) is larger
for CLIP-ViT-B/32 compared to CLIP-ViT-L/14. This suggests that multi-task model fusion may be
more beneficial for smaller models, as they have more room for improvement through knowledge
transfer. (4) Traditional MTL outperforms most multi-task model fusion methods, which indicates that
traditional MTL is still a strong baseline for multi-task learning, and there is room for improvement
in multi-task model fusion algorithms.

4.3 GENERALIZATION AND ROBUSTNESS EVALUATION

To further assess the generalization and robustness of multi-task model fusion algorithms, we conduct
experiments on unseen tasks and corrupted test sets (or out-of-distribution test sets). (1) Tables 5
and 17 present the generalization performance of various multi-task model fusion algorithms when
merging CLIP-ViT-B/32 models trained on six seen tasks and evaluating their performance on two
unseen tasks. This analysis helps us understand how well the fused models can adapt to new tasks
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Table 6: Ablations of the test data distribution on ViT-B/32 (for all methods, λ = 0.3).

METHOD Cars EuroSAT RESISC45 GTSRB Avg. Cars EuroSAT RESISC45 GTSRB Avg.

Clean Test Set Corrupted Test Set (Motion Blur)
Fisher Merging 66.0 92.7 83.7 78.7 80.3 60.7 57.6 81.7 78.4 69.6
RegMean 72.1 97.5 88.9 93.9 88.1 70.0 71.3 87.5 86.8 78.9
Task Arithmetic 64.6 91.8 80.2 74.8 77.9 62.4 59.2 78.5 63.3 65.9
Ties-Merging 65.2 83.3 78.1 67.4 73.5 64.4 53.9 76.4 57.1 62.9
AdaMerging 75.2 94.3 87.6 96.7 88.5 72.4 72.7 85.3 94.3 81.2
WEMoE 77.4 98.9 94.4 99.0 92.4 76.5 74.2 93.7 97.4 85.5

Corrupted Test Set (Impluse Noise) Corrupted Test Set (Gaussian Noise)
Fisher Merging 61.5 50.0 74.7 52.6 59.7 61.6 48.1 76.0 51.3 59.3
RegMean 66.9 51.0 80.6 68.7 66.8 69.4 41.8 84.0 67.7 65.7
Task Arithmetic 59.8 53.3 72.3 45.0 57.6 61.5 52.5 75.0 50.1 59.8
Ties-Merging 60.2 45.6 69.8 38.3 53.5 61.8 47.3 73.1 42.3 56.1
AdaMerging 69.2 40.0 79.6 83.3 68.0 70.0 53.3 82.1 80.0 71.4
WEMoE 75.1 9.7 91.5 91.8 67.0 76.5 9.6 92.7 88.7 66.8

Corrupted Test Set (Pixelate) Corrupted Test Set (Spatter)
Fisher Merging 2.2 34.0 17.0 63.2 29.1 61.4 64.2 74.6 47.3 61.9
RegMean 2.3 38.3 18.2 89.4 37.0 67.7 60.0 81.3 81.9 72.7
Task Arithmetic 2.3 33.2 19.1 65.6 30.0 61.0 62.5 72.8 57.0 63.3
Ties-Merging 3.3 31.8 18.0 58.5 27.9 61.3 52.9 70.3 48.1 58.2
AdaMerging 1.3 52.9 21.0 91.0 41.5 68.4 55.9 78.3 92.3 73.7
WEMoE 0.5 11.6 2.3 97.5 28.0 75.1 9.7 91.4 96.3 68.1

Corrupted Test Set (Contrast) Corrupted Test Set (JPEG Compression)
Fisher Merging 63.8 58.4 75.5 70.4 67.0 66.3 67.6 82.6 58.9 68.8
RegMean 69.6 64.8 84.4 90.0 77.2 71.5 72.6 88.7 82.2 78.7
Task Arithmetic 62.3 55.7 75.3 70.8 66.0 63.9 66.1 80.1 61.0 67.8
Ties-Merging 64.2 52.4 74.8 63.5 63.7 65.0 59.5 77.9 53.2 63.9
AdaMerging 73.1 67.4 83.0 96.2 79.9 72.9 70.7 86.3 90.6 80.1
WEMoE 77.2 34.7 93.1 98.4 75.9 77.3 61.0 94.1 95.7 82.0

that were not encountered during the training and model fusion process. Additional details and
discussions regarding the generalization experiments can be found in Appendix D. (2) Furthermore,
in Table 6, we investigate the robustness of multi-task model fusion algorithms by evaluating their
performance on corrupted test sets. These corrupted test sets are designed to simulate real-world
scenarios where the input data may be noisy or corrupted.

We have the following key observations: (1) The performance of all multi-task model fusion methods
on unseen tasks is generally lower than their performance on seen tasks. This is expected, as the
models being fused are not explicitly trained on the unseen tasks. (2) A negative transfer is observed
in Table 17 on the RESISC45 dataset, where the merged models exhibit lower accuracy compared
to the pre-trained model. The performance of all multi-task model fusion methods on RESISC45
is lower than the pre-trained model, indicating that the knowledge transferred from the seen tasks
may not be beneficial or even harmful to this specific unseen task. (3) The performance of all
methods drops significantly on certain types of corruptions, such as pixelation and impulse noise.
This highlights the challenge of maintaining robustness under severe distribution shifts and the need
for further research in this direction. (4) When the test distribution is corrupted, adaptive methods
may overfit to certain tasks, leading to a decrease in overall performance. This suggests that adaptive
methods may need to be further regularized to improve generalization and robustness.

4.4 APPLYING MODEL FUSION METHODS TO LARGE-SCALE NEURAL NETWORKS

Model fusion methods can also be applied to large-scale neural networks including Large Language
Models (LLMs) and Multimodal Large Language Models (MLLMs). The high computational cost
associated with developing LLMs are a significant practical challenge for many researchers. In
FusionBench, we have developed multiple model fusion techniques applicable to LLMs for cheap and

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: Comparison of individual Mistral-7B models and the upscaled model on various benchmark
tasks. For our method, we set kgate = 8, k = 512, and the total parameter count is 11.2B. For a
better comparison, we also include the performance of the Qwen1.5-14B model as a reference.

MODEL MMLU TruthfulQA GSM8K ARC Challenge

Mistral-7B-v0.1 (pre-trained) 59.64 42.62 38.81 53.92
Qwen1.5-14B (reference) 66.11 52.00 69.37 49.93

MetaMath-Mistral-7B 60.56 44.79 71.49 51.02
dolphin-2.1-mistral-7b 60.56 55.88 56.93 57.00

speechless-code-mistral-7b-v1.0 61.18 47.47 48.98 57.68

Simple Average 61.42 49.95 67.40 57.59
Task Arithmetic (λ = 0.3) 61.29 49.38 66.94 57.94

SMILE Upscaled model (k = 512, 11.2B) 60.66 52.79 67.85 54.35
SMILE Upscaled model (Dense experts) 60.61 54.23 70.66 55.12

efficient model scaling, which can save computational resources for developing new models. We plan
to expand the benchmark to include LLM task evaluation in the future. However, currently, this is not
our main focus due to the following challenges: (1) Evaluation immaturity: The evaluation method-
ologies for LLMs and MLLMs are not as well-established or standardized as those for the tasks
already included in our benchmark. (2) Resource constraints: The high computational costs associ-
ated with reproducing experiments involving LLMs and MLLMs pose a significant practical challenge
for many researchers. Therefore, after merging LLMs using algorithms implemented in FusionBench,
we should utilize established evaluation frameworks like LM-Evaluation-Harness (Gao et al.,
2024) to assess the performance of the fused models on various LLM tasks.

Take merging Mistral-7B models using SMILE upscaling (Tang et al., 2024b) as an example, we
compare the performance of the individual Mistral-7B models and the upscaled model on various
benchmark tasks in Table 7, as well as the performance of the Qwen1.5-14B model as a reference.
The LM-Evaluation-Harness is utilized to assess the performance of the models. We fuse three
Mistral-7B models, each fine-tuned for a distinct downstream task as showing varying performance
across different tasks, thereby incorporating task-specific expertise. It is observed that the upscaled
models and merged methods (Simple Average, Task Arithmetic) generally enhance performance
compared to individual models, demonstrating the benefits of model fusion techniques.

5 CONCLUSIONS, FUTURE PLANS

Conclusions. We’ve developed a flexible and modular codebase, which serves as the foundation
for FusionBench. Our benchmark provides a comprehensive evaluation framework for assessing the
performance of multi-task model fusion algorithms. This innovative and comprehensive framework
underscores the advantages of a scalable and extendable architecture, thereby simplifying the creation
of deep model fusion algorithms. We also organize and provide a collection of datasets and models,
which can be utilized to ensure a fair comparison. Last, FusionBench comes with extensive documen-
tation and a series of tutorials, making it user-friendly for beginners and interested researchers. We
hope that the community will leverage this benchmark to develop and evaluate new fusion algorithms
and to further the popularity of deep model fusion in the machine learning community.

Limitations and Future Plans. To date, FusionBench primarily focuses on the evaluation of deep
model fusion algorithms for multi-task learning. Despite having implemented numerous fusion
algorithms, including those that don’t primarily focus on multi-task learning, we have not yet to
investigate the evaluation for these methods. In the future, we plan to extend the benchmark to
provide a more comprehensive evaluation framework for them. What’s more, we plan to extend
the benchmark by incorporating additional datasets and applications, such as human preference
alignment, multi-modal fusion, and reinforcement learning tasks.
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A FLOWCHART OF FUSIONBENCH
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Figure 5: Flowchart of FusionBench.

Figure 5 illustrates the steps to fuse a model using FusionBench across three main stages: creating a
model pool, instantiating and runing an algorithm, and (optional) model evaluation.
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B EVALUATION OF FINE-TUNED SINGLE-TASK MODELS

In this section, we describe the experimental setup for fine-tuning the models and present the
performance results of the fine-tuned single-task models.

1. CLIP-ViT-B/32 Models: The CLIP models are fine-tuned on eight image classification
tasks: SUN397, Cars, RESISC45, EuroSAT, SVHN, GTSRB, MNIST, and DTD. The
Adam Optimizer is employed with a fixed learning rate of 1e-5 for a total of 4000 training
steps with the batch size of 32. Only the vision encoder is fine-tuned to maintain the
model’s open-vocabulary characteristic. The performance of fine-tuned CLIP-ViT-B/32 and
CLIP-ViT-L/14 models on the eight image classification tasks is shown in Tables 8 and 9,
respectively. In Figure 6, we visualize the cosine similarity matrices of task vectors for
CLIP-ViT-B/32 and CLIP-ViT-L/14 models. We note that the task vectors for models from
various tasks are nearly orthogonal. This suggests that the knowledge specific to each task
resides in distinct directions or subspaces. This finding motivates the exploration of locating
subspaces in which the knowledge of different tasks can be merged effectively, as discussed
in Tang et al. (2023b).

2. ResNet-50 Models: We fine-tune ResNet-50 models on three scene understanding tasks:
segmentation, depth estimation, and normal estimation using the NYUv2 dataset, each with
a learning rate of 1e-4 for 40 epochs, the learning rate is reduced by a factor of 0.5 every
10 epochs. The performance of fine-tuned single-task ResNet-50 models on the NYUv2
dataset is shown in Table 4.

3. GPT-2 Models: GPT2 model fine-tuned on tasks from GLUE benchmark, using a constant
learning rate of 5e-5 for 3 epochs. The performance of fine-tuned single-task GPT-2 models
on the seven text classification tasks is shown in Table 10.

4. Flan-T5 Models: In this work, we fine-tune Flan-T5-base and Flan-T5-large models on eight
text-to-text generation tasks from the GLUE benchmark. The results of LoRA fine-tuned
Flan-T5-base and Flan-T5-large models are shown in Tables 11 and 12, respectively.

Table 8: Performance of fine-tuned single-task CLIP-ViT-B/32 models on the eight image classifica-
tion tasks.

MODEL SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Pre-trained 63.2 59.8 60.7 46.0 31.6 32.5 48.2 43.9

SUN397 75.0 47.0 54.3 46.5 28.3 26.4 44.3 41.6
Cars 56.6 78.3 50.9 38.4 30.2 30.6 49.7 41.8
RESISC45 52.0 47.2 95.2 56.9 23.9 24.3 39.7 35.9
EuroSAT 49.0 39.9 33.5 99.0 11.8 22.9 33.8 35.5
SVHN 40.5 36.3 18.9 9.8 97.3 27.3 81.8 23.2
GRSRB 36.9 33.0 20.6 21.3 41.2 98.9 30.9 23.9
MNIST 50.3 40.0 31.3 17.7 50.1 19.3 99.6 30.7
DTD 54.6 51.3 36.8 25.0 28.9 21.8 47.3 79.7

Based on the performance metrics detailed in these tables, we observe that the fine-tuned models
demonstrate high accuracy on specific tasks. This observation holds true across various model
architectures and task domains, indicating the effectiveness of the fine-tuning process in adapting
pre-trained models to excel in particular applications.

What’s more, fine-tuning a model on one task can lead to both positive and negative transfer effects
on other tasks. Positive transfer occurs when the knowledge gained from fine-tuning on one task
enhances the model’s performance on another task, while negative transfer arises when the fine-tuning
process on one task hinders the model’s ability to perform well on other tasks.
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Table 9: Performance of fine-tuned single-task CLIP-ViT-L/14 models on the eight image classifica-
tion tasks.

MODEL SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Pre-trained 68.3 77.8 71.0 58.9 58.4 50.6 76.4 55.5

SUN397 82.8 68.4 58.1 49.9 55.0 46.3 79.5 52.8
Cars 67.8 92.9 68.7 56.4 51.7 47.7 80.5 55.6
RESISC45 65.6 69.0 97.4 64.3 38.3 46.6 77.7 49.9
EuroSAT 65.2 69.0 40.6 99.2 33.4 45.6 73.5 47.1
SVHN 66.5 69.0 54.0 19.7 97.9 48.7 92.2 50.1
GRSRB 63.4 64.8 38.7 19.6 71.0 99.2 75.1 45.8
MNIST 56.1 49.8 53.5 26.6 48.2 33.1 99.8 47.1
DTD 66.8 75.3 65.5 43.7 49.5 45.0 68.5 85.5

SUN39
7

Cars

RESISC45

Euro
SAT

SVHN

GTSRB

MNIST
DTD

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

1.00 0.02 0.03 0.02 0.01 0.02 0.01 0.03

0.02 1.00 0.02 0.01 0.01 0.02 0.02 0.02

0.03 0.02 1.00 0.05 0.01 0.02 0.02 0.02

0.02 0.01 0.05 1.00 0.02 0.03 0.01 0.02

0.01 0.01 0.01 0.02 1.00 0.07 0.15 0.01

0.02 0.02 0.02 0.03 0.07 1.00 0.05 0.02

0.01 0.02 0.02 0.01 0.15 0.05 1.00 0.02

0.03 0.02 0.02 0.02 0.01 0.02 0.02 1.00

Heatmap of Cos Similarities

0.2

0.4

0.6

0.8

1.0

(a) CLIP-ViT-B/32 models.

SUN39
7

Cars

RESISC45

Euro
SAT

SVHN

GTSRB

MNIST
DTD

SUN397

Cars

RESISC45

EuroSAT

SVHN

GTSRB

MNIST

DTD

1.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01

0.01 1.00 0.01 0.01 0.01 0.01 0.01 0.01

0.02 0.01 1.00 0.05 0.01 0.01 0.01 0.02

0.01 0.01 0.05 1.00 0.03 0.02 0.02 0.01

0.01 0.01 0.01 0.03 1.00 0.05 0.09 0.01

0.01 0.01 0.01 0.02 0.05 1.00 0.03 0.01

0.01 0.01 0.01 0.02 0.09 0.03 1.00 0.01

0.01 0.01 0.02 0.01 0.01 0.01 0.01 1.00

Heatmap of Cos Similarities

0.2

0.4

0.6

0.8

1.0

(b) CLIP-ViT-L/14 models.

Figure 6: Cosine similarity matrices of task vectors for CLIP-ViT-B/32 and CLIP-ViT-L/14 models.

Table 10: Performance of fine-tuned single-task GPT-2 models on the seven text classification tasks.

MODEL CoLA MNLI MRPC QNLI QQP RTE SST-2

CoLA 76.8 32.8 68.4 50.4 39.2 48.0 51.0
MNLI 59.5 82.1 33.8 46.5 24.9 57.4 40.5
MRPC 30.8 25.9 80.4 47.1 65.9 49.1 49.1
QNLI 58.7 38.9 30.6 88.3 39.9 48.7 47.0
QQP 31.4 25.7 62.3 45.0 89.6 49.1 49.1
RTE 52.8 47.7 37.5 53.5 33.7 65.3 54.9
SST-2 51.8 32.9 40.2 49.8 56.8 44.4 91.2

Table 11: Performance of LoRA fine-tuned Flan-T5-Base models on the eight text-to-text generation
tasks from the GLUE benchmark.

MODEL CoLA MNLI MRPC QNLI QQP RTE SST2 STSB

Pre-trained 69.1 56.5 76.2 88.4 82.1 80.1 91.2 62.2

CoLA 69.1 39.9 75.2 89.1 81.1 81.9 90.7 54.0
MNLI 69.4 82.7 73.8 89.3 82.0 79.4 90.9 68.1
MRPC 64.0 44.9 85.5 82.6 81.0 69.0 88.6 73.6
QNLI 68.9 52.7 76.7 90.9 82.8 79.8 91.5 68.9
QQP 65.0 54.6 75.7 89.0 84.0 81.6 90.7 75.3
RTE 64.9 51.8 69.4 89.2 79.8 84.5 90.6 70.1
SST2 68.3 56.6 76.0 88.5 83.4 79.8 92.9 62.6
STSB 65.7 1.7 67.4 89.3 80.1 79.8 90.8 87.4
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Table 12: Performance of LoRA fine-tuned Flan-T5-Large models on the eight text-to-text generation
tasks from the GLUE benchmark.

MODEL CoLA MNLI MRPC QNLI QQP RTE SST2 STSB

Pre-trained 73.7 56.6 82.4 91.1 85.5 85.6 94.3 87.5

CoLA 80.2 53.9 81.4 90.8 84.5 84.1 93.9 87.1
MNLI 73.7 88.5 77.9 92.4 85.2 87.7 94.4 86.7
MRPC 75.6 52.6 89.2 92.6 84.4 86.3 94.3 86.3
QNLI 73.5 54.5 82.8 94.4 85.8 85.2 93.7 87.1
QQP 74.0 53.8 82.8 92.5 87.2 85.6 94.5 88.3
RTE 75.6 57.5 69.9 92.8 83.8 91.7 94.6 86.0
SST2 73.6 55.3 82.1 91.6 85.5 85.2 95.2 86.9
STSB 73.4 39.3 82.1 92.6 86.1 83.4 94.0 90.9

C MULTI-TASK MODEL FUSION

ResNet
Backbone

ResNet
Backbone

ResNet
Backbone

Segmentation depth Normal

Model Merging 
ResNet

Backbone

Copy
Segmentation depth Normal

(a) Single-task models (b) Multi-task model

Figure 7: Merging ResNet-50 models on three scene understanding tasks: segmentation, depth
estimation, and normal estimation. Where the backbones are merged and the heads are kept separate.

Table 13: Multi-task performance when merging GPT-2 models on seven text classification tasks.

METHOD CoLA MNLI MRPC QNLI QQP RTE SST-2 Avg.

Reference Methods
Fine-tuned (STL) 76.8 82.1 80.4 88.3 89.6 65.3 91.2 82.0

Multi-Task Model Fusion Method
Simple Average 55.0 55.1 51.0 57.6 76.7 44.8 52.5 56.1
Fisher Merging 54.8 58.0 39.5 63.3 81.5 49.1 64.7 58.7
RegMean 61.7 70.4 65.4 69.7 78.8 56.0 79.7 68.8
Task Arithmetic 68.7 68.6 69.6 70.5 81.8 47.3 83.6 70.0
Ties-Merging 68.4 71.4 68.4 69.6 82.4 47.7 81.8 70.0

We begin by comparing the performance of multi-task model fusion algorithms on various tasks using
different models. These experiments provide insights into the effectiveness of different fusion methods
in improving the performance of multi-task models. We evaluate the performance of multi-task model
fusion algorithms on image classification tasks using CLIP models, scene understanding tasks using
ResNet-50 models, text classification tasks using GPT-2 models, and text-to-text generation tasks
using Flan-T5 models.

1. Image Classification Tasks with CLIP Models: We utilize the CLIP-ViT-B/32 and CLIP-
ViT-L/14 models from the HuggingFace Library (Ilharco et al., 2021). The results of merging
CLIP-ViT-B/32 models on all eight tasks are provided in Table 3 and Figure 4. The results
of CLIP-ViT-L/14 models are shown in Table 15.

2. Scene Understanding Tasks with ResNet-50 Models: We use the NYUv2 dataset and
ResNet-50 models for segmentation, depth estimation, and normal estimation tasks. In
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Table 14: Experimental results of merging Flan-T5-base (LoRA fine-tuned) models on all eight tasks.

METHOD CoLA MNLI MRPC QNLI QQP RTE SST2 STSB Avg.

Reference Methods
Pre-trained 69.1 56.5 76.2 88.4 82.1 80.1 91.2 62.2 75.7
Individual 69.1 82.7 85.5 90.9 84.0 84.4 92.9 87.4 84.6

Multi-Task Model Fusion Methods
Weight Averaging 69.7 59.7 78.9 90.1 83.8 80.5 91.2 72.0 78.2
Task Arithmetic 68.8 55.2 78.7 89.8 83.7 79.1 91.5 72.4 77.4
Ties-Merging 68.3 56.3 79.4 89.8 83.7 79.4 91.6 71.2 77.5
Layer-wise AdaMerging 69.1 60.3 78.4 90.0 83.6 79.1 91.6 74.1 78.3
SMILE (Model Mixing) 69.3 82.9 83.8 90.6 83.9 83.4 93.1 85.1 84.0

Table 15: Multi-task performance when merging CLIP-ViT-L/14 models on all eight tasks.

METHOD SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg.

Reference Methods
Pre-trained 68.3 77.8 71.0 58.9 58.4 50.6 76.4 55.5 64.6
Individual Fine-tuned 82.8 92.9 97.4 99.2 97.9 99.2 99.8 85.5 94.3
Traditional MTL 79.0 89.3 94.5 98.4 96.4 98.1 99.4 83.7 92.4

Multi-Task Model Fusion Methods
Weight Averaging 72.5 81.5 82.2 90.0 81.6 74.0 96.6 61.8 80.0
Fisher Merging 70.6 79.4 84.1 98.1 74.7 85.0 89.5 61.0 80.3
RegMean 75.3 88.4 90.0 97.1 95.9 92.4 98.5 72.6 88.8
Task Arithmetic 72.0 79.0 80.5 86.0 87.5 83.5 98.0 58.8 80.7
Ties-Merging 74.7 83.3 86.4 91.3 89.7 85.2 97.8 63.9 84.0
task-wise AdaMerging 75.8 80.1 77.2 83.6 68.4 93.5 93.1 69.0 80.1
layer-wise AdaMerging 78.1 90.7 90.8 96.5 94.8 97.5 98.6 81.3 91.0
WEMoE (Model Mixing) 81.5 92.3 96.5 98.8 97.6 99.4 99.6 84.5 93.8
SMILE (Model Mixing) 81.9 92.3 95.5 99.1 98.0 98.9 99.7 83.6 93.6

Figure 7, we illustrate the process of merging ResNet-50 models on these tasks, where
the backbones are merged, and the heads are copied separately. The results of merging
ResNet-50 models on these tasks are shown in Table 4.

3. Text Classification Tasks with GPT-2 Models: The results of merging GPT-2 models on
seven text classification tasks are shown in Table 13.

4. Text-to-Text Generation Tasks with Flan-T5 Models: For LoRA fine-tuned Flan-T5-base
and Flan-T5-large models, we merge and unload the LoRA adapters before performing
multi-task model fusion. The results of merging Flan-T5-base and Flan-T5-large models on
all eight tasks are shown in Tables 14 and 16, respectively.

In the above mentioned tables, we compare the performance of different multi-task model fusion
algorithms on various tasks. The results of pre-trained models, fine-tuned models, and traditional
multi-task learning (MTL) are provided as reference methods.
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Table 16: Experimental results of merging Flan-T5-large (LoRA fine-tuned) models on all eight tasks.

METHOD CoLA MNLI MRPC QNLI QQP RTE SST2 STSB Avg.

Reference Methods
Pre-trained 73.7 56.6 82.4 91.1 85.5 85.6 94.3 87.5 82.1
Individual 80.2 88.5 89.2 94.4 87.2 91.7 95.2 90.9 89.6

Multi-Task Model Fusion Methods
Weight Averaging 74.6 84.3 84.1 92.8 86.3 87.4 94.8 88.0 86.5
Task Arithmetic 76.9 85.4 85.3 93.9 85.8 88.1 95.2 87.8 87.3
Ties-Merging 77.1 85.1 86.3 93.9 86.0 87.7 95.1 88.0 87.4
Layer-wise AdaMerging 76.7 87.6 84.8 93.8 85.9 88.1 95.2 88.6 87.6

D GENERALIZATION EXPERIMENTS

Table 17: Generalization results on two unseen tasks when merging ViT-B/32 models on six tasks.

METHOD Seen Tasks (ACC) Unseen Tasks (ACC)
SUN397 Cars GTSRB EuroSAT DTD MNIST Avg. RESISC45 SVHN Avg.

Pre-trained 63.2 59.9 30.4 45.6 43.9 47.6 48.4 60.6 23.5 40.1

Fisher Merging 68.1 67.4 67.2 86.4 58.6 81.6 71.5 60.2 42.5 51.3
RegMean 69.4 70.5 86.9 97.0 67.1 98.3 81.5 50.2 51.5 50.8
Task Arithmetic 65.2 63.6 76.1 87.1 56.4 94.2 73.8 52.4 45.2 48.8
Ties-Merging 68.2 65.9 70.0 81.2 56.0 89.0 71.7 60.3 47.3 53.8
AdaMerging 69.8 72.4 95.5 95.1 70.7 98.1 83.6 48.7 60.7 54.7
WEMoE 74.3 78.1 98.8 98.7 75.1 99.5 87.4 47.3 51.3 49.3

For the generalization experiments, we assess the performance of multi-task model fusion algorithms
on two unseen tasks after merging ViT-B/32 models trained on six tasks. The performance of various
multi-task model fusion methods, including Fisher Merging (Matena & Raffel, 2022), RegMean (Jin
et al., 2022), Task Arithmetic (Ilharco et al., 2022), Ties-Merging (Yadav et al., 2023), AdaMerg-
ing (Yang et al., 2023), and WEMoE (Tang et al., 2024c), is compared across both the seen tasks and
unseen tasks.

Specifically, we conduct two sets of generalization experiments using the CLIP-ViT-B/32 models:

• In the first set, we merge models trained on six tasks (SUN397, Cars, RESISC45, DTD,
SVHN, GTSRB) and evaluate the fused model on the unseen tasks (MNIST, EuroSAT). The
results are shown in Table 5.

• In the second set of experiments, we merge models trained six tasks (SUN397, Cars, GTSRB,
EuroSAT, DTD, MNIST) and evaluate the fused model on the unseen tasks (RESISC45,
SVHN). The results are shown in Table 17.

By conducting these two sets of generalization experiments, we aim to gain a comprehensive
understanding of how the CLIP-ViT-B/32 models, when fused with knowledge from different task
combinations, can perform on various unseen tasks. From these experimental results, we can observe
instances of negative transfer when evaluating the fused CLIP models on unseen tasks. Here, negative
transfer occurs when the knowledge gained from fine-tuning on a set of tasks hinders the model’s
performance on new, unseen tasks. In other words, the model’s ability to generalize and adapt to novel
challenges is compromised due to the specific knowledge acquired during the fine-tuning process.
The presence of negative transfer in these experiments highlights the challenges and limitations of
model fusion and generalization in the context of the CLIP-ViT-B/32 models. Several factors can
contribute to negative transfer, such as:
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• Task dissimilarity: If the unseen tasks are significantly different from the tasks used for fine-
tuning, the learned representations may not be directly applicable, leading to performance
degradation.

• Overspecialization: Fine-tuning on a specific set of tasks may cause the model to overfit to
task-specific features and patterns, reducing its ability to generalize to new tasks.

• Interference between tasks: When merging knowledge from multiple tasks, there may be
conflicts or interference between the learned representations, hindering the model’s ability
to adapt to unseen tasks effectively.

To mitigate the negative transfer and improve the generalization ability of merged models, several
strategies can be explored, such as:

• Task selection: Carefully selecting tasks that are more similar or complementary to the target
unseen tasks can help reduce the risk of negative transfer. This is adapted in Wu et al. (2023),
where the Fisher information matrix is computed for a proxy metric for task similarity.

• Regularization techniques: Applying regularization methods, such as weight decay or
dropout, during the fine-tuning process may help prevent overfitting and promote better
generalization.

E PROMPT-BASED TEXT-TO-TEXT GENERATION

This section details the prompt templates employed for each of the eight text-to-text generation tasks
from the GLUE benchmark., see Section 3.3 for more details. Within each task, we provide the
format of the input text, and the corresponding target text mapping. These templates are crucial in
fine-tuning the Flan-T5 models for generating appropriate text outputs tailored to each specific task.

• CoLA:

– Input Text: "Indicate if the following sentence is grammatically correct or not: "sen-
tence". Answer ‘acceptable’ or ‘unacceptable’."

– Target Text:

* 0: "unacceptable"
* 1: "acceptable"

• MNLI:

– Input Text: "Does the premise: ‘premise’ logically imply, contradict, or is neutral to
the hypothesis: ‘hypothesis’? Answer with ‘entailment’, ‘contradiction’, or ‘neutral’."

– Target Text:

* 0: "entailment"
* 1: "neutral"
* 2: "contradiction"

• MRPC:

– Input Text: "Are the following sentences ‘sentence1’ and ‘sentence2’ conveying the
same meaning? Answer with ‘yes’ or ‘no’."

– Target Text:

* 0: "no"
* 1: "yes"

• QNLI:

– Input Text: "Given the context: ‘sentence’, does the question ‘question’ have an answer
based on the information provided? Answer with ‘yes’ or ‘no’."

– Target Text:

* 0: "yes"
* 1: "no"

• QQP:
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– Input Text: "Do the questions ‘question1’ and ‘question2’ have the same intent? Answer
with ‘yes’ or ‘no’."

– Target Text:

* 0: "no"
* 1: "yes"

• RTE:
– Input Text: "Does the text: ‘sentence1’ entail that ‘sentence2’ is true? Provide ‘yes’ or

‘no’."
– Target Text:

* 0: "yes"
* 1: "no"

• SST-2:
– Input Text: "Given the sentence ‘sentence’, determine the sentiment. Is it positive or

negative?"
– Target Text:

* 0: "negative"
* 1: "positive"

• STSB:
– Input Text: "Consider the sentences ‘sentence1’ and ‘sentence2’. On a scale from 1

(completely different) to 5 (completely similar), rate the similarity."
– Target Text: ":.1f", parse to float with one decimal place

Reporting Metrics: We report accuracy for all tasks except for STSB, where we use Spearman’s
ρ as the evaluation metric. For task STSB, the model is expected to output a numerical value. An
example from the STSB task is as follows:

• Input:
– Sentence 1: A plane is taking off.
– Sentence 2: An air plane is taking off.

• Output:
– label: 5

We try to parse the output as a numerical value. If the model outputs a numerical value, we can
calculate the Spearman’s rho between the predicted numerical value and the ground truth numerical
value. If the model outputs a non-numerical value, we assume the Spearman’s rho is 0, indicating
that there is no discernible monotonic increasing or decreasing relationship between the model’s
predictions and the ground truth. This is a conservative approach, as even non-numerical outputs
might contain some relevant information that’s being discarded in this evaluation.
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