Multimodality extension to Universal Multilingual BPE Text Tokenizer

This abstract is proposing Multimodality extension to the paper One Tokenizer To Rule Them All..[1]. The
referenced paper [1] mainly uses bucketed weighting scheme on unseen/expanded languages by script e.g.
(Devnagari, Hindi) or (Latin, Polish) pair and trains Byte-Pair Encoding (BPE) model on diverse text corpus across
~69 languages (combination of languages used in pretraining and many others that are only intended for tokenizer
coverage). It also provides byte-fallback for edge cases outside training data. This abstract is about concrete
enhancements to the above paper’s [1] bucketed weighting scheme and explicitly accounts for multiple modalities
like Images, Speech, OCR, Text etc. The below enhancements are aimed at achieving >= 0.95 CMS score to
consider the resultant tokenizer as Multimodal tokenizer. 1.Modality-aware buckets[2] Extend buckets to [script,
modality] pairs e.g., (Devanagari, OCR), (Arabic, ASR) and assign higher sampling weights to underrepresented
pairs and monitor per-bucket coverage in tokens/word and bytes/token. Keeping total vocabulary same; train BPE
on weighted samples. Measure improvement in OCR/ASR-related tasks for same scripts; per-bucket tokens/word.
Success: > small positive lift (0.5-2 pts) on OCR-heavy tasks for those scripts vs baseline.2.Confidence-weighted
sampling Use OCR/ASR confidence scores to downweight low-confidence examples or to preferentially sample
medium-confidence ones for tokenizer training. Integrate OCR/ASR confidence scores and sample with prob o (a +
conf?B). Precompute confidences; tune a (e.g., 0.05) and B (e.g., 1.0->2.0). Keep some low-confidence included
via a. Measure: Token noise (tokens seen only in low-confidence data), downstream VQA/DocVQA on OCR;
stability of merges. Success: Cleaner merges (fewer spurious tokens) and small downstream improvement;
reduction in tokens primarily seen in noisy buckets.3. Adaptive Reweighting with Feedback[3] During tokenizer
training, periodically evaluate downstream proxy tasks (small VQA/ASR validation slices). Reweight buckets that
show poor downstream performance. Every N steps, compute per-bucket validation loss; increase sampling
weight for buckets with high loss (up to a cap). Measure: Convergence speed on proxies; stability of vocab.
Success: Faster improvements on held-out proxies; stable vocabulary.4. Cross-Modal Coverage Balancing[4]
Upweight text segments that are aligned to images/speech (e.g., OCR region + image) so merges capture visually-
grounded tokens by marking multimodal aligned text and multiply sample weight by y (1.5-3.0) and measure
improvement in grounded retrieval/DocVQA EM and fewer mis-OCR tokens. Success: Noticeable lift on grounding
tasks (>= 1-3 pts) 5. Curriculum-Based Bucket Scheduling[5] Systematic phases in the training as in Phase A, clean
high-confidence multimodal pairs. Phase B: gradually add noisy/augmented examples for N steps. Measure: Merge
stability (fewer reversions), downstream robustness to noisy OCR. Success: Better OCR robustness and fewer low-

quality tokens. 6. Multimodal-Aware Validation Metrics[6][7]1[8][9] We want metrics that reflect multimodal
performance, not just perplexity or compression. Composite Multimodal Score (CMS) should be >=0.95 AND no
single Primary Metric falls below target.
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