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Abstract— Task and Motion Planning (TAMP) approaches
are effective at planning long-horizon autonomous robot ma-
nipulation. However, it can be difficult to apply them to
domains where the environment and its dynamics are not fully
known. We propose to overcome these limitations by leveraging
deep generative modeling, specifically diffusion models, to
learn constraints and samplers that capture these difficult-
to-engineer aspects of the planning model. These learned
samplers are composed and combined within a TAMP solver
in order to find action parameter values jointly that satisfy
the constraints along a plan. To tractably make predictions for
unseen objects in the environment, we define these samplers
on low-dimensional learned latent embeddings of changing
object state. We evaluate our approach in an articulated
object manipulation domain and show how the combination
of classical TAMP, generative learning, and latent embeddings
enables long-horizon constraint-based reasoning. We also apply
the learned sampler in the real world. More details are available
at https://sites.google.com/view/dimsam-tamp.

I. INTRODUCTION
Autonomous robot manipulation in real-world environ-

ments is challenging due to large action spaces, long periods
of autonomy, the need for contact-rich interaction, and the
presence of never-before-seen objects. Although it is in
principle possible to learn direct policies for manipulation
through imitation or reinforcement learning, these methods
generally have particular difficulty as the action space dimen-
sionality and behavior horizon increase. In contrast, Task and
Motion Planning (TAMP) [1] approaches have an advantage
on long horizon tasks, because they perform model-based
reasoning to search over possible futures.

One challenge in TAMP is the search over continuous
action parameters. For example, to place an object into a
closed microwave, the search must plan an opened config-
uration for the microwave, a robot trajectory that opens the
microwave, a grasp for the object, a placement pose for the
object, and the robot’s path while moving the object that
satisfies collision constraints. To find this plan, we need to
be able to test whether these constraints are satisfied given
the continuous values. These constraints can be prohibitive
to engineer when they involve dynamic interactions and
partially observed objects. Our goal is to improve sampling-
based TAMP strategies by learning to generate constraint-
satisfying samples.

There has been recent progress in methods for learning
deep generative models. These models are trained on a dis-
tribution p(X) of possibly complicated variables X (such as
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Fig. 1: Task and motion planner searches for feasible plans
with learned samplers and classifiers. The bottom shows the
constraint graph to push close a microwave door. A diffu-
sion model samples a trajectory of latent microwave states
z1, ..., zT and robot configurations q1, ..., qT that reaches an
close state zT . Some links are omitted for simplicity.

images, point clouds or trajectories) and then can be queried
to produce samples x ∼ p(X) at test time. In this paper,
we use diffusion models [2], [3] to represent distributions
over continuous state and action parameters. We deploy them
by making conditional sample queries in a sampling-based
TAMP solver. These distributional models are critical for
maintaining completeness: by predicting diverse samples,
a TAMP solver is able to backtrack through choices of
parameter values to find a globally satisfying set.

Learned samplers are particularly valuable in cases of
increased partial observability, where the samplers are con-
ditioned on an image or point cloud, from which it would
not be viable for a human to deduce what action parameters
would be appropriate. Learned models can enable the solu-
tion of a much broader range of problems than traditional
engineered samplers.

The contributions of this work are as follows:
1) We use diffusion models as a generative representation

of TAMP constraints in the form of samplers.
2) We define these constraints on a latent embedding of

object state, allowing them to be applied to previously
unseen objects with no known models.

3) These latent embeddings enable us to perform TAMP
in a hybrid latent-engineered state space.
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4) We showcase our approach on articulated-object ma-
nipulation tasks that require multi-step reasoning.

II. RELATED WORK

We build on prior work in TAMP and generative modeling.
TAMP considers planning in hybrid spaces where there are
both continuous and discrete state and action parameters[4],
[1], [5]. Traditionally, these models are specified by a human;
however, increasingly, aspects of these models, such as
constraints, samplers, and parametric operators, have been
learned. Wang et al. [6] and Kim et al. [7] use Gaussian
Processes and GANs to learn low level samplers for TAMP.
Silver et al. [8] learn parameterized skills along with para-
metric operators that model these skills and samplers for
continuous parameters, assuming observability. Mao et al. [9]
learn constraints and planning heuristics that operate directly
on images but assume a set of parameterized skill policies.
There is also related work on learning for other manipula-
tion planning frameworks [10], [11], [12], but usually not
considering complicated objects such as articulated objects.

Recent work uses generative models for decision mak-
ing [13], [14]. There is also a line of work doing trajectory
modeling using auto-regressive transformer models [15], [16]
or masked autoencoders [17]. Diffuser [13] uses a diffusion
model [2], [3] for offline reinforcement learning (RL) and a
manipulation problem. Diffusion Policy [18] uses diffusion
models to represent visuomotor policies and shows better
performance than IBC and LSTM-GMM, while also being
more stable in training. In this paper, we apply a similar
model but in the context of learning samplers for TAMP.
Our focus is to use the learned model combinatorially with
other samplers to solve multi-step planning tasks.

III. SAMPLING-BASED TAMP

We are interested in using generative learning to extend the
applicability of TAMP to partially observed settings where
classic engineering approaches struggle.

A. TAMP Problem Description

A generic TAMP problem Π = ⟨S,A, s0, S∗⟩ can be
described by a state-space S , a set of parameterized actions
A, an initial state s0 ∈ S and a set of goal states S∗ ⊆ S .
States are comprised of a set of hybrid variables with values
that can change over time. Each parameterized action a ∈ A
takes in a tuple of hybrid parameters x that instantiate the
preconditions and effects of the action. The preconditions
dictate variable values that enable action instance a(x) to be
correctly executed in state s. The effects specify changes to
the variable values in state s that give rise to subsequent state
s′ after executing action instance a(x). Critically, in order for
an action instance a(x) to be valid, its parameters x must
satisfy a conjunctive set of constraints a.con = {c1, ..., cn},
namely

∧n
i=1[ci(x) = True].

The objective of planning is to find a plan π, a finite
sequence of action instances π = [a1(x1), ..., ak(xk)], that
when executed from state s0, produces a state s∗ ∈ S∗.
Actions in a plan often share parameters due to variables

persisting in the state. Thus, the parameters across a valid
plan

⋃k
i=1 xi must jointly satisfy the corresponding set of

action constraints Cπ =
⋃k

i=1 ai.con. Solving a TAMP
problem requires simultaneously identifying a sequence of
parameterized actions [a1, ..., ak] along with parameter val-
ues [x1, ..., xk] that satisfy their constraints.

B. Conditional Samplers

Given set of constraints C, solving for parameter values
that satisfy them is a Hybrid Constraint Satisfaction Problem
(H-CSP) [1]. These problems are addressed using joint
optimization [4] and individual sampling [19] techniques.
Joint optimization methods typically treat the ensemble of
parameters and constraints as a single mathematical program
and solve for satisfying values all at once.

In contrast, individual sampling techniques leverage com-
positionality through conditional sampling, where the outputs
of a sampler for one constraint, e.g., a stable grasp and resting
pose for an object become the inputs to another, e.g., an
inverse kinematics (IK) solver for the robot. A conditional
sampler for a constraint c with m arguments is a function
from α, a tuple of k < m argument values to a generator of
tuples βi, each of which is length m−k and has the property
that when its values are properly interleaved with the values
α, the resulting length-m tuple of values xi satisfies c, (i.e.
c(α, β) = True). We seek samplers that are:

• Sound: they only generate values that satisfy the con-
straint they represent.

• Diverse: they generate multiple diverse values that can
be filtered with other constraints via rejection sampling.

• Compositional: they can be combined with others to
produce joint samples that satisfy multiple constraints.

In the articulated object manipulation domain described in
Sec. I, we require samplers that 1) perform inverse kinemat-
ics, 2) generate stable placement and grasp poses, 3) check
collisions, 4) generate desirable door states, and 5) model
the contact dynamics of doors. When the world is known,
samplers 1-4 can be readily engineered through geometric
reasoning. However, engineering sampler 5 accurately is
non-trivial due to the contact-rich nature of the interaction.
Moreover, when the world is partially observable and we
do not a priori know the geometry of objects, engineering
samplers 1-4 themselves is challenging.

This motivates our approach, where we use diffusion mod-
els to learn conditional samplers that represent generative
models of action constraints. These learned samplers can
be incorporated in any sampling-based TAMP system [20].
Additionally, we show that learned samplers can be applied
to parameters that describe the latent state of unknown
objects, and allow the planner to search for plans in the latent
space. In TAMP frameworks that use symbolic predicates as
state abstractions, predicate definitions, such as whether a
microwave is ‘open’ or ‘closed’, are hard to hand-engineer
especially with unknown objects. A learned classifier can be
used instead, to bias the diffusion sampling in drawing con-
ditional samples that make the predicate True(see Sec. IV-C
for details).



IV. DIFFUSION MODELS AS LEARNED SAMPLERS

We seek to learn samplers that generate samples x that
satisfy constraint c. We require a training dataset Dc =
{x1, ..., xN} of N length-m parameter tuples xi that satisfy
constraint c, i.e. c(xi) = True. Then, we learn an implicit
probability distribution p(x) over parameters x that satisfy
constraint c using dataset Dc. Finally, through incorporating
condition terms in the sampling process, we turn the uncon-
ditional model p(x) into conditional models p(β | α) that
become the basis for conditional constraint samplers.

A. Generative Models

We propose to use deep generative models, specifically
diffusion models, as samplers. A generative model flexibly
captures a distribution and diffusion models are shown to be
good at capturing multi-modality in the presented data [18].
One can draw both unconditional samples from this dis-
tribution and conditional samples that satisfy a constraint.
In planning, a diverse set of unconditional samples can
be used for rejection sampling, to jointly satisfy a set of
nonhomogeneous constraints, but if there is a given condition
for the target, drawing conditional samples directly may be
more efficient.

B. Diffusion Models

Diffusion models [2], [3] are a class of deep generative
models. They produce samples x(0) from a learned distri-
bution p(x) by iteratively applying a denoising procedure
p(x(t−1)|x(t)), starting from Gaussian noise x(T ). The de-
noising procedure makes transitions according to

p(x(t−1)|x(t)) := N (x(t−1);µθ(x
(t), t),Σθ(x

(t), t)). (1)

Here, µθ and Σθ are time-conditional functions with learn-
able parameter θ. During training, a forward process will
gradually add random noise to the original data point x(0).
The network is trained to predict the noise added on a data
point to generate the corrupted data point. Once the network
is trained, the model can be used to draw samples from p(x)
starting from a Gaussian noise sample, according to Eq. 1.

C. Conditional Diffusion Sampling

Our key use case for generative models is conditional
sampling with one or more constraints. When conditionally
sampling a diffusion model, one can use classifier-based [21]
or classifier-free [22] guidance. Classifier-based guidance
uses the gradient of a classifier to bias the sampling of
an unconditional diffusion model. In contrast, the classifier-
free guidance doesn’t require another model but assumes
knowledge of all conditions at training time.

We hope to achieve compositional generality, by allowing
the model to work on new tasks when given new constraints.
Namely, we don’t assume that we will know all potential
condition types when training models but would like to
allow new models to be trained afterward and work with the
existing models if a new constraint comes up. Thus, we opt
to use classifier-based guidance as it allows us to combine

the unconditional diffusion model with other new models
after it is trained.

For classifier guidance, as shown by Dhariwal et al. [21],
the denoising procedure can be approximated as

p(x(t−1)|x(t)) ≈ N (x(t−1);µθ +Σθgϕ,Σθ), (2)

where gϕ = ∇x(t) log(pϕ(y|x(t))) is the gradient from a
classifier pϕ(·), that models the likelihood of sample x(t)

having property y, to bias the sampling. This sampling
process can be significantly more efficient than rejection
sampling if one’s goal is to get x(0) that has property y.

D. Latent Parameter Encoding

In our TAMP domain, we are interested in learning sam-
plers that operate on objects that have never seen before,
without access to a model of their shape and kinematics. We
can only sense them through observations ω in the form of
segmented partial point clouds, projected from depth images.
Moreover, for articulated objects, the geometry can non-
rigidly change over time. Modeling the explicit dynamics
and transitions of such changes in the space of point cloud
is challenging and inefficient.

For a more compact encoding and for making the con-
straint learning problem easier, we train a point cloud en-
coder ϕenc (and decoder ϕdec) to compress observations of
objects ω into latent state statistics z. Observed partial point
clouds ω ∈ RN×3 are encoded as a latent vector z ∈ Rdz ,
where dz is the dimensionality of the latent vector. The
weights of the encoder and decoder are frozen after training,
and only the encoder is required at planning time.

E. Examples of Learned Samplers and Classifiers

In the following examples, we use variables o for object
type information, z for latent object shape representations, q
for robot configurations, g for a grasp transform, and p the
pose of objects of a known shape.

1) Grasp Sampler: One common sampler is a grasp pose
sampler for a stable grasp constraint LearnedGrasp [23].
This constraint p(x) = p(o, g) models the set of end-effector
grasp poses g on an object o that have a high probability of
stability. Here, object o is represented by a category and its
segment in an observed point cloud ω. The sampler for this
constraint p(g | o) conditions on the object. This sampler can
be used together with classifiers for conditional sampling. If
there is a specific constraint on a class object, e.g. grasp on
the handle for all mugs, a lightweight classifier pϕ(o, g) can
be trained to bias the sampling of p(g | o).

2) Push Sampler: A more complex constraint and sampler
that we wish to learn models a robot interacting with an ar-
ticulated object via making contact, for example, by pushing.
The DiffusionPush constraint governs the evolution of
the robot’s target configuration q and a latent representation
of the state z of object o over T time steps:

p(x) = p(o, z1, q1, z2, q2, ..., zT , qT ). (3)

For such trajectory-level models, conditioning can
be added to different time steps in multiple ways



to produce an ensemble of samplers, including a
forward sampler p(q1, z2, q2, ..., zT , qT |o, z1) that draws
future state from a start latent state z1, a backward
sampler p(z1, q1, z2, q2, ..., qT |o, zT ) that infers pre-
image of latent state zT , and a two-point sampler
p(q1, z2, q2, ..., qT |o, z1, zT ) that fills possible transition
between two latent states z1, zT .

3) Object State Classifiers: Often, the goal conditions
that define S∗ require specific objects to be at a state that
is semantically meaningful for a human, for example, a
state that a human considers open ClassifyOpen[·] or
closed ClassifyClosed[·]. To model this, we learn a
classifier pϕ(o, z) on the object o and the latent state z.
These classifiers can condition a push sampler to generate
reachable latent states zT that satisfy the classifier, namely
p(q1, z2, q2, ..., zT , qT | o, z1) and pϕ(o, zT ), as shown in
Fig.1.

4) Collision Classifier: Similarly, trajectory samples must
not collide with other objects, for example, a door being
opened should not collide with another object. To model
this, we learn a classifier pϕ(o, z, o2, p2) for constraint
ClassifyCollision on the object o and its latent state
z versus another object o2 and its relative pose p2.

V. IMPLEMENTATION

We now ground our general approach of TAMP using
diffusion models as samplers in a concrete domain, as shown
in Fig. 1. We consider a robot manipulating a microwave to
achieve goals, by planning using a set of learned models.

A. TAMP Formulation

We instantiate our TAMP problems Π using PDDL-
Stream [19], an extension of Planning Domain Definition
Language (PDDL) [24] that supports planning with contin-
uous values using sampling operations. Planning state vari-
ables and action constraints are represented using predicates,
Boolean functions with zero or more parameters.

The set of goal states S∗ is described by a logical formula
over predicate atoms. For example a goal for the microwave
om to be open Open(om) is defined by:

Open(om) ≡ ∃ z. AtLatent(om, z) ∧ ClassifyOpen(om, z),

where the predicate ClassifyOpen is a learned classifier.
Parameterized actions are defined by their 1) name, 2)
parameters, 3) constraints (con) that valid parameter values
satisfy, 4) preconditions (pre) that hold to prior to executing
the action, and 5) effects (eff) that modify the state.

B. Actions with Learned Constraints

The push action involves the major learned constraints
in this domain (Figure 2). Its parameters are an articulated
object o and a sequence of latent states z1, ..., zT and robot
configurations q1, ..., qT . After applying the action, the robot
moved from configuration q1→qT and object o moved from
latent state z1→zT . The key constraint is DiffusionPush,
which is learned via a diffusion model as described in
Sec. IV-E. This constraint can be sampled in several orien-
tations depending on the fixed parameter values passed and

the other constraints, such as the aforementioned forward
sampler and two-point sampler.

push(o, z1, q1, ..., zT , qT )
con: [DiffusionPush(o, z1, q1, ..., zT , qT ),

¬Unsafe(o, z1), ..., ¬Unsafe(o, zT )]
pre: [AtLatent(o, z1), AtConf(q1), Empty()]
eff: [AtLatent(o, zT ), AtConf(qT ),

¬AtLatent(o, z1), ¬AtConf(q1)]

Fig. 2: The push action description.

Unsafe(o, z) imposes the collision-free constraint on the
whole motion, which is evaluated by a learned classifier
ClassifyCollision that directly operates on the latent
state z of object o and p2, the relative poses of o2 to o.

Unsafe(o, z) ≡ ∃ o2, p2. AtPlace(o2, p2)

∧ ClassifyCollision(o, z, o2, p2).

Consider a problem where the microwave is initially closed,
but the goal is for the block to be in the microwave.
The TAMP system needs to infer that it should push the
microwave sufficiently open so that it can pick and stow
the block. If there is obstacle, it also needs to infer that the
obstacle should be moved away before opening the door.
Below is an example plan structure. Values in bold are fixed
as they are initial state given to the system.

π = [move(q0, τ1, q1),push(om, z0, q1, ..., z1, q2),

move(q2, τ2, q3),pick(block, g,p0, q3),

move(q3, τ3, q4),place(block, g, p∗, q4)]

C. Environment and Data Collection

We perform our experiments in the IsaacGym [25]
physics simulator. To learn the data distribution that satisfies
DiffusionPush constraint, we generate a training set D
of push action instances by simulating manipulation trajecto-
ries in IsaacGym. The manipulation trajectories are generated
according to a custom policy that leverages the ground truth
state, with known object models and contact forces. Action
is pushing perpendicular to segmented door surface. We use
10 microwave assets from PartNet [26] for training.

During data collection, we treat the robot as a disembodied
gripper, so the robot’s configuration is an end-effector posi-
tion q ∈ R3. This representation yields a simple parameteri-
zation of the skill and allows the learned model be flexibly
integrated into a full arm motion using inverse kinematics
and motion planner in a TAMP framework.

Partial point cloud observations are generated from depth
cameras with randomized viewpoints. There are 101 valid
trajectories in total, which are then randomly clipped into
segments for training.



(a) Unconditional (b) ClassifyCollision

(c) ClassifyOpen (d) ClassifyClose

Fig. 3: Samples from the DiffusionPush model, colored
from darker to brighter from start to end of the trajecto-
ries. (a) No extra condition except for z0. (b) Rejection
sampling by ClassifyCollision. Rejected samples are
colored red. (c) (d) Classifier-guided conditional sampling
on ClassifyOpen and ClassifyClose.

D. Training Details

We collected 4746 point clouds, from 101 trajectories in
total. We use PointNet++ [27] as the point cloud encoder
network ϕenc and use the same decoder ϕdec as Cai et
al. [28]. The latent vector size dz is 256. The network is
trained with a batch size of 196. All other hyper-parameters
are the same as in Cai et al. [28]. After the point cloud
encoder is trained, the weights are frozen and used as the
encoder when training all other models.

For the trajectory diffusion model, we use the UNet as
in Diffuser [13]. The number of diffusion steps is 250, the
trajectory length T = 8, and the batch size is 32. Microwave
state (open/close) classifiers are 3-layer MLPs. The inputs
to the collision network are point cloud encoding, obstacle
location, and size approximated as bounding boxes.

VI. EXPERIMENTS

We experiment on three settings within our domain:
1) Manipulating to a specific state (Sec. VI-A);
2) Manipulating to an abstract set of states (Sec. VI-B);
3) Joint searching and sampling (Sec. VI-C).

A. Planning to specific states

We first test whether the learned model can generate high-
quality conditional samples. The initial and goal microwave
door configurations are randomly sampled. Point clouds
captured from a randomized viewpoint are added as the
goal condition for the first and last time step ω1, ωT of
diffusion sampling. They are encoded into latent embed-
dings using learned point cloud encoder z1 = ϕenc(ω1) and
zT = ϕenc(ωT ). Then, we use them as conditions to sample

the rest of the trajectory ⟨q1, z2, q2, ..., zT−1, qT−1⟩ from the
diffusion model. This corresponds to the two-point sampler
in section IV-E.2. The sampled action waypoints q1, ..., qT−1

are then executed in the simulator.
We compared the performance of our model to two

baselines: 1) a discriminative model that directly regresses
from a pair of start and end positions z1, zT to q1, ..., qT−1

and 2) an energy-based model (EBM).

Method Avg. Error (std)
Regression model 0.127 (0.214)
EBM 0.191 (0.208)
Diffusion 0.094 (0.091)

TABLE I: Planning error given specific goal states.

Table I shows the average (and standard deviation) of the
absolute distance between the target angle and the actual end-
ing angle on 100 testing trajectories (in radian). The diffusion
model has the lowest error. We found the diffusion model to
be easier to train and to have a more stable gradient during
training, when compared to the EBM, which is also observed
in [18]. The regression model also trained stably. However,
since the regression model is deterministic, given the same
point cloud embeddings z1, zT , the network’s predictions
will be identical. The diffusion model can generate more
diverse samples that satisfy the given constraints, which can
improve system robustness if used as a candidate trajectory
sampler. See Figure 3 for an illustration.

B. Planning to reach goal sets

Goals, consisting of sets of possible satisfying states, can
be specified in the form of named classifiers We evaluate
the learned model with classifier-guided sampling. Three
classifiers are trained to model the point cloud as being
“fully closed”, “fully open”, and “open”. The corresponding
semantics are door angle <0.2, >1.4, and >1.2 radians. Tra-
jectory samples are drawn from the learned model with these
constraints enforced at the end of the trajectory pϕk

(zT ) = 1,
according to the transition described in Eq. 2. We evaluate
on 100 randomized initial configurations of the microwave,
and report the success rate of the actual state satisfying the
semantic constraint, after executing the sampled trajectory.
Qualitative results are shown in Fig. 3, with the door being
fully closed and fully opened. Success rate is reported in
Table II. Figure 4 shows the entire sampled trajectory with
classifier guidance of ‘fully closed’, action waypoints as gray
boxes.

Goal Condition fully closed fully open open
Success Rate 0.94 0.92 0.90

TABLE II: Achieving abstract goals with classifier guidance.

C. TAMP: Joint searching and sampling

In prior experiments, we demonstrate the quality of learned
model in a stand-alone context, where the end-effector is
simplified as a moving gripper. In the following experiments,
we test the learned models in a complete TAMP system.



(a) (b)

Fig. 4: (a) Actual configuration and (b) sampled state and
action trajectory. Sampled latent state z are decoded into
point cloud for visualization.

Diffusion models are combined with other samplers such as
IK and motion planners, in order to solve a multi-step task.

We evaluate on three tasks, which are shown in Fig. 5. 1)
Close Goal state is the microwave door at closed location.
Initial state is the door at an opened position, where there
is an obstacle blocking in between the door and the base.
2) Stow-close The goal is to have an object stowed in
the microwave and door closed at the end. The object is
initialized to be at a fixed location that won’t block the
microwave. 3) Stow-close-blocked The goal is the same as
Stow-close. However, the door needs to be fully opened
before stowing as the object is larger. The object is initialized
near the microwave which may block the opening action.
More details on the domains are available here.

As in the previous experiments, for the microwave, the
planner only receives a partial point cloud captured from a
randomized viewpoint. The initial location and geometry of
the object to be stowed and obstacle are known. We use a
Franka Emika robot with a mobile base link along the x-axis.

In addition to learned classifiers and samplers, we use
the robot URDF and computed IK solutions for the whole
arm movement. The predicted waypoint is set as the target
end point of gripper. For collision checking between robot
arm and a predicted microwave state, we approximate the
arm using bounding boxes and query the learned collision
checker. For the initial observation, collision checking is
based explicitly on closest distance to observed points.
Motion plans are computed by bidirectional RRT.

We use PDDLStream to jointly search the structure of
the plan and trajectory sampling. The Adaptive algorithm
with a search-sample ratio of 1/15 is used for all tasks. We
use weighted A∗ and fast-forward heuristic. Planning and
execution success rates are shown in Table III. Each task
is evaluated with 15 runs. Average planning time and plan
length are reported based on solved runs.

Behavior Analysis In the first task, the planner will
start from the shortest plan of sampling a trajectory to
close the door and check whether that is collision-free with
the obstacle. The collision checker uses the predicted state
of the microwave from the sampled trajectory, z2, ..., zT .
As the returned results indicate collision, the planner will
keep searching for alternative plans. The most common
plan is [move(o1), push(om)]. In Stow-close, note that
the goal Closed(om) ∧ Stowed(o1) is not ordered, it

(a) (b)

(c)

Fig. 5: (a) Close, (b) Stow-close, (c) Stow-close-block.

Task Solved Length Time Achieved
Close 1.00 1.93 29.41 0.67
Closec∗ 1.00 1.93 15.71 0.87
Stow-close 0.93 1.93 14.51 0.71
Stow-closec∗ 1.00 2.00 10.27 1.00
Stow-close-Bc∗ 0.87 4.00 77.70 1.00

TABLE III: Results on joint planning using PDDLStream.
‘Solved’ indicates the planning success rate. ‘Achieved’ indi-
cates execution success rate. Task names with superscript(c∗)
are using conditional samplers.

is possible for the planner to find plan like [push(om),
stow(o1)]. However, such plan will result in a collision
between predicted microwave state and the stowing object,
and get rejected. The third task is the most challenging one.
A precondition of door being opened is added to the domain.
Due to the combinatorial complexity, the search space grows
exponentially larger compared to the previous two tasks. So
it also takes a longer time to solve, with two runs hit the
timeout (200 seconds). Other than the challenges in searching
in a large space, a common failure mode is for the classifier
to mis-estimate the open/closed state of the door. We also
observe execution failures when the sampled trajectory is
too close to the axis of the door and physically infeasible.
Incorporating uncertainty or effort estimates from learned
samplers can be an interesting future direction.

Conditional vs. rejection sampling As we mentioned
in previous sections, conditional sampling is more efficient
in drawing samples with given constraint. Classifier-guided
diffusion sampling require backpropagating the gradient
through the classifier network, which makes it more expen-
sive to call. However in our experiments, the efficiency gain
from searching outweighs the additional cost and shows the
advantage to rejection sampling. As shown in Table. III, tests
with condtional samplers (·c∗) take fewer time to solve.

It is important to note that this is a problem that cannot
be addressed by classical TAMP methods, because the kine-

https://sites.google.com/view/dimsam-tamp


(a) Observed image (not used
in model). (b) Observed point cloud, top-

down view.

(c) (d)

Fig. 6: Real world setup.

matic and shape models of the microwave are unknown. In
addition, note that no new learning was required to do this
problem—once the individual generative models are trained
for each constraint, they can be combinatorially recombined
to solve a wide variety of problems. This is in contrast to
direct policy learning methods, which require training on new
tasks and generally struggle with long horizons unless given
a carefully crafted reward function.

VII. REAL WORLD DEPLOYMENT

We apply the model trained in simulation directly to the
real world, without finetuning, on door closing and opening
tasks.

We capture the depth image from a RealSense D435 depth
camera mounted on the Franka gripper. The point cloud is
segmented and sent to the learned DiffusionPush model.
In the door closing and opening tasks, we use conditional
sampling based on ClassifyClose and ClassifyOpen
classifiers trained in simulation. The sampled trajectories are
further rejected by IK and motion sampler, with collision
checking to the observed partial point cloud.

In the door-opening task, due to the small size of the
microwave, the Franka robot gripper can’t fit in between the
microwave door and the microwave base. To fix that, we let
the robot hold a stick. The predicted waypoints are set as
the target location of the stick endpoint. Since our model
only predicts the end-effector waypoint, we can make such
changes by modifying the IK and motion planner to take into
consideration the stick easily, without changing the trained
model. It shows the flexibility of using a simplified encoding
of action.

The observed image and point cloud are shown in Fig. 6.
The RGB image is not used by the model. Due to the
reflective material of the microwave and the glass used in
microwave door, there is a lot of missing depth readings in
the depth image. Despite the severe partial observability, our

model is still able to generate target samples. Videos are
available at the website.

VIII. CONCLUSION

We apply diffusion models for sampler learning in TAMP
and show that conditional sampling on learned models can
be used to draw samples that satisfy constraints in a TAMP
problem. We instantiate an example of such samplers in
a concrete articulation manipulation domain, in learning
pushing constraints, and hope this strategy can be applied
in broader domains.
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