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ABSTRACT

Generative models have grown into the workhorse of many state-of-the-art ma-
chine learning methods. However, their vulnerability under poisoning attacks has
been largely understudied. In this work, we investigate this issue in the context of
continual learning, where generative replayers are utilized to tackle catastrophic
forgetting. By developing a novel customization of dirty-label input-aware back-
doors to the online setting, our attacker manages to stealthily promote forgetting
while retaining high accuracy at the current task and sustaining strong defenders.
Our approach taps into an intriguing property of generative models, namely that
they cannot well capture input-dependent triggers. Experiments on four standard
datasets corroborate the poisoner’s effectiveness.

1 INTRODUCTION

The vulnerability of machine learning systems must be scrutinized before they can be deployed to
security-critical applications. The common evasion attack assumes that clean target instances can be
manipulated at test time, which can be unrealistic in many scenarios. In contrast, poisoning attacks
only make malicious and imperceptible modifications to the training set, so that the prediction on test
examples can be mistaken. The threat models may insert poison examples (Chen et al., 2017), flip
the training labels (Xiao et al., 2012; Levine & Feizi, 2021), or modify the training example inputs
(Biggio et al., 2012; Shafahi et al., 2018).

Although poisoning attacks have been extensively studied under discriminative learning, their potential
risk in generative learning has been largely understudied. Ding et al. (2019) poisons the training
examples so that the learned generator covertly changes some important part of the output image,
e.g., turning a red light into green. Salem et al. (2020) enables the adversary to control the output
image by planting a trigger in the input image or noise. Both are backdoor attacks requiring write
access to test data, and work in batched learning scenarios.

The increasing penetration of generative models in machine learning urges the investigation of
poisoning attacks in a broader range of learning paradigms In this work, we focus on continual
learning, a prominent setting where tasks arrive in streams and each of them corresponds to a
discriminative learning problem such as classification (Chen & Liu, 2018). Since the tasks are
streamed and cannot be stored, the running classifier often suffers from catastrophic forgetting, where
the performance on older tasks gradually deteriorates (McCloskey & Cohen, 1989).

Deep generative replay (DGR) is a natural tool to bring back the memory of the previous tasks by
learning a generative model to fit the data of these tasks (Shin et al., 2017; Cong et al., 2020). Despite
their effectiveness, new vulnerabilities are also opened up where misleading examples can be injected
to the training data Dt for the current task t, so that catastrophic forgetting can be promoted when
such poisoned Dt is used for training both the replayer Gt and the classifier. In this work, we seek
practical and stealthy poisoning attacks on DGR that achieve three objectives:

O1 After moving past task t, the classifier will soon forget what was learned from it (i.e., perform
poorly on clean test examples drawn from it) despite using a replayer for all the tasks seen so far.

O2 During task t, the classifier trained from the poisoned data does not suffer degradation of test
accuracy on task t itself. This is important because poor performance on the current task can
raise significant and immediate suspicion. In contrast, by promoting forgetting, the harm will
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manifest itself only after the victim has moved on to the next task, by which time it will have
become too late because the access to the samples of task t is already lost.

O3 The poisoned data should be robust to solid defenses deployed by both the classifier and the
replayer.

The main difficulty lies in two folds. Firstly, although both O1 and O2 are straightforward to fulfill
individually, they are at odds with each other and are hard to fulfill simultaneously. Secondly, the
transiency of data streams compels the adversary to make irrevocable attacks at task t before future
tasks arrive and before catastrophic forgetting can start to occur. Due to this difficulty, poisoning
attacks have been much less studied in an online setting. Mladenovic et al. (2022) addressed the
online decision problem of selecting k examples for evasion attack. Zhang et al. (2020) assumed
the instances are drawn i.i.d. from a time-invariant distribution, which is not the case in continual
learning because tasks may even have disjoint classes. Other works require multiple passes of the
data stream (Gong et al., 2019; Lin et al., 2017; Sun et al., 2020), or clairvoyant knowledge of future
data (Burkard & Lagesse, 2017; Wang & Chaudhuri, 2018).

Our contribution, therefore, is to overcome these challenges and to reveal the vulnerability of
generative models in the sense that their training data can be poisoned stealthily such that a task can
be learned well at present but forgotten soon in the future. Noting that simple label-flipping poisoning
can be easily detected, we resort to dirty-label backdoor/Trojan attack (Liu et al., 2018) to attain
O2: the trained classifier performs correctly on clean examples, but errs if the example is planted
with a trigger. To further achieve O1 and O3, we capitalize on the input-aware backdoor (Nguyen &
Tran, 2020), which allows the trigger to vary depending on the image. As a result, it can not only
withstand stronger defense (§4), but also enjoys higher variation and stealthiness, hence much harder
for a generative model to capture. So the replayed images do not well preserve the trigger (we call it
trigger-discarding property in §3.3) while retaining the incorrect label, leading naturally to forgetting
(§3). The problem is set up in §2, and experiments are provided in §5 to show the effectiveness of the
attack. Our innovations are summarized as follows:
• Proposing the first poisoning attack that promotes catastrophic forgetting in continual learning.
• Achieving poisoning (no trigger is needed at test time) through a novel way of leveraging backdoor

attack that is particularly effective for exacerbating catastrophic forgetting.
• Identifying a trigger-discarding property of generative models that is intriguing for backdoor attack.

Related work Generative models have been pervasive in machine learning (Murphy, 2023, Part
IV), reaching far beyond the original role of density estimation and serving as a key infrastructure in
supervised, unsupervised, and reinforcement learning. We contend that their vulnerability needs to be
examined in the context of their use. In the vanilla density estimation, Condessa & Kolter (2020)
learned robust variational auto-encoder (VAEs) that retain high likelihood for the data points under
adversarial perturbation. The underlying threat is evasion attack, and along similar lines, Tabacof
et al. (2016) and Kos et al. (2018) studied attacks that promote reconstruction error of the decoder in
a VAE. Some recent works address attacks on membership inference (Hayes et al., 2019; Chen et al.,
2020; Hilprecht et al., 2019), model extraction (Hu & Pang, 2021), and attribute inference (Stadler
et al., 2022). However, poisoning attacks on generative models are still understudied.

Our aim is to poison a generative model instead of learning a generative model to produce poisons
for another (discriminative) model (Yang et al., 2017; Muñoz-González et al., 2019). We also leave
it as future work to defend the proposed attack, noting that (certifiable) defense and detection have
been well studied for poisoning attack on batch discriminative models (Peri et al., 2019; Steinhardt
et al., 2017; Levine & Feizi, 2021; Jagielski et al., 2018).

2 ATTACKING GENERATIVE MODELS IN CONTINUAL LEARNING

We consider the continual learning setting, where tasks arrive sequentially. The goal is to keep
updating a classifier that predicts accurately not only on the current task, but also on the previous
tasks. Each task t is indeed a joint distribution Pt(X,Y ), where X ∈ X is the input from a feature
space X , and Y ∈ Yt is the label whose domain Yt may change with the task. For example, Y1
consists of digits 0 and 1, and Y2 encompasses 2 and 3. Even in the case where the domains remain
constant, the distribution Pt can shift. The goal of continual learning is to find a classifier Ct, such
that the overall risk across all tasks seen so far is minimized:
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Ct ≈ argmin
C

∑t

i=1
E(X,Y )∼Pi

[ℓ(C(X), Y )]. (1)
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Here ℓ is a loss function, and we will focus on multi-class classification with cross-entropy loss.
A major challenge in continual learning is that at task t, only the samples from the current Pt are
available, while those from the previous tasks are no longer accessible. Although most algorithms
would only adapt to the new task instead of completely retraining from scratch, the performance on
previous tasks may still deteriorate significantly, a phenomenon known as catastrophic forgetting.

To alleviate this issue, DGR-based approaches resort to learning a DGR model Gt that approximately
replicates Pt. Due to the constraints in computation and storage, it has to be a lossy approximation
because otherwise one might as well store all the past examples. Then at each task t, samples of
(X,Y ) pairs are drawn from not only the current Pt, but also from the replayers for the previous tasks
G1:t−1 := {Gi}t−1

i=1 . Their union is subsequently used to update the classifier into Ct. The whole
process of vanilla DGR-based continual learning is illustrated in Algorithm 1.

DRG models can be simplified into a single replayer G that is updated over time, as opposed to one
replayer per task. However, our contribution is the poisoner, not the replayer. Employing multiple
replayers only makes attacks even more challenging, because instead of just poisoning one running
replayer, We are now tasked to poison many of them, each of which can only be poisoned once at
its current task. If we simply keep a single running replayer, then we enjoy many opportunities of
poisoning it at any time and our objectives will become much easier to achieve. To conclude, multiple
replayers set up a more stringent benchmark for testing our poisoner. A natural choice of the replayer
is a conditional generative model such as conditional GAN (cGAN), which first samples the label Y
from a discrete distribution, and then generates the feature X via the cGAN.

2.1 ATTACKERS AND LEARNERS Algorithm 1: Deep generative replay (DGR) used by
continual learning to combat catastrophic forgetting

Input: Tasks 1, 2, . . . represented as P1, P2, . . .
1 Initialize classifier C0

2 for t = 1, 2, . . . do
3 for i ∈ [t− 1] := {1, 2, . . . , t− 1} do
4 Si ← SampleFromDGR(Gi) (X,Y pairs)
5 Sample Dt from task Pt ← to be poisoned
6 Ct ← TrainClassifier(Ct−1,Dt ∪ S1:t−1)
7 Gt ←TrainReplayer(Dt), e.g. conditional GAN

Two parties participate in the process, and
we first set forth our assumptions on them.
The victim learner/user consists of a clas-
sifier, a replayer, and a defender. We as-
sume none of them has access to the orig-
inal clean data, and can only access the
poisoned data. Further, the replayer must
perform well, i.e., the generated samples
match the distribution of data presented to
it for training. Otherwise, the replayer would not be adopted by the user in the first place, and can
spare any need of attack by, e.g., generating random images with random labels. We also assume that
the learner cannot store any data beyond its current task, which is standard in continual learning.

A defender is an algorithm that the learner employs to scrutinize and prune the possible poisons in
the training data. In DGR, it means examining the data collected from the current task t, as well
as the replayed samples from previous Gi in step 4. This is known as pre-training defense, whose
counterpart—post-training defense—patches up the learned model (Wang et al., 2019).

The attacker (our threat model) is only allowed to poison (modify) the samples Dt in step 5 of
Algorithm 1. The attacker has no access to the internal mechanism of classifier, replayer, or defender.
It can read the gradient of the classifier’s training objective with respect to the input, but not its
structure or weights. This is a moderate mid-ground between full access (e.g., training by the
attacker itself on the cloud) and no access (independently manipulating the training examples).
Such an assumption has been commonly adopted, e.g., by dynamic backdoors (Nguyen & Tran,
2020), Witches’ brew (Geiping et al., 2021), and by implicit differentiation based poisoning (Muñoz-
González et al., 2017). We will pursue a dirty-label backdoor attack, i.e., a small portion ρb of Dt

will flip their label, along with a trigger of size ρa planted to their input image (more details in §3.2).

Achieving poisoning through backdoor. Although our method will leverage backdoor attacks, our
overall goal is poisoning attack, not backdoor. In backdoor attacks, a classifier predicts poorly only
on backdoored examples with triggers, while remaining well on clean test examples. In contrast,
poisoning attacks (excluding backdoor) aim to predict poorly on all examples, irrelevant of “trigger”.

In continual learning, an attacker generally does not have the liberty of planting a trigger on test
examples. So we will address in O1 and O2 a much more challenging setting (from an attacker’s
perspective) where such an access is not available. It is important to note that our approach only
utilizes backdoor attacks as a means of achieving the goal of poisoning the generator/replayer.
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2.2 DIFFICULTIES IN THE ATTACK

Since most of the existing poisoning algorithms are in the batch setting, the extension to continual
learning brings about new and significant challenges.

Firstly, the poison cannot compromise the current classifier, but should sufficiently poison the DGR
so that the samples drawn from it during the later tasks will be detrimental enough to forget the
previously learned tasks. This rules out simply flipping the label of some examples in Dt, because it
is easy to detect (Levine & Feizi, 2021) and the resulting classifier Ct will perform poorly on task t.

Secondly, since the future tasks have not been witnessed yet at task t and the training of Ct+1 has not
started, it is infeasible to optimize the forget-inducing distortion on Dt via back-propagation based
optimization – the context and objective are not yet available for future forgetting.

3 THE ATTACK ALGORITHM

Our poisoning attack proposes evading the defense by leveraging the input-aware backdoor attack
(Nguyen & Tran, 2020), so that mislabeled data points carrying a trigger can be injected to Dt in a
small amount. In particular, our approach achieves O1 to O3 through the following effects:
1. Since the triggers depend on (hence vary across) the input data, the defender can hardly detect it.
2. Since the mislabeled examples for the current task all carry an input-aware trigger, the learned

backdoored classifier for task t makes mistakes only for backdoored examples. As such, it predicts
accurately on pristine test examples for task t which carry no trigger.

3. As generative models essentially represent a lossy compression, it is generally unable to capture the
triggers that change with the input. When replayed later for a future classifier at task t+1, t+2, . . .,
the triggers go absent while the incorrect label is retained. So the classifier will be trained on
mislabeled examples of task t with no backdoor, hence misclassifying clean test examples.

3.1 BACKDOOR ATTACKS

Our solution is based on backdoor attacks, which despite the marked resemblance to poisoning
attacks, do not misclassify a test example unless a pre-designed trigger is inserted to it. Such a
flexibility of modulation proves essential. Backdoor attacks such as BadNets (Gu et al., 2019) plant
a pre-selected or learned trigger into some training images at a pre-selected or varying location. A
number of variations are available such as soft blending and multi-channel. Adding the resulting
image to the training data along with a flipped label (randomly selected for an untargeted attack, and
pre-specified for a targeted attack), a classifier can be trained that enjoys two important properties:

P1 Once a test image is also backdoored with a trigger, the predicted label will change to the
pre-specified (or random) one in a targeted (or untargetted) attack.

P2 However, the test accuracy on pristine images (without a trigger) can remain very high.

Our inspiration originates from this trigger-based modulation. Suppose we plant the trigger onDt in
step 5 of Algorithm 1, and denote the resulting training set as D̃t. Then the resulting Ct will perform
well on pristine test examples of task t, because they do not carry the trigger. After moving to task
t+ 1, the replayer will (approximately) reproduce D̃t, at which point two cases can be considered:
• If the replayer works purely by rote, then D̃t will be exactly replayed and the resulting classifier
Ct+1 will be backdoored in the same way as Ct. As a result, it will still predict accurately on clean
samples from task t, i.e., the attack fails in promoting forgetting.

• If the replayer is lossy and is unable to capture or reproduce the trigger, then the replayed examples
might no longer carry the trigger. However, they still carry the flipped label. As a result, Ct+1 will
now be trained on mislabeled examples without a trigger, and will therefore perform poorly on task
t. In this case, the attacker successfully promoted forgetting.

The requirement on the replayer in the second case may appear unrealistic, because firstly the
replayer is supposed to faithfully preserve the salient information in the inputs to address catastrophic
forgetting. Secondly, a user (who constructs and trains the replayer) obviously has no motivation
to collaborate with an attacker. Therefore, the key challenge for the attacker is to design delicate
triggers that are as likely to be overlooked and disregarded as possible under generative modeling,
while retaining the good performance on clean test data during task t (property P2).
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Algorithm 2: InputAwareBackdoor
Input: Data generation distribution P (X,Y ), which will the invoked with P = Pt at task t

1 (D̃, Ldiv)← InputAwareBackdoor–Obj(P,B[Y])
2 return argminC,B[Y]

{Lcl + λdivLdiv}, where Lcl =
∑

(x,y)∈D̃ ℓ(C(x), y) is the classif. risk

Algorithm 3: InputAwareBackdoor–Obj
Input: P as in InputAwareBackdoor, and backdoor generators B[Y] := {By : y ∈ Y}

1 Initialize D̃ = ∅ which will contain clean and poisoned examples. Set Ldiv = 0 (diversity loss).
2 for (x, y) sampled from P for task t do
3 Sample d ∼ U(0, 1), sample (x̂, ŷ) from P excluding (x, y), sample y′ from Y\{y},
4 Ldiv += ∥x− x̂∥ / ∥By′(x)−By′(x̂)∥ // Accrue the diversity loss

5 if d < ρb then x′ ← x⊙By′(x), D̃ += (x′, y′) // make a backdoor example

6 else if d < ρb+ρc then x′ ← x⊙By′(x̂), D̃ += (x′, y) // make a cross example

7 else D̃ += (x, y) // clean example

8 return D̃ and Ldiv

This is indeed challenging as we experimented. Static backdoor (BadNet) can be easily replayed by a
generative model. Trojan attack requires access to the victim model’s structure and weights. Neither
can it survive the defense of neural cleansing. We also tested static backdoor with changing location,
which again, turned out easily detected and fixed by neural cleansing. Witches’ Brew (Geiping et al.,
2021) and other gradient matching based methods need to know the target before deploying the
attack, while future tasks are unknown in continual learning. Eventually, it turns out the input-aware
backdoor satisfies our need, where a trigger is customized for each example through a learnable
generative model, hence exhibiting much less regularity for the replayer to capture.

3.2 INPUT-AWARE BACKDOOR

We first recap the input-aware backdoor (IAB, Nguyen & Tran, 2020) as shown in Algorithm 2 under
a given data distribution P , and then detail how to utilize it for our purpose. In line 2, the classifier C
and class-wise backdoor generating networks By are jointly optimized over an objective constructed
in Algorithm 3, where each (x, y) sampled from P contributes in one of the following modes:

• As a backdoor example with probability ρb: a wrong label y′ is randomly picked, and then a trigger
that depends on x is generated by By′(x) and injected to x in line 5 via elementwise product ⊙.

• As a cross-trigger example with probability ρc. To ensure that a trigger synthesized for one example
is not effective for another, another x̂ is sampled from P with label ŷ. Then x is injected with the
trigger generated from x̂ for a wrong label y′, and the result is paired with the clean label y (line 6).

• As a clean example otherwise (line 7).

In Algorithm 2, B[Y] is explicitized in line 1 to stress that both the diversity lossLdiv and classification
risk Lcl (through D̃) are functions of B[Y], which is then optimized in line 2 along with the classifier
C. To see that the attacker fits in our threat model, note C and B are jointly optimized in line 2 of
Algorithm 2, and the attacker only requires reading the gradient with respect to the input of C. As
observed in our experiment, IAB proffers the following property (Nguyen & Tran, 2020):

P3 The backdoor in IAB can be hardly detected by state-of-the-art methods, e.g., neural cleansing.

To summarize, we fulfilled O2 by P2, and O3 by P3. To meet O1, we require a trigger-discarding
property as follows, which plays a key role in our method and will be discussed in the next subsection:

P4 The replayer cannot well capture the trigger generation network of IAB, in the sense that the
replayed examples do not well preserve the triggers.

3.3 TRIGGER-DISCARDING GENERATIVE MODELS

Property P4 depends on both the replayer and the trigger. If the trigger is a constant small white
square at the image center, most generative models will preserve it. Same is true if the replayer only
replicates the training set. In general, it is supposed to capture the salient features of the input, and
one might presume that triggers are likely to be discarded if they vary a lot across examples. It turns
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out not true. For example, we placed a square/triangle/round in random colors at random positions of
the images, and a WGAN easily reproduced them with these (interpolated) color, shape, and position.

Formally, let Px be the data distribution, and suppose given an input x, the trigger is generated by
a learnable network fθ(x) and is added to x by a pre-specified operation g(x, fθ(x)). It induces a
distribution of backdoored examples as a push-forward of Px: Qθ

x := (x 7→ g(x, fθ(x)))#Px. Let
a generative learning algorithm A map a set of examples {xi}i to a distribution. Then the trigger is
intended to demote some divergence (e.g., KL and Wasserstein) between

Px and Exi∼Qθ
x
A({xi}i). (2)

Directly computing the gradient in θ is both expensive and infeasible, because A is assumed inacces-
sible in §2.1. Fortunately, our experiments show that P4 is well (but not perfectly) achieved when
IAB is applied in conjunction with several SOTA generative models such as conditional Wasserstein
GAN (cWGAN, Engelmann & Lessmann, 2021) and conditional VAE (Sohn et al., 2015). This is no
surprise because these models have limited capacity, and the trigger’s dependency on the input, which
is more involved than just random, significantly raises the sample complexity for generative learning.
A theoretical analysis is left for future work, and §5.2 empirically illustrates this intriguing property.

3.4 POISONING THE REPLAYER VIA IAB

We are now ready to apply IAB to poison the DGR used by continual learning against forgetting. We
will call our method Continual Input-Aware Poisoning (CIAP). It does not backdoor test images.

Algorithm 4: Operation of the user, attacker, and de-
fender during task t (in place of line 3 to 7 of Algorithm 1)

Input: Pt for task t
Input: Classifier Ct−1, and backdoor generators B[Y]

1 Initialize C with Ct−1.
2 for i ∈ [t− 1] do
3 Si ← SampleFromReplayer(Gi) (X,Y pairs)
4 Defender: Apply ν-SVM on the replayed data S1:t−1

5 for number of iteration (run in mini-batches) do
6 D̃t,Ldiv ← InputAwareBackdoor–Obj(Pt, B[Y])

// Both D̃t and Ldiv are functions of B[Y]

7 Lcl ← sum of ℓ(C(x), y) over (x, y) ∈ D̃t ∪ S1:t−1

// Lcl is a function of C and B[Y]

8 User: update C to reduce Lcl

9 Attacker: update B[Y] to reduce Lcl + λdivLdiv

10 Update the replayer Gt using D̃t and the latest B[Y]

11 Defender: Neural Cleansing on Ct ← C
12 return Gt, B[Y], and Ct

Algorithm 4 demonstrates the opera-
tion of all participants (user, attacker,
and defender) during task t, which cor-
responds to the loop under a given t in
Algorithm 1 (line 3 to 7 therein). The
red colored steps are reserved for de-
fense, which will be detailed in Sec-
tion 4. In line 7, the poisoned data D̃t

for task t is joined with the replayed
data S1:t−1 to construct the classifica-
tion risk Lcl. Both the attacker and the
user are trained in the same way as in
Algorithm 2, while the only difference
is that our optimization here is based
on mini-batches, and the replayer Gt is
additionally learned in line 10.

4 THE DEFENDER

We consider two defenses against the
CIAP attack. The first is neural cleans-
ing (Wang et al., 2019), which has been inserted in line 11 of Algorithm 4. If it were successful, then
the backdoor planted in Ct would be detected and removed, thereby defeating objective O2 with
immediate poor accuracy on clean test examples at task t.

Our second defense is aimed at objective O1. To this end, we apply an outlier detector ν-SVM to
S1:t−1, which is in line 4 of Algorithm 4. If it managed to filter out mislabeled replayed samples,
then the attacker would fail to bolster catastrophic forgetting. Here ν is a hyperparameter controlling
the fraction of outliers. Since its value is unknown in practice, our experiment will enumerate a range
of ν values, and demonstrate the extent to which the learner’s performance can be saved respectively.

It is crucial to recognize that the replayed examples are not simply label-flipped poisons (i.e.,
clean images with a wrong label), although the replayer is poisoned with label-flipped and backdoored
examples. This is for two reasons. Firstly, since the examples of a class y′ is fed to the replayer to
train for the class y, the generation of the features/images for class y is contaminated. Secondly,
the input-dependent triggers introduce additional complications to the generative model. Indeed,
we tested by directly generating label-flipped examples based on clean images, and ν-SVM easily
filtered them out. However, this is not the case when ν-SVM is applied to our replayed images (§5.3).
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5 EXPERIMENTAL RESULTS

We next experiment on CIAP to verify: i) it attains the two objectives O1 and O2; ii) the trigger-
discarding property introduced in §3.3 holds true for commonly used generative models; iii) CIAP
remains effective under strong defenders (O3). The code is available at Online Supplementary.

5.1 EFFECTIVENESS OF THE ATTACK FOR OBJECTIVES O1 AND O2

We tested CIAP on five datasets: split-MNIST (Ciresan et al., 2011), split-CIFAR-10 (Krizhevsky
& Hinton, 2009), FashionMNIST-MNIST (Xiao et al., 2017), permuted-MNIST (Goodfellow et al.,
2014), and split-EMNIST (Cohen et al., 2017). We used SpinalVGG as the victim classifier (Kabir
et al., 2020) for the four MNIST datasets, and ResNet (He et al., 2016) for the split-CIFAR-10 dataset.
The results shown here use cWGAN with gradient penalty as the replayer, and more results for cVAE
are deferred to Appendix E. The poison ratio ρb = 0.25, and the cross ratio ρc = 0.15. Each trigger
was allowed to change 10% of the pixels of a selected image (mask density), and Figure 2 will show
that the triggers are quite inconspicuous.

split-MNIST We separated the entire dataset of MNIST into five tasks, each consisting of images
from two disjoint classes in MNIST – the first task includes classes 0 and 1; the second task includes
2 and 3; and so on. The victim model was trained for 100 epoch in each task.

(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 1: Test accuracy on clean test images for split-MNIST

Figure 1a shows the baseline result without a replayer, where the blue line represents the test accuracy
of the first task, orange line for the second, etc. As expected, the test accuracy for each task drops
rapidly to 0% after the victim model proceeds to a new task. It is 0% because the new task has no
overlap with the previous ones in the label space. Figure 1b shows the result of DGR-facilitated
training, where the forgetting is significantly mitigated, and the test accuracy remains high on all
trained tasks. This confirms the effectiveness of DGR and the sufficient capacity of the cWGAN.

(a) Clean 0 (b) Poisoned 0 (c) Clean 1 (d) Poisoned 1

Figure 2: The clean and poisoned images used to train
the replayer for split-MNIST.

Figure 1c shows the result after our attack
CIAP is enacted. The test accuracy of each
current task can still achieve nearly 100%,
corroborating the achievement of objective
O2. When the learner moves to the next task,
the accuracy on the previous tasks falls sig-
nificantly to around 20% despite some fluc-
tuations. This confirms that the objective O1
(forgetting) has also been attained.

Finally, we plot in Figure 2 some example
clean images of class 0 and 1 from the first
task of split-MNIST, along with their corresponding poisoned images constructed by IAB (before
label flipping). Clearly the poisons are quite inconspicuous.

split-CIFAR-10 To illustrate the effectiveness of CIAP in colored space, we repeated the experiment
on CIFAR-10, with the same setup of five disjoint tasks. Here the victim model was trained for 50
epochs on each task.

Similar to the split-MNIST, the victim model completely forgets the earlier trained tasks after a new
task starts, as shown in Figure 3a. After DGR is introduced in Figure 3b, although forgetting is not as
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(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 3: Test accuracy on clean test images for split-CIFAR-10

well mitigated as in split-MNIST, solid improvement is still made on the test accuracy for all trained
tasks. However, the improvements brought by DGR were completely eliminated by the CIAP attack.
As Figure 3c shows, the test accuracy on past tasks drops down to 0% after being poisoned. During
the current task, however, the accuracy can still achieve the same level as in Figure 3a.

We also tested on the split-EMNIST dataset with 10 tasks, and the results are similar; see Appendix C.
The results of FashionMNIST-MNIST and permuted-MNIST are in Appendix A and B, respectively.

5.2 INVESTIGATION OF THE TRIGGER-DISCARDING PROPERTY

To better illustrate property P4, we set up two experiments on split-MNIST using cWGAN. The first
one studies the percentage of backdoored images (images with a trigger) generated by the replayer,
when a varying portion of the training images are backdoored. Our goal is to show that such a
percentage is much lower for IAB than for a static backdoor, i.e., the triggers of IAB are much less
likely to survive the generative learning. A static backdoor refers to a white square on the image’s top
left corner. To this end, we trained a binary poison detector based on a training set that is backdoored
with the IAB network learned from the first task. Another detector was trained analogously for static
backdoor. This allows us to measure the percentage of backdoored images from the replayer. The two
detectors achieve 97% accuracy, and similar ideas have been used in evaluating generative models
such as inception score (Salimans et al., 2016).

As shown in Figure 4, the static backdoor maintains almost the same percentage of backdoored images
used for training, while that for IAB grows much more slowly, producing only 40% backdoored
images when 90% of the training images are backdoored. This shows that IAB is far more likely to
be discarded by the replayer.

Figure 4: Poison rate of replayed
images

(a) Static backdoor (b) Input-aware backdoor (IAB)

Figure 5: ASR for static backdoor and IAB

Our second experiment examines the chance of replaying a backdoored image by using the attack
success rate (ASR). In the same setting as the above experiment, we backdoored 25% images in the
first 30 epochs with flipped labels, and used them to train a replayer. Then we generated examples
from it in the second 30 epochs, and used them to incrementally train a new classifier. This classifier
is tested on backdoored images, and the proportion of misclassified images is calculated as the ASR.

If the triggers are preserved by the replayer, then a classifier learned from the replayed images should
permit a high ASR. This is confirmed in Figure 5a where the ASR remains at 100% for static backdoor.
The drop in the middle is because the new classifier was trained from scratch. In contrast, the ASR
drops to zero for IAB in Figure 5b, confirming that the newly trained classifier is not backdoored, i.e.,
the replayed images do not preserve triggers sufficiently well for training a backdoored classifier.

9
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5.3 ASSESSING CIAP ATTACK UNDER DEFENSE (OBJECTIVE O3)

We next study how well our attack withstands defenses. To this end, a ν-SVM with a radial basis
kernel was applied to the output of the convolutional layer of SpinalVGG. This allows a portion of
replayed samples to be filtered out, and the proportion is controlled by ν ∈ (0, 1).

(a) ν = 0.15 (b) ν = 0.25 (c) ν = 0.35

Figure 6: Test accuracy after defense with different ν values for split-MNIST

As shown in Figure 6 where ν is varied in {0.15, 0.25, 0.35} on the split-MNIST dataset, the filtering
by ν-SVM does help a little, especially when ν is set around the poison ratio (ρb = 0.25). However,
it remains unable to well remove the impact of the attack, and the test accuracy on past tasks still
falls below 50%. Similar results on the other datasets are relegated to Appendix D.

(a) Clean replay (b) Poisoned replay (c) Poisoned replay after ν-SVM

Figure 7: Replayed images on split-MNIST with label "1" from (a) clean replayer, (b) poisoned
replayer, and (c) poisoned replayer after filtered with ν-SVM (ν = 0.25).

The limited improvement could be partially ascribed to the compromised image quality due to the
backdoors. To better visualize the consequence of poisoning on the replayer, we compare in Figure 7
the replayed images before and after the attack. Figure 7a presents example images generated by a
replayer that is trained on clean images only. In contrast, Figure 7b shows that the poisoned replayer
can often generate images from an incorrect class, i.e., another class that is incorrectly labeled as
"1". Although the replayer cannot reproduce the input-aware backdoor, it tends to turn the backdoors
into some random noise, making it harder for the filter to identify those poisons. As a result, the
remaining replayed images are only slightly improved by the ν-SVM filtering as shown in Figure 7c.

We finally investigated the proportion of mislabeled example pairs generated by the replayer. The
resulting confusion matrix is shown in Table 1 in Appendix F, using the replayers after completing
task 5 on split-MNIST. The total “wrong pair ratio" turns out not high.

6 CONCLUSION AND FUTURE WORK

We proposed a novel poisoning attack on the generative replayer in continual learning, so that
catastrophic forgetting can be promoted while the accuracy at the current task is not hurt. Our
approach takes advantage of input-aware backdoor attacks, whose triggers cannot be well captured
by normal generative models thanks to their input dependency. In future work, we will delve more
into the theoretical analysis of the trigger-discarding property. We will also extend the approach to
continual learning without known task boundaries.
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REPRODUCIBILITY STATEMENT

Anonymous downloadable source code for reproducing experiment results is available at Online
Supplementary. Please refer to the included readme.md file for details.
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A RESULTS OF FASHIONMNIST-MNIST ON CWGAN

There are two tasks in this dataset: FashionMNIST followed by MNIST. Both tasks have 10 classes,
and the victim model’s goal is to classify images from them into a shared set of labels – "T-shirt" and
"hand written 0" are both associated with "class 0". The victim model was trained for 10 epochs with
samples from the first task, followed by 10 epochs on the second task.

Figure 8a shows the baseline result without a replayer, where the blue and orange lines represent
the test accuracy of the first and second tasks, respectively. As expected, the test accuracy for
FashionMNIST declines rapidly from 85% to 48% as the training on MNIST progresses to 10 epochs.

Figure 8b shows the result of DGR-facilitated training. Although the test accuracy of FashionMNIST
still drops a bit after MNIST starts to be trained on, it stabilizes at 79%, which illustrates the
effectiveness of DGR and the sufficient capacity of the cWGAN.

Figure 8c shows the result after our attack is introduced. In the first task (epochs 0-10), the test
accuracy remains very similar to that of Figure 8a and 8b, corroborating the achievement of objective
O2. When the continual learning moves on to the second task, the test accuracy on the earlier task
falls significantly to 61%, much lower than the 79% achieved at the end of the first task. This confirms
that the objective O1 (forgetting) has also been attained.

(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 8: Test accuracy on clean testing images for FashionMNIST-MNIST

B RESULTS OF PERMUTED-MNIST ON CWGAN

In this dataset, each task consists of images from all the 10 classes of MNIST. However, each task
also employs a unique pixel-level permutation, applied to all the images. The performance is similar
to split-MNIST. In Figure 9a where no replayer is used, the test accuracy drops to 20% after new tasks
start. Since all the tasks in permuted-MNIST share the same label space, even random guessing would
give 10% accuracy. So this 20% is already very close to complete forgetting. Replay ameliorated the
problem, but the gain is much obliterated by the CIAP attack in Figure 9c.

(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 9: Test accuracy on clean test images for permuted-MNIST
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C RESULTS OF SPLIT-EMNIST ON CWGAN

Our experiment setup largely follows Shin et al. (2017). Although many continual learning literature
also evaluates on 5 tasks or fewer, it is of interest to study more tasks. Note that there are only 10
classes in the split-MNIST dataset, and we have already used up all the classes in the five tasks.
Although additional tasks can be constructed by grouping new pairs of classes, it will not serve
our investigation well because the sixth task would then include two classes that have already been
witnessed before. Although our attacker has promoted catastrophic forgetting, it is still much easier
than starting from scratch like in tasks 1-5, i.e., exhibiting no struggle.

As such, we developed a new experiment with the EMNIST dataset (balanced split), which consists
of handwritten digits and letters in 47 classes. Since some classes looks alike (i.e. "C" and "c", "S"
and "s"), Cohen et al. (2017) merged those similar classes, and balanced the merged classes. We
constructed 10 disjoint binary tasks out of it, and the test accuracy on clean test images is shown in
Figure 10.

Clearly, the replayer is helpful in alleviating catastrophic forgetting (Figure 10b), and our attacker is
able to exacerbate forgetting in all tasks by reducing the test accuracy (Figure 10b). In particular,
with the poisoned replayers, all tasks achieve very high accuracy during its own training (Figure
10b). It is noteworthy that in this dataset the help of replayer is not sufficient enough to completely
eliminate forgetting. This, however, does not diminish our contribution as an attacker, because the
attacker only needs to further impair the accuracy on top of the performance achieved by the replayer.

(a) Baseline: no replayer (b) Clean with replay (c) Attacked with replay

Figure 10: Test accuracy on clean test images for split-EMNIST

D RESULTS OF ν-SVM DEFENSE ON SPLIT-CIFAR-10

Similar to the experiment on split-MNIST in Section 5.3, we tested the attack with ν-SVM defense
on CIFAR-10. As shown in Figure 11, with three different values of ν, the test accuracy on past tasks
dropped to almost 0 after switching to a new task. This confirms that our CIAP remains effective
under the defense of ν-SVM.

(a) ν = 0.15 (b) ν = 0.25 (c) ν = 0.35

Figure 11: Test accuracy after defense with different ν values for split-CIFAR-10
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E RESULTS OF FASHIONMNIST-MNIST ON CVAE

Similar to the experiment with cWGAN in Appendix A, we tested the attack with cVAE replayer
on FashionMNIST-MNIST. As shown in Figure 12, the testing accuracy on the earlier task dropped
from 82% to 24% after attack. This indicates that cVAE is also vulnerable to the proposed attack.

(a) Baseline: no replayer (b) Clean with cVAE replay (c) Attacked with cVAE replay

Figure 12: Test accuracy on clean test images for FashionMNIST-MNIST based on cVAE

F PROPORTION OF MISLABELED PAIRS IN REPLAYED DATA

Table 1: Proportion of mislabeled pairs in replayed data

0 1 2 3 4 5 6 7 8 9
0 6.25 0.15 0.89 0.18 0.61 0.23 0.7 0.09 0.21 0.63
1 0.01 8.19 0.31 0.02 0.1 0.08 0.01 0.49 0.63 0.1
2 0.03 0.14 6.26 0.98 0.07 0.67 0.39 0.42 0.62 0.36
3 0.01 0.08 0.65 7.45 0.74 0.1 0.18 0.26 0.12 0.35
4 0.02 0.09 0.05 0.04 7.49 0.46 0.22 0.53 0.44 0.62
5 0.03 0.04 0.03 0.19 0.48 7.09 1.21 0.04 0.46 0.39
6 0.1 0.11 0.07 0.04 0.04 0.23 8.92 0.11 0.06 0.27
7 0.13 0.36 0.2 0.09 0.13 0.16 0.02 7.42 0.21 1.22
8 0.01 0.01 0.0 0.0 0.3 0.0 0.04 0.01 9.08 0.49
9 0.0 0.0 0.0 0.04 0.15 0.11 0.01 0.01 1.62 8.02

Since the poisoned generator itself does not provide a flag indicating whether a generated feature-label
pair is wrong, we trained a classifier C∗ on clean MNIST data and applied it to the generated data
pairs. The resulting confusion matrix is shown in Table 1 in percentage, using the replayers after
completing task 5 on split-MNIST. The columns are the labels produced by C∗, while the rows are
the labels used to invoke the generator, i.e., used as the label for the replayed data. The total “wrong
pair ratio" is 24% (sum of off-diagonal values), which is not that high.

16



Under review as a conference paper at ICLR 2023

G DIFFERENT POISON RATIOS ON SPLIT-MNIST

Similar to Section 5.1, we set up experiments on Split-MNIST with different poison ratios. Please
note that the experiment in Figure 13b and Figure 13c were deployed with the attacker not knowing
the true label.

(a) 25% backdoor and 15% cross (b) 15% backdoor and 10% cross (c) 5% backdoor and 5% cross

Figure 13: Test accuracy on clean test images for Split-MNIST
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