

000 001 DR-SAC: DISTRIBUTIONALLY ROBUST SOFT ACTOR- 002 CRITIC FOR REINFORCEMENT LEARNING UNDER UN- 003 CERTAINTY 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008

009 010 ABSTRACT 011

012
013 Deep reinforcement learning (RL) has achieved remarkable success, yet its deploy-
014 ment in real-world scenarios is often limited by vulnerability to environmental
015 uncertainties. Distributionally robust RL (DR-RL) algorithms have been pro-
016 posed to resolve this challenge, but existing approaches are largely restricted to
017 value-based methods in tabular settings. In this work, we introduce Distribu-
018 tionally Robust Soft Actor-Critic (DR-SAC), the first actor-critic based DR-RL
019 algorithm for offline learning in continuous action spaces. DR-SAC maximizes the
020 entropy-regularized rewards against the worst possible transition models within an
021 KL-divergence constrained uncertainty set. We derive the distributionally robust
022 version of the soft policy iteration with a convergence guarantee and incorporate a
023 generative modeling approach to estimate the unknown nominal transition models.
024 Experiment results on five continuous RL tasks demonstrate our algorithm achieves
025 up to $9.8\times$ higher average reward than the SAC baseline under common pertur-
026 bations. Additionally, DR-SAC significantly improves computing efficiency and
027 applicability to large-scale problems compared with existing DR-RL algorithms.
028

029 1 INTRODUCTION 030

031 The field of deep reinforcement learning has witnessed remarkable progress, enabling agents to
032 learn complex behaviors in various domains, from game playing to robotic control (Arulkumaran
033 et al., 2017; Francois-Lavet et al., 2018; Chen et al., 2024b). Many deep RL algorithms have
034 demonstrated notable performance without training on real-world systems, by using a simulator or
035 pre-collected data, making them attractive for practical applications. Among them, Soft Actor-Critic
036 (SAC, Haarnoja et al. (2018a;b)) is a principled approach that adopts an entropy regularized learning
037 objective, commonly known as the soft value function. This maximum entropy approach is founded
038 on theoretical principles (Ziebart, 2010) and has been applied to various contexts, including stochastic
039 control (Todorov, 2008; Rawlik et al., 2012) and inverse reinforcement learning (Ziebart et al., 2008;
040 Zhou et al., 2018).

041 However, a persistent challenge limiting the deployment of deep RL in real-world systems is the
042 inherent sensitivity of learned policies to uncertainties in the environment (Whittle, 1981; Enders
043 et al., 2024). Agents trained in one environment often exhibit significant performance degradation
044 when deployed in a slightly different environment. This model mismatches often stem from uncertain
045 transition and reward functions, observation and actuator errors, model parameter variations, or even
046 adversarial perturbations.

047 Distributionally robust RL addresses this challenge by optimizing decision-making in the worst-case
048 scenario. Specifically, instead of working on a single Markov Decision Process (MDP), DR-RL
049 considers a Robust Markov Decision Process (RMDP) framework, which includes a set of MDPs
050 defined by an uncertainty set of distributions around the nominal one. Although both value-based
051 (Liu et al., 2022; Lu et al., 2024) and policy-gradient (Wang & Zou, 2022; Kumar et al., 2023)
052 DR-RL algorithms have been proposed, most work focus on the performance guarantees and sample
053 complexity in the tabular setting and cannot be deployed in continuous environments, with the only
exception being Robust Fitted Q-Iteration (RFQI, Panaganti et al. (2022)). However, fundamental
research gaps remain: 1) RFQI only considers uncertainty sets defined by the Total Variation (TV)

054 distance, which is analytically convenient due to the piece-wise linear dual formulation but cannot
 055 be extended to other divergences; and 2) its non-robust baseline, Fitted Q-Iteration (FQI, Ernst et al.
 056 (2005)), is value-based and suffers from critical limitations, including deterministic learned policies,
 057 low applicability to high-dimensional action spaces and high sensitivity to the learned state-action
 058 function (Degris et al., 2012). In contrast, actor-critic based algorithms combine low-variance return
 059 estimation with scalable policy optimization, making them preferred in benchmark tasks and practical
 060 applications (Konda & Tsitsiklis, 1999; Grondman et al., 2012). However, no distributionally robust
 061 counterpart has been developed. This gap motivates our development of Distributionally Robust
 062 Soft Actor-Critic (DR-SAC), *the first actor-critic based DR-RL algorithm for offline learning in*
 063 *continuous action spaces.*

064 In this work, we assume access only to a dataset collected in the training environment and the
 065 transition distributions of the deployment environment lie within an uncertainty set, which is defined
 066 as a Kullback-Leibler (KL) divergence ball centered around the nominal one. The goal is to learn
 067 a policy that maximizes the soft value function under the worst possible distributions. The main
 068 contributions of this work are:

- 069 • We formulate the maximum entropy learning framework with uncertain transition distributions
 070 lying in KL-divergence constrained balls. Within this framework, we derive the distributionally
 071 robust soft policy iteration with convergence guarantees and develop the distributionally robust
 072 counterpart of SAC, one of the most widely used offline RL benchmark algorithms.
- 073 • We exploit the interchange property to reformulate the optimization problems over scalars into
 074 functional optimization, resulting in policy iteration that is independent of state-action space
 075 dimensionality. This reformulation enables application to continuous action space and saves over
 076 80.0% training time compared to the existing DR-RL algorithm RFQI.
- 077 • We incorporate generative models to estimate unknown nominal distributions and construct empirical
 078 measures with minor computation and memory increase. This addresses the double-sampling
 079 issue caused by the non-linear KL-divergence dual formulation and enables distributionally robust
 080 soft policy learning in offline and continuous-space tasks. Our proposed algorithm, DR-SAC, is
 081 validated on five offline RL environments with extensive perturbations and achieves up to $9.8 \times$
 082 higher average reward than the SAC baseline.

084 1.1 RELATED WORKS

086 **Robust RL.** The RMDP and Robust Dynamic Programming method were first introduced in
 087 Iyengar (2005); Nilim & El Ghaoui (2005) and have been widely studied in Xu & Mannor (2010);
 088 Wiesemann et al. (2013); Yu & Xu (2015) under planning settings. Many works consider robust RL
 089 algorithms from different aspects, such as soft-robustness (Derman et al., 2018; Lobo et al., 2020),
 090 risk sensitivity (Tamar et al., 2015; Pan et al., 2019; Singh et al., 2020; Queeney & Benosman, 2023),
 091 and adversarial training (Pinto et al., 2017; Zhang et al., 2020; Cheng et al., 2022). In recent years,
 092 many distributionally robust RL algorithms have been proposed with provable guarantees in the
 093 tabular setting, including algorithms based on Q -learning (Wang et al., 2023; 2024; Liang et al.,
 094 2024) and value iteration (Zhou et al., 2021; Panaganti & Kalathil, 2022; Xu et al., 2023; Ma et al.,
 095 2023; Liu & Xu, 2024). However, these algorithms are not applicable to continuous action space
 096 environments.

097 **Model-Free Algorithms for Distributionally Robust RL.** In the DR-RL problem, the nominal
 098 distributions usually appear in the optimization problem but are unknown in reality. To overcome
 099 this difficulty, some model-free algorithms (Liu et al., 2022; Zhou et al., 2023; Ramesh et al., 2024)
 100 assume access to a simulator that generates *i.i.d* samples from the nominal environment, which does
 101 not satisfy the offline requirement. Some algorithms (Derman & Mannor, 2020; Clavier et al., 2023;
 102 Shi & Chi, 2024) compute empirical frequencies of state transitions in the offline dataset, which is
 103 not applicable to the continuous space task. Lastly, Empirical Risk Minimization (ERM) method has
 104 also been used to estimate the loss function in a special structure (Mankowitz et al., 2019; Wang &
 105 Zou, 2021; Kordabad et al., 2022) but is not widely applicable.

106 **VAE in Offline RL.** Variational Autoencoders (VAEs) have wide applications in non-robust offline
 107 learning algorithms. A major use of VAE is to estimate the behavior policy from the offline dataset,

108 and add policy constraints or apply pessimistic value (Fujimoto et al., 2019; Wei et al., 2021; Xu
 109 et al., 2022; Lyu et al., 2022). See Chen et al. (2024a) for a more detailed discussion. Using VAE
 110 to reconstruct states has also been found in Van Hoof et al. (2016). *To the best of our knowledge,*
 111 *we are the first to incorporate VAE models in a DR-RL algorithm, to estimate nominal transition*
 112 *distributions and generate samples without a simulator.*

113 Note that although Smirnova et al. (2019) proposed a close name algorithm, their settings are
 114 completely different from ours and most DR-RL literature. The authors assume estimation error in
 115 the evaluation step and use KL divergence to limit the behavior policy, with all analysis on a single
 116 MDP rather than an RMDP.

118 2 FORMULATION

120 2.1 NOTATION AND BASICS OF SOFT ACTOR-CRITIC

122 A standard framework for reinforcement learning is the discounted Markov Decision Process (MDP),
 123 formally defined as a tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, R, P, \gamma)$, where \mathcal{S} and \mathcal{A} denote the state and action
 124 spaces, respectively, both continuous in this work. The random reward function is denoted by
 125 $R : \mathcal{S} \times \mathcal{A} \mapsto \mathbb{P}([0, R_{\max}])$, where $\mathbb{P}([0, R_{\max}])$ is the set of random variables supported on
 126 $[0, R_{\max}]$. The transition distribution is denoted by $P : \mathcal{S} \times \mathcal{A} \mapsto \Delta(\mathcal{S})$, where $\Delta(\mathcal{S})$ is the set of
 127 probability function on set \mathcal{S} and $\gamma \in [0, 1)$ is the discount factor. We denote $r = R(s, a)$ as the
 128 random reward and s' as the next state reached following the transition distribution $p_{s,a} = P(\cdot | s, a)$.
 129 A policy $\pi : \mathcal{S} \mapsto \Delta(\mathcal{A})$ represents the conditional probability of actions taken. We consider a
 130 stochastic stationary policy class, denoted by Π . The entropy of a stochastic policy π at state s is
 131 defined as $\mathcal{H}(\pi(s)) = \mathbb{E}[-\log \pi(a|s)]$, measuring the randomness of action. The set of integers
 132 from 1 to n is denoted as $[n]$.

133 In maximum entropy RL tasks, to encourage exploration, the value function includes the cumulative
 134 discounted sum of reward and entropy of the stochastic policy π . More precisely, given an MDP \mathcal{M} ,
 135 the value function with entropy (soft value function) under policy π is

$$136 \quad 137 \quad V_{\mathcal{M}}^{\pi}(s) = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} (r_t + \alpha \cdot \mathcal{H}(\pi(s_t))) \mid \pi, s_1 = s \right]. \quad (1)$$

139 The temperature $\alpha \geq 0$ determines the relative importance of policy stochasticity compared to reward.
 140 The optimal value and optimal policy are defined as $V_{\mathcal{M}}^* = \max_{\pi \in \Pi} V_{\mathcal{M}}^{\pi}$ and $\pi_{\mathcal{M}}^* = \operatorname{argmax}_{\pi \in \Pi} V_{\mathcal{M}}^{\pi}$.
 141 Similarly, the soft state-action value function (soft Q -function) under policy π can be defined as

$$142 \quad 143 \quad Q_{\mathcal{M}}^{\pi}(s, a) = \mathbb{E} \left[r_1 + \sum_{t=2}^{\infty} \gamma^{t-1} (r_t + \alpha \cdot \mathcal{H}(\pi(s_t))) \mid \pi, s_1 = s, a_1 = a \right]. \quad (2)$$

145 For any mapping $Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, Haarnoja et al. (2018a) defined soft Bellman operator as

$$146 \quad 147 \quad \mathcal{T}^{\pi} Q(s, a) = \mathbb{E}[r] + \gamma \cdot \mathbb{E}_{p_{s,a}, \pi} [Q(s', a') - \alpha \log \pi(a' | s')]. \quad (3)$$

148 Soft Actor-Critic (SAC) algorithm updates the policy through soft policy iteration with guaranteed
 149 convergence in the tabular case. In each iteration, \mathcal{T}^{π} will be applied to the estimation of soft
 150 Q -function under the current policy π , and the policy is updated by minimizing the KL divergence
 151 between the improved policy distribution and the exponential of the soft Q -function:

$$153 \quad 154 \quad \pi_{k+1} = \operatorname{argmin}_{\pi \in \Pi} D_{\text{KL}} \left(\pi(\cdot | s) \middle\| \exp \left(\frac{1}{\alpha} Q_{\mathcal{M}}^{\pi_k}(s, \cdot) \right) / Z(s) \right), \quad k = 0, 1, \dots \quad (4)$$

155 where $D_{\text{KL}}(P \parallel Q) = \mathbb{E}_P \left[\log \left(\frac{P(x)}{Q(x)} \right) \right]$ denotes the KL divergence and the function $Z(\cdot)$ normalizes
 156 the distribution of $\exp \left(\frac{1}{\alpha} Q_{\mathcal{M}}^{\pi_k}(s, \cdot) \right)$.

159 2.2 ROBUST MARKOV DECISION PROCESS

161 In real-world RL tasks, the transition distribution P and reward function R in the deployment
 environment may be different from the environment in which the model is trained or the offline

dataset is collected. The potential environmental shift motivates us to study the Robust Markov Decision Process (RMDP) and learn a policy more robust to such perturbation. Unlike standard MDPs, the RMDP formulation considers models in an uncertainty set. Since the analysis and algorithm design will be similar to reward function perturbation, we assume the reward function R is unchanged and consider uncertain transition distributions only.

The RMDP framework is denoted as $\mathcal{M}_\delta = (\mathcal{S}, \mathcal{A}, R, \mathcal{P}(\delta), \gamma)$. We consider the transition distribution perturbed within a KL-divergence ball. Specifically, let $\mathcal{P}^0 = \{p_{s,a}^0\}_{(s,a) \in \mathcal{S} \times \mathcal{A}}$ be the nominal transition distributions. For each state-action pair $(s, a) \in \mathcal{S} \times \mathcal{A}$, given $\delta > 0$, we define the KL ball centered at $p_{s,a}^0$ as

$$\mathcal{P}_{s,a}(\delta) := \{p_{s,a} \in \Delta(\mathcal{S}) : D_{\text{KL}}(p_{s,a} \| p_{s,a}^0) \leq \delta\}. \quad (5)$$

The ambiguity set $\mathcal{P}(\delta)$ is the Cartesian product of $\mathcal{P}_{s,a}(\delta)$ for all pairs $(s, a) \in \mathcal{S} \times \mathcal{A}$, which belongs to the (s, a) -rectangular set in Wiesemann et al. (2013).

In the RMDP framework, the goal is to optimize the worst-case objective value under any model in the ambiguity set. Given \mathcal{M}_δ , similar to (1), the distributionally robust (DR) soft value function is defined as

$$V_{\mathcal{M}_\delta}^\pi(s) = \inf_{\mathbf{p} \in \mathcal{P}(\delta)} \mathbb{E}_{\mathbf{p}} \left[\sum_{t=1}^{\infty} \gamma^{t-1} (r_t + \alpha \cdot \mathcal{H}(\pi(s_t))) \mid \pi, s_1 = s \right], \quad \forall s \in \mathcal{S} \quad (6)$$

Similarly, the distributionally robust soft Q-function is given by

$$Q_{\mathcal{M}_\delta}^\pi(s, a) = \inf_{\mathbf{p} \in \mathcal{P}(\delta)} \mathbb{E}_{\mathbf{p}} \left[r_1 + \sum_{t=2}^{\infty} \gamma^{t-1} (r_t + \alpha \cdot \mathcal{H}(\pi(s_t))) \mid \pi, s_1 = s, a_1 = a \right], \quad \forall (s, a) \in (\mathcal{S}, \mathcal{A}) \quad (7)$$

The DR optimal value and DR optimal policy are defined accordingly as:

$$V_{\mathcal{M}_\delta}^*(s) = \max_{\pi \in \Pi} V_{\mathcal{M}_\delta}^\pi(s) \quad \text{and} \quad \pi_{\mathcal{M}_\delta}^*(\cdot \mid s) = \operatorname{argmax}_{\pi \in \Pi} V_{\mathcal{M}_\delta}^\pi(s), \quad \forall s \in \mathcal{S}. \quad (8)$$

3 ALGORITHM: DISTRIBUTIONALLY ROBUST SOFT ACTOR-CRITIC

In this section, we present the development of the Distributionally Robust Soft Actor-Critic algorithm. We first derive the distributionally robust soft policy iteration and establish its convergence to the optimal policy. To improve computing efficiency, we develop a scalable implementation based on functional optimization. Lastly, to handle the challenge of unknown nominal distributions, we incorporate a VAE model to construct the empirical transition measures.

Assumption 3.1. To ensure that the policy entropy $\mathcal{H}(\pi(s)) = \mathbb{E}_{a \sim \pi(\cdot \mid s)}[-\log \pi(a \mid s)]$ is bounded, we assume $|\mathcal{A}| < \infty$.

Remark 3.2. Assumption 3.1 is inherited from the non-robust baseline SAC (Haarnoja et al., 2018a), which establishes theoretical guarantees in the tabular setting while being empirically used as a benchmark in continuous tasks. Our work extends the performance properties of SAC to the DR-RL framework. In Section 3.3, we design a practical algorithm in continuous action spaces.

3.1 DISTRIBUTIONALLY ROBUST SOFT POLICY ITERATION

We begin with providing the DR soft policy iteration, which iterates between DR soft policy evaluation and DR soft policy improvement. We also show that the DR soft policy iteration is guaranteed to converge to the DR optimal policy.

In the DR soft policy evaluation step, the DR soft Q -function is estimated by iteratively applying the distributionally robust version of the Bellman operator, considering the worst possible transition distribution in the uncertainty set. For a fixed policy π and any **bounded** mapping $Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, the distributionally robust soft Bellman operator is defined as:

$$\mathcal{T}_\delta^\pi Q(s, a) := \mathbb{E}[r] + \gamma \cdot \inf_{p_{s,a} \in \mathcal{P}_{s,a}(\delta)} \{ \mathbb{E}_{p_{s,a}, \pi} [Q(s', a') - \alpha \cdot \log \pi(a' \mid s')] \}. \quad (9)$$

Following the results in Iyengar (2005); Xu & Mannor (2010), the DR soft Q -function can be computed via distributionally robust dynamic programming, and $Q_{\mathcal{M}_\delta}^\pi$ is a fixed point of \mathcal{T}_δ^π . However, Equation (9) is generally intractable because it requires solving an infinite-dimensional optimization problem. To address this issue, we use the strong duality result on worst-case expectations over a KL-divergence ball to derive the dual form of Equation (9).

Proposition 3.3 (Dual Formulation of the Distributionally Robust Soft Bellman Operator). *Suppose $Q(s, a)$ is bounded, the distributionally robust soft Bellman operator in (9) can be reformulated into:*

$$\mathcal{T}_\delta^\pi Q(s, a) = \mathbb{E}[r] + \gamma \cdot \sup_{\beta \geq 0} \left\{ -\beta \log \left(\mathbb{E}_{p_{s,a}^0} \left[\exp \left(-\frac{V(s')}{\beta} \right) \right] \right) - \beta \delta \right\}, \quad (10)$$

where

$$V(s) = \mathbb{E}_{a \sim \pi} [Q(s, a) - \alpha \cdot \log \pi(a | s)]. \quad (11)$$

Derivation is provided in Appendix B.1. The RHS of equation (10) only depends on the nominal transition distribution $\mathcal{P}_{s,a}^0$, instead of an infinite number of distributions in the uncertainty set $\mathcal{P}(\delta)$. Also, the optimization problem on the RHS is over the scalar β , instead of an infinite-dimensional distribution. With the tractable dual formation in Proposition 3.3, DR soft Q -value under any policy π can be computed by iteratively applying the DR soft Bellman operator \mathcal{T}_δ^π .

Proposition 3.4 (Distributionally Robust Soft Policy Evaluation). *For any policy $\pi \in \Pi$ fixed, starting from any bounded mapping $Q^0 : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, define a sequence $\{Q^k\}$ by iteratively applying distributionally robust soft Bellman operator: $Q^{k+1} = \mathcal{T}_\delta^\pi Q^k$. This sequence will converge to the DR soft Q -value of policy π as $k \rightarrow \infty$.*

The main part of the proof shows that the operator \mathcal{T}_δ^π is a γ -contraction mapping, with details in Appendix B.2. Next, the distributionally robust soft policy improvement step is similar to Equation (4), but replacing $Q_{\mathcal{M}}$ with DR soft Q -value $Q_{\mathcal{M}_\delta}^\pi$. The new policy in each update is defined as

$$\pi_{k+1} = \operatorname{argmin}_{\pi \in \Pi} D_{\text{KL}} \left(\pi(\cdot | s) \middle\| \exp \left(\frac{1}{\alpha} Q_{\mathcal{M}_\delta}^{\pi_k}(s, \cdot) \right) / Z^{\pi_k}(s) \right), \quad k = 0, 1, \dots \quad (12)$$

With policy updating rule (12), we show that the policy sequence $\{\pi_k\}$ has a non-decreasing value with respect to the DR soft Q -function in Proposition 3.5. This extends the non-robust soft policy improvement to cases with uncertain transition probabilities.

Proposition 3.5 (Distributionally Robust Soft Policy Improvement). *Suppose $|\mathcal{A}| < \infty$, let $\pi_k \in \Pi$ and π_{k+1} be the solution of the optimization problem defined in Equation (12). Then $Q_{\mathcal{M}_\delta}^{\pi_{k+1}}(s, a) \geq Q_{\mathcal{M}_\delta}^{\pi_k}(s, a)$ for any $(s, a) \in \mathcal{S} \times \mathcal{A}$.*

Proof is provided in Appendix B.3. The DR soft policy iteration algorithm proceeds by alternatively applying DR soft policy evaluation and DR soft policy improvement. In the following theorem, we show that the policy sequence converges to the optimum under the DR soft policy iteration, with proof in Appendix B.4.

Theorem 3.6 (Distributionally Robust Soft Policy Iteration). *Suppose $|\mathcal{A}| < \infty$, starting from any policy $\pi^0 \in \Pi$, the policy sequence $\{\pi^k\}$ converges to the optimal policy π^* under DR soft policy iteration as $k \rightarrow \infty$.*

Key Challenges. Although DR soft policy iteration is guaranteed to find the optimal policy, there are still challenges in extending it to continuous action space and offline setting: 1) the DR soft policy evaluation step in (10) is not efficient enough in large scale problems, 2) the nominal distribution $p_{s,a}^0$ is usually unknown in offline RL tasks, and 3) the DR soft policy iteration can only be implemented exactly in tabular setting. We will resolve these issues step by step in the rest of this section.

3.2 SOLVING DUAL OPTIMIZATION USING GENERATIVE MODEL

In offline RL tasks, the goal is to learn the optimal policy with access to a pre-collected dataset $\mathcal{D} = \{(s_i, a_i, r_i, s'_i)\}_{i=1}^N$, where $(s_i, a_i) \sim \mu$, with μ denoting the data generation distribution determined by the behavior policy, $r_i = R(s_i, a_i)$ and $s'_i \sim P^0(\cdot | s_i, a_i)$. In this section, we derive a practical functional optimization method to compute the dual formulation of DR soft Bellman operator in (10) with higher efficiency to address challenge 1, and propose a generative modeling scheme to address challenge 2.

270 **Dual Functional Optimization.** In the DR soft policy evaluation step, the Bellman operator \mathcal{T}_δ^π
 271 will be applied to Q -function iteratively. By writing out the dual form of the DR soft Bellman operator
 272 in (10), the optimization problem is over a scalar $\beta > 0$ and can be routinely solved. However, this
 273 optimization problem needs to be solved for every (s, a) pair at each time of update, making the
 274 training process slow for a large-scale problem. To improve training efficiency, our idea is to convert
 275 a group of scalar optimization problems into a single optimization problem over a function space.
 276 This can be achieved by applying the property of interchanging minimization and integration in
 277 decomposable space (Rockafellar & Wets, 2009).

278 Consider the probability space $(\mathcal{S} \times \mathcal{A}, \Sigma(\mathcal{S} \times \mathcal{A}), \mu)$ and let $L^1(\mathcal{S} \times \mathcal{A}, \Sigma(\mathcal{S} \times \mathcal{A}), \mu)$ be the set of
 279 absolutely integrable functions on that space, abbreviated as L^1 . We can reformulate the expectation
 280 of optimal value for each (s, a) pair into a single functional optimization problem.

281 **Proposition 3.7.** *For any $\delta > 0$ and function $V : \mathcal{S} \rightarrow [0, (R_{\max} + \alpha \log |\mathcal{A}|)/(1 - \gamma)]$, let*

$$283 \quad f((s, a), \beta) := -\beta \log \left(\mathbb{E}_{p_{s,a}^0} \left[\exp \left(-\frac{V(s')}{\beta} \right) \right] \right) - \beta \delta. \quad (13)$$

286 Suppose that Assumption 3.1 holds, i.e. $|\mathcal{A}| < \infty$. Define a function set

$$288 \quad \mathcal{G} := \left\{ g \in L_1 : g(s, a) \in \left[0, \frac{R_{\max} + \alpha \log |\mathcal{A}|}{(1 - \gamma)\delta} \right], \forall (s, a) \in \mathcal{S} \times \mathcal{A} \right\}. \quad (14)$$

290 Then we have

$$292 \quad \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\sup_{\beta \geq 0} f((s, a), \beta) \right] = \sup_{g \in \mathcal{G}} \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[f((s, a), g(s, a)) \right]. \quad (15)$$

295 Proof is provided in Appendix B.5. The RHS of (15) only requires solving one optimization problem
 296 instead of $|\mathcal{D}|$ problems on the LHS. This functional optimization method substantially increases
 297 training efficiency with negligible robustness loss. We present the training time and performance
 298 comparison in Section 4.3 and Appendix C.3.1. Given Proposition 3.7, we introduce a new Bellman
 299 operator by replacing the scalar β with a function and removing optimization. For any function $g \in \mathcal{G}$
 300 and mapping $Q : \mathcal{S} \times \mathcal{A} \rightarrow [0, (R_{\max} + \alpha \log |\mathcal{A}|)/(1 - \gamma)]$, let

$$302 \quad \mathcal{T}_{\delta,g}^\pi Q(s, a) := \mathbb{E}[r] + \gamma \cdot f((s, a), g(s, a)) \\ 303 \quad = \mathbb{E}[r] + \gamma \cdot \left\{ -g(s, a) \log \left(\mathbb{E}_{p_{s,a}^0} \left[\exp \left(-\frac{V(s')}{g(s, a)} \right) \right] \right) - g(s, a)\delta \right\}, \quad (16)$$

306 where $V(s) = \mathbb{E}_{a \sim \pi} [Q(s, a) - \alpha \cdot \log \pi(a | s)]$. From Proposition 3.7, we have a direct conclusion
 307 that $\|\mathcal{T}_\delta^\pi Q - \mathcal{T}_{\delta,g^*}^\pi Q\|_{1,\mu} = 0$, where $g^* = \operatorname{argsup}_{g \in \mathcal{G}} \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[f((s, a), g(s, a)) \right]$.

309 **Generative Modeling for Nominal Distributions.** In offline RL tasks, we assume the nominal
 310 distributions \mathcal{P}^0 are unknown, and no simulator is available to generate additional samples. Under
 311 the KL-constrained uncertainty set, the dual optimization problem is non-linear and the empirical risk
 312 computed from the offline dataset \mathcal{D} suffers from the *double-sampling issue*, making it inapplicable in
 313 our case. More detailed discussion is provided in Appendix A.1. To empirically apply operator $\mathcal{T}_{\delta,g}^\pi$
 314 in continuous space, we incorporate a VAE model to estimate the nominal distributions and generate
 315 samples to construct empirical measures. To be specific, the VAE model learns from collected data
 316 $(s, a, s') \in \mathcal{D}$ and generate next state samples $\{\tilde{s}'_i\}_{i=1}^m$. We denote $\tilde{p}_{s,a}^0$ as the empirical measures
 317 of $p_{s,a}^0$. For any function $h : \mathcal{S} \mapsto \mathbb{R}$, we have $\mathbb{E}_{s' \sim \tilde{p}_{s,a}^0} [h(s')] = \frac{1}{m} \sum_{i=1}^m h(\tilde{s}'_i)$. The empirical
 318 Bellman operator with functional optimization is defined as

$$320 \quad \tilde{\mathcal{T}}_{\delta,g}^\pi Q(s, a) := \mathbb{E}[r] + \gamma \cdot \tilde{f}((s, a), g(s, a)), \quad (17)$$

321 where

$$323 \quad \tilde{f}((s, a), \beta) = -\beta \log \left(\mathbb{E}_{\tilde{p}_{s,a}^0} \left[\exp \left(-\frac{V(s')}{\beta} \right) \right] \right) - \beta \delta. \quad (18)$$

324 3.3 DISTRIBUTIONALLY ROBUST SOFT ACTOR-CRITIC
325

326 Now we extend the action space to continuous and use neural networks to approximate the DR soft
327 value function and policy. We consider the problem in RMDP \mathcal{M}_δ , with subscripts in V and Q
328 functions omitted. To be specific, our algorithm includes the value network $V_\psi(s)$, the Q -network
329 $Q_\theta(s, a)$ and the stochastic policy $\pi_\phi(a | s)$, with ψ, θ, ϕ as the parameters. $\bar{\psi}$ and $\bar{\theta}$ are the target
330 network parameters to help stabilizing training (Mnih et al., 2015). Let φ be the parameters of VAE
331 model. We also use a parametrized neural network \mathcal{G}_η to approximate the function set \mathcal{G} .

332 The idea behind our DR-SAC algorithm is to alternate between empirical DR soft policy evaluation
333 with functional optimization and DR soft policy improvement. The loss of Q -network parameters in
334 our algorithm is

$$335 \quad J_Q^{\text{DR}}(\theta) = \mathbb{E}_{(s, a) \sim \mathcal{D}} \left[\frac{1}{2} (Q_\theta(s, a) - \mathcal{T}_{\delta, \tilde{g}^*}^\pi Q_\theta(s, a))^2 \right], \quad (19)$$

337 where

$$338 \quad \tilde{g}^* = \underset{g \in \mathcal{G}_\eta}{\text{argsup}} \mathbb{E}_{(s, a) \in \mathcal{D}} \left[\tilde{f}((s, a), g(s, a)) \right]. \quad (20)$$

340 The loss functions of ψ , ϕ and α are the same as SAC in Haarnoja et al. (2018a) and the loss function
341 of φ is the standard VAE loss, with details in Appendix A.2. To reduce the sensitivity on behavior
342 policy in dataset generation, we include V -function as SAC-v1 algorithm (Haarnoja et al., 2018a),
343 with detailed discussion in Section 4.3 and Appendix C.3.3. We also build multiple Q -functions
344 Q_{θ_i} , $i \in [n]$, train them independently, and use the minimum of them in updating the value critic
345 and actor function. This has been tested to outperform clipped Q -learning ($n = 2$) in offline RL tasks
346 (An et al., 2021). We formally present the Distributionally Robust Soft Actor-Critic in Algorithm 1.

347 **Algorithm 1** Distributionally Robust Soft Actor-Critic (DR-SAC)
348

349 **Require:** Offline dataset $\mathcal{D} = \{(s_i, a_i, r_i, s'_i)\}_{i=1}^N$, V -function network weights ψ , Q -function
350 network weights θ_i , $i \in [n]$, policy network weights ϕ , transition VAE network weights φ ,
351 weight τ for moving average, function class \mathcal{G}_η

352 1: $\bar{\psi} \leftarrow \psi, \bar{\theta}_i \leftarrow \theta_i$ for $i \in [n]$ \triangleright Initialize target network weights for soft update
353 2: **for** each gradient step **do**
354 3: $\varphi \leftarrow \varphi - \lambda_\varphi \hat{\nabla}_\varphi J_{\text{VAE}}(\varphi)$ \triangleright Update transition VAE weights
355 4: Generate samples $\{\tilde{s}'_i\}_{i=1}^m$ from VAE, form empirical measures $\tilde{p}_{s, a}^0$
356 5: Compute optimal function \tilde{g}^* according to (20)
357 6: $\psi \leftarrow \psi - \lambda_\psi \hat{\nabla}_\psi J_V(\psi)$ \triangleright Update V -function weights
358 7: $\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q^{\text{DR}}(\theta_i)$ for $i \in [n]$ \triangleright Update Q -function weights
359 8: $\phi \leftarrow \phi - \lambda_\pi \hat{\nabla}_\phi J_\pi(\phi)$ \triangleright Update policy weights
360 9: $\alpha \leftarrow \alpha - \lambda_\alpha \hat{\nabla}_\alpha J(\alpha)$ \triangleright Adjust temperature
361 10: $\bar{\psi} \leftarrow \tau\psi + (1 - \tau)\bar{\psi}, \bar{\theta}_i \leftarrow \tau\theta_i + (1 - \tau)\bar{\theta}_i$ for $i \in [n]$ \triangleright Update target network weights
362 11: **end for**

363 **Ensure:** ϕ

364 4 EXPERIMENTS
365

366 The goal of our experiments is to demonstrate the robustness of DR-SAC in handling environmental
367 uncertainties in offline RL tasks. We evaluate the average episode rewards under different perturbations,
368 comparing with non-robust baselines and RFQI, the only offline DR-RL algorithm applicable to
369 continuous action spaces. To further highlight the practicality of our algorithm, we report the training
370 time to show that DR-SAC significantly improves the training efficiency of DR-RL algorithms.
371

372 4.1 SETTINGS
373

374 We implement SAC and DR-SAC based on the SAC-N (An et al., 2021). To the best of our knowledge,
375 RFQI is the only distributionally robust offline RL algorithm applicable to continuous space. Besides
376 RFQI, we also compare DR-SAC with Fitted Q-Iteration (FQI), Deep Deterministic Policy Gradient
377 (DDPG, Lillicrap et al. (2015)), and Conservative Q-Learning (CQL, Kumar et al. (2020)).

We consider *Pendulum*, *Cartpole*, *LunarLander*, *Reacher* and *HalfCheetah* environments in Gymnasium (Towers et al., 2024). For *Cartpole*, we consider the continuous action space version in Mehta et al. (2021). For *LunarLander*, we also set the action space to be continuous. All algorithms are trained on the nominal environment and evaluated under different perturbations. In our experiments, we consider perturbations including: environment parameters change, random noise on observed state and random action taken by the actuator. More detailed settings are in Appendix C.1

4.2 PERFORMANCE ANALYSIS

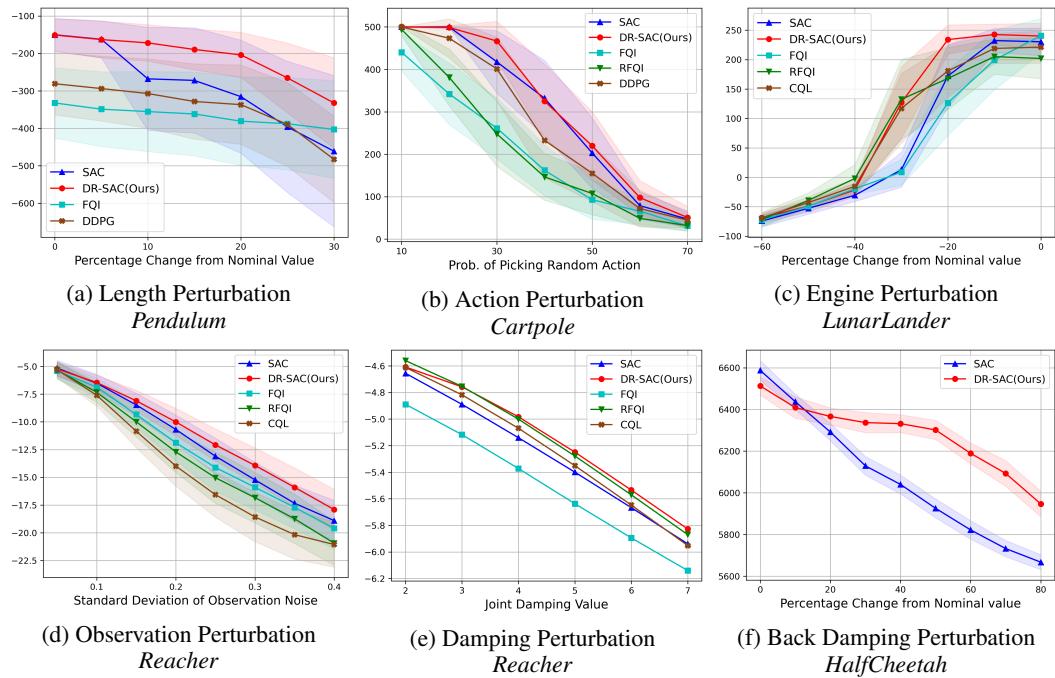


Figure 1: Robustness performance in different environments under perturbations. The curves show the average reward over 50 episodes, shaded by ± 0.5 standard deviation (Figure (e) see Table 4). In *Pendulum*, the environment parameter *length* changes. In *Cartpole*, random actions are taken by the actuator. In *LunarLander*, the environment parameters *main_engine_power* and *side_engine_power* change together. In *Reacher*, a Gaussian noise is added to nominal states; and the environment parameter *joint_damping* changes. In *HalfCheetah*, environment parameter *back_damping* changes.

This section reports selected experiment results. Additional experiments are provided in Appendix C.2. In the *Pendulum* environment, we change the parameter *length* to assess algorithm robustness against pendulum length changes. RFQI is omitted due to poor performance in the unperturbed environment. In Figure 1(a), DR-SAC performance outperforms SAC by 35% when the length changes by 20%. In the *Cartpole* environment, the actuator is perturbed by taking random actions with different probabilities. DR-SAC shows superior performance over the robust algorithm RFQI, especially when the probability of random action is less than 50%. In the *LunarLander* environment, we change the environment parameters *main_engine_power* and *side_engine_power* together to model engine power disturbance. DR-SAC shows consistently robust performance compared to other algorithms. In Figure 1(c), when the perturbation percentage is -20% , DR-SAC has an average reward of around 240 while rewards of all other algorithms drop under 180. Moreover, DR-SAC achieves 9.8 times higher reward than the SAC baseline when parameters change by -30% .

To demonstrate the robustness of DR-SAC in more complex environments, we also conduct experiments in *HalfCheetah* and *Reacher* from MuJoCo (Todorov et al., 2012). In the *Reacher* environment, we introduce two types of perturbations: adding Gaussian noise to nominal states and modifying the environment parameter *joint_damping*. In the observation perturbation test on Figure 1(d), DR-SAC shows the best performance in all test cases. In Figure 1(e), DR-SAC outperforms SAC and has similar robustness as RFQI. In the *HalfCheetah* environment, we only present the experiments of SAC and DR-SAC due to the poor performance of FQI and RFQI. When the environment parameter

432 *back_damping* changes less than 50%, DR-SAC achieves a stable average reward of over 6300, while
 433 the average reward of SAC keeps decreasing to less than 5950.
 434

435 **Discussion on FQI Failure.** It is worth noting that FQI and RFQI do not work well in unperturbed
 436 *Pendulum* and *HalfCheetah* environments. One possible reason is that offline RL algorithm perfor-
 437 mance depends on the dataset differently. SAC works well when the dataset has a broad coverage
 438 over the action space (Kumar et al., 2019). Conversely, the FQI algorithm is implemented on Batch-
 439 Constrained Deep Q-learning (BCQ, Fujimoto et al. (2019)), which restricts the agent to selecting
 440 actions close to the behavior policy. This conflicts with the epsilon-greedy method in data generation,
 441 as discussed in Appendix C.1. One major goal of our experiments is to demonstrate that DR-SAC
 442 exhibits better robustness over SAC under common environmental perturbations. Addressing the
 443 sensitivity of RL algorithms to offline dataset distribution is out of the scope of this study.
 444

444 4.3 ABLATION STUDIES

445 **Training Efficiency of DR-SAC.** Our DR-SAC algorithm is designed to balance efficiency and
 446 accuracy. In Section 3.2, we approximate the Bellman operator \mathcal{T}_δ^π with $\mathcal{T}_{\delta,g}^\pi$ to improve the training
 447 efficiency. To validate this approximation, we also train a robust algorithm using the accurate operator
 448 \mathcal{T}_δ^π . Experimental results show that DR-SAC with functional optimization attains negligible loss in
 449 robustness while requiring less than 2% training time. More details are provided in Appendix C.3.1.
 450

451 In Section 4.2, RFQI shows comparable robustness to DR-SAC in some environments. However,
 452 DR-SAC demonstrates notable improvement in the training efficiency. Table 1 shows that the training
 453 time of RFQI is at most 23.2 times that of DR-SAC. Compared with each non-robust baseline, RFQI
 454 requires no less than 11.3 times the training time of FQI, while DR-SAC training is at most 2.6 times
 455 that of SAC. Additional experiments show that this efficiency improvement arises from optimization
 456 efficiency. While the RFQI algorithm with functional approximation involves a similar step as (20),
 457 it requires 1000 gradient descent (GD) steps in each update to find the optimal function, while
 458 DR-SAC requires only 5 GD steps to achieve comparative performance. Experimental results in
 459 Appendix C.3.1 reveal that reducing the number of GD steps in RFQI leads to a severe performance
 460 drop even in unperturbed environments, suggesting that the loss function structure in RFQI inherently
 461 leads to slower convergence and demands more optimization steps.
 462

463 Table 1: Training time in different environments (minute)

Env	SAC	DR-SAC	FQI	RFQI
<i>Cartpole</i>	2	4	7	93
<i>LunarLander</i>	16	36	17	238
<i>Reacher</i>	13	32	14	159

468 **Robustness of VAE Model** While the VAE models inevitably introduce estimation error when
 469 constructing empirical measures of the transition distributions, we empirically demonstrate that
 470 DR-SAC is largely insensitive to such modeling choices. Specifically, when the latent dimension of
 471 the VAE model is varied within the tested range of 5 to 20 in *Pendulum*, DR-SAC maintains superior
 472 robustness over the SAC baseline. Detailed experiment results are provided in Appendix C.3.2.
 473

474 **Usage of V-Network.** In the DR-SAC algorithm, we include a *V*-network following the SAC-v1
 475 design (Haarnoja et al., 2018a) to improve the applicability across a wider range of offline datasets.
 476 Although the *V*-network is removed in SAC-v2 (Haarnoja et al., 2018b), this version is indeed
 477 on-policy, while our setting is off-policy. We observe empirically that SAC with a *V*-network is less
 478 sensitive to the behavior policy used in dataset generation. Details are discussed in Appendix C.3.3.
 479

5 CONCLUSIONS

481 We propose DR-SAC, the first actor-critic based DR-RL algorithm for offline settings and continuous
 482 action spaces. Our framework establishes distributionally robust soft policy iteration with convergence
 483 guarantees, saves over 80.0% of training time compared to RFQI through functional optimization, and
 484 resolves the double-sampling issue in estimating the nominal distributions via generative modeling.
 485 Experiments across five environments show that DR-SAC attains up to 9.8× higher reward than SAC
 486 under perturbations, demonstrating both robustness and efficiency in practical offline RL tasks.
 487

486 **Ethics Statement.** All authors of this submission have read and adhered to the ICLR Code of
487 Ethics.
488

489 **Reproducibility Statement.** We provide our code with detailed comments in the supplementary
490 materials. The detailed experiment settings, dataset processing steps and the devices used in our
491 experiments are provided in Appendix C to ensure reproducibility.
492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
543 reinforcement learning with diversified q-ensemble. *Advances in neural information processing*
544 *systems*, 34:7436–7447, 2021.

545 Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
546 reinforcement learning: A brief survey. *IEEE Signal Processing Magazine*, 34(6):26–38, 2017.

547 Leemon Baird et al. Residual algorithms: Reinforcement learning with function approximation. In
548 *Proceedings of the twelfth international conference on machine learning*, pp. 30–37, 1995.

549

550 Jiayu Chen, Bhargav Ganguly, Yang Xu, Yongsheng Mei, Tian Lan, and Vaneet Aggarwal. Deep
551 generative models for offline policy learning: Tutorial, survey, and perspectives on future directions.
552 *arXiv preprint arXiv:2402.13777*, 2024a.

553 Yanjun Chen, Xinming Zhang, Xianghui Wang, Zhiqiang Xu, Xiaoyu Shen, and Wei Zhang. Corrected
554 soft actor critic for continuous control. *arXiv preprint arXiv:2410.16739*, 2024b.

555

556 Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic for
557 offline reinforcement learning. In *International Conference on Machine Learning*, pp. 3852–3878.
558 PMLR, 2022.

559 Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards minimax optimality of model-based
560 robust reinforcement learning. *arXiv preprint arXiv:2302.05372*, 2023.

561

562 Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. *arXiv preprint*
563 *arXiv:1205.4839*, 2012.

564

565 Esther Derman and Shie Mannor. Distributional robustness and regularization in reinforcement
566 learning. *arXiv preprint arXiv:2003.02894*, 2020.

567

568 Esther Derman, Daniel J Mankowitz, Timothy A Mann, and Shie Mannor. Soft-robust actor-critic
569 policy-gradient. *arXiv preprint arXiv:1803.04848*, 2018.

570

571 Tobias Enders, James Harrison, and Maximilian Schiffer. Risk-sensitive soft actor-critic for robust
572 deep reinforcement learning under distribution shifts. *arXiv preprint arXiv:2402.09992*, 2024.

573

574 Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
575 *Journal of Machine Learning Research*, 6, 2005.

576

577 Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle Pineau, et al. An
578 introduction to deep reinforcement learning. *Foundations and Trends® in Machine Learning*, 11
579 (3-4):219–354, 2018.

580

581 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
582 critic methods. In *International Conference on Machine Learning*, pp. 1582–1591, 2018.

583

584 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
585 exploration. In *International conference on machine learning*, pp. 2052–2062. PMLR, 2019.

586

587 Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic
588 reinforcement learning: Standard and natural policy gradients. *IEEE Transactions on Systems,
589 Man, and Cybernetics, part C (applications and reviews)*, 42(6):1291–1307, 2012.

590

591 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
592 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference
593 on machine learning*, pp. 1861–1870. Pmlr, 2018a.

594

595 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
596 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
597 applications. *arXiv preprint arXiv:1812.05905*, 2018b.

598

599 Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust opti-
600 mization. *Available at Optimization Online*, 1(2):9, 2013.

594 Garud N. Iyengar. Robust dynamic programming. *Mathematics of Operations Research*, 30(2):
 595 257–280, 2005.
 596

597 Vijay Konda and John Tsitsiklis. Actor-critic algorithms. *Advances in neural information processing*
 598 *systems*, 12, 1999.

599 Arash Bahari Kordabad, Rafael Wisniewski, and Sebastien Gros. Safe reinforcement learning using
 600 wasserstein distributionally robust mpc and chance constraint. *IEEE Access*, 10:130058–130067,
 601 2022.

602

603 Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
 604 q-learning via bootstrapping error reduction. *Advances in neural information processing systems*,
 605 32, 2019.

606 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 607 reinforcement learning. *Advances in neural information processing systems*, 33:1179–1191, 2020.

608

609 Navdeep Kumar, Esther Derman, Matthieu Geist, Kfir Y Levy, and Shie Mannor. Policy gradient
 610 for rectangular robust markov decision processes. *Advances in Neural Information Processing*
 611 *Systems*, 36:59477–59501, 2023.

612

613 Zhipeng Liang, Xiaoteng Ma, Jose Blanchet, Jiheng Zhang, and Zhengyuan Zhou. Single-trajectory
 614 distributionally robust reinforcement learning, 2024. URL <https://arxiv.org/abs/2301.11721>.

615

616 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 617 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv*
 618 *preprint arXiv:1509.02971*, 2015.

619

620 Zhishuai Liu and Pan Xu. Minimax optimal and computationally efficient algorithms for distribution-
 621 ally robust offline reinforcement learning. *arXiv preprint arXiv:2403.09621*, 2024.

622

623 Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
 624 Zhou. Distributionally robust q -learning. In *International Conference on Machine Learning*, pp.
 13623–13643. PMLR, 2022.

625

626 Elita A Lobo, Mohammad Ghavamzadeh, and Marek Petrik. Soft-robust algorithms for batch
 627 reinforcement learning. *arXiv preprint arXiv:2011.14495*, 2020.

628

629 Miao Lu, Han Zhong, Tong Zhang, and Jose Blanchet. Distributionally robust reinforcement learning
 630 with interactive data collection: Fundamental hardness and near-optimal algorithm. *arXiv preprint*
 631 *arXiv:2404.03578*, 2024.

632

633 Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
 reinforcement learning. *Advances in Neural Information Processing Systems*, 35:1711–1724, 2022.

634

635 Xiaoteng Ma, Zhipeng Liang, Jose Blanchet, Mingwen Liu, Li Xia, Jiheng Zhang, Qianchuan Zhao,
 636 and Zhengyuan Zhou. Distributionally robust offline reinforcement learning with linear function
 637 approximation, 2023. URL <https://arxiv.org/abs/2209.06620>.

638

639 Daniel J Mankowitz, Nir Levine, Rae Jeong, Yuanyuan Shi, Jackie Kay, Abbas Abdolmaleki, Jost To-
 640 bias Springenberg, Timothy Mann, Todd Hester, and Martin Riedmiller. Robust reinforcement
 641 learning for continuous control with model misspecification. *arXiv preprint arXiv:1906.07516*,
 2019.

642

643 Viraj Mehta, Biswajit Paria, Jeff Schneider, Stefano Ermon, and Willie Neiswanger. An experimental
 644 design perspective on model-based reinforcement learning. *arXiv preprint arXiv:2112.05244*,
 2021.

645

646 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 647 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

648 Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
 649 transition matrices. *Operations Research*, 53(5):780–798, 2005.
 650

651 Xinlei Pan, Daniel Seita, Yang Gao, and John Canny. Risk averse robust adversarial reinforcement
 652 learning. In *2019 International Conference on Robotics and Automation (ICRA)*, pp. 8522–8528.
 653 IEEE, 2019.

654 Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning with
 655 a generative model. In *International Conference on Artificial Intelligence and Statistics*, pp.
 656 9582–9602. PMLR, 2022.
 657

658 Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust reinforcement
 659 learning using offline data. In *Advances in Neural Information Processing Systems*, volume 35, pp.
 660 32211–32224. Curran Associates, Inc., 2022.

661 Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial rein-
 662 forcement learning. In *International conference on machine learning*, pp. 2817–2826. PMLR,
 663 2017.

664 James Queeney and Mouhacine Benosman. Risk-averse model uncertainty for distributionally robust
 665 safe reinforcement learning. *Advances in Neural Information Processing Systems*, 36:1659–1680,
 666 2023.
 667

668 Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, and Ilija Bogunovic.
 669 Distributionally robust model-based reinforcement learning with large state spaces. In *International
 670 Conference on Artificial Intelligence and Statistics*, pp. 100–108. PMLR, 2024.

671 Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
 672 forcement learning by approximate inference. *Proceedings of Robotics: Science and Systems VIII*,
 673 2012.

674 R Tyrrell Rockafellar and Roger J-B Wets. *Variational analysis*, volume 317. Springer Science &
 675 Business Media, 2009.

676

677 Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. *Journal of
 678 Machine Learning Research*, 23(315):1–20, 2022. URL <http://jmlr.org/papers/v23/22-0017.html>.

679

680 Alexander Shapiro. Distributionally robust stochastic programming. *SIAM Journal on Optimization*,
 681 27(4):2258–2275, 2017. doi: 10.1137/16M1058297.

682

683 Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning with
 684 near-optimal sample complexity. *Journal of Machine Learning Research*, 25(200):1–91, 2024.

685

686 Rahul Singh, Qinsheng Zhang, and Yongxin Chen. Improving robustness via risk averse distributional
 687 reinforcement learning. In *Learning for Dynamics and Control*, pp. 958–968. PMLR, 2020.

688

689 Elena Smirnova, Elvis Dohmatob, and Jérémie Mary. Distributionally robust reinforcement learning.
 690 *arXiv preprint arXiv:1902.08708*, 2019.

691

692 Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Policy gradient for coherent
 693 risk measures. *Advances in neural information processing systems*, 28, 2015.

694

695 Emanuel Todorov. General duality between optimal control and estimation. In *2008 47th IEEE
 696 conference on decision and control*, pp. 4286–4292. IEEE, 2008.

697

698 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 699 In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 5026–5033.
 IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

700

701 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
 702 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
 703 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.

702 Herke Van Hoof, Nutan Chen, Maximilian Karl, Patrick Van Der Smagt, and Jan Peters. Stable rein-
 703 forcement learning with autoencoders for tactile and visual data. In *2016 IEEE/RSJ international*
 704 *conference on intelligent robots and systems (IROS)*, pp. 3928–3934. IEEE, 2016.

705 Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. A finite sample complexity bound
 706 for distributionally robust q-learning. In *Proceedings of The 26th International Conference on*
 707 *Artificial Intelligence and Statistics*, volume 206 of *Proceedings of Machine Learning Research*,
 708 pp. 3370–3398. PMLR, 2023.

710 Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. Sample complexity of variance-
 711 reduced distributionally robust q-learning. *Journal of Machine Learning Research*, 25(341):1–77,
 712 2024.

713 Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty. *Advances*
 714 *in Neural Information Processing Systems*, 34:7193–7206, 2021.

716 Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning. In *International*
 717 *conference on machine learning*, pp. 23484–23526. PMLR, 2022.

718 Hua Wei, Deheng Ye, Zhao Liu, Hao Wu, Bo Yuan, Qiang Fu, Wei Yang, and Zhenhui Li. Boosting
 719 offline reinforcement learning with residual generative modeling. *arXiv preprint arXiv:2106.10411*,
 720 2021.

721 Peter Whittle. Risk-sensitive linear/quadratic/gaussian control. *Advances in Applied Probability*, 13
 722 (4):764–777, 1981.

724 Wolfram Wiesemann, Daniel Kuhn, and Berc Rustem. Robust markov decision processes. *Mathe-
 725 matics of Operations Research*, 38(1):153–183, 2013.

726 Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-
 727 forcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36,
 728 pp. 8753–8760, 2022.

730 Huan Xu and Shie Mannor. Distributionally robust markov decision processes. *Advances in Neural*
 731 *Information Processing Systems*, 23, 2010.

732 Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds for distribu-
 733 tionally robust reinforcement learning. In *Proceedings of The 26th International Conference on*
 734 *Artificial Intelligence and Statistics*, volume 206 of *Proceedings of Machine Learning Research*,
 735 pp. 9728–9754. PMLR, 2023.

736 Pengqian Yu and Huan Xu. Distributionally robust counterpart in markov decision processes. *IEEE*
 737 *Transactions on Automatic Control*, 61(9):2538–2543, 2015.

739 Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui
 740 Hsieh. Robust deep reinforcement learning against adversarial perturbations on state observations.
 741 *Advances in Neural Information Processing Systems*, 33:21024–21037, 2020.

742 Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, PR Kumar, and Chao Tian. Natural actor-critic
 743 for robust reinforcement learning with function approximation. *Advances in neural information*
 744 *processing systems*, 36:97–133, 2023.

746 Zhengqing Zhou, Zhengyuan Zhou, Qinxun Bai, Linhai Qiu, Jose Blanchet, and Peter Glynn.
 747 Finite-sample regret bound for distributionally robust offline tabular reinforcement learning. In
 748 *International Conference on Artificial Intelligence and Statistics*, pp. 3331–3339. PMLR, 2021.

749 Zhengyuan Zhou, Michael Bloem, and Nicholas Bambos. Infinite time horizon maximum causal
 750 entropy inverse reinforcement learning. *IEEE Transactions on Automatic Control*, 63(9):2787–
 751 2802, 2018. doi: 10.1109/TAC.2017.2775960.

752 Brian D Ziebart. *Modeling purposeful adaptive behavior with the principle of maximum causal*
 753 *entropy*. Carnegie Mellon University, 2010.

755 Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
 reinforcement learning. In *Aaai*, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

756	Appendix	
757		
758		
759	CONTENTS	
760		
761	A Discussion	16
762	A.1 Necessity of Generative Model	16
763	A.2 Algorithm Details	16
764		
765		
766	B Proofs	18
767	B.1 Proof of Proposition 3.3	18
768	B.2 Proof of Proposition 3.4	18
769	B.3 Proof of Proposition 3.5	19
770	B.4 Proof of Theorem 3.6	20
771	B.5 Proof of Proposition 3.7	20
772		
773		
774		
775	C Experiment Details	22
776	C.1 More Setting details	22
777	C.2 Extra Experiment Results	22
778	C.3 Ablation Study Details	25
779		
780		
781		
782	D Regret Bound	30
783		
784	The Use of Large Language Models.	The authors use Large Language Models (LLMs) to assist
785	with grammar checking and language polishing in this submission. LLMs do not play a significant	
786	role in research ideation or writing to the extent that they could be regarded as a contributor.	
787		
788		
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A DISCUSSION
811812 A.1 NECESSITY OF GENERATIVE MODEL
813

814 In this section, we discuss why other model-free methods are not applicable in *KL divergence constrained uncertainty set* and why a generative model (VAE) is necessary. Empirical risk minimization (ERM) is a method that minimizes the empirical loss estimation using sampled data, which has been 815 extensively used in machine learning literature. However, it is not applicable in our case due to the 816 non-linearity of the dual formulation and the Bellman operator. In our algorithm, we want to apply 817 operator $\mathcal{T}_{\delta, g^*}^\pi$ where $g^* = \operatorname{argsup}_{g \in \mathcal{G}} \mathbb{E}_{(s, a) \sim \mathcal{D}} [f((s, a), g(s, a))]$. Denote the objective function 818 as
819

$$820 J(g) := \mathbb{E}_{(s, a) \sim \mathcal{D}} [f((s, a), g(s, a))] \\ 821 = \mathbb{E}_{(s, a) \sim \mathcal{D}} \left[-g(s, a) \log \left(\mathbb{E}_{p_{s, a}^0} \left[\exp \left(\frac{-V(s')}{g(s, a)} \right) \right] \right) - g(s, a)\delta \right]. \quad (21)$$

822 To obtain a consistent estimator of (21), we encounter the well-known *double-sampling issue* (Baird 823 et al., 1995) caused by the nonlinearity between inner and outer expectations. Specifically, to 824 approximate the inner expectation term $\mathbb{E}_{p_{s, a}^0} [\exp(-V(s')/g(s, a))]$, the dataset \mathcal{D} need to be split 825 into two disjoint parts, $\mathcal{D}_{\text{outer}}$ and $\mathcal{D}_{\text{inner}}$. For each $(s, a) \in \mathcal{D}_{\text{inner}}$, we aggregate the corresponding 826 samples starting from (s, a) contained in $\mathcal{D}_{\text{outer}}$, denoted by $\mathcal{D}_{(s, a)}$, and the empirical risk of (21) 827 becomes
828

$$829 \hat{J}(g) := \frac{1}{|\mathcal{D}_{\text{out}}|} \sum_{(s, a, s') \in \mathcal{D}_{\text{out}}} \left[-g(s, a) \log \left(\frac{1}{|\mathcal{D}_{(s, a)}|} \sum_{(\bar{s}, \bar{a}, \bar{s}') \in \mathcal{D}_{(s, a)}} \exp \left(\frac{-V(\bar{s}')}{g(s, a)} \right) \right) - g(s, a)\delta \right]. \quad (22)$$

830 However, in continuous state-action spaces, it is nearly impossible to revisit the exact same 831 state-action pair, leading to $\mathcal{D}_{(s, a)} = \emptyset$.
832

833 Note that this issue does not come from the functional optimization technique we use, but from the 834 structure of the dual formulation of the Bellman equation under the KL-based uncertainty set. In 835 contrast, this problem does not occur in the TV-based dual formulation due to its linear structure 836 (Panaganti et al., 2022). Specifically, if we remove the functional approximation and use the exact 837 dual formulation of the DR soft Bellman operator to design an algorithm, the same double-sampling 838 issue occurs in finding the empirical risk of the following Bellman residual:
839

$$840 \mathcal{L}_Q := \mathbb{E}_{(s, a) \in \mathcal{D}} [Q(s, a) - \mathcal{T}_\delta^\pi Q(s, a)] \\ 841 = \mathbb{E}_{(s, a) \in \mathcal{D}} \left[Q(s, a) - \mathbb{E}[r] - \gamma \cdot \sup_{\beta \geq 0} \left\{ -\beta \log \left(\mathbb{E}_{p_{s, a}^0} \left[\exp \left(\frac{-V(s')}{\beta} \right) \right] \right) - \beta\delta \right\} \right]. \quad (23)$$

842 In other literature introducing distributionally robust algorithms under KL uncertainty set, this 843 difficulty is overcome by using a Monte-Carlo related method (Liu et al., 2022; Wang et al., 2023), 844 estimating nominal distributions from transition frequencies (Wang et al., 2024), or directly estimating 845 the expected value under nominal distributions (Liang et al., 2024). None of these methods is 846 applicable to continuous space offline RL tasks.
847

848 A.2 ALGORITHM DETAILS
849

850 In this section, we present a detailed description of the DR-SAC algorithm. In our algorithm, we use 851 neural networks $V_\psi(s)$, $Q_\theta(s, a)$ and $\pi_\phi(a | s)$ to approximate the value function, the Q -function 852 and the stochastic policy, respectively, with ψ, θ, ϕ as the network parameters. We also utilize target 853 network $V_{\bar{\psi}}(s)$ and $Q_{\bar{\theta}}(s, a)$, where parameters $\bar{\psi}$ and $\bar{\theta}$ are the exponential moving average of 854 respective network weights. Similar to SAC-v1 algorithm (Haarnoja et al., 2018a), the loss function 855 of V -network is
856

$$857 J_V(\psi) = \mathbb{E}_{s \sim \mathcal{D}} \left[\frac{1}{2} (V_\psi(s) - \mathbb{E}_{a \sim \pi_\phi} [Q_{\bar{\theta}}(s, a) - \alpha \log \pi_\phi(a | s)])^2 \right]. \quad (24)$$

864 As introduced in Section 3.3, in our algorithm, we modify the loss function of Q -network to
 865

$$866 J_Q^{\text{DR}}(\theta) = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\frac{1}{2} (Q_\theta(s, a) - \mathcal{T}_{\delta, \tilde{g}^*}^\pi Q_\theta(s, a))^2 \right],$$

868 where

$$\begin{aligned} 869 \tilde{g}^* &= \operatorname{argsup}_{g \in \mathcal{G}_\eta} \mathbb{E}_{(s,a) \in \mathcal{D}} \left[\tilde{f}((s, a), g(s, a)) \right] \\ 870 &= \operatorname{argsup}_{g \in \mathcal{G}_\eta} \mathbb{E}_{(s,a) \in \mathcal{D}} \left[-\beta \log \left(\mathbb{E}_{\tilde{p}_{s,a}^0} \left[\exp \left(\frac{-V_{\tilde{\psi}}(s')}{\beta} \right) \right] \right) - \beta \delta \right]. \end{aligned} \quad (25)$$

874 Optimal dual function \tilde{g}^* can be found with backpropagation through η . We also keep the assumption
 875 of policy network in the standard SAC algorithm by reparameterizing the policy using a neural
 876 network transformation $a = f_\phi(\epsilon; s)$, where ϵ is an input noise vector sampled from a spherical
 877 Gaussian. The loss of policy is

$$878 J_\pi(\phi) = \mathbb{E}_{s \sim \mathcal{D}, \epsilon \sim \mathcal{N}} \left[\alpha \log \pi_\phi(f_\phi(\epsilon; s) \mid s) - Q_{\bar{\theta}}(s, f_\phi(\epsilon; s)) \right]. \quad (26)$$

880 In the SAC-v2 algorithm (Haarnoja et al., 2018b), the authors propose an automated entropy tempera-
 881 ture adjustment method by using an approximate solution to a constrained optimization problem. The
 882 loss of temperature is

$$883 J(\alpha) = \mathbb{E}_{a \sim \pi_\phi} \left[-\alpha \log \pi_\phi(a \mid s) - \alpha \bar{\mathcal{H}} \right], \quad (27)$$

884 where $\bar{\mathcal{H}}$ is the desired minimum expected entropy and is usually implemented as the dimensionality
 885 of the action space.

887 In addition, we incorporate the VAE model into our algorithm. VAE is one of the most popular
 888 methods to learn complex distributions and has shown superior performance in generating different
 889 types of data. In the DR-SAC algorithm, we use VAE to learn the transition function $P^0(s' \mid s, a)$ by
 890 modeling the conditional distribution of next states. It assumes a standard normal prior over the latent
 891 variable, $p(z) = \mathcal{N}(0, I)$. The encoder maps (s, a, s') to an approximate posterior $q(z \mid s, a, s')$, and
 892 the decoder reconstructs s' from the latent sample z and input (s, a) . The training loss is the evidence
 893 lower bound (ELBO):

$$894 J_{\text{VAE}}(\varphi) = \mathbb{E}_{q(z \mid s, a, s')} [\|s' - \hat{s}'\|^2] + D_{\text{KL}}(q(z \mid s, a, s') \parallel \mathcal{N}(0, I)), \quad (28)$$

895 where \hat{s}' are the reconstructed states from the decoder.

918 **B PROOFS**

919 **B.1 PROOF OF PROPOSITION 3.3**

920 We first provide an established result in DRO to compute the worst-case expectation under perturbation
921 in a KL-divergence constrained uncertainty set.

922 **Lemma B.1** (Hu & Hong (2013), Theorem 1). *Suppose $G(X)$ has a finite moment generating
923 function in the neighborhood of zero. Then for any $\delta > 0$,*

$$924 \sup_{P: D_{KL}(P\|P_0) \leq \delta} \mathbb{E}_P[G(X)] = \inf_{\beta \geq 0} \left\{ \beta \log \left(\mathbb{E}_{P_0} \left[\exp \left(\frac{G(X)}{\beta} \right) \right] \right) + \beta \delta \right\} \quad (29)$$

925 *Proof of Proposition 3.3.*

$$\begin{aligned} 926 \mathcal{T}_\pi^\delta Q(s, a) &= \mathbb{E}[r] + \gamma \cdot \inf_{p \in \mathcal{P}_{s,a}(\delta)} \left\{ \mathbb{E}_{s' \sim p(\cdot|s,a)} \left[\mathbb{E}_{a' \sim \pi(\cdot|s')} [Q(s', a') - \alpha \log \pi(a'|s')] \right] \right\} \\ 927 &= \mathbb{E}[r] - \gamma \cdot \sup_{p \in \mathcal{P}_{s,a}(\delta)} \left\{ \mathbb{E}_{s' \sim p(\cdot|s,a)} [-V(s')] \right\} \\ 928 &= \mathbb{E}[r] - \gamma \cdot \inf_{\beta \geq 0} \left\{ \beta \log \left(\mathbb{E}_{s' \sim p^0(\cdot|s,a)} \left[\exp \left(\frac{-V(s')}{\beta} \right) \right] \right) + \beta \delta \right\} \quad (\text{Lemma B.1}) \\ 929 &= \mathbb{E}[r] + \gamma \cdot \sup_{\beta \geq 0} \left\{ -\beta \log \left(\mathbb{E}_{s' \sim p^0(\cdot|s,a)} \left[\exp \left(\frac{-V(s')}{\beta} \right) \right] \right) - \beta \delta \right\} \end{aligned}$$

930 To apply Lemma B.1, let $P = p(\cdot|s,a)$, $P_0 = p^0(\cdot|s,a)$, and $G(X) = G(s') = -V(s')$. As stated
931 in Section 2.1, the rewards $r = R(s,a)$ are bounded, and the discount factor $\gamma \in [0, 1)$. **From**
932 **the assumption that $Q(s,a)$ is bounded, we know $V(s')$ is bounded as well.** This implies that
933 $G(s') = -V(s')$ has a finite moment generating function (MGF) under the nominal distribution
934 $p^0(\cdot|s,a)$, i.e., $\mathbb{E}_{s' \sim p^0(\cdot|s,a)} [e^{\lambda G(s')}] < \infty$, for λ in a neighborhood of zero. This ensures that $G(s')$
935 has a finite MGF under P_0 as required by Lemma B.1. \square

936 **B.2 PROOF OF PROPOSITION 3.4**

937 Before providing the proof of Proposition 3.4, we present the optimality conditions of Lemma B.1.

938 **Lemma B.2** (Hu & Hong (2013), Proposition 2). *Let β^* be an optimal solution of the optimization
939 problem in (29). Let $H = \text{esssup}_{X \sim P_0} G(X)$ and $\kappa = \mathbb{P}_{X \sim P_0}(G(X) = H)$. Suppose the assumption
940 in Lemma B.1 still holds, then $\beta^* = 0$ or $G(X)$ has a finite moment generating function at $1/\beta^*$.
941 Moreover, $\beta^* = 0$ if and only if $H < \infty$, $\kappa > 0$ and $\log \kappa + \delta \geq 0$.*

942 This lemma tells us the optimal solution is unique when $\beta^* = 0$. This happens if and only if there is
943 a large enough probability mass on the finite essential supremum of X , under the distribution center
944 P_0 . We use this lemma to discuss either $\beta^* = 0$ or $\beta^* > 0$ in the following proof.

945 *Proof of Proposition 3.4.* Similar to the standard convergence proof of policy evaluation, we want
946 to prove that the operator \mathcal{T}_δ^π is a γ -contraction mapping. Suppose there are two mappings $Q_{1,2} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ and define $V_i = \mathbb{E}_{a \sim \pi}[Q_i(s, a)] - \alpha \mathcal{H}(\pi(s))$, $i = 1, 2$. For any state $s \in \mathcal{S}$, we have

$$947 |V_1(s) - V_2(s)| = |\mathbb{E}_{a \sim \pi}[Q_1(s, a) - Q_2(s, a)]| \leq \|Q_1 - Q_2\|_\infty.$$

948 Thus, $\|V_1 - V_2\|_\infty \leq \|Q_1 - Q_2\|_\infty$.

949 Next, for any $\beta > 0$ and (s, a) fixed, define function

$$950 F_\beta(V) := -\beta \log \mathbb{E}_{p_{s,a}^0} \left[\exp \left(-\frac{V(s')}{\beta} \right) \right] - \beta \delta.$$

951 Let $\|V_1 - V_2\|_\infty = d$. Then for any $s' \in \mathcal{S}$, $V_2(s') - d \leq V_1(s') \leq V_2(s') + d$. After exponential,
952 expectation, and logarithm operations, monotonicity is preserved. We have

$$\begin{aligned} 953 -\beta \log \mathbb{E}_{p_{s,a}^0} \left[\exp \left(-\frac{V_2(s')}{\beta} \right) \right] - d &\leq -\beta \log \mathbb{E}_{p_{s,a}^0} \left[\exp \left(-\frac{V_1(s')}{\beta} \right) \right] \\ 954 &\leq -\beta \log \mathbb{E}_{p_{s,a}^0} \left[\exp \left(-\frac{V_2(s')}{\beta} \right) \right] + d. \end{aligned}$$

972 This gives us $|F_\beta(V_1) - F_\beta(V_2)| \leq \|V_1 - V_2\|_\infty$.
 973

974 Lastly, we reformulate DR soft Bellman operator as $\mathcal{T}_\delta^\pi Q(s, a) = \mathbb{E}[r] + \gamma \cdot \sup_{\beta \geq 0} F_\beta(V)$. Let β_i^*
 975 be an optimal solution of $\sup_{\beta \geq 0} F_\beta(V_i)$, $i = 1, 2$. From Lemma B.2, we know β_i^* is unique when
 976 $\beta_i^* = 0$ is optimal. And the optimal value is the essential infimum H_i when $\beta_i^* = 0$. We want to
 977 show $|F_{\beta_1^*}(V_1) - F_{\beta_2^*}(V_2)|$ is bounded in all cases of β_i^* .

978 • Case 1: $\beta_1^* = \beta_2^* = 0$.

980 In this case, the optimal value is the essential infimum value for both V_i . We have

$$982 |F_{\beta_1^*}(V_1) - F_{\beta_2^*}(V_2)| = \left| \underset{s' \sim P_{s,a}^0}{\text{essinf}} V_1(s') - \underset{s' \sim P_{s,a}^0}{\text{essinf}} V_2(s') \right| \leq \|V_1 - V_2\|_\infty.$$

984 The last inequality holds because monotonicity is preserved after taking the essential infimum.
 985

986 • Case 2: $\beta_1^* = 0$, $\beta_2^* > 0$, WLOG.

987 In this case, we know from optimality that

$$989 H_1 = \underset{s' \sim P_{s,a}^0}{\text{essinf}} V_1(s') \geq F_{\beta_2^*}(V_1), H_2 = \underset{s' \sim P_{s,a}^0}{\text{essinf}} V_2(s') \leq F_{\beta_2^*}(V_2).$$

991 Then we have

$$992 H_1 - F_{\beta_2^*}(V_2) \leq H_1 - H_2 \leq \|V_1 - V_2\|_\infty,$$

$$993 F_{\beta_2^*}(V_2) - H_1 \leq F_{\beta_2^*}(V_2) - F_{\beta_2^*}(V_1) \leq \|V_1 - V_2\|_\infty.$$

994 Thus, $|F_{\beta_1^*}(V_1) - F_{\beta_2^*}(V_2)| = |H_1 - F_{\beta_2^*}(V_2)| \leq \|V_1 - V_2\|_\infty$.
 995

996 • Case 3: $\beta_1^* > 0$, $\beta_2^* > 0$.

997 Suppose $F_{\beta_1^*}(V_1) \leq F_{\beta_2^*}(V_2)$, WLOG. Then

$$999 |F_{\beta_1^*}(V_1) - F_{\beta_2^*}(V_2)| = F_{\beta_2^*}(V_2) - F_{\beta_1^*}(V_1) \leq F_{\beta_2^*}(V_2) - F_{\beta_2^*}(V_1) \leq \|V_1 - V_2\|_\infty,$$

1000 where the first inequality comes from the optimality of β_1^* .
 1001

1002 Thus for any (s, a) pair, we have we

$$1004 |\mathcal{T}_\delta^\pi Q_1(s, a) - \mathcal{T}_\delta^\pi Q_2(s, a)| = \gamma \cdot \left| \sup_{\beta_1 \geq 0} F_{\beta_1}(V_1) - \sup_{\beta_2 \geq 0} F_{\beta_2}(V_2) \right|$$

$$1005 \leq \gamma \cdot \|V_1 - V_2\|_\infty$$

$$1006 \leq \gamma \cdot \|Q_1 - Q_2\|_\infty.$$

1009 Since \mathcal{T}_δ^π is a γ -contraction, using Banach Fixed-Point Theorem, the sequence $\{Q^k\}$ converges to the unique fixed-point \mathcal{T}_δ^π . From Iyengar (2005); Xu & Mannor (2010), we know this fixed point is the DR soft Q -value. \square
 1010

1013 B.3 PROOF OF PROPOSITION 3.5

1015 *Proof.* Given $\pi_k \in \Pi$, let $Q_{\mathcal{M}_\delta}^{\pi_k}$ and $V_{\mathcal{M}_\delta}^{\pi_k}$ be the corresponding DR soft Q -function and value
 1016 function. Denote the function for determining the new policy as

$$1017 J_\pi(\pi'(\cdot | s)) := D_{\text{KL}} \left(\pi'(\cdot | s) \middle\| \exp \left(\frac{1}{\alpha} Q_{\mathcal{M}_\delta}^{\pi_k}(s, \cdot) - \log Z^{\pi_k}(s) \right) \right). \quad (30)$$

1020 According to Equation (12), $\pi_{k+1} = \text{argmin}_{\pi' \in \Pi} J_{\pi_k}(\pi')$ and $J_{\pi_k}(\pi_{k+1}) \leq J_{\pi_k}(\pi_k)$. Hence

$$1021 \mathbb{E}_{a \sim \pi_{k+1}} [\alpha \log \pi_{k+1}(a | s) - Q_{\mathcal{M}_\delta}^{\pi_k}(s, \cdot) + \alpha \log Z^{\pi_k}(s)]$$

$$1022 \leq \mathbb{E}_{a \sim \pi_k} [\alpha \log \pi_k(a | s) - Q_{\mathcal{M}_\delta}^{\pi_k}(s, \cdot) + \alpha \log Z^{\pi_k}(s)],$$

1024 and after deleting $Z^{\pi_k}(s)$ on both sides, the inequality is reformulated to
 1025

$$\mathbb{E}_{a \sim \pi_{k+1}} [Q_{\mathcal{M}_\delta}^{\pi_k}(s, \cdot) - \alpha \log \pi_{k+1}(a | s)] \geq V_{\mathcal{M}_\delta}^{\pi_k}(s).$$

1026 Next, consider the DR soft Bellman equation:

$$\begin{aligned}
 1027 \quad Q_{\mathcal{M}_\delta}^{\pi_k}(s, a) &= \mathbb{E}[r] + \gamma \cdot \inf_{p_{s,a} \in \mathcal{P}_{s,a}(\delta)} \{ \mathbb{E}_{s' \sim p_{s,a}} [V_{\mathcal{M}_\delta}^{\pi_k}(s')] \} \\
 1028 \quad &\leq \mathbb{E}[r] + \gamma \cdot \inf_{p_{s,a} \in \mathcal{P}_{s,a}(\delta)} \{ \mathbb{E}_{s' \sim p_{s,a}} [\mathbb{E}_{a' \sim \pi_{k+1}} [Q_{\mathcal{M}_\delta}^{\pi_k}(s', a') - \alpha \log \pi_{k+1}(a' | s')]] \} \\
 1029 \quad &= \mathcal{T}_\delta^{\pi_{k+1}}(Q_{\mathcal{M}_\delta}^{\pi_k})(s, a) \\
 1030 \quad &\quad \vdots \\
 1031 \quad &\leq Q_{\mathcal{M}_\delta}^{\pi_{k+1}}(s, a), \forall (s, a) \in \mathcal{S} \times \mathcal{A}
 \end{aligned} \tag{31}$$

1032 where operator $\mathcal{T}_\delta^{\pi_{k+1}}$ is repeatedly applied to $Q_{\mathcal{M}_\delta}^{\pi_k}$ and its convergence is guaranteed by Proposition 3.4. \square

1039 B.4 PROOF OF THEOREM 3.6

1040 *Proof.* Let π_k be the policy at iteration k . By Proposition 3.5, $Q_{\mathcal{M}_\delta}^{\pi_k}$ is non-decreasing with k . Since 1041 function $Q_{\mathcal{M}_\delta}^{\pi_k}$ is bounded by $(R_{\max} + \alpha \log |\mathcal{A}|)/(1 - \gamma)$, sequence $\{Q_{\mathcal{M}_\delta}^{\pi_k}\}$ converges. Thus policy 1042 sequence $\{\pi_k\}$ converges to some π^* . It remains to show that π^* is indeed optimal. According to 1043 Equation (12), $J_{\pi^*}(\pi^*) \leq J_{\pi^*}(\pi)$, $\forall \pi \in \Pi$. Using the same argument in proof of Proposition 3.5, 1044 we can show that $Q_{\mathcal{M}_\delta}^{\pi}(s, a) \leq Q_{\mathcal{M}_\delta}^{\pi^*}(s, a)$ for any $\pi \in \Pi$ and $(s, a) \in \mathcal{S} \times \mathcal{A}$. Hence π^* is an 1045 optimal policy. \square

1046 B.5 PROOF OF PROPOSITION 3.7

1047 Before providing the proof, we first introduce two technical lemmas. Specifically, Lemma B.4 1048 establishes the *interchange of minimization and integration* property in decomposable spaces. This 1049 property has wide applications in replacing point-wise optimality conditions by optimization in a 1050 functional space (Shapiro, 2017; Panaganti et al., 2022).

1051 **Lemma B.3** (Rockafellar & Wets (2009), Exercise 14.29). *Function $f : \Omega \times \mathbb{R}^n \mapsto \mathbb{R}$ (finite-valued) 1052 is a normal integrand if $f(\omega, x)$ is measurable in ω for each x and continuous in x for each ω .*

1053 **Lemma B.4** (Rockafellar & Wets (2009), Theorem 14.60, Exercise 14.61). *Let $f : \Omega \times \mathbb{R} \mapsto \mathbb{R}$ 1054 (finite-valued) be a normal integrand. Let $\mathcal{M}(\Omega, \mathcal{A}; \mathbb{R})$ be the space of all measurable functions 1055 $x : \Omega \rightarrow \mathbb{R}$, \mathcal{M}_f be the collection of all $x \in \mathcal{M}(\Omega, \mathcal{A}; \mathbb{R})$ with $\int_{\omega \in \Omega} f(\omega, x(\omega)) \mu(d\omega) < \infty$. Then, 1056 for any space with $\mathcal{M}_f \subset \mathcal{X} \subset \mathcal{M}(\Omega, \mathcal{A}; \mathbb{R})$, we have*

$$\inf_{x \in \mathcal{X}} \int_{\omega \in \Omega} f(\omega, x(\omega)) \mu(d\omega) = \int_{\omega \in \Omega} \left(\inf_{x \in \mathbb{R}} f(\omega, x) \right) \mu(d\omega).$$

1057 *Proof of Proposition 3.7.* First we want to prove $\beta^* = \operatorname{argsup}_{\beta \geq 0} f((s, a), \beta)$ is bounded in interval 1058 $\mathcal{I}_\beta := \left[0, \frac{R_{\max} + \alpha \log |\mathcal{A}|}{(1 - \gamma)\delta}\right]$ for any $(s, a) \in \mathcal{S} \times \mathcal{A}$. Rewriting the optimization problem to its primal 1059 form, it is clear that

$$f((s, a), \beta^*) = \inf_{p_{s,a} \in \mathcal{P}_{s,a}(\delta)} \mathbb{E}[V(s')] \geq 0.$$

1060 When β is greater than $\frac{R_{\max} + \alpha \log |\mathcal{A}|}{(1 - \gamma)\delta}$, it can never be optimal since

$$\begin{aligned}
 1061 \quad f((s, a), \beta) &= -\beta \log \left(\mathbb{E}_{p_{s,a}^0} \left[\exp \left(-\frac{V(s')}{\beta} \right) \right] \right) - \beta\delta \\
 1062 \quad &\leq -\beta \log \left(\exp \left(-\frac{R_{\max} + \alpha \log |\mathcal{A}|}{(1 - \gamma)\beta} \right) \right) - \beta\delta \\
 1063 \quad &= \frac{R_{\max} + \alpha \log |\mathcal{A}|}{1 - \gamma} - \beta\delta < 0.
 \end{aligned}$$

1064 Now we know that $f((s, a), \beta)$ is a finite-valued function for each $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $\beta \in \mathcal{I}_\beta$. 1065 Also, it is $\Sigma(\mathcal{S} \times \mathcal{A})$ -measurable in $(s, a) \in \mathcal{S} \times \mathcal{A}$ for each $\beta \in \mathcal{I}_\beta$ and is continuous in β for each 1066 $(s, a) \in \mathcal{S} \times \mathcal{A}$. From Lemma B.3, we know that $f((s, a), \beta)$ is a normal integrand.

1080 Moreover, all functions in \mathcal{G} is upper bounded and measurable so $\mathcal{M}_f \subset \mathcal{G} \subset \mathcal{M}((\mathcal{S} \times \mathcal{A}), \Sigma(\mathcal{S} \times \mathcal{A}); \mathbb{R})$. Proposition 3.7 is a direct conclusion of Lemma B.4. \square
1081
1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 **C EXPERIMENT DETAILS**
11351136 **C.1 MORE SETTING DETAILS**
11371138 To allow for comparability of results, all tools were evaluated on equal-cost hardware, a Ubuntu 24.04
1139 LTS system with one Intel(R) Core(TM) i7-6850K CPU, one NVIDIA GTX 1080 Ti GPU with 11
1140 GB memory, and 64 GB RAM. All experiments use 12 CPU cores and 1 GPU.1141 We implement FQI and RFQI algorithms from <https://github.com/zaiyan-x/RFQI>.
1142 DDPG and CQL are implemented from the offline RL library d3rlpy (Seno & Imai, 2022).
11431144 **Hyperparameter Selection** Across all environments, we use $\gamma = 0.99$ for discount rate, $\tau = 0.005$
1145 for both V and Q critic soft-update, $\alpha = 0.12$ as initial temperature, $|B| = 256$ for mini-batch size,
1146 $|\mathcal{D}| = 10^6$ for data buffer size. Actor, Q and V critic and VAE networks are multilayer perceptrons
1147 (MLPs) with $[256, 256]$ as hidden dimension. In the *HalfCheetah* and *Reacher* environments, we use
1148 two hidden layers in the actor and critic networks. All other networks have one hidden layer.1149 There are multiple learning rates in our algorithm. Learning rate for VAE network λ_φ is 5×10^{-5} in
1150 the *Pendulum* environment and 5×10^{-4} in others. In Step 5 of Algorithm 1, optimal function \tilde{g}^* is
1151 found via backpropagation with learning rate λ_η . All other learning rates λ_ψ , λ_θ , λ_ϕ and λ_α are the
1152 same in each environment and represented by λ_ψ .1153 Value of learning rates λ_ψ and λ_η , number of Q -critics and latent dimensions in VAE are separately
1154 tuned in each environment and presented in Table 2.
11551156 Table 2: Hyper-parameters selection in SAC and DR-SAC algorithm training.
1157

Environment	λ_ψ	λ_η	Q-Critic Number	latent dimensions
<i>Pendulum</i>	5×10^{-4}	5×10^{-5}	2	5
<i>Cartpole</i>	3×10^{-4}	5×10^{-4}	2	5
<i>LunarLander</i>	5×10^{-4}	5×10^{-4}	2	10
<i>HalfCheetah</i>	3×10^{-4}	5×10^{-5}	5	32
<i>Reacher</i>	3×10^{-4}	5×10^{-5}	5	10

1165 **Offline Dataset** To ensure fairness in performance comparison, all models in each environment
1166 are trained on the same dataset. Each datasets contains 10^6 samples, generated by first training a
1167 behavior policy and applying the epsilon-greedy method. For most environments, the behavior policy
1168 is trained by the Twin Delayed DDPG (TD3, Fujimoto et al. (2018)) implemented from the d3rlpy
1169 offline RL library (Seno & Imai, 2022), while in the *Cartpole* environment we use SAC. To ensure a
1170 fair robustness evaluation, all models are trained to achieve the same performance (500, the maximum
1171 reward) under unperturbed conditions in *Cartpole*. Datasets generated by behavior policies trained by
1172 TD3 (SAC) are denoted as TD3-datasets (SAC-datasets) throughout this work. Additional details
1173 including the algorithm to train behavior policy, training steps and the random-action probability ϵ
1174 are presented in Table 3.1175 Table 3: Experiment details in dataset generation
1176

Environment	Behavior Policy Algorithm	Training Steps	Random-Action Probability ϵ
<i>Pendulum</i>	TD3	5×10^4	0.5
<i>Cartpole</i>	SAC	5×10^5	0.5
<i>LunarLander</i>	TD3	3×10^5	0.5
<i>HalfCheetah</i>	TD3	10^6	0.3
<i>Reacher</i>	TD3	10^6	0.3

1184 **C.2 EXTRA EXPERIMENT RESULTS**
11851186 **Pendulum** In the *Pendulum* environment, we compare DR-SAC with SAC, FQI, and DDPG. All
1187 models are trained on the TD3-dataset. The robust algorithm RFQI does not perform well in this

test, even when there is no perturbation. To evaluate the robustness of trained models, we change the environment parameters *length*, *mass*, and *gravity*, with nominal values as 1.0, 1.0 and 10.0 respectively. We grind search $\delta \in \{0.1, 0.2, \dots, 1.0\}$ and find model under $\delta = 0.5$ have the best overall robustness.

DR-SAC shows consistent robustness improvement compared to all other algorithms. The performance under length perturbation is presented in Figure 1(a). In the mass perturbation test, DR-SAC has the best performance in all cases. For example, the average reward is over 40% higher than SAC when mass changes 120%. In Figure 2 (b), there is a notable gap between DR-SAC and SAC performance when gravity acceleration changes 40%.

To further show model performance under heavy-tailed perturbation, we also add Cauchy-distributed noise to state observations. The distribution of noise is defined as standard Cauchy distribution multiplied by a parameter *noise scale*. In Figure 2 (c), DR-SAC achieves consistent the best performance when *noise scale* increases.

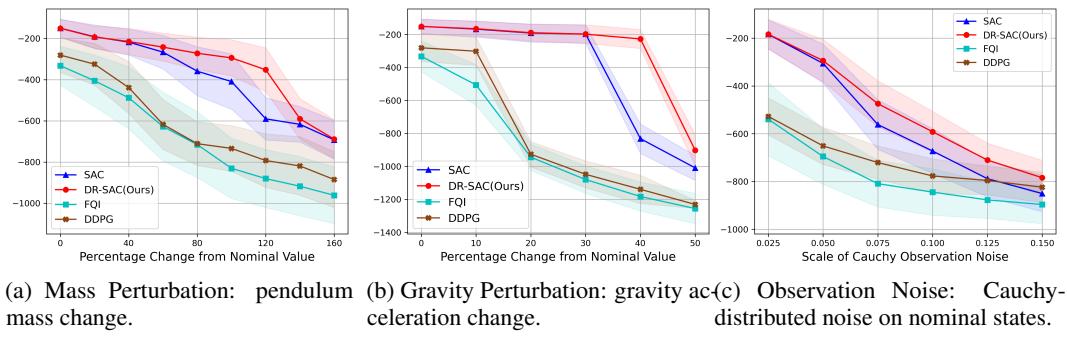


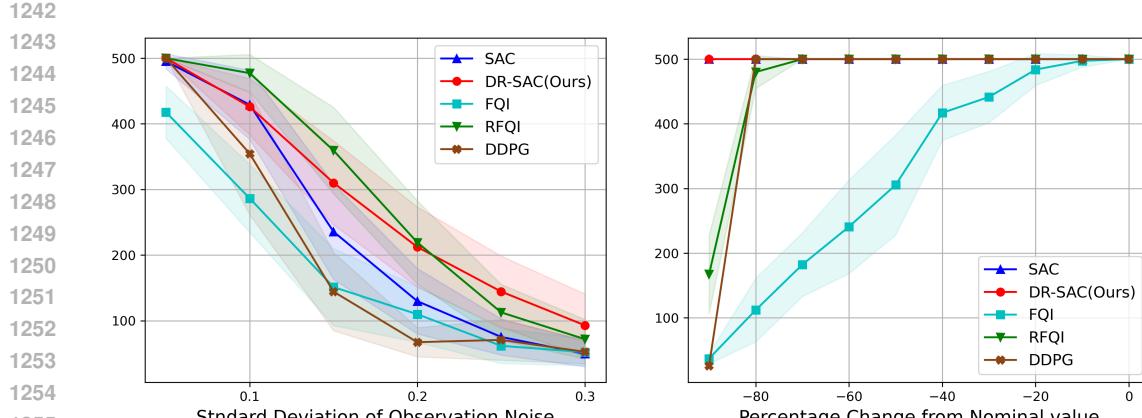
Figure 2: *Pendulum* results on TD3-dataset. The curves show the average reward of 50 episodes, shaded by ± 0.5 standard deviation.

Cartpole In the *Cartpole* environment, we compare the DR-SAC algorithm with non-robust algorithms SAC, DDPG, FQI, and robust algorithm RFQI. All algorithms are trained on the SAC-dataset. In our *Cartpole* environment, the force applied to the cart is continuous and determined by the actuator's action and parameter *force_mag*. The highest possible reward is 500 in each episode. To ensure fair comparison, all models are trained to have average rewards of 500 when no perturbation is added.

We test the robustness by introducing three changes to the environment: applying action perturbation, adding observation noise, and changing parameter *force_mag*. In the action perturbation test, the actuator takes random actions with different probabilities. In the observation perturbation test, noise with zero mean and different standard deviations is added to the nominal states in each step. The model parameter *force_mag* represents the unit force magnitude with the nominal value as 30.0. We grind search $\delta \in \{0.25, 0.5, 0.75, 1.0\}$ and find DR-SAC has the best performance when $\delta = 0.75$. We also use $\rho = 0.75$ to train the RFQI model.

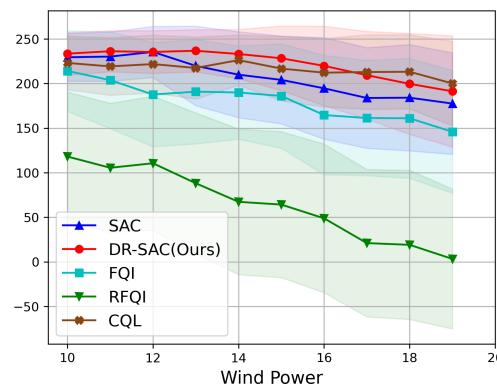
In the *Cartpole* environment, DR-SAC has the best overall performance under three types of perturbation. The performance under action perturbation is presented in Figure 1(b), and DR-SAC has substantially better performance compared to RFQI. In the observation noise perturbation test in Figure 3(a), DR-SAC has performance improvement over 75% compared to non-robust algorithms SAC and DDPG when the standard deviation of noise is 0.2 and 0.3.

LunarLander In the *LunarLander* environment, we compare DR-SAC with non-robust algorithms SAC, CQL, FQI, and robust algorithm RFQI. All algorithms are trained on the TD3-dataset. In the *LunarLander* environment, the lander has main and side engines, and the actuator can control the throttle of the main engine. We change environment parameters *engine_power* (main and side engine power) and *wind_power* (magnitude of linear wind) to validate algorithm robustness. We grind search $\delta \in \{0.25, 0.5, 0.75, 1.0\}$ and find DR-SAC has the best performance when $\delta = 0.25$. We also use $\rho = 0.25$ to train the RFQI model.



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256 (a) Observation Perturbation: gaussian noise added to
1257 nominal states.
1258
1259 (b) "Force_mag" Perturbation: model parameter
1260 *force_mag* change.
1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
Figure 3: *Cartpole* results on SAC-dataset. The curves show the average reward of 50 episodes, shaded by ± 0.5 standard deviation.



1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
Figure 4: *LunarLander* results on TD3-dataset. The curves show the average reward of 50 episodes, shaded by ± 0.5 standard deviation.

Under all types of perturbations, DR-SAC shows superior robustness compared to other algorithms. The performance under *engine_power* perturbation is presented in Figure 1(c). In Figure 4, DR-SAC shows the highest average reward in most levels of wind perturbation. It is worth noting that the robust algorithm RFQI does not have an acceptable performance in this test, even compared to its non-robust counterpart FQI.

Reacher In the *Reacher* environment, we compare DR-SAC with non-robust algorithms SAC, FQI, CQL, and robust algorithm RFQI. All algorithms are trained on the TD3-dataset. In *Reacher* environment, the actuator controls a two-jointed robot arm to reach a target. We use *joint_damping* to denote the damping factor of both *joint0* and *joint1*, with default value as 1.0. We grind search $\delta \in \{0.1, 0.2, 0.3\}$ and find DR-SAC has the best performance when $\delta = 0.2$. We also use $\rho = 0.2$ to train the RFQI model.

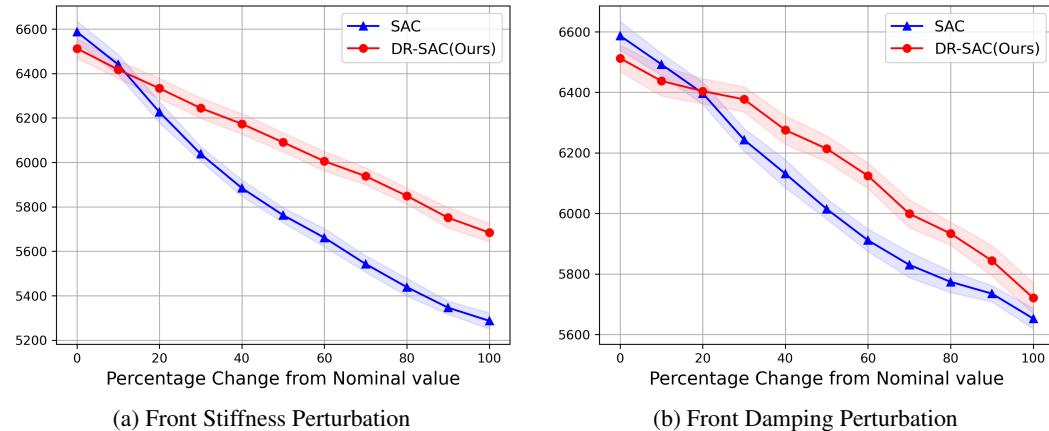
To test the robustness of all algorithms, we compare their performance after adding observation noise and changing parameters *joint_damping*. In the observation perturbation test, we add zero-mean Gaussian noise to the nominal state in dimensions 4 – 9. The first 4 dimensions in state are trigonometric function values and are kept unperturbed. Performance under both perturbations is presented in Figure 1 (d) and (e). Moreover, in Figure 1 (e), the standard deviation regions were computed but omitted from the final plot because the overlapping shaded areas of multiple algorithms made the figure unreadable. We provide them in Table4.

1296 Table 4: Standard Deviation of Model Performance under Damping Perturbation in *Reacher*
1297

Joint Damping Value	SAC	DR-SAC	FQI	RFQI	CQL
2.0	1.452	1.459	1.638	1.509	1.396
3.0	1.534	1.540	1.754	1.601	1.456
4.0	1.631	1.628	1.865	1.699	1.529
5.0	1.735	1.721	1.969	1.802	1.614
6.0	1.841	1.819	2.057	1.910	1.711
7.0	1.946	1.925	2.135	2.018	1.816

1305 **HalfCheetah** In the *HalfCheetah* environment, we compare DR-SAC with SAC baseline only due
1306 to the unsatisfactory performance of FQI and RFQI. All algorithms are trained on the TD3-dataset.
1307 In the *HalfCheetah* environment, the actuator controls a cat-like robot consisting of 9 body parts and
1308 8 joints to run. We use *front_stiff* and *front_damping* to denote the stiffness and damping factor of
1309 joint *fthigh*, *fshin*, and *ffoot*. Also, *back_stiff* and *back_damping* can be denoted in a similar way.
1310 The default value of these parameters can be found through the environmental assets of Gym-
1311 nasiun MuJoCo in https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/mujoco/assets/half_cheetah.xml. We grind search $\delta \in \{0.1, 0.2, 0.3\}$ and find DR-SAC has the best performance when $\delta = 0.2$.
1312

1314 Performance of *back_damping* test is presented in Figure 1(f). Combining it with Figure 5, we can see
1315 DR-SAC has notable robustness improvement across all perturbation tests. For example, in *front_stiff*
1316 perturbation test, DR-SAC achieves an improvement as much as 10% when the change is 80%.



1319 Figure 5: *HalfCheetah* results on TD3-dataset. The curves show the average reward of 50 episodes,
1320 shaded by ± 0.5 standard deviation.
1321

1337 C.3 ABLATION STUDY DETAILS

1339 C.3.1 TRAINING EFFICIENCY OF DR-SAC

1340 In this section, we want to show that DR-SAC with functional optimization finds a good balance
1341 between efficiency and accuracy. We compare training time and robustness of Algorithm 1, DR-SAC
1342 without functional optimization, and robust algorithm RFQI, to show our DR-SAC algorithm has the
1343 best overall performance.

1344 **Balance in Functional Approximation** We first introduce DR-SAC algorithm without functional
1345 optimization. Most steps are the same as Algorithm 1, instead of following modifications. Step 5 in
1346 Algorithm 1 is removed. Q -network loss is replaced by
1347

$$J_Q^{\text{DR-acc}} = \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[Q_{\mathcal{M}}^{\pi}(s, a) - \tilde{T}_{\delta}^{\pi} Q_{\mathcal{M}_{\delta}}^{\pi}(s, a) \right]^2, \quad (32)$$

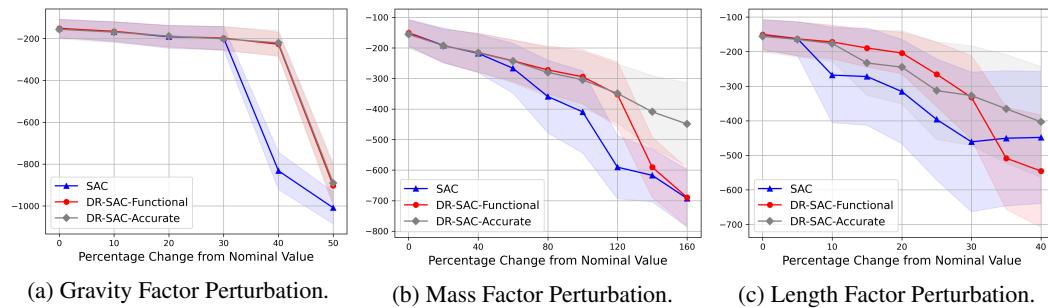
1350 where $\tilde{\mathcal{T}}_\delta^\pi$ is the empirical version of \mathcal{T}_δ^π by replacing $p_{s,a}^0$ with $\tilde{p}_{s,a}^0$. We call this modified algorithm
 1351 *DR-SAC-Accurate* and call Algorithm 1 *DR-SAC-Functional* in this section.
 1352

1353 We train SAC, *DR-SAC-Functional*, and *DR-SAC-Accurate* algorithms in *Pendulum* environment.
 1354 The optimization problem in Equation (10) is a problem over scalar $\beta > 0$ and solved via *Scipy* for
 1355 each (s, a) pair. Table 5 shows the training steps and time for three algorithms. We see training
 1356 time of *DR-SAC-Accurate* is over 150 times longer than standard SAC and over 50 times longer than
 1357 *DR-SAC-Functional*. Considering *Pendulum* environment is relatively simple, *DR-SAC-Accurate*
 1358 algorithm is hard to utilize in large-scale problems.
 1359

1359 Table 5: Training steps and time for three algorithms in *Pendulum*
 1360

Algorithm	Training Steps	Training Time (Minute)
SAC	10k	1.7
<i>DR-SAC-Functional</i>	10k	4.7
<i>DR-SAC-Accurate</i>	8k	260

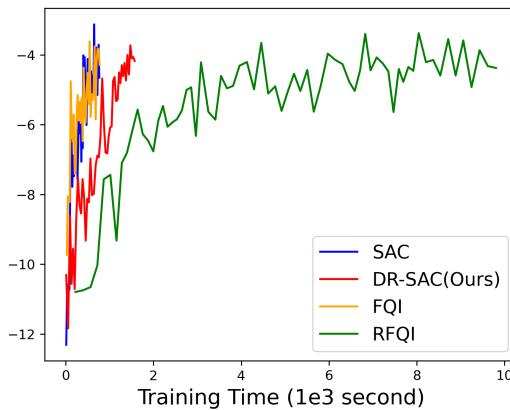
1365 Moreover, we test the robustness of three algorithms by comparing their average reward under
 1366 different perturbations. To be specific, we change *Pendulum* environment parameters: *length*, *mass*,
 1367 and *gravity*. *DR-SAC-Functional* and *DR-SAC-Accurate* are trained with $\delta = 0.5$. Figure 6 shows that
 1368 *DR-SAC-Functional* achieves comparable and even better performance under small-scale perturbation.
 1369 For example, *DR-SAC-Functional* and *DR-SAC-Accurate* have almost the same performance under
 1370 *gravity* perturbation in all test cases and *mass* perturbation test when change is less than 120%. In
 1371 *length* perturbation test, *DR-SAC-Functional* has better performance when the change is less than
 1372 30%.
 1373



1385 Figure 6: *Pendulum* results on TD3-dataset. Curves show average reward of 50 episodes, shaded by
 1386 ± 0.5 standard deviation. Algorithms are SAC, DR-SAC with and without functional approximation.
 1387

1388 **Efficiency Comparison with RFQI** In Section 4.2, existing DR-RL algorithm RFQI also shows
 1389 comparable performance under some perturbations. In this paragraph, we want to show that DR-SAC
 1390 requires much less training time than RFQI, improving its applicability to large scale problems. Table
 1391 lists the training time of SAC, DR-SAC, FQI, and RFQI algorithms in three testing environments.
 1392 DR-SAC is demonstrated to be well-trained in at most 20% time required by RFQI. Compared with
 1393 each non-robust baseline, the training time of DR-SAC is at most 360% of SAC, while RFQI requires
 1394 1000 – 1300% more training time than FQI. In Figure 7, we provide a plot of performance changes
 1395 against the training time in the *Reacher* environment, where RFQI is shown to be under-trained when
 1396 the curve of DR-SAC converges.
 1397

1398 Moreover, this efficiency improvement does not solely arise from the functional approximation step,
 1399 but also from the inherent optimization efficiency in the loss function structure. The RFQI algorithm
 1400 considers the RMDP framework with uncertainty sets defined by the TV distance and is empirically
 1401 built on the BCQ algorithm. In RFQI, there exists a step similar to (20) to find the optimal functional
 1402 under empirical measurement. Experimental results show that the efficiency gap arises from the
 1403 number of GD steps in solving this optimization problem. RFQI sets the default GD steps as 1000
 1404 while DR-SAC achieves comparable robustness performance with only 5 steps. To further investigate,
 1405 we vary the GD steps in RFQI to 5, 10 and 100 in the *LunarLander* environment and report the model
 1406

Figure 7: Average Reward of 20 Episodes over Training Time in *Reacher* Environment.

performance in the unperturbed environment. As shown in Table 6, performance drops sharply when RFQI uses fewer GD steps, indicating that the loss function structure in RFQI inherently leads to slower convergence and requires more optimization steps. In our framework, the choice of actor-critic based non-robust baseline, KL divergence induced uncertainty set and generative modeling in nominal distribution estimation together yields a more optimization-friendly formulation, contributing to our method’s practical efficiency.

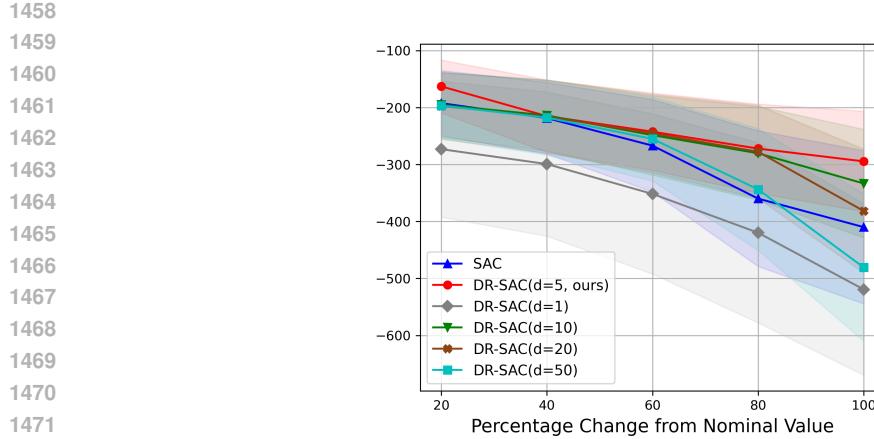
Table 6: GD steps, training time and performance in *LunarLander*

Algorithm	DR-SAC	RFQI	RFQI	RFQI	RFQI (Used)
GD Steps	5	5	10	100	1000
Training Time (min)	36	12	21	139	238
Performance	240.0	175.9	181.9	192.9	201.2

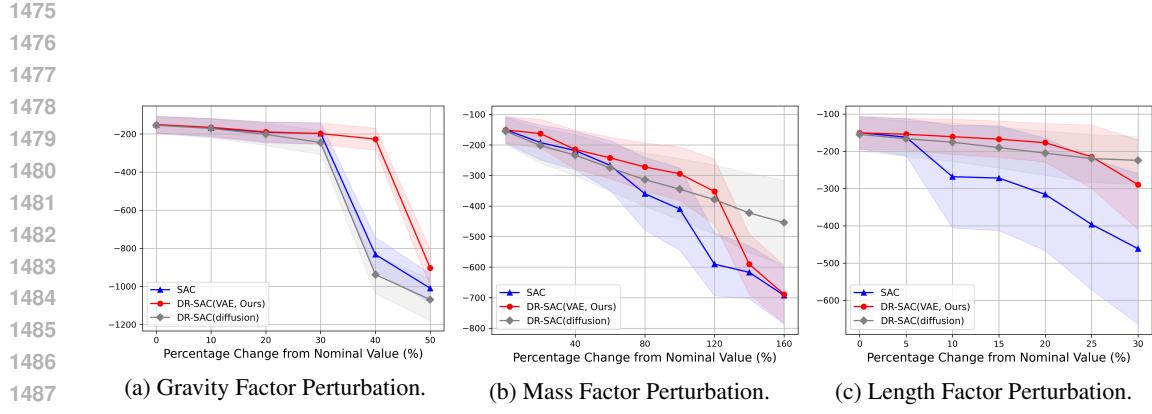
C.3.2 ROBUSTNESS OF VAE MODEL

A consistent challenge in DR-RL algorithm design is that unknown nominal distributions $p_{s,a}^0$ often appear in the loss function. In Section 3.2 and Appendix A.1, we review methods used in other model-free DR-RL algorithms and motivate the necessity of generative models in our setting. Although generative models inevitable introduce additional estimation error when constructing empirical measures $\tilde{p}_{s,a}^0$, our ablation studies demonstrate that DR-SAC is largely insensitive to the VAE modeling, therefore improving its applicability. In the *Pendulum* environment, where the state and action space dimensions are 3 and 1 respectively, we train DR-SAC with VAEs of latent dimensions 1, 5, 10, 20, 50 and evaluate performance under perturbed pendulum mass. As shown in Figure 8, DR-SAC maintains superior robustness over the SAC baseline as long as the latent dimension lies within a reasonable range (between 5 and 20 in our experiments).

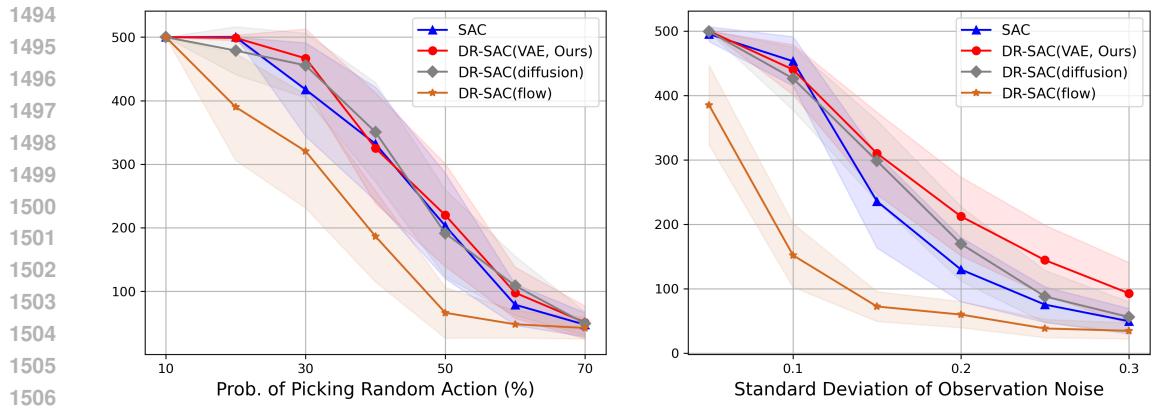
To demonstrate the choice of VAE over other generative models, we implemented Diffusion Probabilistic Models and Normalizing Flows as alternatives to the VAE in DR-SAC and conducted ablation studies on *Pendulum* and *Cartpole*. Model performance is provided in Figure 9 and 10. DR-SAC with Diffusion models achieved comparable robustness to the VAE in *Pendulum*. However, Flow-based models showed unstable performance even in unperturbed *Pendulum* environment. Crucially, the efficiency of sampling process with Diffusion models is a major bottleneck. Diffusion-based training is at least 4.5 times slower than VAE-based training.



1473 Figure 8: *Pendulum* results on TD3-dataset with mass perturbation and different VAE latent dimensions. The curves show the average reward of 50 episodes, shaded by ± 0.5 standard deviation.
1474



1488 Figure 9: *Pendulum* results with different generative models on TD3-dataset. Curves show average
1489 reward of 50 episodes, shaded by ± 0.5 standard deviation.
1490



1507 Figure 10: *Cartpole* results with different generative models on SAC-dataset. The curves show the
1508 average reward of 50 episodes, shaded by ± 0.5 standard deviation.
1509

1512
1513

C.3.3 USAGE OF V-NETWORK

1514
1515
1516
1517
1518

In this section, we demonstrate that keeping the V -network in the SAC algorithm reduces the sensitivity on dataset distribution. As introduced in Appendix C.1, offline datasets in this work are generated by first training a behavior policy and applying the epsilon-greedy method to collect data. Experimental results shows that SAC without the V -network exhibits unstable performance when the behavior policy differs across datasets.

1519
1520
1521
1522
1523
1524
1525
1526

Our experiments are conducted in the *Pendulum* environment. We generate two datasets with behavior policy trained by an online version of SAC and TD3, denoted as SAC-dataset and TD3-dataset, respectively. Figure 11 presents the average reward of 20 episodes against training steps in four scenarios: SAC-dataset vs. TD3-dataset, SAC algorithm with vs. without V -network. Removing the V -network shows minor influence on offline SAC learning using SAC-dataset. However, for TD3-dataset, SAC with V -network achieves a stable average reward around -150 quickly, but the average reward of SAC without V -network fluctuates intensely and never exceeds -200 . This validates that SAC with a V -network is less sensitive to behavior policy and dataset distribution.

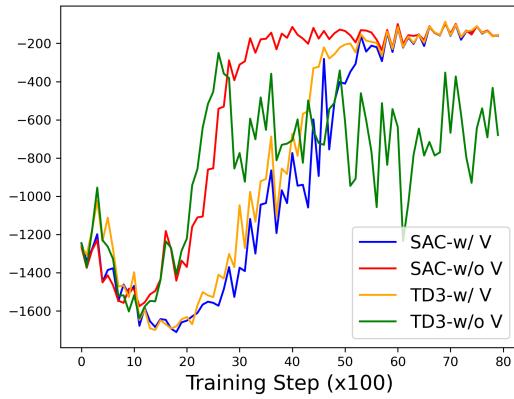
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
15391540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 11: Average Reward of 20 Episodes over Training Step in *Pendulum* Environment.

1566 **D REGRET BOUND**
 1567

1568 **Definition D.1.** The distributionally robust regret $R_{\mathcal{M}_\delta}(\pi)$ of a policy $\pi \in \Pi$ is defined as:
 1569

$$1570 R_{\mathcal{M}_\delta}(\pi) := \|V_{\mathcal{M}_\delta}^* - V_{\mathcal{M}_\delta}^\pi\|_\infty.$$

1571 For any policy π , the soft value and soft Q -functions satisfy:
 1572

$$1573 V_{\mathcal{M}_\delta}^\pi(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} [Q_{\mathcal{M}_\delta}^\pi(s, a) - \alpha \log \pi(a | s)].$$

1574 The following inequality holds:
 1575

$$1576 \|V_{\mathcal{M}_\delta}^* - V_{\mathcal{M}_\delta}^\pi\|_\infty \leq \|Q_{\mathcal{M}_\delta}^* - Q_{\mathcal{M}_\delta}^\pi\|_\infty.$$

1577 Based on the estimator $\hat{p}_{s,a}^0$, we define the corresponding estimate DR soft value function
 1578

$$1579 \hat{V}_{\mathcal{M}_\delta}^\pi(s) = \inf_{\mathbf{p} \in \hat{\mathcal{P}}(\delta)} \mathbb{E}_{\mathbf{p}} \left[\sum_{t=1}^{\infty} \gamma^{t-1} (r_t + \alpha \cdot \mathcal{H}(\pi(s_t))) \mid \pi, s_1 = s \right],$$

1582 where $\hat{\mathcal{P}}_{s,a}(\delta) := \{p_{s,a} \in \Delta(|\mathcal{S}|) : D_{\text{KL}}(p_{s,a} \| \hat{p}_{s,a}^0) \leq \delta\}$. Similarly, the estimate DR soft Q -
 1583 function is given by

$$1584 \hat{Q}_{\mathcal{M}_\delta}^\pi(s, a) = \inf_{\mathbf{p} \in \hat{\mathcal{P}}(\delta)} \mathbb{E}_{\mathbf{p}} \left[r_1 + \sum_{t=2}^{\infty} \gamma^{t-1} (r_t + \alpha \cdot \mathcal{H}(\pi(s_t))) \mid \pi, s_1 = s, a_1 = a \right].$$

1585 Define $\hat{V}_{\mathcal{M}_\delta}^* = \max_{\pi \in \Pi} \hat{V}_{\mathcal{M}_\delta}^\pi$ and $\hat{\pi}_{\mathcal{M}_\delta}^* \in \text{argmax}_{\pi \in \Pi} \hat{V}_{\mathcal{M}_\delta}^\pi$.
 1586

1587 The estimate $\hat{\mathcal{T}}_\delta^\pi$ is defined as
 1588

$$1589 \hat{\mathcal{T}}_\delta^\pi Q(s, a) = \mathbb{E}[r] + \gamma \cdot \sup_{\beta \geq 0} \left\{ -\beta \log \left(\mathbb{E}_{\hat{p}_{s,a}^0} \left[\exp \left(\frac{-V(s')}{\beta} \right) \right] \right) - \beta \delta \right\},$$

1590 **Assumption D.2.** Assume $\text{KL}(p_{s,a}^0 \| \hat{p}_{s,a}^0) \leq \varepsilon_1^2$ and $\text{supp}(p_{s,a}^0) = \text{supp}(\hat{p}_{s,a}^0)$.
 1591

1592 By Pinsker's inequality, $\text{TV}(p_{s,a}^0, \hat{p}_{s,a}^0) \leq \frac{1}{2} \sqrt{\text{KL}(p_{s,a}^0 \| \hat{p}_{s,a}^0)} \leq \frac{1}{2} \varepsilon_1$.
 1593

1594 **Bound of $\|\hat{\mathcal{T}}_\delta^\pi Q(s, a) - \mathcal{T}_\delta^\pi Q(s, a)\|$.**
 1595

1596 **Lemma D.3.** Under Assumption D.2,
 1597

$$1598 \|\hat{\mathcal{T}}_\delta^\pi Q(s, a) - \mathcal{T}_\delta^\pi Q(s, a)\| \leq 2\gamma\varepsilon_1 \frac{R_{\max} + \alpha \log |A|}{(1-\gamma)\delta} e^{(R_{\max} + \alpha \log |A|)/(1-\gamma)\beta}.$$

1599 *Proof.* As we defined in Section 3.2,
 1600

$$1601 f((s, a), \beta) := -\beta \log \left(\mathbb{E}_{p_{s,a}^0} \left[e^{-V(s')/\beta} \right] \right) - \beta \delta, \quad \hat{f}((s, a), \beta) := -\beta \log \left(\mathbb{E}_{\hat{p}_{s,a}^0} \left[e^{-V(s')/\beta} \right] \right) - \beta \delta.$$

1602 From (Xu 2023, Proposition 5), the maximums of $f((s, a), \beta)$ and $\hat{f}((s, a), \beta)$ are achieved at
 1603 $\beta^*, \hat{\beta}^* \in [0, V_{\max}/\delta]$, that is,
 1604

$$1605 \hat{\mathcal{T}}_\delta^\pi Q(s, a) = \mathbb{E}[r] + \gamma \sup_{\beta \geq 0} f((s, a), \beta) = \mathbb{E}[r] + \gamma \sup_{\beta \in [0, V_{\max}/\delta]} f((s, a), \beta),$$

$$1606 \hat{\mathcal{T}}_\delta^\pi Q(s, a) = \mathbb{E}[r] + \gamma \sup_{\beta \geq 0} \hat{f}((s, a), \beta) = \mathbb{E}[r] + \gamma \sup_{\beta \in [0, V_{\max}/\delta]} \hat{f}((s, a), \beta).$$

1607 Hence,
 1608

$$1609 |\hat{\mathcal{T}}_\delta^\pi Q(s, a) - \mathcal{T}_\delta^\pi Q(s, a)| \leq \gamma \sup_{\beta \in [0, V_{\max}/\delta]} |\hat{f}((s, a), \beta) - f((s, a), \beta)|.$$

1610 Note that $\text{supp}(p_{s,a}^0) = \text{supp}(\hat{p}_{s,a}^0)$, which implies that $F_p(0) = \text{essinf}_{s' \sim p_{s,a}^0} V(s') =$
 1611 $\text{essinf}_{s' \sim \hat{p}_{s,a}^0} V(s') = F_{\hat{p}}(0)$. Now, we can assume that the optimal $\beta^*, \hat{\beta}^*$ is achieved in $[\beta, V_{\max}/\delta]$,
 1612 where $\beta = \min\{\beta^*/2, \hat{\beta}^*/2, 1/2\}$.
 1613

1620 Then, we aim to bound the supremum of $|\hat{f}((s, a), \beta) - f((s, a), \beta)|$ over the interval $[\underline{\beta}, V_{\max}/\delta]$.
 1621 Since $\log x \leq x - 1$ when $x \geq 1$, we have

$$\begin{aligned} 1623 |\hat{f}((s, a), \beta) - f((s, a), \beta)| &= \beta \left| \log \left(\mathbb{E}_{\hat{p}_{s,a}^0} \left[e^{-V(s')/\beta} \right] \right) - \log \left(\mathbb{E}_{p_{s,a}^0} \left[e^{-V(s')/\beta} \right] \right) \right| \\ 1624 &\leq \frac{V_{\max}}{\delta} \frac{\left| \mathbb{E}_{\hat{p}_{s,a}^0} \left[e^{-V(s')/\beta} \right] - \mathbb{E}_{p_{s,a}^0} \left[e^{-V(s')/\beta} \right] \right|}{\min \left\{ \mathbb{E}_{\hat{p}_{s,a}^0} \left[e^{-V(s')/\beta} \right], \mathbb{E}_{p_{s,a}^0} \left[e^{-V(s')/\beta} \right] \right\}}. \end{aligned}$$

1628 Since $\text{TV}(p_{s,a}^0, \hat{p}_{s,a}^0) \leq \varepsilon_1$ and $V_{\min} \geq 0$, we have

$$\begin{aligned} 1629 \left| \mathbb{E}_{\hat{p}_{s,a}^0} \left[e^{-V(s')/\beta} \right] - \mathbb{E}_{p_{s,a}^0} \left[e^{-V(s')/\beta} \right] \right| &= \left| \sum_{s' \in S} (\hat{p}_{s,a}^0(s') - p_{s,a}^0(s')) e^{-V(s')/\beta} \right| \\ 1630 &\leq \sum_{s' \in S} \left| \hat{p}_{s,a}^0(s') - p_{s,a}^0(s') \right| e^{-V_{\min}/\beta} \leq 2\text{TV}(p_{s,a}^0, \hat{p}_{s,a}^0) \leq \varepsilon_1. \end{aligned}$$

1633 In addition,

$$\min \left\{ \mathbb{E}_{\hat{p}_{s,a}^0} \left[e^{-V(s')/\beta} \right], \mathbb{E}_{p_{s,a}^0} \left[e^{-V(s')/\beta} \right] \right\} \geq e^{-V_{\max}/\underline{\beta}}.$$

1636 Thus, we obtain

$$1637 |\hat{f}((s, a), \beta) - f((s, a), \beta)| \leq \varepsilon_1 \frac{V_{\max}}{\delta} e^{V_{\max}/\underline{\beta}}, \quad \text{where } V_{\max} = \frac{R_{\max} + \alpha \log |A|}{1 - \gamma}.$$

1639 Combining this with the earlier inequality gives

$$1641 \|\hat{T}_\delta^\pi Q(s, a) - T_\delta^\pi Q(s, a)\| \leq \gamma \varepsilon_1 \frac{R_{\max} + \alpha \log |A|}{(1 - \gamma) \delta} e^{(R_{\max} + \alpha \log |A|)/(1 - \gamma) \beta} := \varepsilon_2.$$

1643 \square

1644 **Bound of $\|\hat{Q}_{\mathcal{M}_\delta}^\pi - Q_{\mathcal{M}_\delta}^\pi\|$.** For any $\pi \in \Pi$, let $Q^{k+1} = T_\delta^\pi Q^k$, $\hat{Q}^{k+1} = \hat{T}_\delta^\pi \hat{Q}^k$, and $\hat{Q}^0 = Q^0$.
 1645 By Proposition 3.4, we know that Q^k will converge to the DR soft Q -value $Q_{\mathcal{M}_\delta}^\pi$, which is the fixed
 1646 point of T_δ^π . That is, $T_\delta^\pi Q_{\mathcal{M}_\delta}^\pi = Q_{\mathcal{M}_\delta}^\pi$ and $Q^k \rightarrow Q_{\mathcal{M}_\delta}^\pi$. Similarly, there exists a fixed point of \hat{T}_δ^π
 1647 such that $\hat{T}_\delta^\pi \hat{Q}_{\mathcal{M}_\delta}^\pi = \hat{Q}_{\mathcal{M}_\delta}^\pi$ and $\hat{Q}^k \rightarrow \hat{Q}_{\mathcal{M}_\delta}^\pi$. Then

$$\begin{aligned} 1650 \|\hat{Q}_{\mathcal{M}_\delta}^\pi - Q_{\mathcal{M}_\delta}^\pi\| &= \|\hat{T}_\delta^\pi \hat{Q}_{\mathcal{M}_\delta}^\pi - T_\delta^\pi Q_{\mathcal{M}_\delta}^\pi\| \\ 1651 &= \|\hat{T}_\delta^\pi \hat{Q}_{\mathcal{M}_\delta}^\pi - T_\delta^\pi \hat{Q}_{\mathcal{M}_\delta}^\pi + T_\delta^\pi \hat{Q}_{\mathcal{M}_\delta}^\pi - T_\delta^\pi Q_{\mathcal{M}_\delta}^\pi\| \\ 1652 &\leq \varepsilon_2 + \gamma \|\hat{Q}_{\mathcal{M}_\delta}^\pi - Q_{\mathcal{M}_\delta}^\pi\| \\ 1653 \\ 1654 \implies \|\hat{Q}_{\mathcal{M}_\delta}^\pi - Q_{\mathcal{M}_\delta}^\pi\| &\leq \frac{\varepsilon_2}{1 - \gamma}. \end{aligned}$$

1656 **Regret bound.** We define the updating policy as

$$1658 \hat{\pi}_{k+1} = \underset{\pi \in \Pi}{\operatorname{argmin}} D_{\text{KL}} \left(\pi(\cdot | s) \left\| \frac{\exp \left(\frac{1}{\alpha} \hat{Q}_{\mathcal{M}_\delta}^{\hat{\pi}_k}(s, \cdot) \right)}{Z^{\hat{\pi}_k}(s)} \right\| \right), k = 0, 1, \dots$$

1661 By Proposition 3.6, the policy sequence $\{\hat{\pi}^k\}$ converges to the optimal policy $\hat{\pi}_{\mathcal{M}_\delta}^*$ under the estimate
 1662 DR soft policy iteration as $k \rightarrow \infty$.

1663 For each state $s \in \mathcal{S}$, we have $V_{\mathcal{M}_\delta}^*(s) - V_{\mathcal{M}_\delta}^{\hat{\pi}_{\mathcal{M}_\delta}^*}(s) \geq 0$. By definition, $\hat{V}_{\mathcal{M}_\delta}^*(s) = \hat{V}_{\mathcal{M}_\delta}^{\hat{\pi}_{\mathcal{M}_\delta}^*}(s)$. Then,
 1664 we have

$$\begin{aligned} 1666 V_{\mathcal{M}_\delta}^*(s) - V_{\mathcal{M}_\delta}^{\hat{\pi}_{\mathcal{M}_\delta}^*}(s) &\leq \left| V_{\mathcal{M}_\delta}^*(s) - \hat{V}_{\mathcal{M}_\delta}^*(s) \right| + \left| \hat{V}_{\mathcal{M}_\delta}^*(s) - V_{\mathcal{M}_\delta}^{\hat{\pi}_{\mathcal{M}_\delta}^*}(s) \right| \\ 1667 &= \left| \sup_{\pi} V_{\mathcal{M}_\delta}^\pi(s) - \sup_{\pi} \hat{V}_{\mathcal{M}_\delta}^\pi(s) \right| + \left| \hat{V}_{\mathcal{M}_\delta}^{\hat{\pi}_{\mathcal{M}_\delta}^*}(s) - V_{\mathcal{M}_\delta}^{\hat{\pi}_{\mathcal{M}_\delta}^*}(s) \right| \\ 1668 \\ 1669 &\leq \sup_{\pi} \left| V_{\mathcal{M}_\delta}^\pi(s) - \hat{V}_{\mathcal{M}_\delta}^\pi(s) \right| + \left| \hat{V}_{\mathcal{M}_\delta}^{\hat{\pi}_{\mathcal{M}_\delta}^*}(s) - V_{\mathcal{M}_\delta}^{\hat{\pi}_{\mathcal{M}_\delta}^*}(s) \right| \\ 1670 \\ 1671 &\leq 2 \sup_{\pi} \left| V_{\mathcal{M}_\delta}^\pi(s) - \hat{V}_{\mathcal{M}_\delta}^\pi(s) \right| \\ 1672 \\ 1673 \end{aligned}$$

1674 Thus,

1675

$$1676 R_{\mathcal{M}_\delta}(\hat{\pi}_{\mathcal{M}_\delta}^*) = \left\| V_{\mathcal{M}_\delta}^* - V_{\mathcal{M}_\delta}^{\hat{\pi}_{\mathcal{M}_\delta}^*} \right\|_\infty \leq 2 \sup_\pi \left\| V_{\mathcal{M}_\delta}^\pi - \hat{V}_{\mathcal{M}_\delta}^\pi \right\|_\infty \leq 2 \sup_\pi \left\| Q_{\mathcal{M}_\delta}^\pi - \hat{Q}_{\mathcal{M}_\delta}^\pi \right\|_\infty \leq \frac{2\varepsilon_2}{1-\gamma}.$$

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727