Under review as a conference paper at ICLR 2026

DR-SAC: DISTRIBUTIONALLY ROBUST SOFT ACTOR-
CRITIC FOR REINFORCEMENT LEARNING UNDER UN-
CERTAINTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (RL) has achieved remarkable success, yet its deploy-
ment in real-world scenarios is often limited by vulnerability to environmental
uncertainties. Distributionally robust RL (DR-RL) algorithms have been pro-
posed to resolve this challenge, but existing approaches are largely restricted to
value-based methods in tabular settings. In this work, we introduce Distribu-
tionally Robust Soft Actor-Critic (DR-SAC), the first actor—critic based DR-RL
algorithm for offline learning in continuous action spaces. DR-SAC maximizes the
entropy-regularized rewards against the worst possible transition models within an
KL-divergence constrained uncertainty set. We derive the distributionally robust
version of the soft policy iteration with a convergence guarantee and incorporate a
generative modeling approach to estimate the unknown nominal transition models.
Experiment results on five continuous RL tasks demonstrate our algorithm achieves
up to 9.8 x higher average reward than the SAC baseline under common pertur-
bations. Additionally, DR-SAC significantly improves computing efficiency and
applicability to large-scale problems compared with existing DR-RL algorithms.

1 INTRODUCTION

The field of deep reinforcement learning has witnessed remarkable progress, enabling agents to
learn complex behaviors in various domains, from game playing to robotic control (Arulkumaran
et al., 2017 [Francois-Lavet et al.| 2018; |(Chen et al.| 2024b). Many deep RL algorithms have
demonstrated notable performance without training on real-world systems, by using a simulator or
pre-collected data, making them attractive for practical applications. Among them, Soft Actor-Critic
(SAC, Haarnoja et al.|(2018azb))) is a principled approach that adopts an entropy regularized learning
objective, commonly known as the soft value function. This maximum entropy approach is founded
on theoretical principles (Ziebart,[2010) and has been applied to various contexts, including stochastic
control (Todorov, 2008} Rawlik et al.|[2012) and inverse reinforcement learning (Ziebart et al.| [2008};
Zhou et al.l [2018).

However, a persistent challenge limiting the deployment of deep RL in real-world systems is the
inherent sensitivity of learned policies to uncertainties in the environment (Whittle,|1981; Enders
et al.}2024). Agents trained in one environment often exhibit significant performance degradation
when deployed in a slightly different environment. This model mismatches often stem from uncertain
transition and reward functions, observation and actuator errors, model parameter variations, or even
adversarial perturbations.

Distributionally robust RL addresses this challenge by optimizing decision-making in the worst-case
scenario. Specifically, instead of working on a single Markov Decision Process (MDP), DR-RL
considers a Robust Markov Decision Process (RMDP) framework, which includes a set of MDPs
defined by an uncertainty set of distributions around the nominal one. Although both value-based
(Liu et al., |2022} [Lu et al.l 2024) and policy-gradient (Wang & Zou, 2022; Kumar et al.| [2023)
DR-RL algorithms have been proposed, most work focus on the performance guarantees and sample
complexity in the tabular setting and cannot be deployed in continuous environments, with the only
exception being Robust Fitted Q-Iteration (RFQI, Panaganti et al.|(2022)). However, fundamental
research gaps remain: 1) RFQI only considers uncertainty sets defined by the Total Variation (TV)

Under review as a conference paper at ICLR 2026

distance, which is analytically convenient due to the piece-wise linear dual formulation but cannot
be extended to other divergences; and 2) its non-robust baseline, Fitted Q-Iteration (FQI, |[Ernst et al.
(2003)), is value-based and suffers from critical limitations, including deterministic learned policies,
low applicability to high-dimensional action spaces and high sensitivity to the learned state-action
function (Degris et al.l2012). In contrast, actor-critic based algorithms combine low-variance return
estimation with scalable policy optimization, making them preferred in benchmark tasks and practical
applications (Konda & Tsitsiklis, [1999] |Grondman et al.,|2012). However, no distributionally robust
counterpart has been developed. This gap motivates our development of Distributionally Robust
Soft Actor-Critic (DR-SAC), the first actor—critic based DR-RL algorithm for offline learning in
continuous action spaces.

In this work, we assume access only to a dataset collected in the training environment and the
transition distributions of the deployment environment lie within an uncertainty set, which is defined
as a Kullback-Leibler (KL) divergence ball centered around the nominal one. The goal is to learn
a policy that maximizes the soft value function under the worst possible distributions. The main
contributions of this work are:

* We formulate the maximum entropy learning framework with uncertain transition distributions
lying in KL-divergence constrained balls. Within this framework, we derive the distributionally
robust soft policy iteration with convergence guarantees and develop the distributionally robust
counterpart of SAC, one of the most widely used offline RL benchmark algorithms.

* We exploit the interchange property to reformulate the optimization problems over scalars into
functional optimization, resulting in policy iteration that is independent of state—action space
dimensionality. This reformulation enables application to continuous action space and saves over
80.0% training time compared to the existing DR-RL algorithm RFQI.

* We incorporate generative models to estimate unknown nominal distributions and construct empiri-
cal measures with minor computation and memory increase. This addresses the double-sampling
issue caused by the non-linear KL-divergence dual formulation and enables distributionally robust
soft policy learning in offline and continuous-space tasks. Our proposed algorithm, DR-SAC, is
validated on five offline RL environments with extensive perturbations and achieves up to 9.8 x
higher average reward than the SAC baseline.

1.1 RELATED WORKS

Robust RL. The RMDP and Robust Dynamic Programming method were first introduced in
Iyengar| (2005); Nilim & El Ghaoui| (2005)) and have been widely studied in|Xu & Mannor|(2010);
Wiesemann et al.| (2013); |Yu & Xu|(2015) under planning settings. Many works consider robust RL
algorithms from different aspects, such as soft-robustness (Derman et al., | 2018};|Lobo et al.,[2020),
risk sensitivity (Tamar et al., 2015} [Pan et al.| 2019; |Singh et al.| 2020} |Queeney & Benosman, [2023)),
and adversarial training (Pinto et al., 2017; Zhang et al.,|2020; |Cheng et al.,[2022)). In recent years,
many distributionally robust RL algorithms have been proposed with provable guarantees in the
tabular setting, including algorithms based on @-learning (Wang et al.| 2023}, 2024}, [Liang et al.|
2024) and value iteration (Zhou et al., 2021; Panaganti & Kalathil, |2022; | Xu et al.,[2023; |Ma et al.,
2023 Liu & Xul [2024). However, these algorithms are not applicable to continuous action space
environments.

Model-Free Algorithms for Distributionally Robust RL. In the DR-RL problem, the nominal
distributions usually appear in the optimization problem but are unknown in reality. To overcome
this difficulty, some model-free algorithms (Liu et al.,|2022; |Zhou et al.,|2023; |Ramesh et al., 2024)
assume access to a simulator that generates i.i.d samples from the nominal environment, which does
not satisfy the offline requirement. Some algorithms (Derman & Mannor, [2020; |Clavier et al., 2023}
Shi & Chil 2024) compute empirical frequencies of state transitions in the offline dataset, which is
not applicable to the continuous space task. Lastly, Empirical Risk Minimization (ERM) method has
also been used to estimate the loss function in a special structure (Mankowitz et al.,|2019; Wang &
Zoul, 2021; Kordabad et al.,|2022) but is not widely applicable.

VAE in Offline RL. Variational Autoencoders (VAEs) have wide applications in non-robust offline
learning algorithms. A major use of VAE is to estimate the behavior policy from the offline dataset,

Under review as a conference paper at ICLR 2026

and add policy constraints or apply pessimistic value (Fujimoto et al, [2019j |Wei et al., 2021} Xu
et al.} 2022} [Lyu et al.,[2022). See Chen et al.|(2024a) for a more detailed discussion. Using VAE
to reconstruct states has also been found in |Van Hoof et al.| (2016). To the best of our knowledge,
we are the first to incorporate VAE models in a DR-RL algorithm, to estimate nominal transition
distributions and generate samples without a simulator.

Note that although [Smirnova et al.| (2019) proposed a close name algorithm, their settings are
completely different from ours and most DR-RL literature. The authors assume estimation error in
the evaluation step and use KL divergence to limit the behavior policy, with all analysis on a single
MDP rather than an RMDP.

2 FORMULATION

2.1 NOTATION AND BASICS OF SOFT ACTOR-CRITIC

A standard framework for reinforcement learning is the Markov Decision Process (MDP), formally de-
fined as a tuple M = (S, A, R, P,), where S and .A denote the state and action spaces, respectively,
both continuous in this work. The random reward function is denoted by R : S x A +— P([0, Rinax])>
where P([0, Riax]) is the set of random variables supported on [0, Ry,.x]). The transition distribution
is denoted by P : S x A — A(S), where A(S) is the set of probability function on set S and
v € [0,1) is the discount factor. We denote r = R(s, a) as the random reward and s’ as the next state
reached following the transition distribution ps , = P(- | s,a). A policy 7 : S — A(A) represents
the conditional probability of actions taken. We consider a stochastic stationary policy class, denoted
by II. The entropy of a stochastic policy 7 at state s is defined as H (7 (s)) = E[—logn(als)],
measuring the randomness of action. The set of integers from 1 to n is denoted as [n].

In maximum entropy RL tasks, to encourage exploration, the value function includes the cumulative
discounted sum of reward and entropy of the stochastic policy 7. More precisely, given an MDP M,
the value function with entropy (soft value function) under policy 7 is

i'ytﬂ (n +a- H(W(St)))
t=1

The temperature o > 0 determines the relative importance of policy stochasticity compared to reward.
The optimal value and optimal policy are defined as V{; = max ey V{; and 7}y = argmax, y V(.
Similarly, the soft state-action value function (soft)-function) under policy 7 can be defined as

r+ i’y“l (rt +a- ’H(w(st)))

t=2

Viu(s) =E

mT,81 = s] . @))]

QMm(s,a)= E

w,sls,alal . 2)

For any mapping @ : S x A — R,[Haarnoja et al.| (2018a)) defined soft Bellman operator as
T"Q(s,a) = E[r]+7-Ep, .« [Q(s',a") —alogm(a’ | s)]. ©)

Soft Actor-Critic (SAC) algorithm updates the policy through soft policy iteration with guaranteed

convergence in the tabular case. In each iteration, 7™ will be applied to the estimation of soft

@-function under the current policy 7, and the policy is updated by minimizing the KL divergence
between the improved policy distribution and the exponential of the soft Q-function:

exp (;Qﬁ(s, -)> /Z(s)) =01, @)

Tg+1 = argmin Dgp <7r(| 5)
well

where Dx.(P || Q) =Ep [log (ggg)} denotes the KL divergence and the function Z(-) normalizes

the distribution of exp (1 Q74 (s, -)).

2.2 ROBUST MARKOV DECISION PROCESS

In real-world RL tasks, the transition distribution P and reward function R in the deployment
environment may be different from the environment in which the model is trained or the offline

Under review as a conference paper at ICLR 2026

dataset is collected. The potential environmental shift motivates us to study the Robust Markov
Decision Process (RMDP) and learn a policy more robust to such perturbation. Unlike standard MDPs,
the RMDP formulation considers models in an uncertainty set. Since the analysis and algorithm
design will be similar to reward function perturbation, we assume the reward function R is unchanged
and consider uncertain transition distributions only.

The RMDP framework is denoted as M = (S, A, R, P(4),~y). We consider the transition distribu-
tion perturbed within a KL-divergence ball. Specifically, let P° = {pg’a}(sﬁa)egx 4 be the nominal
transition distributions. For each state-action pair (s,a) € S x A, given § > 0, we define the KL ball
centered at p{ , as

Ps,a((s) = {ps,a € A(|8|) : DKL(p&a ‘pg,a) < 6} . (5)

The ambiguity set P(d) is the Cartesian product of P, ,(0) for all pairs (s,a) € S x A, which
belongs to the (s, a)-rectangular set in[Wiesemann et al.|(2013).

In the RMDP framework, the goal is to optimize the worst-case objective value under any model in
the ambiguity set. Given M, similar to (T), the distributionally robust (DR) soft value function is
defined as

Vi(s)= inf E, li At (Tt +a- H(w(st))) T, 81 = s] . (6)

pEP(d)

Similarly, the distributionally robust soft Q-function is given by

T = if E
@s(s:0) = nf Ep

7"1+Z,yt—1(rt+a-7-l(7r(st))) mT,81 = 8,01 :a] . (7)
t=2

The DR optimal value and DR optimal policy are defined accordingly as:

Vi, (s) = max Vi, (s) and 7y, (- | s) = argmax VT (s). Q)
T mell

3 ALGORITHM: DISTRIBUTIONALLY ROBUST SOFT ACTOR-CRITIC

In this section, we present the development of the Distributionally Robust Soft Actor-Critic algorithm.
We first derive the distributionally robust soft policy iteration and establish its convergence to the
optimal policy. To improve computing efficiency, we develop a scalable implementation based
on functional optimization. Lastly, to handle the challenge of unknown nominal distributions, we
incorporate a VAE model to construct the empirical transition measures.

Assumption 3.1. To ensure that the policy entropy H(7(s)) = Eqr(.|s)[— log m(als)] is bounded,
we assume |A| < oo.

Remark 3.2. Assumption@]is inherited from the non-robust baseline SAC (Haarnoja et al.| [2018al),
which establishes theoretical guarantees in the tabular setting while being empirically used as a
benchmark in continuous tasks. Our work extends the performance properties of SAC to the DR-RL
framework. In Section[3.3] we design a practical algorithm in continuous action spaces.

3.1 DISTRIBUTIONALLY ROBUST SOFT POLICY ITERATION

We begin with providing the DR soft policy iteration, which iterates between DR soft policy evaluation
and DR soft policy improvement. We also show that the DR soft policy iteration is guaranteed to
converge to the DR optimal policy.

In the DR soft policy evaluation step, the DR soft -function is estimated by iteratively applying
the distributionally robust version of the Bellman operator, considering the worst possible transition
distribution in the uncertainty set. For a fixed policy 7 and any mapping @ : S x A — R, the
distributionally robust soft Bellman operator is defined as:

EFQ(Sa a’) = E[T] + v I)s,aei%ga((ﬂ {Eps’a’ﬂ" [Q(S/, a/) — Q- log T(a/ ‘ S/)]} . (9)

Following the results in [Iyengar| (2005)); [Xu & Mannor| (2010)), the DR soft ()-function can be com-
puted via distributionally robust dynamic programming, and Q7 is a fixed point of 74". However,

Under review as a conference paper at ICLR 2026

Equation (9) is generally intractable because it requires solving an infinite-dimensional optimization
problem. To address this issue, we use the strong duality result on worst-case expectations over a
KL-divergence ball to derive the dual form of Equation (9).

Proposition 3.3 (Dual Formulation of the Distributionally Robust Soft Bellman Operator). Suppose
Assumption[3.1| holds, the distributionally robust soft Bellman operator in (9) can be reformulated

into:
T5'Q(s,a) =E[r] + - sup {—ﬂ log (Epg . [exp (—VS)>D - 55} ; (10)
>0 ’

where
V(s) = Eanr [Q(s,a) — a-logm(a | s)]. (11)

Derivation is provided in Appendix [B.I] The RHS of equation (I0) only depends on the nominal
transition distribution Pg’a, instead of an infinite number of distributions in the uncertainty set P(9).
Also, the optimization problem on the RHS is over the scalar /3, instead of an infinite-dimensional
distribution. With the tractable dual formation in Proposition[3.3] DR soft)-value under any policy
m can be computed by iteratively applying the DR soft Bellman operator 7;".

Proposition 3.4 (Distributionally Robust Soft Policy Evaluation). For any policy m € 11 fixed,
starting from any mapping Q° : S x A — R with | A| < oo, define a sequence {Q*} by iteratively
applying distributionally robust soft Bellman operator: Q"+ = ’7:;“@’“. This sequence will converge
to the DR soft Q-value of policy m as k — oo.

The main part of the proof shows that the operator 7" is a y-contraction mapping, with details in

Appendix [B.2] Next, the distributionally robust soft policy improvement step is similar to Equation
(@), but replacing Q 4 with DR soft Q-value Q A, . The new policy in each update is defined as

mell

e (10%,60) [279) k=01 a2

M1 = argmin Dy <7r(| s)

With policy updating rule (I2), we show that the policy sequence {7 } has a non-decreasing value
with respect to the DR soft ()-function in Proposition [3.5] This extends the non-robust soft policy
improvement to cases with uncertain transition probabilities.

Proposition 3.5 (Distributionally Robust Soft Policy Improvement). Let 7, € Il and 7,1 be the
solution of the optimization problem defined in Equation (12). Then Qﬁ:l (s,a) > Q)5 (s,a) for
any (s,a) € S x Awith |A| < oo.

Proof is provided in Appendix [B.3] The DR soft policy iteration algorithm proceeds by alternatively
applying DR soft policy evaluation and DR soft policy improvement. In the following theorem, we
show that the policy sequence converges to the optimum under the DR soft policy iteration, with

proof in Appendix [B.4]

Theorem 3.6 (Distributionally Robust Soft Policy Iteration). Starting from any policy 7° € II, when
|A| < oo, the policy sequence {m*} converges to the optimal policy 7 under DR soft policy iteration
as k — oo.

Key Challenges. Although DR soft policy iteration is guaranteed to find the optimal policy, there
are still challenges in extending it to continuous action space and offline setting: 1) the DR soft policy
evaluation step in (TO) is not efficient enough in large scale problems, 2) the nominal distribution pg’a
is usually unknown in offline RL tasks, and 3) the DR soft policy iteration can only be implemented
exactly in tabular setting. We will resolve these issues step by step in the rest of this section.

3.2 SOLVING DUAL OPTIMIZATION USING GENERATIVE MODEL

In offline RL tasks, the goal is to learn the optimal policy with access to a pre-collected dataset
D = {(si, ai, ri, s)}Y,, where (s;,a;) ~ p, with p denoting the data generation distribution
determined by the behavior policy, 7; = R(s;, a;) and s} ~ P%(- | s;,a;). In this section, we derive
a practical functional optimization method to compute the dual formulation of DR soft Bellman
operator in (TI0) with higher efficiency to address challenge 1, and propose a generative modeling
scheme to address challenge 2.

Under review as a conference paper at ICLR 2026

Dual Functional Optimization. In the DR soft policy evaluation step, the Bellman operator 75"
will be applied to Q-function iteratively. By writing out the dual form of the DR soft Bellman operator
in (I0), the optimization problem is over a scalar 8 > 0 and can be routinely solved. However, this
optimization problem needs to be solved for every (s, a) pair at each time of update, making the
training process slow for a large-scale problem. To improve training efficiency, our idea is to convert
a group of scalar optimization problems into a single optimization problem over a function space.
This can be achieved by applying the property of interchanging minimization and integration in
decomposable space (Rockafellar & Wets| [2009)).

Consider the probability space (S x A, (S x A), 1) and let L' (S x A, X(S x A), i) be the set of
absolutely integrable functions on that space, abbreviated as L'. We can reformulate the expectation
of optimal value for each (s, a) pair into a single functional optimization problem.

Proposition 3.7. For any § > 0 and function V : § — [0, (Rpax + alog|A|) /(1 — 7)], let

V !
F((,0), 8) = —Blog (Ep [exp (-))D s (13)
Suppose that Assumptionholds, ie. |A| < oo. Define a function set
Rmax + 1 -A |
g .= {gEleg(s,a)E {O,OOfy)();’;H_ ,V(&a)éSxA}. (14)
Then we have
]E(s,a)ND [SUP f((sa (I), ﬁ)‘| = SupE(s,a)w'D _f((87 a)?.g(sv a)):| . (15)
820 9€g -

Proof is provided in Appendix [B.5] The RHS of only requires solving one optimization problem
instead of |D| problems on the LHS. This functional optimization method substantially increases
training efficiency with negligible robustness loss. We present the training time and performance
comparison in Section[4.3]and Appendix Given Proposition we introduce a new Bellman
operator by replacing the scalar S with a function and removing optimization. For any function g € G
and mapping Q : S X A — [0, (Rmax + alog|A])/(1 —)], let

T3, Q(s,a) :=E[r] +~- f((s,a),9(s,a))
=E[r] +~- {—g(&a) log (Ep.?,a, {exp (— V(s))]) — 9(57(1)5} ’ (16)

g(s,a)

where V(s) = Equr [Q(s,a) — a - logm(a | s)] . From Proposition[3.7] we have a direct conclusion
that || 7,7 Q — 7:;79*62”1,” = 0, where ¢g* = argsup,cg E(s,q)~D [f((s, a),g(s, a))] .

Generative Modeling for Nominal Distributions. In offline RL tasks, we assume the nominal
distributions P° are unknown, and no simulator is available to generate additional samples. Under
the KL-constrained uncertainty set, the dual optimization problem is non-linear and the empirical risk
computed from the offline dataset D suffers from the double-sampling issue, making it inapplicable in
our case. More detailed discussion is provided in Appendix To empirically apply operator 757,
in continuous space, we incorporate a VAE model to estimate the nominal distributions and generate
samples to construct empirical measures. To be specific, the VAE model learns from collected data
(s,a,s") € D and generate next state samples {5 }7,. We denote p) , as the empirical measures
of p ,. For any function h : § — R, we have E, 50 [h(s)] = £ 37" h(5}). The empirical
Bellman operator with functional optimization is defined as

T3y Q(s,a) == E[r] +7- f((s,0),9(s,0)), (17
e ——oa e, [on (1)) - "

Under review as a conference paper at ICLR 2026

3.3 DISTRIBUTIONALLY ROBUST SOFT ACTOR-CRITIC

Now we extend the action space to continuous and use neural networks to approximate the DR soft
value function and policy. We consider the problem in RMDP M, with subscripts in V and Q
functions omitted. To be specific, our algorithm includes the value network Vi, (s), the Q-network
Qo (s, a) and the stochastic policy 4(a | s), with 1, 0, ¢ as the parameters. 1) and @ are the target
network parameters to help stabilizing training (Mnih et al.|2015)). Let ¢ be the parameters of VAE
model. We also use a parametrized neural network G, to approximate the function set G.

The idea behind our DR-SAC algorithm is to alternate between empirical DR soft policy evaluation
with functional optimization and DR soft policy improvement. The loss of ()-network parameters in
our algorithm is

1
IBE0) = Erean |5 (@u(o:0) ~ Ti Quls,0)?. (19)
where _
g = argsup B ayep [(s,), 9(s,0))] 20)
Qegn

The loss functions of 1, ¢ and « are the same as SAC in[Haarnoja et al.| (2018a)) and the loss function
of ¢ is the standard VAE loss, with details in Appendix|A.2] To reduce the sensitivity on behavior
policy in dataset generation, we include V' -function as SAC-v1 algorithm (Haarnoja et al.,[2018al),
with detialed discussion in Section .3]and Appendix [C.3.3] We also build multiple Q-functions
Qy,, (i € [n]), train them independently, and use the minimum of them in updating the value critic
and actor function. This has been tested to outperform clipped @)-learning (n = 2) in offline RL tasks
(An et al.|[2021). We formally present the Distributionally Robust Soft Actor-Critic in Algorithm [T}

Algorithm 1 Distributionally Robust Soft Actor-Critic (DR-SAC)

Require: Offline dataset D = {(s;,a;,7;,5;) 1}, V-function network weights 1, Q-function
network weights 60;,7 € [n], policy network weights ¢, transition VAE network weights ¢,
weight 7 for moving average, function class G,,

1:) <, 0; < 0, fori € [n] > Initialize target network weights for soft update
2: for each gradient step do

3: Y- /\W@Q,JVAE(@) > Update transition VAE weights
4: Generate samples {5;}7, from VAE, form empirical measures p ,

5: Compute optimal function g* according to (20)

6: =P — Ay @d, Jv (1) > Update V -function weights
70 0 0 — AoV, JOR(6;) for i € [n] > Update Q-function weights
8: P — ¢ —)\,r@qy],,(qﬁ) > Update policy weights
9: aa—AVaJ(a) > Adjust temperature

10 Y 1Y+ (1 —7),0; < 70; + (1 — 7)0; fori € [n] > Update target network weights
11: end for
Ensure: ¢

4 EXPERIMENTS

The goal of our experiments is to demonstrate the robustness of DR-SAC in handling environmental
uncertainties in offline RL tasks. We evaluate the average episode rewards under different perturba-
tions, comparing with non-robust baselines and RFQI, the only offline DR-RL algorithm applicable to
continuous action spaces. To further highlight the practicality of our algorithm, we report the training
time to show that DR-SAC significantly improves the training efficiency of DR-RL algorithms.

4.1 SETTINGS

We implement SAC and DR-SAC based on the SAC-N (An et al.;,[2021)). To the best of our knowledge,
RFQI is the only distributionally robust offline RL algorithm applicable to continuous space. Besides
RFQI, we also compare DR-SAC with Fitted Q-Iteration (FQI), Deep Deterministic Policy Gradient
(DDPG, Lillicrap et al.|(2015)), and Conservative Q-Learning (CQL, Kumar et al. (2020)).

Under review as a conference paper at ICLR 2026

We consider Pendulum, Cartpole, LunarLander, Reacher and HalfCheetah environments in Gymna-
sium (Towers et al., [2024). For Cartpole, we consider the continuous action space version in Mehta
et al.| (2021). For LunarLander, we also set the action space to be continuous. All algorithms are
trained on the nominal environment and evaluated under different perturbations. In our experiments,
we consider perturbations including: environment parameters change, random noise on observed
state and random action taken by the actuator. More detailed settings are in Appendix [C.1]

4.2 PERFORMANCE ANALYSIS

-100

00 —— SAC 2504 2 SAC
—e— DR-SAC(Ours) —e— DR-SAC(Ours)

-200 —=— FQI 2004 —=— FQI

400 —»— RFQI —— RFQI

300 —»— DDPG e caQL

300
—400

200
01— sac

—e— DR-SAC(Ours)
-6001 —m— FQI

—— DDPG

0 20 30 -60 -40 -20

10 10 30 50 70
Percentage Change from Nominal Value Prob. of Picking Random Action Percentage Change from Nominal value

(a) Length Perturbation (b) Action Perturbation (c) Engine Perturbation
Pendulum Cartpole LunarLander
Zs0 —— SAC _a6 —— SAC 6600 —— SAC
—e— DR-SAC(Ours) —e— DR-SAC(Ours) —e— DR-SAC(Ours)

= FQI -48
—¥— RFQI
—»— CQL

—=— FQI
—¥— RFQI 6400
—— CQL
-125 6200
-15.0
6000
-175
-200 5800

-225

-6.2 5600

0.1 02 03 X 0.4 2 a 5 6 7 0 20 40 60 80
Standard Deviation of Observation Noise Joint Damping Value Percentage Change from Nominal value
(d) Observation Perturbation (e) Damping Perturbation (f) Back Damping Perturbation
Reacher Reacher HalfCheetah

Figure 1: Robustness performance in different environments under perturbations. The curves show the
average reward over 50 episodes, shaded by £0.5 standard deviation. In Pendulum, the environment
parameter length changes. In Cartpole, random actions are taken by the actuator. In LunarLander, the
environment parameters main_engine_power and side_engine_power change together. In Reacher, a
Gaussian noise is added to nominal states; and the environment parameter joint_damping changes. In
HalfCheetah, environment parameter back_damping changes.

This section reports selected experiment results. Additional experiments are provided in Appendix|[C.2}
In the Pendulum environment, we change the parameter length to assess algorithm robustness against
pendulum length changes. RFQI is omitted due to poor performance in the unperturbed environment.
In Figure a), DR-SAC performance outperforms SAC by 35% when the length changes by 20%.
In the Cartpole environment, the actuator is perturbed by taking random actions with different
probabilities. DR-SAC shows superior performance over the robust algorithm RFQI, especially when
the probability of random action is less than 50%. In the LunarLander environment, we change
the environment parameters main_engine_power and side_engine_power together to model engine
power disturbance. DR-SAC shows consistently robust performance compared to other algorithms.
In Figure c), when the perturbation percentage is —20%, DR-SAC has an average reward of around
240 while rewards of all other algorithms drop under 180. Moreover, DR-SAC achieves 9.8 times
higher reward than the SAC baseline when parameters change by —30%.

To demonstrate the robustness of DR-SAC in more complex environments, we also conduct experi-
ments in HalfCheetah and Reacher from MuJoCo (Todorov et al., 2012)). In the Reacher environment,
we introduce two types of perturbations: adding Gaussian noise to nominal states and modifying the
environment parameter joint_damping. In the observation perturbation test on Figure[I{d), DR-SAC
shows the best performance in all test cases. In Figure[I[e), DR-SAC outperforms SAC and has
similar robustness as RFQI. In the HalfCheetah environment, we only present the experiments of
SAC and DR-SAC due to the poor performance of FQI and RFQI. When the environment parameter

Under review as a conference paper at ICLR 2026

back_damping changes less than 50%, DR-SAC achieves a stable average reward of over 6300, while
the average reward of SAC keeps decreasing to less than 5950.

Discussion on FQI Failure. It is worth noting that FQI and RFQI do not work well in unperturbed
Pendulum and HalfCheetah environments. One possible reason is that offline RL algorithm perfor-
mance depends on the dataset differently. SAC works well when the dataset has a broad coverage
over the action space (Kumar et al.,[2019). Conversely, the FQI algorithm is implemented on Batch-
Constrained Deep Q-learning (BCQ, [Fujimoto et al.| (2019)), which restricts the agent to selecting
actions close to the behavior policy. This conflicts with the epsilon-greedy method in data generation,
as discussed in Appendix [C.I] One major goal of our experiments is to demonstrate that DR-SAC
exhibits better robustness over SAC under common environmental perturbations. Addressing the
sensitivity of RL algorithms to offline dataset distribution is out of the scope of this study.

4.3 ABLATION STUDIES

Training Efficiency of DR-SAC. Our DR-SAC algorithm is designed to balance efficiency and
accuracy. In Section we approximate the Bellman operator 75" with 7:;79 to improve the training
efficiency. To validate this approximation, we also train a robust algorithm using the accurate operator
75T Experimental results show that DR-SAC with functional optimization attains negligible loss in
robustness while requiring less than 2% training time. More details are provided in Appendix[C.3.1}

In Section d.2] RFQI shows comparable robustness to DR-SAC in some environments. However,
DR-SAC demonstrates notable improvement in the training efficiency. Table|l|shows that the training
time of RFQI is at most 23.2 times that of DR-SAC. Compared with each non-robust baseline, RFQI
requires no less than 11.3 times the training time of FQI, while DR-SAC training is at most 2.6 times
that of SAC. Additional experiments show that this efficiency improvement arises from optimization
efficiency. While the RFQI algorithm with functional approximation involves a similar step as (20),
it requires 1000 gradient descent (GD) steps in each update to find the optimal function, while
DR-SAC requires only 5 GD steps to achieve comparative performance. Experimental results in
Appendix [C.3.T|reveal that reducing the number of GD steps in RFQI leads to a severe performance
drop even in unperturbed environments, suggesting that the loss function structure in RFQI inherently
leads to slower convergence and demands more optimization steps.

Table 1: Training time in different environments (minute)

Env SAC DR-SAC FQI RFQI
Cartpole 2 4 7 93
LunarLander 16 36 17 238
Reacher 13 32 14 159

Robustness of VAE Model While the VAE models inevitably introduce estimation error when
constructing empirical measures of the transition distributions, we empirically demonstrate that
DR-SAC is largely insensitive to such modeling choices. Specifically, when the latent dimension of
the VAE model is varied within the tested range of 5 to 20 in Pendulum, DR-SAC maintains superior
robustness over the SAC baseline. Detailed experiment results are provided in Appendix [C.3.2]

Usage of V' -Network. In the DR-SAC algorithm, we include a V -network following the SAC-v1
design (Haarnoja et al.,[2018a) to improve the applicability across a wider range of offline datasets.
Although the V-network is removed in SAC-v2 (Haarnoja et al., 2018Db)), this version is indeed
on-policy, while our setting is off-policy. We observe empirically that SAC with a V-network is less
sensitive to the behavior policy used in dataset generation. Details are discussed in Appendix[C.3.3]

5 CONCLUSIONS

We propose DR-SAC, the first actor-critic based DR-RL algorithm for offline settings and continuous
action spaces. Our framework establishes distributionally robust soft policy iteration with convergence
guarantees, saves over 80.0% of training time compared to RFQI through functional optimization, and
resolves the double-sampling issue in estimating the nominal distributions via generative modeling.
Experiments across five environments show that DR-SAC attains up to 9.8 x higher reward than SAC
under perturbations, demonstrating both robustness and efficiency in practical offline RL tasks.

Under review as a conference paper at ICLR 2026

Ethics Statement. All authors of this submission have read and adhered to the ICLR Code of
Ethics.

Reproducibility Statement. We provide our code with detailed comments in the supplementary
materials. The detailed experiment settings, dataset processing steps and the devices used in our
experiments are provided in Appendix |C|to ensure reproducibility.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified g-ensemble. Advances in neural information processing
systems, 34:7436-7447, 2021.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26-38, 2017.

Leemon Baird et al. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the twelfth international conference on machine learning, pp. 30-37, 1995.

Jiayu Chen, Bhargav Ganguly, Yang Xu, Yongsheng Mei, Tian Lan, and Vaneet Aggarwal. Deep
generative models for offline policy learning: Tutorial, survey, and perspectives on future directions.
arXiv preprint arXiv:2402.13777, 2024a.

Yanjun Chen, Xinming Zhang, Xianghui Wang, Zhiqiang Xu, Xiaoyu Shen, and Wei Zhang. Corrected
soft actor critic for continuous control. arXiv preprint arXiv:2410.16739, 2024b.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic for
offline reinforcement learning. In International Conference on Machine Learning, pp. 3852—-3878.
PMLR, 2022.

Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards minimax optimality of model-based
robust reinforcement learning. arXiv preprint arXiv:2302.05372, 2023.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Esther Derman and Shie Mannor. Distributional robustness and regularization in reinforcement
learning. arXiv preprint arXiv:2003.02894, 2020.

Esther Derman, Daniel] Mankowitz, Timothy A Mann, and Shie Mannor. Soft-robust actor-critic
policy-gradient. arXiv preprint arXiv:1803.04848, 2018.

Tobias Enders, James Harrison, and Maximilian Schiffer. Risk-sensitive soft actor-critic for robust
deep reinforcement learning under distribution shifts. arXiv preprint arXiv:2402.09992, 2024.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6, 2005.

Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle Pineau, et al. An
introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11
(3-4):219-354, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1582-1591, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052-2062. PMLR, 2019.

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems,
Man, and Cybernetics, part C (applications and reviews), 42(6):1291-1307, 2012.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. Pmlr, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust opti-
mization. Available at Optimization Online, 1(2):9, 2013.

11

Under review as a conference paper at ICLR 2026

Garud N. Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257-280, 2005.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Arash Bahari Kordabad, Rafael Wisniewski, and Sebastien Gros. Safe reinforcement learning using
wasserstein distributionally robust mpc and chance constraint. IEEE Access, 10:130058-130067,
2022.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. Advances in neural information processing systems,
32,2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179-1191, 2020.

Navdeep Kumar, Esther Derman, Matthieu Geist, Kfir Y Levy, and Shie Mannor. Policy gradient
for rectangular robust markov decision processes. Advances in Neural Information Processing
Systems, 36:59477-59501, 2023.

Zhipeng Liang, Xiaoteng Ma, Jose Blanchet, Jiheng Zhang, and Zhengyuan Zhou. Single-trajectory
distributionally robust reinforcement learning, 2024. URL https://arxiv.org/abs/2301,
11721.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Zhishuai Liu and Pan Xu. Minimax optimal and computationally efficient algorithms for distribution-
ally robust offline reinforcement learning. arXiv preprint arXiv:2403.09621, 2024.

Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
Zhou. Distributionally robust g-learning. In International Conference on Machine Learning, pp.
13623-13643. PMLR, 2022.

Elita A Lobo, Mohammad Ghavamzadeh, and Marek Petrik. Soft-robust algorithms for batch
reinforcement learning. arXiv preprint arXiv:2011.14495, 2020.

Miao Lu, Han Zhong, Tong Zhang, and Jose Blanchet. Distributionally robust reinforcement learning
with interactive data collection: Fundamental hardness and near-optimal algorithm. arXiv preprint
arXiv:2404.03578, 2024.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:1711-1724, 2022.

Xiaoteng Ma, Zhipeng Liang, Jose Blanchet, Mingwen Liu, Li Xia, Jiheng Zhang, Qianchuan Zhao,
and Zhengyuan Zhou. Distributionally robust offline reinforcement learning with linear function
approximation, 2023. URL https://arxiv.org/abs/2209.06620!

Daniel J] Mankowitz, Nir Levine, Rae Jeong, Yuanyuan Shi, Jackie Kay, Abbas Abdolmaleki, Jost To-
bias Springenberg, Timothy Mann, Todd Hester, and Martin Riedmiller. Robust reinforcement
learning for continuous control with model misspecification. arXiv preprint arXiv:1906.07516,
2019.

Viraj Mehta, Biswajit Paria, Jeff Schneider, Stefano Ermon, and Willie Neiswanger. An experimental
design perspective on model-based reinforcement learning. arXiv preprint arXiv:2112.05244,
2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,

Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015.

12

https://arxiv.org/abs/2301.11721
https://arxiv.org/abs/2301.11721
https://arxiv.org/abs/2209.06620

Under review as a conference paper at ICLR 2026

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780-798, 2005.

Xinlei Pan, Daniel Seita, Yang Gao, and John Canny. Risk averse robust adversarial reinforcement
learning. In 2019 International Conference on Robotics and Automation (ICRA), pp. 8522-8528.
IEEE, 2019.

Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning with
a generative model. In International Conference on Artificial Intelligence and Statistics, pp.
9582-9602. PMLR, 2022.

Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust reinforcement
learning using offline data. In Advances in Neural Information Processing Systems, volume 35, pp.
32211-32224. Curran Associates, Inc., 2022.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial rein-
forcement learning. In International conference on machine learning, pp. 2817-2826. PMLR,
2017.

James Queeney and Mouhacine Benosman. Risk-averse model uncertainty for distributionally robust
safe reinforcement learning. Advances in Neural Information Processing Systems, 36:1659—-1680,
2023.

Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, and Ilija Bogunovic.
Distributionally robust model-based reinforcement learning with large state spaces. In International
Conference on Artificial Intelligence and Statistics, pp. 100—-108. PMLR, 2024.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. Proceedings of Robotics: Science and Systems VIII,
2012.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. Journal of
Machine Learning Research, 23(315):1-20, 2022. URL http://Jjmlr.org/papers/v23/
22-0017.htmll

Alexander Shapiro. Distributionally robust stochastic programming. SIAM Journal on Optimization,
27(4):2258-2275, 2017. doi: 10.1137/16M1058297.

Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning with
near-optimal sample complexity. Journal of Machine Learning Research, 25(200):1-91, 2024.

Rahul Singh, Qinsheng Zhang, and Yongxin Chen. Improving robustness via risk averse distributional
reinforcement learning. In Learning for Dynamics and Control, pp. 958-968. PMLR, 2020.

Elena Smirnova, Elvis Dohmatob, and Jérémie Mary. Distributionally robust reinforcement learning.
arXiv preprint arXiv:1902.08708, 2019.

Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Policy gradient for coherent
risk measures. Advances in neural information processing systems, 28, 2015.

Emanuel Todorov. General duality between optimal control and estimation. In 2008 47th IEEE
conference on decision and control, pp. 4286-4292. IEEE, 2008.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

13

http://jmlr.org/papers/v23/22-0017.html
http://jmlr.org/papers/v23/22-0017.html

Under review as a conference paper at ICLR 2026

Herke Van Hoof, Nutan Chen, Maximilian Karl, Patrick Van Der Smagt, and Jan Peters. Stable rein-
forcement learning with autoencoders for tactile and visual data. In 2016 IEEE/RSJ international
conference on intelligent robots and systems (IROS), pp. 3928-3934. IEEE, 2016.

Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. A finite sample complexity bound
for distributionally robust g-learning. In Proceedings of The 26th International Conference on
Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research,
pp- 3370-3398. PMLR, 2023.

Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. Sample complexity of variance-
reduced distributionally robust g-learning. Journal of Machine Learning Research, 25(341):1-77,
2024.

Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty. Advances
in Neural Information Processing Systems, 34:7193-7206, 2021.

Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning. In Interna-
tional conference on machine learning, pp. 23484-23526. PMLR, 2022.

Hua Wei, Deheng Ye, Zhao Liu, Hao Wu, Bo Yuan, Qiang Fu, Wei Yang, and Zhenhui Li. Boosting
offline reinforcement learning with residual generative modeling. arXiv preprint arXiv:2106.10411,
2021.

Peter Whittle. Risk-sensitive linear/quadratic/gaussian control. Advances in Applied Probability, 13
(4):764-777, 1981.

Wolfram Wiesemann, Daniel Kuhn, and Berc Rustem. Robust markov decision processes. Mathe-
matics of Operations Research, 38(1):153-183, 2013.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized g-learning for safe offline rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 8753-8760, 2022.

Huan Xu and Shie Mannor. Distributionally robust markov decision processes. Advances in Neural
Information Processing Systems, 23, 2010.

Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds for distribu-
tionally robust reinforcement learning. In Proceedings of The 26th International Conference on
Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research,
pp- 9728-9754. PMLR, 2023.

Pengqgian Yu and Huan Xu. Distributionally robust counterpart in markov decision processes. IEEE
Transactions on Automatic Control, 61(9):2538-2543, 2015.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui
Hsieh. Robust deep reinforcement learning against adversarial perturbations on state observations.
Advances in Neural Information Processing Systems, 33:21024-21037, 2020.

Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, PR Kumar, and Chao Tian. Natural actor-critic
for robust reinforcement learning with function approximation. Advances in neural information
processing systems, 36:97-133, 2023.

Zhengqing Zhou, Zhengyuan Zhou, Qinxun Bai, Linhai Qiu, Jose Blanchet, and Peter Glynn.
Finite-sample regret bound for distributionally robust offline tabular reinforcement learning. In
International Conference on Artificial Intelligence and Statistics, pp. 3331-3339. PMLR, 2021.

Zhengyuan Zhou, Michael Bloem, and Nicholas Bambos. Infinite time horizon maximum causal
entropy inverse reinforcement learning. IEEE Transactions on Automatic Control, 63(9):2787—
2802, 2018. doi: 10.1109/TAC.2017.2775960.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433—1438. Chicago, IL, USA, 2008.

14

Under review as a conference paper at ICLR 2026

Appendix
CONTENTS

[A Discussion]
IA.1 Necessity of Generative Model|,

IA.2 Algorithm Details|

[B_Proofs

|C Experiment Details|

IC.1 More Setting details|.,

|IC.2 Extra Expertment Results| 000,
|C.3 Ablation Study Details|

16
16
16

The Use of Large Language Models. The authors use Large Language Models (LLMs) to assist
with grammar checking and language polishing in this submission. LLMs do not play a significant

role in research ideation or writing to the extent that they could be regarded as a contributor.

15

Under review as a conference paper at ICLR 2026

A DISCUSSION

A.1 NECESSITY OF GENERATIVE MODEL

In this section, we discuss why other model-free methods are not applicable in KL divergence con-
strained uncertainty set and why a generative model (VAE) is necessary. Empirical risk minimization
(ERM) is a method that minimizes the empirical loss estimation using sampled data, which has been
extensively used in machine learning literature. However, it is not applicable in our case due to the
non-linearity of the dual formulation and the Bellman operator. In our algorithm, we want to apply

operator 75" . where g* = argsupycg E(s a)~p {f((& a),g(s, a))}. Denote the objective function
as

J(9) =B o £ ((5,0), 905,)

=E(s,a)~D [_9<57a) log <]Ep(5)’a [exp (;(VSY,(Z/)))D — g(s,a)é] : @D

To obtain a consistent estimator of (2I), we encounter the well-known double-sampling issue (Baird
et al., [1995) caused by the nonlinearity between inner and outer expectations. Specifically, to
approximate the inner expectation term Eo [exp(—V(s")/g(s, a))], the dataset D need to be split

a

into two disjoint parts, Doyter and Dipner. For each (s, a) € Dinner, We aggregate the corresponding
samples starting from (s, a) contained in Doyeer, denoted by D,), and the empirical risk of (1))
becomes

T 7L —g(s,a) lo, 71 ex _V(gl) — S,a
0 = 2 [g(’)lg<lD<s,a>| 2 p<g<s,a>>> g(’)éi' .

(s,a,8") €Dout (5,a,5')€ED (5, a)

However, in continuous state—action spaces, it is nearly impossible to revisit the exact same
state—action pair, leading to D(,) = 0.

Note that this issue does not come from the functional optimization technique we use, but from the
structure of the dual formulation of the Bellman equation under the KL-based uncertainty set. In
contrast, this problem does not occur in the TV-based dual formulation due to its linear structure
(Panaganti et al., [2022). Specifically, if we remove the functional approximation and use the exact
dual formulation of the DR soft Bellman operator to design an algorithm, the same double-sampling
issue occurs in finding the empirical risk of the following Bellman residual:

Lg =E(s,a)ep [Q(s,a) — T Q(s, a)]
=E(s,0)ep |Q(s,a) — E[r] — v -sup {—ﬂlog (Epg,a {exp <_V(S/)>}) - 56}]) @3)

>0 B

In other literature introducing distributionally robust algorithms under KL uncertainty set, this
difficulty is overcome by using a Monte-Carlo related method (Liu et al., {2022} Wang et al.| |2023)),
estimating nominal distributions from transition frequencies (Wang et al.,2024), or directly estimating
the expected value under nominal distributions (Liang et al.l [2024). None of these methods is
applicable to continuous space offline RL tasks.

A.2 ALGORITHM DETAILS

In this section, we present a detailed description of the DR-SAC algorithm. In our algorithm, we use
neural networks Vy,(s), Qa(s,a) and my(a | s) to approximate the value function, the Q-function
and the stochastic policy, respectively, with 1, 6, ¢ as the network parameters. We also utilize target
network V;(s) and Qg(s,a), where parameters 1) and ¢ are the exponential moving average of
respective network weights. Similar to SAC-v1 algorithm (Haarnoja et al., | 2018a), the loss function
of V-network is

Jv () =Esup % (Vw(s) —Eann, [Qp(s,a) — alogmy(a | S)])2 . (24)

16

Under review as a conference paper at ICLR 2026

As introduced in Section [3.3] in our algorithm, we modify the loss function of Q-network to

IBEO) = Blomon |5 (Qols.0) = T3 Qu(s,)°].

where

g* = argsupE(&a)GD |:.]7((57a)ag(83 Cl)):|
9€Gy,

_ —Vi(s)
= argsup E(s q)ep |—Slog | Ep |exp —5 —B5| .

gng

(25)

Optimal dual function g* can be found with backpropagation through 7. We also keep the assumption
of policy network in the standard SAC algorithm by reparameterizing the policy using a neural
network transformation a = f,(¢; s), where € is an input noise vector sampled from a spherical
Gaussian. The loss of policy is

Jn(6) = B, [log o (f(ei5) | 5) = Qals, Foles9))]. 26)

In the SAC-v2 algorithm (Haarnoja et al., 2018b)), the authors propose an automated entropy tempera-
ture adjustment method by using an approximate solution to a constrained optimization problem. The
loss of temperature is -

J(a) =Egmn, [—alogmy(a|s) — aH], 27

where # is the desired minimum expected entropy and is usually implemented as the dimensionality
of the action space.

In addition, we incorporate the VAE model into our algorithm. VAE is one of the most popular
methods to learn complex distributions and has shown superior performance in generating different
types of data. In the DR-SAC algorithm, we use VAE to learn the transition function P°(s’ | s, a) by
modeling the conditional distribution of next states. It assumes a standard normal prior over the latent
variable, p(z) = N(0, I'). The encoder maps (s, a, s") to an approximate posterior ¢(z | s, a, s’), and
the decoder reconstructs s’ from the latent sample 2z and input (s, a). The training loss is the evidence
lower bound (ELBO):

NAE(P) = Eqzsae) [II8" = &117] + Dw (a(2 | 5,a,8") | N(0, 1)), (28)

where 5’ are the reconstructed states from the decoder.

17

Under review as a conference paper at ICLR 2026

B PROOFS

B.1 PROOF OF PROPOSITION[3.3]

We first provide an established result in DRO to compute the worst-case expectation under perturbation
in a KL-divergence constrained uncertainty set.

Lemma B.1 (Hu & Hong| (2013), Theorem 1). Suppose G(X) has a finite moment generating
function in the neighborhood of zero. Then for any § > 0,

sup Ep[G(X)] = inf {ﬁlog <Ep0 [exp (G(X)>}) + 5(5} (29)
P:Dyu(P|| Py) <5 p=0 g
Proof of Proposition 3.3
7?@(8? a’) = E[T] + - inf {Es’Np(-\s,a) [Ea’Nﬂ'(-|s’)[Q(S/a CL/) - alogﬂ-(a/'sl)]] }
PEPs,a(9)
= [T] -7 sup {Es’Np(-\s,a) [_V(Sl)]}
pEPs,a(5)
=E[r] —v- ,ég% {ﬁlog (Espro(_ma) [exp (_VB(S,))]> + ﬁé} (Lemmal[B.T)

w15y oo ()] -

To apply Lemma [B.1} let P = p(-|s,a), Py = p°(:|s,a), and G(X) = G(s') = —V(s'). As
stated in Section [2.1] the rewards r = R(s,a) are bounded, and the discount factor v € [0, 1).
As a consequence of Assumption Q(s,a) and thus V(s’) are bounded. This implies that
G(s') = —=V(¢') has a finite moment generating function (MGF) under the nominal distribution

PO(-]s,a), ie., Egyopo(.|s,a) [e*G(s))] < oo, for A in a neighborhood of zero. This ensures that G(s')
has a finite MGF under P, as required by Lemma|[B.1] O

B.2 PROOF OF PROPOSITION [3.4]

Before providing the proof of Proposition [3.4] we present the optimality conditions of Lemma[B.1]

Lemma B.2 (Hu & Hong|(2013)), Proposition 2). Let 8* be an optimal solution of the optimization
problem in %et H = esssupy, p, G(X) and k = Px~.p,(G(X) = H). Suppose the assump-
tion in Lemma still holds, then 8* = 0 or G(X) has a finite moment generating function at 1/3*.
Moreover, B* = 0 if and only if H < 0o, k > 0 and log k + § > 0.

This lemma tells us the optimal solution is unique when $* = 0. This happens if and only if there is
a large enough probability mass on the finite essential supremum of X, under the distribution center
Py. We use this lemma to discuss either 5* = 0 or 5* > 0 in the following proof.

Proof of Proposition Similar to the standard convergence proof of policy evaluation, we want
to prove that the operator 7, is a y-contraction mapping. Suppose there are two mappings Q1 2 :
S x A — Randdefine V; = E,.[Qi(s,a)] — aH(n(s)), ¢ = 1, 2. For any state s € S, we have

Vi(s) = Va(s)| = [Eanr[Q1(s,a) — Q2(s,a)]| < [[Q1 — Q2||s0-
Thus, ||V — Vallee < [|Q1 — Q2]|o-
Next, for any 8 > 0 and (s, a) fixed, define function
V(s
Fg(V) = —ﬁlongg’a [exp (— (ﬂ))} — 3.

Let ||V} — Va|loo = d. Then for any s’ € S, Va(s') —d < Vi(s') < Va(s') + d. After exponential,
expectation, and logarithm operations, monotonicity is preserved. We have

—BlogEy . [eXp (_vgés/)ﬂ Cd< BlogEy [eXp (_ vlésf))]

< —PlogEy, [exp (—%é‘s/))] +d.

18

Under review as a conference paper at ICLR 2026

This gives us | F3 (V1) — Fg(V2)| < [|[V1 — Val|co-

Lastly, we reformulate DR soft Bellman operator as 7" Q(s,a) = E[r] + v - supgsq F(V). Let
be an optimal solution of supg>q Fjs(V;), i = 1, 2. From Lemma|B.2] we know S} is unique when

By = 01is optimal. And the optimal value is the essential infimum H; when 3; = 0. We want to
show |Fj: (V1) — Fgz (V)| is bounded in all cases of 3.

Case 1: 87 =85 = 0.
In this case, the optimal value is the essential infimum value for both V;. We have

Fgx (V1) — Fgx (Va)| = | essinf Vi(s') — essinf Va(s'
51 52 ’

’ 0 0
s NPs,a s NPs,a

The last inequality holds because monotonicity is preserved after taking the essential infimum.

Case 2: 57 =0, 85 > 0, WLOG.
In this case, we know from optimality that

Hy = essinf Vi(s') = Fp;(V1), Ha = gsint Va(s') < Fpy (Va).

Then we have
Hy — Fps (Vo) < Hy — Hy < [|[V1 — Va|o,

Fgz (Vo) — Hy < Fgz (Va) — Fy (V1) < [Vi = Vel
Thus, [Fp: (V1) — Fz (V2)| = [H1 — Fp; (V)] < [Vi = V2|
Case 3: 57 > 0, 85 > 0.
Suppose F: (V1) < Fgs (V2), WLOG. Then
|Fp; (Vi) — Fpz (Vo)| = Fps (Va) — Fp; (Vi) < Fps (Vo) — Fgs (Vi) < [|[Vi = Valocs

where the first inequality comes from the optimality of 7.

Thus for any (s, a) pair, we have we

|7:5ﬂQ1(5v a) - %ﬂQQ(Sa a)| =7 - |sup FBI (Vl) — sup FBQ (‘/2)

B1>0 B2>0
<y Q1 — Q2loo-

Since 74" is a y-contraction, using Banach Fixed-Point Theorem, the sequence {Q"} convergences
to the unique fixed-point 7;". In Equation (I0), we know this fixed point is the DR soft Q-value. []

B.3 PROOF OF PROPOSITION [3.3]

Proof. Given 7, € II, let Qﬁé and V/Cfé be the corresponding DR soft ()-function and value
function. Denote the function for determining the new policy as

Jo(x(-| 5)) = D (Tr'c)

1
exp (QQ%{& (s,-) —log Z™* (s))) . (30)
According to Equation (I2)), 7511 = argmin ey Jr, (7') and Jr, (741) < Jr, (75). Hence

Ea~ﬂk+1 [Oé IOg Thk4+1 (Cl | 5) - Qﬂ/\]/cl(; (57) +a log A (8)]
<Eanm [alogmeii(a | s) — QR (s,) + alog Z7(s)],

and after deleting Z™* (s) on both sides, the inequality is reformulated to

IELLN‘ﬂ'k+1 [Qﬁé (87) - O‘IOg 7Tk+1(a ‘ 8)] Z V/\T;lk(; (S)

19

Under review as a conference paper at ICLR 2026

Next, consider the DR soft Bellman equation:
M, (s,a) =E[r] + - , inf . {Esmp.. [Vt (s)]}

5,a€Ps,a

<E[r] + - o ei%f . {Esnp. .o [Ea'mompss [Qﬁs(s’,a’) — alogmiii(a’ | sN)]]}

T (@3, (5.0)

<QNi (s,a), Y(s,a) € S x A
€1y
where operator 7:57”““ is repeatedly applied to Qﬁé and its convergence is guaranteed by Proposi-

tion 3.4

B.4 PROOF OF THEOREM[3.6

Proof. Let mj, be the policy at iteration k. By Proposition ;ﬁs is non-decreasing with k.
Since function Q7; is bounded, sequence {Q’Tj\ﬁu} converges. Thus policy sequence {Wk} con-
vergences to some 7*. It remains to show that 7* is indeed optimal. According to Equation (12)),
T (%) < Jpx (), YV € I1. Using the same argument in proof of Proposition we can show that
QM (s,a) < Qﬂé (s,a) forany m € Il and (s,a) € S x A. Hence 7* is an optimal policy. O

B.5 PROOF OF PROPOSITION[3.7]

Before providing the proof, we first introduce two technical lemmas. Specifically, Lemma (B.4
establishes the interchange of minimization and integration property in decomposable spaces. This
property has wide applications in replacing point-wise optimality conditions by optimization in a
functional space (Shapirol 2017; Panaganti et al., 2022).

Lemma B.3 (Rockafellar & Wets|(2009), Exercise 14.29). Function f : Q x R™ — R (finite-valued)
is a normal integrand if f(w, x) is measurable in w for each x and continuous in x for each w.
Lemma B.4 (Rockafellar & Wets|(2009), Theorem 14.60, Exercise 14.61). Let f : Q@ x R — R
(finite-valued) be a normal integrand. Let M(S, A;R) be the space of all measurable functions
z: Q = R, My be the collection of all x € M(Q, A;R) with [_¢, f(w, z(w))p(dw) < oo. Then,
for any space with My C X C M(Q, A;R), we have

it [Sl =

T€X J,eq wen

(inf 7)) uta).

zeR

Proof of Proposition[3.7] First we want to prove 3* = argsupg, f((s, a), 3) is bounded in interval

1g = [0, %’W} for any (s,a) € S x A. Rewriting the optimization problem to its primal

form, it is clear that

f(s0),00 = i E[V(s)) >0

When (3 is greater than R«m%';l)%gw

7(5,a), B) = — flog (Epg,a [exp < L)D B

< — Blog <eXp <_Rnﬂax+alog|A|>) — B6

(1-7)8
:Rmax+alog|A| g5 <o,
1—v

, it can never be optimal since

Now we know that f((s,a),3) is a finite-valued function for each (s,a) € S x Aand 5 € Zg.
Also, it is (S x A)-measurable in (s,a) € S x A for each 3 € Zg and is continuous in /3 for each
(s,a) € S x A. From LemmaB.3] we know that f((s,a), 3) is a normal integrand.

20

Under review as a conference paper at ICLR 2026

Moreover, all functions in G is upper bounded and measurable so My C G C M((S x A), X(S x
A); R). Proposition[3.7]is a direct conclusion of Lemma|[B.4] O

21

Under review as a conference paper at ICLR 2026

C EXPERIMENT DETAILS

C.1 MORE SETTING DETAILS

To allow for comparability of results, all tools were evaluated on equal-cost hardware, a Ubuntu 24.04
LTS system with one Intel(R) Core(TM) i7-6850K CPU, one NVIDIA GTX 1080 Ti GPU with 11
GB memory, and 64 GB RAM. All experiments use 12 CPU cores and 1 GPU.

We implement FQI and RFQI algorithms from https://github.com/zaiyan-x/RFQI.
DDPG and CQL are implemented from the offline RL library d3rlpy (Seno & Imail, [2022)).

Hyperparameter Selection Across all environments, we use v = 0.99 for discount rate, 7 = 0.005
for both V" and @ critic soft-update, « = 0.12 as initial temperature, | B| = 256 for mini-batch size,
|D| = 10° for data buffer size. Actor, Q and V critic and VAE networks are multilayer perceptrons
(MLPs) with [256, 256] as hidden dimension. In the HalfCheetah and Reacher environments, we use
two hidden layers in the actor and critic networks. All other networks have one hidden layer.

There are multiple learning rates in our algorithm. Learning rate for VAE network A, is 5 x 1075 in
the Pendulum environment and 5 x 10~% in others. In Step 5 of Algorithm optimal function g* is
found via backpropagation with learning rate \,. All other learning rates Ay, Ag, Ay and), are the
same in each environment and represented by Ay.

Value of learning rates Ay, and A, number of Q-critics and latent dimensions in VAE are separately
tuned in each environment and presented in Table [2]

Table 2: Hyper-parameters selection in SAC and DR-SAC algorithm training.

Environment A Ay Q-Critic Number | latent dimensions
Pendulum 5x107% [5x107° 2 5
Cartpole 3x107* | 5x 1074 2 5

LunarLander | 5 x 107* | 5 x 1074 2 10

HalfCheetah | 3 x107% | 5 x 107° 5 32
Reacher 3x107* | 5x107° 5 10

Offline Dataset To ensure fairness in performance comparison, all models in each environment
are trained on the same dataset. Each datasets contains 10° samples, generated by first training a
behavior policy and applying the epsilon-greedy method. For most environments, the behavior policy
is trained by the Twin Delayed DDPG (TD3, |[Fujimoto et al.|(2018))) implemented from the d3rlpy
offline RL library (Seno & Imai, [2022)), while in the Cartpole environment we use SAC. To ensure a
fair robustness evaluation, all models are trained to achieve the same performance (500, the maximum
reward) under unperturbed conditions in Cartpole. Datasets generated by behavior policies trained by
TD3 (SAC) are denoted as TD3-datasets (SAC-datasets) throughout this work. Additional details
including the algorithm to train behavior policy, training steps and the random-action probability e
are presented in Table 3]

Table 3: Experiment details in dataset generation

Environment | Behavior Policy Algorithm | Training Steps | Random-Action Probability e

Pendulum TD3 5 x 10% 0.5

Cartpole SAC 5 x 10° 0.5
LunarLander TD3 3 x 10° 0.5
HalfCheetah TD3 108 0.3

Reacher TD3 106 0.3

C.2 EXTRA EXPERIMENT RESULTS

Pendulum 1In the Pendulum environment, we compare DR-SAC with SAC, FQI, and DDPG. All
models are trained on the TD3-dataset. The robust algorithm RFQI does not perform well in this

22

https://github.com/zaiyan-x/RFQI

Under review as a conference paper at ICLR 2026

test, even when there is no perturbation. To evaluate the robustness of trained models, we change
the environment parameters length, mass, and gravity, with nominal values as 1.0, 1.0 and 10.0
respectively. We grind search § € {0.1,0.2,---,1.0} and find model under § = 0.5 have the best
overall robustness.

DR-SAC shows consistent robustness improvement compared to all other algorithms. The perfor-
mance under length perturbation is presented in Figure[I[(a). In the mass perturbation test, DR-SAC
has the best performance in all cases. For example, the average reward is over 40% higher than
SAC when mass changes 120%. In Figure (b), there is a notable gap between DR-SAC and SAC
performance when gravity acceleration changes 40%.

-2001 —2001
~400
-400
-600

—600 +
—800

~8007 ~1000 4

SAC SAC

—_.

—e— DR-SAC(Ours) —e— DR-SAC(Ours)

-1000 1 —m— FQI -1200{ —m— FQI

—»— DDPG —»— DDPG

I I } ; | ~1400 +— : ; ; ; ;

0 40 80 120 160 0 10 20 30 40 50
Percentage Change from Nominal Value Percentage Change from Nominal Value

(a) Mass Perturbation: pendulum mass change. (b) Gravity Perturbation: gravity acceleration change.

Figure 2: Pendulum results on TD3-dataset. The curves show the average reward of 50 episodes,
shaded by +0.5 standard deviation.

Cartpole 1In the Cartpole environment, we compare the DR-SAC algorithm with non-robust algo-
rithms SAC, DDPG, FQI, and robust algorithm RFQI. All algorithms are trained on the SAC-dataset.
In our Cartpole environment, the force applied to the cart is continuous and determined by the
actuator’s action and parameter force_mag. The highest possible reward is 500 in each episode. To
ensure fair comparison, all models are trained to have average rewards of 500 when no perturbation
is added.

We test the robustness by introducing three changes to the environment: applying action perturbation,
adding observation noise, and changing parameter force_mag. In the action perturbation test, the
actuator takes random actions with different probabilities. In the observation perturbation test, noise
with zero mean and different standard deviations is added to the nominal states in each step. The
model parameter force_mag represents the unit force magnitude with the nominal value as 30.0. We
grid search 6 € {0.25,0.5,0.75,1.0} and find DR-SAC has the best performance when § = 0.75.
We also use p = 0.75 to train the RFQI model.

In the Cartpole environment, DR-SAC has the best overall performance under three types of pertur-
bation. The performance under action perturbation is presented in Figure [I(b), and DR-SAC has
substantially better performance compared to RFQI. In the observation noise perturbation test in
Figure[3(a), DR-SAC has performance improvement over 75% compared to non-robust algorithms
SAC and DDPG when the standard deviation of noise is 0.2 and 0.3.

LunarLander In the LunarLander environment, we compare DR-SAC with non-robust algorithms
SAC, CQL, FQI, and robust algorithm RFQI. All algorithms are trained on the TD3-dataset. In the
LunarLander environment, the lander has main and side engines, and the actuator can control the
throttle of the main engine. We change environment parameters engine_power (main and side engine
power) and wind_power (magnitude of linear wind) to validate algorithm robustness. We grind search
§ € {0.25,0.5,0.75,1.0} and find DR-SAC has the best performance when § = 0.25. We also use
p = 0.25 to train the RFQI model.

23

Under review as a conference paper at ICLR 2026

500 A —&— SAC 500
—e— DR-SAC(Ours)
—=— FQI

400 —— RFQI 400
——

DDPG

300 - 300 A

200 A 200 1

SAC
DR-SAC(Ours)
FQI

RFQI

DDPG

100 + 100 -

SERE

0.‘1 0:2 0.‘3 —éO —60 —AItO —I20 i)
Stndard Deviation of Observation Noise Percentage Change from Nominal value

(a) Observation Perturbation: gaussian noise added to (b) “Force_mag” Perturbation: model parameter
nominal states. force_mag change.

Figure 3: Cartpole results on SAC-dataset. The curves show the average reward of 50 episodes,
shaded by +0.5 standard deviation.

250 1

200 -

150 4

100 A
207 = sac
—e— DR-SAC(Ours)
—=— FQI

—— RFQI

—u— CQL

10

—50

12 14 16 18 20
Wind Power

Figure 4: LunarLander results on TD3-dataset. The curves show the average reward of 50 episodes,
shaded by +0.5 standard deviation.

Under all types of perturbations, DR-SAC shows superior robustness compared to other algorithms.
The performance under engine_power perturbation is presented in Figure[T[c). In Figure] DR-SAC
shows the highest average reward in most levels of wind perturbation. It is worth noting that the
robust algorithm RFQI does not have an acceptable performance in this test, even compared to its
non-robust counterpart FQI.

Reacher 1In the Reacher environment, we compare DR-SAC with non-robust algorithms SAC,
FQI, CQL, and robust algorithm RFQI. All algorithms are trained on the TD3-dataset. In Reacher
environment, the actuator controls a two-jointed robot arm to reach a target. We use joint_damping
to denote the damping factor of both joint0 and jointl, with default value as 1.0. We grid search
§ € {0.1, 0.2, 0.3} and find DR-SAC has the best performance when 6 = 0.2. We also use p = 0.2
to train the RFQI model.

To test the robustness of all algorithms, we compare their performance after adding observation
noise and changing parameters joint_damping. In the observation perturbation test, we add zero-
mean Gaussian noise to the nominal state in dimensions 4 — 9. The first 4 dimensions in state are
trigonometric function values and are kept unperturbed. Performance under both perturbations is
presented in Figure|I| (d) and (e).

HalfCheetah 1In the HalfCheetah environment, we compare DR-SAC with SAC baseline only due
to the unsatisfactory performance of FQI and RFQI. All algorithms are trained on the TD3-dataset.

24

Under review as a conference paper at ICLR 2026

In the HalfCheetah environment, the actuator controls a cat-like robot consisting of 9 body parts
and 8 joints to run. We use front_stiff and front_damping to denote the stiffness and damping
factor of joint fthigh, fshin, and ffoot. Also, back_stiff and back_damping can be denoted in a
similar way. The default value of these parameters can be found through the environmental assets
of Gymnasium MuJoCo in https://github.com/Farama-Foundation/Gymnasium/
blob/main/gymnasium/envs/mujoco/assets/half_ cheetah.xml. We grid search
9 € {0.1, 0.2, 0.3} and find DR-SAC has the best performance when ¢ = 0.2.

Performance of back_damping test is presented in Figure[T(f). Combining it with Figure[5] we can see
DR-SAC has notable robustness improvement across all perturbation tests. For example, in front_stiff
perturbation test, DR-SAC achieves an improvement as much as 10% when the change is 80%.

6600 —&— SAC 6600 4 —&— SAC
—e— DR-SAC(Ours) —e— DR-SAC(Ours)
6400
6400 +
6200
6000 4 6200 +
5800 6000 4
5600
5800 +
5400
5200 1 T T T T T T 56001 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Percentage Change from Nominal value Percentage Change from Nominal value
(a) Front Stiffness Perturbation (b) Front Damping Perturbation

Figure 5: HalfCheetah results on TD3-dataset. The curves show the average reward of 50 episodes,
shaded by +0.5 standard deviation.

C.3 ABLATION STUDY DETAILS
C.3.1 TRAINING EFFICIENCY OF DR-SAC

In this section, we want to show that DR-SAC with functional optimization finds a good balance
between efficiency and accuracy. We compare training time and robustness of Algorithm[I} DR-SAC
without functional optimization, and robust algorithm RFQI, to show our DR-SAC algorithm has the
best overall performance.

Balance in Functional Approximation We first introduce DR-SAC algorithm without functional
optimization. Most steps are the same as Algorithm [I] instead of following modifications. Step 5 in
Algorithm [T]is removed. Q-network loss is replaced by

5 2
Jngacc = E(s,0)~D [QﬂM(S, a) — 7:;"'@?/15 (s, Cl)]) (32)

where 7~:{“ is the empirical version of 75" by replacing p;{a with ﬁ;a We call this modified algorithm
DR-SAC-Accurate and call Algorithm[I] DR-SAC-Functional in this section.

We train SAC, DR-SAC-Functional, and DR-SAC-Accurate algorithms in Pendulum environment.
The optimization problem in Equation (I0) is a problem over scalar 3 > 0 and solved via Scipy for
each (s, a) pair. Table E] shows the training steps and time for three algorithms. We see training
time of DR-SAC-Accurate is over 150 times longer than standard SAC and over 50 times longer than
DR-SAC-Functional. Considering Pendulum environment is relatively simple, DR-SAC-Accurate
algorithm is hard to utilize in large-scale problems.

Moreover, we test the robustness of three algorithms by comparing their average reward under
different perturbations. To be specific, we change Pendulum environment parameters: length, mass,
and gravity. DR-SAC-Functional and DR-SAC-Accurate are trained with § = 0.5. Figure[6]shows that

25

https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/mujoco/assets/half_cheetah.xml
https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/mujoco/assets/half_cheetah.xml

Under review as a conference paper at ICLR 2026

Table 4: Training steps and time for three algorithms in Pendulum

Algorithm Training Steps | Training Time (Minute)
SAC 10k 1.7
DR-SAC-Functional 10k 4.7
DR-SAC-Accurate 8k 260

DR-SAC-Functional achieves comparable and even better performance under small-scale perturbation.
For example, DR-SAC-Functional and DR-SAC-Accurate have almost the same performance under
gravity perturbation in all test cases and mass perturbation test when change is less than 120%. In
length perturbation test, DR-SAC-Functional has better performance when the change is less than
30%.

-100 -100

-200 -200

-300
-300

—400
-400
=500
~500
-600
—&— SAC —&— SAC -600 { —&— SAC

1000 { ~®~ DR-SAC-Functional ~7001 _e— DR-SAC-Functional —e— DR-SAC-Functional
4~ DR-SAC-Accurate —4— DR-SAC-Accurate _7004 —— DR-SAC-Accurate

-800

0 20 30 40 50

u N o 40 80 120 160 o 10 20 30 40
Percentage Change from Nominal Value

Percentage Change from Nominal Value Percentage Change from Nominal Value

(a) Gravity Factor Perturbation. (b) Mass Factor Perturbation. (c) Length Factor Perturbation.

Figure 6: Pendulum results on TD3-dataset. Curves show average reward of 50 episodes, shaded by
40.5 standard deviation. Algorithms are SAC, DR-SAC with and without functional approximation.

Efficiency Comparison with RFQI In Section[4.2} existing DR-RL algorithm RFQI also shows
comparable performance under some perturbations. In this paragraph, we want to show that DR-SAC
requires much less training time than RFQI, improving its applicability to larges scale problems. Table
|I| lists the training time of SAC, DR-SAC, FQI, and RFQI algorithms in three testing environments.
DR-SAC is demonstrated to be well-trained in at most 20% time required by RFQI. Compared with
each non-robust baseline, the training time of DR-SAC is at most 360% of SAC, while RFQI requires
1000 — 1300% more training time than FQI. In Figure 7, we provide a plot of performance changes
against the training time in the Reacher environment, where RFQI is shown to be under-trained when
the curve of DR-SAC converges.

—4

-84

104 —— SAC
—— DR-SAC(Ours)

FQI

12 —— RFQI
0 2 4 6 8 10

Training Time (1e3 second)

Figure 7: Average Reward of 20 Episodes over Training Time in Reacher Environment.

Moreover, this efficiency improvement does not solely arise from the functional approximation step,
but also from the inherent optimization efficiency in the loss function structure. The RFQI algorithm
considers the RMDP framework with uncertainty sets defined by the TV distance and is empirically

26

Under review as a conference paper at ICLR 2026

built on the BCQ algorithm. In RFQIL, there exists a step similar to (20) to find the optimal functional
under empirical measurement. Experimental results show that the efficiency gap arises from the
number of GD steps in solving this optimization problem. RFQI sets the default GD steps as 1000
while DR-SAC achieves comparable robustness performance with only 5 steps. To further investigate,
we vary the GD steps in RFQI to 5, 10 and 100 in the LunarLander environment and report the model
performance in the unperturbed environment. As shown in Table[5] performance drops sharply when
RFQI uses fewer GD steps, indicating that the loss function structure in RFQI inherently leads to
slower convergence and requires more optimization steps. In our framework, the choice of actor-critic
based non-robust baseline, KL divergence induced uncertainty set and generative modeling in nominal
distribution estimation together yields a more optimization-friendly formulation, contributing to our
method’s practical efficiency.

Table 5: GD steps, training time and performance in LunarLander

Algorithm DR-SAC | RFQI | RFQI | RFQI | RFQI (Used)
GD Steps 5 5 10 100 1000
Training Time (min) 36 12 21 139 238
Performance 240.0 175.9 | 1819 | 1929 201.2

C.3.2 ROBUSTNESS OF VAE MODEL

A consistent challenge in DR-RL algorithm design is that unknown nominal distributions p? , often
appear in the loss function. In Section[3.2]and Appendix[A.1] we review methods used in other model-
free DR-RL algorithms and motivate the necessity of generative models in our setting. Although
generative models inevitable introduce additional estimation error when constructing empirical
measures p’g}a, our ablation studies demonstrate that DR-SAC is largely insensitive to the VAE
modeling, therefore improving its applicability. In the Pendulum environment, where the state and
action space dimensions are 3 and 1 respectively, we train DR-SAC with VAEs of latent dimensions
1, 5,10, 20, 50 and evaluate performance under perturbed pendulum mass. As shown in Figure
DR-SAC maintains superior robustness over the SAC baseline as long as the latent dimension lies
within a reasonable range (between 5 and 20 in our experiments).

—100 A

=200 1

—300 1

~400 4

SAC

DR-SAC(d=5, ours)
DR-SAC(d=1)
DR-SAC(d=10)
DR-SAC(d=20)
DR-SAC(d=50)

=500 1

—600 -

SEARREL:

0 60 80 100
Percentage Change from Nominal Value

Figure 8: Pendulum results on TD3-dataset with mass perturbation and different VAE latent dimen-
sions. The curves show the average reward of 50 episodes, shaded by £0.5 standard deviation.

C.3.3 USAGE OF V-NETWORK

In this section, we demonstrate that keeping the V-network in the SAC algorithm reduces the
sensitivity on dataset distribution. As introduced in Appendix offline datasets in this work are
generated by first training a behavior policy and applying the epsilon-greedy method to collect data.
Experimental results shows that SAC without the V' -network exhibits unstable performance when the
behavior policy differs across datasets.

27

Under review as a conference paper at ICLR 2026

Our experiments are conducted in the Pendulum environment. We generate two datasets with
behavior policy trained by an online version of SAC and TD3, denoted as SAC-dataset and TD3-
dataset, respectively. Figure D] presents the average reward of 20 episodes against training steps in
four scenarios: SAC-dataset vs. TD3-dataset, SAC algorithm with vs. without V' -network. Removing
the V-network shows minor influence on offline SAC learning using SAC-dataset. However, for
TD3-dataset, SAC with V -network achieves a stable average reward around —150 quickly, but the
average reward of SAC without V-network fluctuates intensely and never exceeds —200. This
validates that SAC with a V-network is less sensitive to behavior policy and dataset distribution.

NV W

—200 -

-400

—600 -

—800 -

—1000 4

—12007 —— SAC-w/V
—1400 1 — SAC-W/O \Y
TD3-w/ V
10007 7 —— TD3-w/oV
(I] lb 2‘0 3‘0 4‘0 Sb 6‘0 7‘0 8‘0

Training Step (x100)

Figure 9: Average Reward of 20 Episodes over Training Step in Pendulum Environment.

28

	Introduction
	Related Works

	Formulation
	Notation and Basics of Soft Actor-Critic
	Robust Markov Decision Process

	Algorithm: Distributionally Robust Soft Actor-Critic
	Distributionally Robust Soft Policy Iteration
	Solving Dual Optimization using Generative Model
	Distributionally Robust Soft Actor-Critic

	Experiments
	Settings
	Performance Analysis
	Ablation Studies

	Conclusions
	Discussion
	Necessity of Generative Model
	Algorithm Details

	Proofs
	Proof of Proposition 3.3
	Proof of Proposition 3.4
	Proof of Proposition 3.5
	Proof of Theorem 3.6
	Proof of Proposition 3.7

	Experiment Details
	More Setting details
	Extra Experiment Results
	Ablation Study Details

