
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DR-SAC: DISTRIBUTIONALLY ROBUST SOFT ACTOR-
CRITIC FOR REINFORCEMENT LEARNING UNDER UN-
CERTAINTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (RL) has achieved remarkable success, yet its deploy-
ment in real-world scenarios is often limited by vulnerability to environmental
uncertainties. Distributionally robust RL (DR-RL) algorithms have been pro-
posed to resolve this challenge, but existing approaches are largely restricted to
value-based methods in tabular settings. In this work, we introduce Distribu-
tionally Robust Soft Actor-Critic (DR-SAC), the first actor–critic based DR-RL
algorithm for offline learning in continuous action spaces. DR-SAC maximizes the
entropy-regularized rewards against the worst possible transition models within an
KL-divergence constrained uncertainty set. We derive the distributionally robust
version of the soft policy iteration with a convergence guarantee and incorporate a
generative modeling approach to estimate the unknown nominal transition models.
Experiment results on five continuous RL tasks demonstrate our algorithm achieves
up to 9.8× higher average reward than the SAC baseline under common pertur-
bations. Additionally, DR-SAC significantly improves computing efficiency and
applicability to large-scale problems compared with existing DR-RL algorithms.

1 INTRODUCTION

The field of deep reinforcement learning has witnessed remarkable progress, enabling agents to
learn complex behaviors in various domains, from game playing to robotic control (Arulkumaran
et al., 2017; Francois-Lavet et al., 2018; Chen et al., 2024b). Many deep RL algorithms have
demonstrated notable performance without training on real-world systems, by using a simulator or
pre-collected data, making them attractive for practical applications. Among them, Soft Actor-Critic
(SAC, Haarnoja et al. (2018a;b)) is a principled approach that adopts an entropy regularized learning
objective, commonly known as the soft value function. This maximum entropy approach is founded
on theoretical principles (Ziebart, 2010) and has been applied to various contexts, including stochastic
control (Todorov, 2008; Rawlik et al., 2012) and inverse reinforcement learning (Ziebart et al., 2008;
Zhou et al., 2018).

However, a persistent challenge limiting the deployment of deep RL in real-world systems is the
inherent sensitivity of learned policies to uncertainties in the environment (Whittle, 1981; Enders
et al., 2024). Agents trained in one environment often exhibit significant performance degradation
when deployed in a slightly different environment. This model mismatches often stem from uncertain
transition and reward functions, observation and actuator errors, model parameter variations, or even
adversarial perturbations.

Distributionally robust RL addresses this challenge by optimizing decision-making in the worst-case
scenario. Specifically, instead of working on a single Markov Decision Process (MDP), DR-RL
considers a Robust Markov Decision Process (RMDP) framework, which includes a set of MDPs
defined by an uncertainty set of distributions around the nominal one. Although both value-based
(Liu et al., 2022; Lu et al., 2024) and policy-gradient (Wang & Zou, 2022; Kumar et al., 2023)
DR-RL algorithms have been proposed, most work focus on the performance guarantees and sample
complexity in the tabular setting and cannot be deployed in continuous environments, with the only
exception being Robust Fitted Q-Iteration (RFQI, Panaganti et al. (2022)). However, fundamental
research gaps remain: 1) RFQI only considers uncertainty sets defined by the Total Variation (TV)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

distance, which is analytically convenient due to the piece-wise linear dual formulation but cannot
be extended to other divergences; and 2) its non-robust baseline, Fitted Q-Iteration (FQI, Ernst et al.
(2005)), is value-based and suffers from critical limitations, including deterministic learned policies,
low applicability to high-dimensional action spaces and high sensitivity to the learned state-action
function (Degris et al., 2012). In contrast, actor-critic based algorithms combine low-variance return
estimation with scalable policy optimization, making them preferred in benchmark tasks and practical
applications (Konda & Tsitsiklis, 1999; Grondman et al., 2012). However, no distributionally robust
counterpart has been developed. This gap motivates our development of Distributionally Robust
Soft Actor-Critic (DR-SAC), the first actor–critic based DR-RL algorithm for offline learning in
continuous action spaces.

In this work, we assume access only to a dataset collected in the training environment and the
transition distributions of the deployment environment lie within an uncertainty set, which is defined
as a Kullback-Leibler (KL) divergence ball centered around the nominal one. The goal is to learn
a policy that maximizes the soft value function under the worst possible distributions. The main
contributions of this work are:

• We formulate the maximum entropy learning framework with uncertain transition distributions
lying in KL-divergence constrained balls. Within this framework, we derive the distributionally
robust soft policy iteration with convergence guarantees and develop the distributionally robust
counterpart of SAC, one of the most widely used offline RL benchmark algorithms.

• We exploit the interchange property to reformulate the optimization problems over scalars into
functional optimization, resulting in policy iteration that is independent of state–action space
dimensionality. This reformulation enables application to continuous action space and saves over
80.0% training time compared to the existing DR-RL algorithm RFQI.

• We incorporate generative models to estimate unknown nominal distributions and construct empiri-
cal measures with minor computation and memory increase. This addresses the double-sampling
issue caused by the non-linear KL-divergence dual formulation and enables distributionally robust
soft policy learning in offline and continuous-space tasks. Our proposed algorithm, DR-SAC, is
validated on five offline RL environments with extensive perturbations and achieves up to 9.8×
higher average reward than the SAC baseline.

1.1 RELATED WORKS

Robust RL. The RMDP and Robust Dynamic Programming method were first introduced in
Iyengar (2005); Nilim & El Ghaoui (2005) and have been widely studied in Xu & Mannor (2010);
Wiesemann et al. (2013); Yu & Xu (2015) under planning settings. Many works consider robust RL
algorithms from different aspects, such as soft-robustness (Derman et al., 2018; Lobo et al., 2020),
risk sensitivity (Tamar et al., 2015; Pan et al., 2019; Singh et al., 2020; Queeney & Benosman, 2023),
and adversarial training (Pinto et al., 2017; Zhang et al., 2020; Cheng et al., 2022). In recent years,
many distributionally robust RL algorithms have been proposed with provable guarantees in the
tabular setting, including algorithms based on Q-learning (Wang et al., 2023; 2024; Liang et al.,
2024) and value iteration (Zhou et al., 2021; Panaganti & Kalathil, 2022; Xu et al., 2023; Ma et al.,
2023; Liu & Xu, 2024). However, these algorithms are not applicable to continuous action space
environments.

Model-Free Algorithms for Distributionally Robust RL. In the DR-RL problem, the nominal
distributions usually appear in the optimization problem but are unknown in reality. To overcome
this difficulty, some model-free algorithms (Liu et al., 2022; Zhou et al., 2023; Ramesh et al., 2024)
assume access to a simulator that generates i.i.d samples from the nominal environment, which does
not satisfy the offline requirement. Some algorithms (Derman & Mannor, 2020; Clavier et al., 2023;
Shi & Chi, 2024) compute empirical frequencies of state transitions in the offline dataset, which is
not applicable to the continuous space task. Lastly, Empirical Risk Minimization (ERM) method has
also been used to estimate the loss function in a special structure (Mankowitz et al., 2019; Wang &
Zou, 2021; Kordabad et al., 2022) but is not widely applicable.

VAE in Offline RL. Variational Autoencoders (VAEs) have wide applications in non-robust offline
learning algorithms. A major use of VAE is to estimate the behavior policy from the offline dataset,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and add policy constraints or apply pessimistic value (Fujimoto et al., 2019; Wei et al., 2021; Xu
et al., 2022; Lyu et al., 2022). See Chen et al. (2024a) for a more detailed discussion. Using VAE
to reconstruct states has also been found in Van Hoof et al. (2016). To the best of our knowledge,
we are the first to incorporate VAE models in a DR-RL algorithm, to estimate nominal transition
distributions and generate samples without a simulator.

Note that although Smirnova et al. (2019) proposed a close name algorithm, their settings are
completely different from ours and most DR-RL literature. The authors assume estimation error in
the evaluation step and use KL divergence to limit the behavior policy, with all analysis on a single
MDP rather than an RMDP.

2 FORMULATION

2.1 NOTATION AND BASICS OF SOFT ACTOR-CRITIC

A standard framework for reinforcement learning is the discounted Markov Decision Process (MDP),
formally defined as a tuple M = (S,A, R, P, γ), where S and A denote the state and action
spaces, respectively, both continuous in this work. The random reward function is denoted by
R : S × A 7→ P([0, Rmax]), where P([0, Rmax]) is the set of random variables supported on
[0, Rmax]. The transition distribution is denoted by P : S × A 7→ ∆(S), where ∆(S) is the set of
probability function on set S and γ ∈ [0, 1) is the discount factor. We denote r = R(s, a) as the
random reward and s′ as the next state reached following the transition distribution ps,a = P (· | s, a).
A policy π : S 7→ ∆(A) represents the conditional probability of actions taken. We consider a
stochastic stationary policy class, denoted by Π. The entropy of a stochastic policy π at state s is
defined as H(π(s)) = E [− log π(a|s)], measuring the randomness of action. The set of integers
from 1 to n is denoted as [n].

In maximum entropy RL tasks, to encourage exploration, the value function includes the cumulative
discounted sum of reward and entropy of the stochastic policy π. More precisely, given an MDPM,
the value function with entropy (soft value function) under policy π is

V πM(s) = E

[∞∑
t=1

γt−1
(
rt + α · H

(
π(st)

)) ∣∣∣∣∣π, s1 = s

]
. (1)

The temperature α ≥ 0 determines the relative importance of policy stochasticity compared to reward.
The optimal value and optimal policy are defined as V ⋆M = maxπ∈Π V

π
M and π⋆M = argmaxπ∈Π V

π
M.

Similarly, the soft state-action value function (soft Q-function) under policy π can be defined as

QπM(s, a) = E

[
r1 +

∞∑
t=2

γt−1
(
rt + α · H

(
π(st)

)) ∣∣∣∣∣π, s1 = s, a1 = a

]
. (2)

For any mapping Q : S ×A → R, Haarnoja et al. (2018a) defined soft Bellman operator as

T πQ(s, a) = E[r] + γ · Eps,a,π [Q (s′, a′)− α log π (a′ | s′)] . (3)

Soft Actor-Critic (SAC) algorithm updates the policy through soft policy iteration with guaranteed
convergence in the tabular case. In each iteration, T π will be applied to the estimation of soft
Q-function under the current policy π, and the policy is updated by minimizing the KL divergence
between the improved policy distribution and the exponential of the soft Q-function:

πk+1 = argmin
π∈Π

DKL

(
π(· | s)

∥∥∥∥ exp(1

α
Qπk

M(s, ·)
) /

Z(s)

)
, k = 0, 1, · · · (4)

whereDKL(P ∥ Q) = EP
[
log

(
P (x)
Q(x)

)]
denotes the KL divergence and the function Z(·) normalizes

the distribution of exp
(
1
αQ

πk

M(s, ·)
)
.

2.2 ROBUST MARKOV DECISION PROCESS

In real-world RL tasks, the transition distribution P and reward function R in the deployment
environment may be different from the environment in which the model is trained or the offline

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

dataset is collected. The potential environmental shift motivates us to study the Robust Markov
Decision Process (RMDP) and learn a policy more robust to such perturbation. Unlike standard MDPs,
the RMDP formulation considers models in an uncertainty set. Since the analysis and algorithm
design will be similar to reward function perturbation, we assume the reward function R is unchanged
and consider uncertain transition distributions only.

The RMDP framework is denoted asMδ = (S,A, R,P(δ), γ). We consider the transition distribu-
tion perturbed within a KL-divergence ball. Specifically, let P0 = {p0s,a}(s,a)∈S×A be the nominal
transition distributions. For each state-action pair (s, a) ∈ S ×A, given δ > 0, we define the KL ball
centered at p0s,a as

Ps,a(δ) :=
{
ps,a ∈ ∆(S) : DKL(ps,a∥p0s,a) ≤ δ

}
. (5)

The ambiguity set P(δ) is the Cartesian product of Ps,a(δ) for all pairs (s, a) ∈ S × A, which
belongs to the (s, a)-rectangular set in Wiesemann et al. (2013).

In the RMDP framework, the goal is to optimize the worst-case objective value under any model in
the ambiguity set. GivenMδ, similar to (1), the distributionally robust (DR) soft value function is
defined as

V πMδ
(s) = inf

p∈P(δ)
Ep

[∞∑
t=1

γt−1
(
rt + α · H

(
π(st)

)) ∣∣∣∣∣π, s1 = s

]
, ∀s ∈ S (6)

Similarly, the distributionally robust soft Q-function is given by

QπMδ
(s, a) = inf

p∈P(δ)
Ep

[
r1 +

∞∑
t=2

γt−1
(
rt + α · H

(
π(st)

)) ∣∣∣∣∣π, s1 = s, a1 = a

]
, ∀(s, a) ∈ (S,A)

(7)
The DR optimal value and DR optimal policy are defined accordingly as:

V ⋆Mδ
(s) = max

π∈Π
V πMδ

(s) and π⋆Mδ
(· | s) = argmax

π∈Π
V πMδ

(s), ∀s ∈ S. (8)

3 ALGORITHM: DISTRIBUTIONALLY ROBUST SOFT ACTOR-CRITIC

In this section, we present the development of the Distributionally Robust Soft Actor-Critic algorithm.
We first derive the distributionally robust soft policy iteration and establish its convergence to the
optimal policy. To improve computing efficiency, we develop a scalable implementation based
on functional optimization. Lastly, to handle the challenge of unknown nominal distributions, we
incorporate a VAE model to construct the empirical transition measures.

Assumption 3.1. To ensure that the policy entropyH(π(s)) = Ea∼π(·|s)[− log π(a|s)] is bounded,
we assume |A| <∞.

Remark 3.2. Assumption 3.1 is inherited from the non-robust baseline SAC (Haarnoja et al., 2018a),
which establishes theoretical guarantees in the tabular setting while being empirically used as a
benchmark in continuous tasks. Our work extends the performance properties of SAC to the DR-RL
framework. In Section 3.3, we design a practical algorithm in continuous action spaces.

3.1 DISTRIBUTIONALLY ROBUST SOFT POLICY ITERATION

We begin with providing the DR soft policy iteration, which iterates between DR soft policy evaluation
and DR soft policy improvement. We also show that the DR soft policy iteration is guaranteed to
converge to the DR optimal policy.

In the DR soft policy evaluation step, the DR soft Q-function is estimated by iteratively applying
the distributionally robust version of the Bellman operator, considering the worst possible transition
distribution in the uncertainty set. For a fixed policy π and any bounded mapping Q : S ×A → R,
the distributionally robust soft Bellman operator is defined as:

T πδ Q(s, a) := E[r] + γ · inf
ps,a∈Ps,a(δ)

{
Eps,a,π [Q(s′, a′)− α · log π(a′ | s′)]

}
. (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Following the results in Iyengar (2005); Xu & Mannor (2010), the DR soft Q-function can be com-
puted via distributionally robust dynamic programming, and QπMδ

is a fixed point of T πδ . However,
Equation (9) is generally intractable because it requires solving an infinite-dimensional optimization
problem. To address this issue, we use the strong duality result on worst-case expectations over a
KL-divergence ball to derive the dual form of Equation (9).
Proposition 3.3 (Dual Formulation of the Distributionally Robust Soft Bellman Operator). Suppose
Q(s, a) is bounded, the distributionally robust soft Bellman operator in (9) can be reformulated into:

T πδ Q(s, a) = E[r] + γ · sup
β≥0

{
−β log

(
Ep0s,a

[
exp

(
−V (s′)

β

)])
− βδ

}
, (10)

where
V (s) = Ea∼π [Q(s, a)− α · log π(a | s)] . (11)

Derivation is provided in Appendix B.1. The RHS of equation (10) only depends on the nominal
transition distribution P0

s,a, instead of an infinite number of distributions in the uncertainty set P(δ).
Also, the optimization problem on the RHS is over the scalar β, instead of an infinite-dimensional
distribution. With the tractable dual formation in Proposition 3.3, DR soft Q-value under any policy
π can be computed by iteratively applying the DR soft Bellman operator T πδ .
Proposition 3.4 (Distributionally Robust Soft Policy Evaluation). For any policy π ∈ Π fixed,
starting from any bounded mapping Q0 : S × A → R, define a sequence {Qk} by iteratively
applying distributionally robust soft Bellman operator: Qk+1 = T πδ Qk. This sequence will converge
to the DR soft Q-value of policy π as k →∞.

The main part of the proof shows that the operator T πδ is a γ-contraction mapping, with details in
Appendix B.2. Next, the distributionally robust soft policy improvement step is similar to Equation
(4), but replacing QM with DR soft Q-value QMδ

. The new policy in each update is defined as

πk+1 = argmin
π∈Π

DKL

(
π(· | s)

∥∥∥∥ exp(1

α
Qπk

Mδ
(s, ·)

) /
Zπk(s)

)
, k = 0, 1, · · · (12)

With policy updating rule (12), we show that the policy sequence {πk} has a non-decreasing value
with respect to the DR soft Q-function in Proposition 3.5. This extends the non-robust soft policy
improvement to cases with uncertain transition probabilities.
Proposition 3.5 (Distributionally Robust Soft Policy Improvement). Suppose |A| <∞, let πk ∈ Π
and πk+1 be the solution of the optimization problem defined in Equation (12). Then Qπk+1

Mδ
(s, a) ≥

Qπk

Mδ
(s, a) for any (s, a) ∈ S ×A.

Proof is provided in Appendix B.3. The DR soft policy iteration algorithm proceeds by alternatively
applying DR soft policy evaluation and DR soft policy improvement. In the following theorem, we
show that the policy sequence converges to the optimum under the DR soft policy iteration, with
proof in Appendix B.4.
Theorem 3.6 (Distributionally Robust Soft Policy Iteration). Suppose |A| <∞, starting from any
policy π0 ∈ Π, the policy sequence {πk} converges to the optimal policy π⋆ under DR soft policy
iteration as k →∞.

Key Challenges. Although DR soft policy iteration is guaranteed to find the optimal policy, there
are still challenges in extending it to continuous action space and offline setting: 1) the DR soft policy
evaluation step in (10) is not efficient enough in large scale problems, 2) the nominal distribution p0s,a
is usually unknown in offline RL tasks, and 3) the DR soft policy iteration can only be implemented
exactly in tabular setting. We will resolve these issues step by step in the rest of this section.

3.2 SOLVING DUAL OPTIMIZATION USING GENERATIVE MODEL

In offline RL tasks, the goal is to learn the optimal policy with access to a pre-collected dataset
D = {(si, ai, ri, s′i)}Ni=1, where (si, ai) ∼ µ, with µ denoting the data generation distribution
determined by the behavior policy, ri = R(si, ai) and s′i ∼ P 0(· | si, ai). In this section, we derive
a practical functional optimization method to compute the dual formulation of DR soft Bellman
operator in (10) with higher efficiency to address challenge 1, and propose a generative modeling
scheme to address challenge 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Dual Functional Optimization. In the DR soft policy evaluation step, the Bellman operator T πδ
will be applied toQ-function iteratively. By writing out the dual form of the DR soft Bellman operator
in (10), the optimization problem is over a scalar β > 0 and can be routinely solved. However, this
optimization problem needs to be solved for every (s, a) pair at each time of update, making the
training process slow for a large-scale problem. To improve training efficiency, our idea is to convert
a group of scalar optimization problems into a single optimization problem over a function space.
This can be achieved by applying the property of interchanging minimization and integration in
decomposable space (Rockafellar & Wets, 2009).

Consider the probability space (S ×A,Σ(S ×A), µ) and let L1(S ×A,Σ(S ×A), µ) be the set of
absolutely integrable functions on that space, abbreviated as L1. We can reformulate the expectation
of optimal value for each (s, a) pair into a single functional optimization problem.

Proposition 3.7. For any δ > 0 and function V : S → [0, (Rmax + α log|A|)/(1− γ)], let

f((s, a), β) := −β log
(
Ep0s,a

[
exp

(
−V (s′)

β

)])
− βδ. (13)

Suppose that Assumption 3.1 holds, i.e. |A| <∞. Define a function set

G :=

{
g ∈ L1 : g(s, a) ∈

[
0,
Rmax + α log|A|

(1− γ)δ

]
, ∀(s, a) ∈ S ×A

}
. (14)

Then we have

E(s,a)∼D

[
sup
β≥0

f
(
(s, a), β

)]
= sup

g∈G
E(s,a)∼D

[
f
(
(s, a), g(s, a)

)]
. (15)

Proof is provided in Appendix B.5. The RHS of (15) only requires solving one optimization problem
instead of |D| problems on the LHS. This functional optimization method substantially increases
training efficiency with negligible robustness loss. We present the training time and performance
comparison in Section 4.3 and Appendix C.3.1. Given Proposition 3.7, we introduce a new Bellman
operator by replacing the scalar β with a function and removing optimization. For any function g ∈ G
and mapping Q : S ×A → [0, (Rmax + α log|A|)/(1− γ)], let

T πδ,gQ(s, a) :=E[r] + γ · f
(
(s, a), g(s, a)

)
=E[r] + γ ·

{
−g(s, a) log

(
Ep0s,a

[
exp

(
− V (s′)

g(s, a)

)])
− g(s, a)δ

}
,

(16)

where V (s) = Ea∼π [Q(s, a)− α · log π(a | s)] . From Proposition 3.7, we have a direct conclusion
that ∥T πδ Q− T πδ,g⋆Q∥1,µ = 0, where g⋆ = argsupg∈G E(s,a)∼D

[
f
(
(s, a), g(s, a)

)]
.

Generative Modeling for Nominal Distributions. In offline RL tasks, we assume the nominal
distributions P0 are unknown, and no simulator is available to generate additional samples. Under
the KL-constrained uncertainty set, the dual optimization problem is non-linear and the empirical risk
computed from the offline datasetD suffers from the double-sampling issue, making it inapplicable in
our case. More detailed discussion is provided in Appendix A.1. To empirically apply operator T πδ,g
in continuous space, we incorporate a VAE model to estimate the nominal distributions and generate
samples to construct empirical measures. To be specific, the VAE model learns from collected data
(s, a, s′) ∈ D and generate next state samples {s̃′i}mi=1. We denote p̃0s,a as the empirical measures
of p0s,a. For any function h : S 7→ R, we have Es′∼p̃0s,a [h(s

′)] = 1
m

∑m
i=1 h(s̃

′
i). The empirical

Bellman operator with functional optimization is defined as

T̃ πδ,gQ(s, a) := E[r] + γ · f̃
(
(s, a), g(s, a)

)
, (17)

where

f̃
(
(s, a), β

)
= −β log

(
Ep̃0s,a

[
exp

(
−V (s′)

β

)])
− βδ. (18)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.3 DISTRIBUTIONALLY ROBUST SOFT ACTOR-CRITIC

Now we extend the action space to continuous and use neural networks to approximate the DR soft
value function and policy. We consider the problem in RMDPMδ, with subscripts in V and Q
functions omitted. To be specific, our algorithm includes the value network Vψ(s), the Q-network
Qθ(s, a) and the stochastic policy πϕ(a | s), with ψ, θ, ϕ as the parameters. ψ̄ and θ̄ are the target
network parameters to help stabilizing training (Mnih et al., 2015). Let φ be the parameters of VAE
model. We also use a parametrized neural network Gη to approximate the function set G.

The idea behind our DR-SAC algorithm is to alternate between empirical DR soft policy evaluation
with functional optimization and DR soft policy improvement. The loss of Q-network parameters in
our algorithm is

JDR
Q (θ) = E(s,a)∼D

[
1

2

(
Qθ(s, a)− T πδ,g̃⋆Qθ(s, a)

)2]
, (19)

where
g̃⋆ = argsup

g∈Gη

E(s,a)∈D

[
f̃((s, a), g(s, a))

]
. (20)

The loss functions of ψ, ϕ and α are the same as SAC in Haarnoja et al. (2018a) and the loss function
of φ is the standard VAE loss, with details in Appendix A.2. To reduce the sensitivity on behavior
policy in dataset generation, we include V -function as SAC-v1 algorithm (Haarnoja et al., 2018a),
with detialed discussion in Section 4.3 and Appendix C.3.3. We also build multiple Q-functions
Qθi , (i ∈ [n]), train them independently, and use the minimum of them in updating the value critic
and actor function. This has been tested to outperform clipped Q-learning (n = 2) in offline RL tasks
(An et al., 2021). We formally present the Distributionally Robust Soft Actor-Critic in Algorithm 1.

Algorithm 1 Distributionally Robust Soft Actor-Critic (DR-SAC)

Require: Offline dataset D = {(si, ai, ri, s′i)Ni=1}, V -function network weights ψ, Q-function
network weights θi, i ∈ [n], policy network weights ϕ, transition VAE network weights φ,
weight τ for moving average, function class Gη

1: ψ̄ ← ψ, θ̄i ← θi for i ∈ [n] ▷ Initialize target network weights for soft update
2: for each gradient step do
3: φ← φ− λφ∇̂φJVAE(φ) ▷ Update transition VAE weights
4: Generate samples {s̃′i}mi=1 from VAE, form empirical measures p̃0s,a
5: Compute optimal function g̃⋆ according to (20)
6: ψ ← ψ − λψ∇̂ψJV (ψ) ▷ Update V -function weights
7: θi ← θi − λQ∇̂θiJDR

Q (θi) for i ∈ [n] ▷ Update Q-function weights
8: ϕ← ϕ− λπ∇̂ϕJπ(ϕ) ▷ Update policy weights
9: α← α− λα∇̂αJ(α) ▷ Adjust temperature

10: ψ̄ ← τψ + (1− τ)ψ̄, θ̄i ← τθi + (1− τ)θ̄i for i ∈ [n] ▷ Update target network weights
11: end for
Ensure: ϕ

4 EXPERIMENTS

The goal of our experiments is to demonstrate the robustness of DR-SAC in handling environmental
uncertainties in offline RL tasks. We evaluate the average episode rewards under different perturba-
tions, comparing with non-robust baselines and RFQI, the only offline DR-RL algorithm applicable to
continuous action spaces. To further highlight the practicality of our algorithm, we report the training
time to show that DR-SAC significantly improves the training efficiency of DR-RL algorithms.

4.1 SETTINGS

We implement SAC and DR-SAC based on the SAC-N (An et al., 2021). To the best of our knowledge,
RFQI is the only distributionally robust offline RL algorithm applicable to continuous space. Besides
RFQI, we also compare DR-SAC with Fitted Q-Iteration (FQI), Deep Deterministic Policy Gradient
(DDPG, Lillicrap et al. (2015)), and Conservative Q-Learning (CQL, Kumar et al. (2020)).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We consider Pendulum, Cartpole, LunarLander, Reacher and HalfCheetah environments in Gymna-
sium (Towers et al., 2024). For Cartpole, we consider the continuous action space version in Mehta
et al. (2021). For LunarLander, we also set the action space to be continuous. All algorithms are
trained on the nominal environment and evaluated under different perturbations. In our experiments,
we consider perturbations including: environment parameters change, random noise on observed
state and random action taken by the actuator. More detailed settings are in Appendix C.1

4.2 PERFORMANCE ANALYSIS

(a) Length Perturbation
Pendulum

(b) Action Perturbation
Cartpole

(c) Engine Perturbation
LunarLander

(d) Observation Perturbation
Reacher

(e) Damping Perturbation
Reacher

(f) Back Damping Perturbation
HalfCheetah

Figure 1: Robustness performance in different environments under perturbations. The curves show
the average reward over 50 episodes, shaded by ±0.5 standard deviation (Figure (e) see Table 4). In
Pendulum, the environment parameter length changes. In Cartpole, random actions are taken by the
actuator. In LunarLander, the environment parameters main_engine_power and side_engine_power
change together. In Reacher, a Gaussian noise is added to nominal states; and the environment
parameter joint_damping changes. In HalfCheetah, environment parameter back_damping changes.

This section reports selected experiment results. Additional experiments are provided in Appendix C.2.
In the Pendulum environment, we change the parameter length to assess algorithm robustness against
pendulum length changes. RFQI is omitted due to poor performance in the unperturbed environment.
In Figure 1(a), DR-SAC performance outperforms SAC by 35% when the length changes by 20%.
In the Cartpole environment, the actuator is perturbed by taking random actions with different
probabilities. DR-SAC shows superior performance over the robust algorithm RFQI, especially when
the probability of random action is less than 50%. In the LunarLander environment, we change
the environment parameters main_engine_power and side_engine_power together to model engine
power disturbance. DR-SAC shows consistently robust performance compared to other algorithms.
In Figure 1(c), when the perturbation percentage is −20%, DR-SAC has an average reward of around
240 while rewards of all other algorithms drop under 180. Moreover, DR-SAC achieves 9.8 times
higher reward than the SAC baseline when parameters change by −30%.

To demonstrate the robustness of DR-SAC in more complex environments, we also conduct experi-
ments in HalfCheetah and Reacher from MuJoCo (Todorov et al., 2012). In the Reacher environment,
we introduce two types of perturbations: adding Gaussian noise to nominal states and modifying the
environment parameter joint_damping. In the observation perturbation test on Figure 1(d), DR-SAC
shows the best performance in all test cases. In Figure 1(e), DR-SAC outperforms SAC and has
similar robustness as RFQI. In the HalfCheetah environment, we only present the experiments of
SAC and DR-SAC due to the poor performance of FQI and RFQI. When the environment parameter

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

back_damping changes less than 50%, DR-SAC achieves a stable average reward of over 6300, while
the average reward of SAC keeps decreasing to less than 5950.

Discussion on FQI Failure. It is worth noting that FQI and RFQI do not work well in unperturbed
Pendulum and HalfCheetah environments. One possible reason is that offline RL algorithm perfor-
mance depends on the dataset differently. SAC works well when the dataset has a broad coverage
over the action space (Kumar et al., 2019). Conversely, the FQI algorithm is implemented on Batch-
Constrained Deep Q-learning (BCQ, Fujimoto et al. (2019)), which restricts the agent to selecting
actions close to the behavior policy. This conflicts with the epsilon-greedy method in data generation,
as discussed in Appendix C.1. One major goal of our experiments is to demonstrate that DR-SAC
exhibits better robustness over SAC under common environmental perturbations. Addressing the
sensitivity of RL algorithms to offline dataset distribution is out of the scope of this study.

4.3 ABLATION STUDIES

Training Efficiency of DR-SAC. Our DR-SAC algorithm is designed to balance efficiency and
accuracy. In Section 3.2, we approximate the Bellman operator T πδ with T πδ,g to improve the training
efficiency. To validate this approximation, we also train a robust algorithm using the accurate operator
T πδ . Experimental results show that DR-SAC with functional optimization attains negligible loss in
robustness while requiring less than 2% training time. More details are provided in Appendix C.3.1.

In Section 4.2, RFQI shows comparable robustness to DR-SAC in some environments. However,
DR-SAC demonstrates notable improvement in the training efficiency. Table 1 shows that the training
time of RFQI is at most 23.2 times that of DR-SAC. Compared with each non-robust baseline, RFQI
requires no less than 11.3 times the training time of FQI, while DR-SAC training is at most 2.6 times
that of SAC. Additional experiments show that this efficiency improvement arises from optimization
efficiency. While the RFQI algorithm with functional approximation involves a similar step as (20),
it requires 1000 gradient descent (GD) steps in each update to find the optimal function, while
DR-SAC requires only 5 GD steps to achieve comparative performance. Experimental results in
Appendix C.3.1 reveal that reducing the number of GD steps in RFQI leads to a severe performance
drop even in unperturbed environments, suggesting that the loss function structure in RFQI inherently
leads to slower convergence and demands more optimization steps.

Table 1: Training time in different environments (minute)

Env SAC DR-SAC FQI RFQI
Cartpole 2 4 7 93

LunarLander 16 36 17 238
Reacher 13 32 14 159

Robustness of VAE Model While the VAE models inevitably introduce estimation error when
constructing empirical measures of the transition distributions, we empirically demonstrate that
DR-SAC is largely insensitive to such modeling choices. Specifically, when the latent dimension of
the VAE model is varied within the tested range of 5 to 20 in Pendulum, DR-SAC maintains superior
robustness over the SAC baseline. Detailed experiment results are provided in Appendix C.3.2.

Usage of V -Network. In the DR-SAC algorithm, we include a V -network following the SAC-v1
design (Haarnoja et al., 2018a) to improve the applicability across a wider range of offline datasets.
Although the V -network is removed in SAC-v2 (Haarnoja et al., 2018b), this version is indeed
on-policy, while our setting is off-policy. We observe empirically that SAC with a V -network is less
sensitive to the behavior policy used in dataset generation. Details are discussed in Appendix C.3.3.

5 CONCLUSIONS

We propose DR-SAC, the first actor-critic based DR-RL algorithm for offline settings and continuous
action spaces. Our framework establishes distributionally robust soft policy iteration with convergence
guarantees, saves over 80.0% of training time compared to RFQI through functional optimization, and
resolves the double-sampling issue in estimating the nominal distributions via generative modeling.
Experiments across five environments show that DR-SAC attains up to 9.8× higher reward than SAC
under perturbations, demonstrating both robustness and efficiency in practical offline RL tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement. All authors of this submission have read and adhered to the ICLR Code of
Ethics.

Reproducibility Statement. We provide our code with detailed comments in the supplementary
materials. The detailed experiment settings, dataset processing steps and the devices used in our
experiments are provided in Appendix C to ensure reproducibility.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

Leemon Baird et al. Residual algorithms: Reinforcement learning with function approximation. In
Proceedings of the twelfth international conference on machine learning, pp. 30–37, 1995.

Jiayu Chen, Bhargav Ganguly, Yang Xu, Yongsheng Mei, Tian Lan, and Vaneet Aggarwal. Deep
generative models for offline policy learning: Tutorial, survey, and perspectives on future directions.
arXiv preprint arXiv:2402.13777, 2024a.

Yanjun Chen, Xinming Zhang, Xianghui Wang, Zhiqiang Xu, Xiaoyu Shen, and Wei Zhang. Corrected
soft actor critic for continuous control. arXiv preprint arXiv:2410.16739, 2024b.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic for
offline reinforcement learning. In International Conference on Machine Learning, pp. 3852–3878.
PMLR, 2022.

Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards minimax optimality of model-based
robust reinforcement learning. arXiv preprint arXiv:2302.05372, 2023.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Esther Derman and Shie Mannor. Distributional robustness and regularization in reinforcement
learning. arXiv preprint arXiv:2003.02894, 2020.

Esther Derman, Daniel J Mankowitz, Timothy A Mann, and Shie Mannor. Soft-robust actor-critic
policy-gradient. arXiv preprint arXiv:1803.04848, 2018.

Tobias Enders, James Harrison, and Maximilian Schiffer. Risk-sensitive soft actor-critic for robust
deep reinforcement learning under distribution shifts. arXiv preprint arXiv:2402.09992, 2024.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6, 2005.

Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle Pineau, et al. An
introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11
(3-4):219–354, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1582–1591, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems,
Man, and Cybernetics, part C (applications and reviews), 42(6):1291–1307, 2012.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust opti-
mization. Available at Optimization Online, 1(2):9, 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Garud N. Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Arash Bahari Kordabad, Rafael Wisniewski, and Sebastien Gros. Safe reinforcement learning using
wasserstein distributionally robust mpc and chance constraint. IEEE Access, 10:130058–130067,
2022.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Navdeep Kumar, Esther Derman, Matthieu Geist, Kfir Y Levy, and Shie Mannor. Policy gradient
for rectangular robust markov decision processes. Advances in Neural Information Processing
Systems, 36:59477–59501, 2023.

Zhipeng Liang, Xiaoteng Ma, Jose Blanchet, Jiheng Zhang, and Zhengyuan Zhou. Single-trajectory
distributionally robust reinforcement learning, 2024. URL https://arxiv.org/abs/2301.
11721.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Zhishuai Liu and Pan Xu. Minimax optimal and computationally efficient algorithms for distribution-
ally robust offline reinforcement learning. arXiv preprint arXiv:2403.09621, 2024.

Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
Zhou. Distributionally robust q-learning. In International Conference on Machine Learning, pp.
13623–13643. PMLR, 2022.

Elita A Lobo, Mohammad Ghavamzadeh, and Marek Petrik. Soft-robust algorithms for batch
reinforcement learning. arXiv preprint arXiv:2011.14495, 2020.

Miao Lu, Han Zhong, Tong Zhang, and Jose Blanchet. Distributionally robust reinforcement learning
with interactive data collection: Fundamental hardness and near-optimal algorithm. arXiv preprint
arXiv:2404.03578, 2024.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:1711–1724, 2022.

Xiaoteng Ma, Zhipeng Liang, Jose Blanchet, Mingwen Liu, Li Xia, Jiheng Zhang, Qianchuan Zhao,
and Zhengyuan Zhou. Distributionally robust offline reinforcement learning with linear function
approximation, 2023. URL https://arxiv.org/abs/2209.06620.

Daniel J Mankowitz, Nir Levine, Rae Jeong, Yuanyuan Shi, Jackie Kay, Abbas Abdolmaleki, Jost To-
bias Springenberg, Timothy Mann, Todd Hester, and Martin Riedmiller. Robust reinforcement
learning for continuous control with model misspecification. arXiv preprint arXiv:1906.07516,
2019.

Viraj Mehta, Biswajit Paria, Jeff Schneider, Stefano Ermon, and Willie Neiswanger. An experimental
design perspective on model-based reinforcement learning. arXiv preprint arXiv:2112.05244,
2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

12

https://arxiv.org/abs/2301.11721
https://arxiv.org/abs/2301.11721
https://arxiv.org/abs/2209.06620

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

Xinlei Pan, Daniel Seita, Yang Gao, and John Canny. Risk averse robust adversarial reinforcement
learning. In 2019 International Conference on Robotics and Automation (ICRA), pp. 8522–8528.
IEEE, 2019.

Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning with
a generative model. In International Conference on Artificial Intelligence and Statistics, pp.
9582–9602. PMLR, 2022.

Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust reinforcement
learning using offline data. In Advances in Neural Information Processing Systems, volume 35, pp.
32211–32224. Curran Associates, Inc., 2022.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial rein-
forcement learning. In International conference on machine learning, pp. 2817–2826. PMLR,
2017.

James Queeney and Mouhacine Benosman. Risk-averse model uncertainty for distributionally robust
safe reinforcement learning. Advances in Neural Information Processing Systems, 36:1659–1680,
2023.

Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Yifan Hu, Andreas Krause, and Ilija Bogunovic.
Distributionally robust model-based reinforcement learning with large state spaces. In International
Conference on Artificial Intelligence and Statistics, pp. 100–108. PMLR, 2024.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. Proceedings of Robotics: Science and Systems VIII,
2012.

R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. Journal of
Machine Learning Research, 23(315):1–20, 2022. URL http://jmlr.org/papers/v23/
22-0017.html.

Alexander Shapiro. Distributionally robust stochastic programming. SIAM Journal on Optimization,
27(4):2258–2275, 2017. doi: 10.1137/16M1058297.

Laixi Shi and Yuejie Chi. Distributionally robust model-based offline reinforcement learning with
near-optimal sample complexity. Journal of Machine Learning Research, 25(200):1–91, 2024.

Rahul Singh, Qinsheng Zhang, and Yongxin Chen. Improving robustness via risk averse distributional
reinforcement learning. In Learning for Dynamics and Control, pp. 958–968. PMLR, 2020.

Elena Smirnova, Elvis Dohmatob, and Jérémie Mary. Distributionally robust reinforcement learning.
arXiv preprint arXiv:1902.08708, 2019.

Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Policy gradient for coherent
risk measures. Advances in neural information processing systems, 28, 2015.

Emanuel Todorov. General duality between optimal control and estimation. In 2008 47th IEEE
conference on decision and control, pp. 4286–4292. IEEE, 2008.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

13

http://jmlr.org/papers/v23/22-0017.html
http://jmlr.org/papers/v23/22-0017.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Herke Van Hoof, Nutan Chen, Maximilian Karl, Patrick Van Der Smagt, and Jan Peters. Stable rein-
forcement learning with autoencoders for tactile and visual data. In 2016 IEEE/RSJ international
conference on intelligent robots and systems (IROS), pp. 3928–3934. IEEE, 2016.

Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. A finite sample complexity bound
for distributionally robust q-learning. In Proceedings of The 26th International Conference on
Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research,
pp. 3370–3398. PMLR, 2023.

Shengbo Wang, Nian Si, Jose Blanchet, and Zhengyuan Zhou. Sample complexity of variance-
reduced distributionally robust q-learning. Journal of Machine Learning Research, 25(341):1–77,
2024.

Yue Wang and Shaofeng Zou. Online robust reinforcement learning with model uncertainty. Advances
in Neural Information Processing Systems, 34:7193–7206, 2021.

Yue Wang and Shaofeng Zou. Policy gradient method for robust reinforcement learning. In Interna-
tional conference on machine learning, pp. 23484–23526. PMLR, 2022.

Hua Wei, Deheng Ye, Zhao Liu, Hao Wu, Bo Yuan, Qiang Fu, Wei Yang, and Zhenhui Li. Boosting
offline reinforcement learning with residual generative modeling. arXiv preprint arXiv:2106.10411,
2021.

Peter Whittle. Risk-sensitive linear/quadratic/gaussian control. Advances in Applied Probability, 13
(4):764–777, 1981.

Wolfram Wiesemann, Daniel Kuhn, and Berc Rustem. Robust markov decision processes. Mathe-
matics of Operations Research, 38(1):153–183, 2013.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 8753–8760, 2022.

Huan Xu and Shie Mannor. Distributionally robust markov decision processes. Advances in Neural
Information Processing Systems, 23, 2010.

Zaiyan Xu, Kishan Panaganti, and Dileep Kalathil. Improved sample complexity bounds for distribu-
tionally robust reinforcement learning. In Proceedings of The 26th International Conference on
Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research,
pp. 9728–9754. PMLR, 2023.

Pengqian Yu and Huan Xu. Distributionally robust counterpart in markov decision processes. IEEE
Transactions on Automatic Control, 61(9):2538–2543, 2015.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui
Hsieh. Robust deep reinforcement learning against adversarial perturbations on state observations.
Advances in Neural Information Processing Systems, 33:21024–21037, 2020.

Ruida Zhou, Tao Liu, Min Cheng, Dileep Kalathil, PR Kumar, and Chao Tian. Natural actor-critic
for robust reinforcement learning with function approximation. Advances in neural information
processing systems, 36:97–133, 2023.

Zhengqing Zhou, Zhengyuan Zhou, Qinxun Bai, Linhai Qiu, Jose Blanchet, and Peter Glynn.
Finite-sample regret bound for distributionally robust offline tabular reinforcement learning. In
International Conference on Artificial Intelligence and Statistics, pp. 3331–3339. PMLR, 2021.

Zhengyuan Zhou, Michael Bloem, and Nicholas Bambos. Infinite time horizon maximum causal
entropy inverse reinforcement learning. IEEE Transactions on Automatic Control, 63(9):2787–
2802, 2018. doi: 10.1109/TAC.2017.2775960.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix

CONTENTS

A Discussion 16

A.1 Necessity of Generative Model . 16

A.2 Algorithm Details . 16

B Proofs 18

B.1 Proof of Proposition 3.3 . 18

B.2 Proof of Proposition 3.4 . 18

B.3 Proof of Proposition 3.5 . 19

B.4 Proof of Theorem 3.6 . 20

B.5 Proof of Proposition 3.7 . 20

C Experiment Details 22

C.1 More Setting details . 22

C.2 Extra Experiment Results . 22

C.3 Ablation Study Details . 25

D Regret Bound 30

The Use of Large Language Models. The authors use Large Language Models (LLMs) to assist
with grammar checking and language polishing in this submission. LLMs do not play a significant
role in research ideation or writing to the extent that they could be regarded as a contributor.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DISCUSSION

A.1 NECESSITY OF GENERATIVE MODEL

In this section, we discuss why other model-free methods are not applicable in KL divergence con-
strained uncertainty set and why a generative model (VAE) is necessary. Empirical risk minimization
(ERM) is a method that minimizes the empirical loss estimation using sampled data, which has been
extensively used in machine learning literature. However, it is not applicable in our case due to the
non-linearity of the dual formulation and the Bellman operator. In our algorithm, we want to apply
operator T πδ,g⋆ where g⋆ = argsupg∈G E(s,a)∼D

[
f
(
(s, a), g(s, a)

)]
. Denote the objective function

as
J(g) :=E(s,a)∼D

[
f
(
(s, a), g(s, a)

)]
=E(s,a)∼D

[
−g(s, a) log

(
Ep0s,a

[
exp

(
−V (s′)

g(s, a)

)])
− g(s, a)δ

]
.

(21)

To obtain a consistent estimator of (21), we encounter the well-known double-sampling issue (Baird
et al., 1995) caused by the nonlinearity between inner and outer expectations. Specifically, to
approximate the inner expectation term Ep0s,a [exp(−V (s′)/g(s, a))], the dataset D need to be split
into two disjoint parts, Douter and Dinner. For each (s, a) ∈ Dinner, we aggregate the corresponding
samples starting from (s, a) contained in Douter, denoted by D(s,a), and the empirical risk of (21)
becomes

Ĵ(g) :=
1

|Dout|
∑

(s,a,s′)∈Dout

−g(s, a) log

 1

|D(s,a)|
∑

(s̄,ā,s̄′)∈D(s,a)

exp

(
−V (s̄′)

g(s, a)

)− g(s, a)δ

 . (22)

However, in continuous state–action spaces, it is nearly impossible to revisit the exact same
state–action pair, leading to D(s,a) = ∅.
Note that this issue does not come from the functional optimization technique we use, but from the
structure of the dual formulation of the Bellman equation under the KL-based uncertainty set. In
contrast, this problem does not occur in the TV-based dual formulation due to its linear structure
(Panaganti et al., 2022). Specifically, if we remove the functional approximation and use the exact
dual formulation of the DR soft Bellman operator to design an algorithm, the same double-sampling
issue occurs in finding the empirical risk of the following Bellman residual:

LQ :=E(s,a)∈D [Q(s, a)− T πδ Q(s, a)]

=E(s,a)∈D

[
Q(s, a)− E[r]− γ · sup

β≥0

{
−β log

(
Ep0s,a

[
exp

(
−V (s′)

β

)])
− βδ

}]
.

(23)

In other literature introducing distributionally robust algorithms under KL uncertainty set, this
difficulty is overcome by using a Monte-Carlo related method (Liu et al., 2022; Wang et al., 2023),
estimating nominal distributions from transition frequencies (Wang et al., 2024), or directly estimating
the expected value under nominal distributions (Liang et al., 2024). None of these methods is
applicable to continuous space offline RL tasks.

A.2 ALGORITHM DETAILS

In this section, we present a detailed description of the DR-SAC algorithm. In our algorithm, we use
neural networks Vψ(s), Qθ(s, a) and πϕ(a | s) to approximate the value function, the Q-function
and the stochastic policy, respectively, with ψ, θ, ϕ as the network parameters. We also utilize target
network Vψ̄(s) and Qθ̄(s, a), where parameters ψ̄ and θ̄ are the exponential moving average of
respective network weights. Similar to SAC-v1 algorithm (Haarnoja et al., 2018a), the loss function
of V -network is

JV (ψ) = Es∼D

[
1

2

(
Vψ(s)− Ea∼πϕ

[Qθ̄(s, a)− α log πϕ(a | s)]
)2]

. (24)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

As introduced in Section 3.3, in our algorithm, we modify the loss function of Q-network to

JDR
Q (θ) = E(s,a)∼D

[
1

2

(
Qθ(s, a)− T πδ,g̃⋆Qθ(s, a)

)2]
,

where
g̃⋆ = argsup

g∈Gη

E(s,a)∈D

[
f̃((s, a), g(s, a))

]
= argsup

g∈Gη

E(s,a)∈D

[
−β log

(
Ep̃0s,a

[
exp

(−Vψ̄(s′)
β

)])
− βδ

]
.

(25)

Optimal dual function g̃⋆ can be found with backpropagation through η. We also keep the assumption
of policy network in the standard SAC algorithm by reparameterizing the policy using a neural
network transformation a = fϕ(ϵ; s), where ϵ is an input noise vector sampled from a spherical
Gaussian. The loss of policy is

Jπ(ϕ) = Es∼D,ϵ∼N

[
α log πϕ(fϕ(ϵ; s) | s)−Qθ̄(s, fϕ(ϵ; s))

]
. (26)

In the SAC-v2 algorithm (Haarnoja et al., 2018b), the authors propose an automated entropy tempera-
ture adjustment method by using an approximate solution to a constrained optimization problem. The
loss of temperature is

J(α) = Ea∼πϕ

[
−α log πϕ(a | s)− αH̄

]
, (27)

where H̄ is the desired minimum expected entropy and is usually implemented as the dimensionality
of the action space.

In addition, we incorporate the VAE model into our algorithm. VAE is one of the most popular
methods to learn complex distributions and has shown superior performance in generating different
types of data. In the DR-SAC algorithm, we use VAE to learn the transition function P 0(s′ | s, a) by
modeling the conditional distribution of next states. It assumes a standard normal prior over the latent
variable, p(z) = N (0, I). The encoder maps (s, a, s′) to an approximate posterior q(z | s, a, s′), and
the decoder reconstructs s′ from the latent sample z and input (s, a). The training loss is the evidence
lower bound (ELBO):

JVAE(φ) = Eq(z|s,a,s′)
[
∥s′ − ŝ′∥2

]
+DKL (q(z | s, a, s′) ∥N (0, I)) , (28)

where ŝ′ are the reconstructed states from the decoder.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B PROOFS

B.1 PROOF OF PROPOSITION 3.3

We first provide an established result in DRO to compute the worst-case expectation under perturbation
in a KL-divergence constrained uncertainty set.
Lemma B.1 (Hu & Hong (2013), Theorem 1). Suppose G(X) has a finite moment generating
function in the neighborhood of zero. Then for any δ > 0,

sup
P :DKL(P∥P0)≤δ

EP [G(X)] = inf
β≥0

{
β log

(
EP0

[
exp

(
G(X)

β

)])
+ βδ

}
(29)

Proof of Proposition 3.3.

T δπQ(s, a) = E[r] + γ · inf
p∈Ps,a(δ)

{
Es′∼p(·|s,a)

[
Ea′∼π(·|s′)[Q(s′, a′)− α log π(a′|s′)]

]}
= E[r]− γ · sup

p∈Ps,a(δ)

{
Es′∼p(·|s,a)[−V (s′)]

}
= E[r]− γ · inf

β≥0

{
β log

(
Es′∼p0(·|s,a)

[
exp

(
−V (s′)

β

)])
+ βδ

}
(Lemma B.1)

= E[r] + γ · sup
β≥0

{
−β log

(
Es′∼p0(·|s,a)

[
exp

(
−V (s′)

β

)])
− βδ

}
To apply Lemma B.1, let P = p(·|s, a), P0 = p0(·|s, a), and G(X) = G(s′) = −V (s′). As stated
in Section 2.1, the rewards r = R(s, a) are bounded, and the discount factor γ ∈ [0, 1). From
the assumption that Q(s, a) is bounded, we know V (s′) is bounded as well. This implies that
G(s′) = −V (s′) has a finite moment generating function (MGF) under the nominal distribution
p0(·|s, a), i.e., Es′∼p0(·|s,a)[eλG(s′)] <∞, for λ in a neighborhood of zero. This ensures that G(s′)
has a finite MGF under P0 as required by Lemma B.1.

B.2 PROOF OF PROPOSITION 3.4

Before providing the proof of Proposition 3.4, we present the optimality conditions of Lemma B.1.
Lemma B.2 (Hu & Hong (2013), Proposition 2). Let β⋆ be an optimal solution of the optimization
problem in (29). Let H = esssupX∼P0

G(X) and κ = PX∼P0
(G(X) = H). Suppose the assump-

tion in Lemma B.1 still holds, then β⋆ = 0 or G(X) has a finite moment generating function at 1/β⋆.
Moreover, β⋆ = 0 if and only if H <∞, κ > 0 and log κ+ δ ≥ 0.

This lemma tells us the optimal solution is unique when β⋆ = 0. This happens if and only if there is
a large enough probability mass on the finite essential supremum of X , under the distribution center
P0. We use this lemma to discuss either β⋆ = 0 or β⋆ > 0 in the following proof.

Proof of Proposition 3.4. Similar to the standard convergence proof of policy evaluation, we want
to prove that the operator T πδ is a γ-contraction mapping. Suppose there are two mappings Q1,2 :
S ×A → R and define Vi = Ea∼π[Qi(s, a)]− αH(π(s)), i = 1, 2. For any state s ∈ S, we have

|V1(s)− V2(s)| = |Ea∼π[Q1(s, a)−Q2(s, a)]| ≤ ∥Q1 −Q2∥∞.
Thus, ∥V1 − V2∥∞ ≤ ∥Q1 −Q2∥∞.

Next, for any β > 0 and (s, a) fixed, define function

Fβ(V) := −β logEp0s,a

[
exp

(
−V (s′)

β

)]
− βδ.

Let ∥V1 − V2∥∞ = d. Then for any s′ ∈ S, V2(s′)− d ≤ V1(s
′) ≤ V2(s

′) + d. After exponential,
expectation, and logarithm operations, monotonicity is preserved. We have

−β logEp0s,a

[
exp

(
−V2(s

′)

β

)]
− d ≤− β logEp0s,a

[
exp

(
−V1(s

′)

β

)]
≤− β logEp0s,a

[
exp

(
−V2(s

′)

β

)]
+ d.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

This gives us |Fβ(V1)− Fβ(V2)| ≤ ∥V1 − V2∥∞.

Lastly, we reformulate DR soft Bellman operator as T πδ Q(s, a) = E[r] + γ · supβ≥0 Fβ(V). Let β⋆i
be an optimal solution of supβ≥0 Fβ(Vi), i = 1, 2. From Lemma B.2, we know β⋆i is unique when
β⋆i = 0 is optimal. And the optimal value is the essential infimum Hi when β⋆i = 0. We want to
show |Fβ⋆

1
(V1)− Fβ⋆

2
(V2)| is bounded in all cases of β⋆i .

• Case 1: β⋆1 = β⋆2 = 0.

In this case, the optimal value is the essential infimum value for both Vi. We have

|Fβ⋆
1
(V1)− Fβ⋆

2
(V2)| =

∣∣∣∣∣ essinfs′∼P 0
s,a

V1(s
′)− essinf

s′∼P 0
s,a

V2(s
′)

∣∣∣∣∣ ≤ ∥V1 − V2∥∞.
The last inequality holds because monotonicity is preserved after taking the essential infimum.

• Case 2: β⋆1 = 0, β⋆2 > 0, WLOG.

In this case, we know from optimality that

H1 = essinf
s′∼P 0

s,a

V1(s
′) ≥ Fβ⋆

2
(V1), H2 = essinf

s′∼P 0
s,a

V2(s
′) ≤ Fβ⋆

2
(V2).

Then we have
H1 − Fβ⋆

2
(V2) ≤ H1 −H2 ≤ ∥V1 − V2∥∞,

Fβ⋆
2
(V2)−H1 ≤ Fβ⋆

2
(V2)− Fβ⋆

2
(V1) ≤ ∥V1 − V2∥∞.

Thus, |Fβ⋆
1
(V1)− Fβ⋆

2
(V2)| = |H1 − Fβ⋆

2
(V2)| ≤ ∥V1 − V2∥∞.

• Case 3: β⋆1 > 0, β⋆2 > 0.

Suppose Fβ⋆
1
(V1) ≤ Fβ⋆

2
(V2), WLOG. Then

|Fβ⋆
1
(V1)− Fβ⋆

2
(V2)| = Fβ⋆

2
(V2)− Fβ⋆

1
(V1) ≤ Fβ⋆

2
(V2)− Fβ⋆

2
(V1) ≤ ∥V1 − V2∥∞,

where the first inequality comes from the optimality of β⋆1 .

Thus for any (s, a) pair, we have we

|T πδ Q1(s, a)− T πδ Q2(s, a)| =γ ·

∣∣∣∣∣ supβ1≥0
Fβ1(V1)− sup

β2≥0
Fβ2(V2)

∣∣∣∣∣
≤γ · ∥V1 − V2∥∞
≤γ · ∥Q1 −Q2∥∞.

Since T πδ is a γ-contraction, using Banach Fixed-Point Theorem, the sequence {Qk} convergences
to the unique fixed-point T πδ . From Iyengar (2005); Xu & Mannor (2010), we know this fixed point
is the DR soft Q-value.

B.3 PROOF OF PROPOSITION 3.5

Proof. Given πk ∈ Π, let Qπk

Mδ
and V πk

Mδ
be the corresponding DR soft Q-function and value

function. Denote the function for determining the new policy as

Jπ(π
′(· | s)) := DKL

(
π′(· | s))

∥∥∥∥ exp(1

α
QπMδ

(s, ·)− logZπk(s)

))
. (30)

According to Equation (12), πk+1 = argminπ′∈Π Jπk
(π′) and Jπk

(πk+1) ≤ Jπk
(πk). Hence

Ea∼πk+1
[α log πk+1(a | s)−Qπk

Mδ
(s, ·) + α logZπk(s)]

≤Ea∼πk
[α log πk + (a | s)−Qπk

Mδ
(s, ·) + α logZπk(s)],

and after deleting Zπk(s) on both sides, the inequality is reformulated to

Ea∼πk+1

[
Qπk

Mδ
(s, ·)− α log πk+1(a | s)

]
≥ V πk

Mδ
(s).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Next, consider the DR soft Bellman equation:

Qπk

Mδ
(s, a) =E[r] + γ · inf

ps,a∈Ps,a(δ)

{
Es′∼ps,a

[
V πk

Mδ
(s′)

]}
≤E[r] + γ · inf

ps,a∈Ps,a(δ)

{
Es′∼ps,a

[
Ea′∼πk+1

[
Qπk

Mδ
(s′, a′)− α log πk+1(a

′ | s′)
]]}

=T πk+1

δ

(
Qπk

Mδ

)
(s, a)

...

≤Qπk+1

Mδ
(s, a), ∀(s, a) ∈ S ×A

(31)
where operator T πk+1

δ is repeatedly applied to Qπk

Mδ
and its convergence is guaranteed by Proposi-

tion 3.4.

B.4 PROOF OF THEOREM 3.6

Proof. Let πk be the policy at iteration k. By Proposition 3.5, Qπk

Mδ
is non-decreasing with k. Since

function Qπk

Mδ
is bounded by (Rmax + α log|A|)/(1− γ), sequence {Qπk

Mδ
} converges. Thus policy

sequence {πk} convergences to some π⋆. It remains to show that π⋆ is indeed optimal. According to
Equation (12), Jπ⋆(π⋆) ≤ Jπ⋆(π), ∀π ∈ Π. Using the same argument in proof of Proposition 3.5,
we can show that QπMδ

(s, a) ≤ Qπ
⋆

Mδ
(s, a) for any π ∈ Π and (s, a) ∈ S × A. Hence π⋆ is an

optimal policy.

B.5 PROOF OF PROPOSITION 3.7

Before providing the proof, we first introduce two technical lemmas. Specifically, Lemma B.4
establishes the interchange of minimization and integration property in decomposable spaces. This
property has wide applications in replacing point-wise optimality conditions by optimization in a
functional space (Shapiro, 2017; Panaganti et al., 2022).
Lemma B.3 (Rockafellar & Wets (2009), Exercise 14.29). Function f : Ω×Rn 7→ R (finite-valued)
is a normal integrand if f(ω, x) is measurable in ω for each x and continuous in x for each ω.
Lemma B.4 (Rockafellar & Wets (2009), Theorem 14.60, Exercise 14.61). Let f : Ω × R 7→ R
(finite-valued) be a normal integrand. LetM(Ω,A;R) be the space of all measurable functions
x : Ω→ R,Mf be the collection of all x ∈M(Ω,A;R) with

∫
ω∈Ω

f(ω, x(ω))µ(dω) <∞. Then,
for any space withMf ⊂ X ⊂M(Ω,A;R), we have

inf
x∈X

∫
ω∈Ω

f(ω, x(ω))µ(dω) =

∫
ω∈Ω

(
inf
x∈R

f(ω, x)

)
µ(dω).

Proof of Proposition 3.7. First we want to prove β⋆ = argsupβ≥0 f((s, a), β) is bounded in interval

Iβ :=
[
0, Rmax+α log|A|

(1−γ)δ

]
for any (s, a) ∈ S ×A. Rewriting the optimization problem to its primal

form, it is clear that
f((s, a), β⋆) = inf

ps,a∈Ps,a(δ)
E [V (s′)] ≥ 0.

When β is greater than Rmax+α log|A|
(1−γ)δ , it can never be optimal since

f((s, a), β) =− β log
(
Ep0s,a

[
exp

(
−V (s′)

β

)])
− βδ

≤− β log
(
exp

(
−Rmax + α log|A|

(1− γ)β

))
− βδ

=
Rmax + α log|A|

1− γ
− βδ < 0.

Now we know that f((s, a), β) is a finite-valued function for each (s, a) ∈ S × A and β ∈ Iβ .
Also, it is Σ(S ×A)-measurable in (s, a) ∈ S ×A for each β ∈ Iβ and is continuous in β for each
(s, a) ∈ S ×A. From Lemma B.3, we know that f((s, a), β) is a normal integrand.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Moreover, all functions in G is upper bounded and measurable soMf ⊂ G ⊂M((S ×A),Σ(S ×
A);R). Proposition 3.7 is a direct conclusion of Lemma B.4.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C EXPERIMENT DETAILS

C.1 MORE SETTING DETAILS

To allow for comparability of results, all tools were evaluated on equal-cost hardware, a Ubuntu 24.04
LTS system with one Intel(R) Core(TM) i7-6850K CPU, one NVIDIA GTX 1080 Ti GPU with 11
GB memory, and 64 GB RAM. All experiments use 12 CPU cores and 1 GPU.

We implement FQI and RFQI algorithms from https://github.com/zaiyan-x/RFQI.
DDPG and CQL are implemented from the offline RL library d3rlpy (Seno & Imai, 2022).

Hyperparameter Selection Across all environments, we use γ = 0.99 for discount rate, τ = 0.005
for both V and Q critic soft-update, α = 0.12 as initial temperature, |B| = 256 for mini-batch size,
|D| = 106 for data buffer size. Actor, Q and V critic and VAE networks are multilayer perceptrons
(MLPs) with [256, 256] as hidden dimension. In the HalfCheetah and Reacher environments, we use
two hidden layers in the actor and critic networks. All other networks have one hidden layer.

There are multiple learning rates in our algorithm. Learning rate for VAE network λφ is 5× 10−5 in
the Pendulum environment and 5× 10−4 in others. In Step 5 of Algorithm 1, optimal function g̃⋆ is
found via backpropagation with learning rate λη . All other learning rates λψ , λθ, λϕ and λα are the
same in each environment and represented by λψ .

Value of learning rates λψ and λη , number of Q-critics and latent dimensions in VAE are separately
tuned in each environment and presented in Table 2.

Table 2: Hyper-parameters selection in SAC and DR-SAC algorithm training.

Environment λψ λη Q-Critic Number latent dimensions
Pendulum 5× 10−4 5× 10−5 2 5
Cartpole 3× 10−4 5× 10−4 2 5

LunarLander 5× 10−4 5× 10−4 2 10
HalfCheetah 3× 10−4 5× 10−5 5 32

Reacher 3× 10−4 5× 10−5 5 10

Offline Dataset To ensure fairness in performance comparison, all models in each environment
are trained on the same dataset. Each datasets contains 106 samples, generated by first training a
behavior policy and applying the epsilon-greedy method. For most environments, the behavior policy
is trained by the Twin Delayed DDPG (TD3, Fujimoto et al. (2018)) implemented from the d3rlpy
offline RL library (Seno & Imai, 2022), while in the Cartpole environment we use SAC. To ensure a
fair robustness evaluation, all models are trained to achieve the same performance (500, the maximum
reward) under unperturbed conditions in Cartpole. Datasets generated by behavior policies trained by
TD3 (SAC) are denoted as TD3-datasets (SAC-datasets) throughout this work. Additional details
including the algorithm to train behavior policy, training steps and the random-action probability ϵ
are presented in Table 3.

Table 3: Experiment details in dataset generation

Environment Behavior Policy Algorithm Training Steps Random-Action Probability ϵ
Pendulum TD3 5× 104 0.5
Cartpole SAC 5× 105 0.5

LunarLander TD3 3× 105 0.5
HalfCheetah TD3 106 0.3

Reacher TD3 106 0.3

C.2 EXTRA EXPERIMENT RESULTS

Pendulum In the Pendulum environment, we compare DR-SAC with SAC, FQI, and DDPG. All
models are trained on the TD3-dataset. The robust algorithm RFQI does not perform well in this

22

https://github.com/zaiyan-x/RFQI

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

test, even when there is no perturbation. To evaluate the robustness of trained models, we change
the environment parameters length, mass, and gravity, with nominal values as 1.0, 1.0 and 10.0
respectively. We grind search δ ∈ {0.1, 0.2, · · · , 1.0} and find model under δ = 0.5 have the best
overall robustness.

DR-SAC shows consistent robustness improvement compared to all other algorithms. The perfor-
mance under length perturbation is presented in Figure 1(a). In the mass perturbation test, DR-SAC
has the best performance in all cases. For example, the average reward is over 40% higher than
SAC when mass changes 120%. In Figure 2 (b), there is a notable gap between DR-SAC and SAC
performance when gravity acceleration changes 40%.

To further show model performance under heavy-tailed perturbation, we also add Cauchy-distributed
noise to state observations. The distribution of noise is defined as standard Cauchy distribution
multiplied by a parameter noise scale. In Figure 2 (c), DR-SAC achieves consistent the best
performance when noise scale increases.

(a) Mass Perturbation: pendulum
mass change.

(b) Gravity Perturbation: gravity ac-
celeration change.

(c) Observation Noise: Cauchy-
distributed noise on nominal states.

Figure 2: Pendulum results on TD3-dataset. The curves show the average reward of 50 episodes,
shaded by ±0.5 standard deviation.

Cartpole In the Cartpole environment, we compare the DR-SAC algorithm with non-robust algo-
rithms SAC, DDPG, FQI, and robust algorithm RFQI. All algorithms are trained on the SAC-dataset.
In our Cartpole environment, the force applied to the cart is continuous and determined by the
actuator’s action and parameter force_mag. The highest possible reward is 500 in each episode. To
ensure fair comparison, all models are trained to have average rewards of 500 when no perturbation
is added.

We test the robustness by introducing three changes to the environment: applying action perturbation,
adding observation noise, and changing parameter force_mag. In the action perturbation test, the
actuator takes random actions with different probabilities. In the observation perturbation test, noise
with zero mean and different standard deviations is added to the nominal states in each step. The
model parameter force_mag represents the unit force magnitude with the nominal value as 30.0. We
grind search δ ∈ {0.25, 0.5, 0.75, 1.0} and find DR-SAC has the best performance when δ = 0.75.
We also use ρ = 0.75 to train the RFQI model.

In the Cartpole environment, DR-SAC has the best overall performance under three types of pertur-
bation. The performance under action perturbation is presented in Figure 1(b), and DR-SAC has
substantially better performance compared to RFQI. In the observation noise perturbation test in
Figure 3(a), DR-SAC has performance improvement over 75% compared to non-robust algorithms
SAC and DDPG when the standard deviation of noise is 0.2 and 0.3.

LunarLander In the LunarLander environment, we compare DR-SAC with non-robust algorithms
SAC, CQL, FQI, and robust algorithm RFQI. All algorithms are trained on the TD3-dataset. In the
LunarLander environment, the lander has main and side engines, and the actuator can control the
throttle of the main engine. We change environment parameters engine_power (main and side engine
power) and wind_power (magnitude of linear wind) to validate algorithm robustness. We grind search
δ ∈ {0.25, 0.5, 0.75, 1.0} and find DR-SAC has the best performance when δ = 0.25. We also use
ρ = 0.25 to train the RFQI model.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Observation Perturbation: gaussian noise added to
nominal states.

(b) “Force_mag” Perturbation: model parameter
force_mag change.

Figure 3: Cartpole results on SAC-dataset. The curves show the average reward of 50 episodes,
shaded by ±0.5 standard deviation.

Figure 4: LunarLander results on TD3-dataset. The curves show the average reward of 50 episodes,
shaded by ±0.5 standard deviation.

Under all types of perturbations, DR-SAC shows superior robustness compared to other algorithms.
The performance under engine_power perturbation is presented in Figure 1(c). In Figure 4, DR-SAC
shows the highest average reward in most levels of wind perturbation. It is worth noting that the
robust algorithm RFQI does not have an acceptable performance in this test, even compared to its
non-robust counterpart FQI.

Reacher In the Reacher environment, we compare DR-SAC with non-robust algorithms SAC,
FQI, CQL, and robust algorithm RFQI. All algorithms are trained on the TD3-dataset. In Reacher
environment, the actuator controls a two-jointed robot arm to reach a target. We use joint_damping
to denote the damping factor of both joint0 and joint1, with default value as 1.0. We grind search
δ ∈ {0.1, 0.2, 0.3} and find DR-SAC has the best performance when δ = 0.2. We also use ρ = 0.2
to train the RFQI model.

To test the robustness of all algorithms, we compare their performance after adding observation
noise and changing parameters joint_damping. In the observation perturbation test, we add zero-
mean Gaussian noise to the nominal state in dimensions 4− 9. The first 4 dimensions in state are
trigonometric function values and are kept unperturbed. Performance under both perturbations is
presented in Figure 1 (d) and (e). Moreover, in Figure 1 (e), the standard deviation regions were
computed but omitted from the final plot because the overlapping shaded areas of multiple algorithms
made the figure unreadable. We provide them in Table4.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 4: Standard Deviation of Model Performance under Damping Perturbation in Reacher

Joint Damping Value SAC DR-SAC FQI RFQI CQL
2.0 1.452 1.459 1.638 1.509 1.396
3.0 1.534 1.540 1.754 1.601 1.456
4.0 1.631 1.628 1.865 1.699 1.529
5.0 1.735 1.721 1.969 1.802 1.614
6.0 1.841 1.819 2.057 1.910 1.711
7.0 1.946 1.925 2.135 2.018 1.816

HalfCheetah In the HalfCheetah environment, we compare DR-SAC with SAC baseline only due
to the unsatisfactory performance of FQI and RFQI. All algorithms are trained on the TD3-dataset.
In the HalfCheetah environment, the actuator controls a cat-like robot consisting of 9 body parts and
8 joints to run. We use front_stiff and front_damping to denote the stiffness and damping factor of
joint fthigh, fshin, and ffoot. Also, back_stiff and back_damping can be denoted in a similar way.
The default value of these parameters can be found through the environmental assets of Gym-
nasium MuJoCo in https://github.com/Farama-Foundation/Gymnasium/blob/
main/gymnasium/envs/mujoco/assets/half_cheetah.xml. We grind search δ ∈
{0.1, 0.2, 0.3} and find DR-SAC has the best performance when δ = 0.2.

Performance of back_damping test is presented in Figure 1(f). Combining it with Figure 5, we can see
DR-SAC has notable robustness improvement across all perturbation tests. For example, in front_stiff
perturbation test, DR-SAC achieves an improvement as much as 10% when the change is 80%.

(a) Front Stiffness Perturbation (b) Front Damping Perturbation

Figure 5: HalfCheetah results on TD3-dataset. The curves show the average reward of 50 episodes,
shaded by ±0.5 standard deviation.

C.3 ABLATION STUDY DETAILS

C.3.1 TRAINING EFFICIENCY OF DR-SAC

In this section, we want to show that DR-SAC with functional optimization finds a good balance
between efficiency and accuracy. We compare training time and robustness of Algorithm 1, DR-SAC
without functional optimization, and robust algorithm RFQI, to show our DR-SAC algorithm has the
best overall performance.

Balance in Functional Approximation We first introduce DR-SAC algorithm without functional
optimization. Most steps are the same as Algorithm 1, instead of following modifications. Step 5 in
Algorithm 1 is removed. Q-network loss is replaced by

JDR_acc
Q = E(s,a)∼D

[
QπM(s, a)− T̃ πδ QπMδ

(s, a)
]2
, (32)

25

https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/mujoco/assets/half_cheetah.xml
https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/mujoco/assets/half_cheetah.xml

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where T̃ πδ is the empirical version of T πδ by replacing p0s,a with p̃0s,a. We call this modified algorithm
DR-SAC-Accurate and call Algorithm 1 DR-SAC-Functional in this section.

We train SAC, DR-SAC-Functional, and DR-SAC-Accurate algorithms in Pendulum environment.
The optimization problem in Equation (10) is a problem over scalar β > 0 and solved via Scipy for
each (s, a) pair. Table 5 shows the training steps and time for three algorithms. We see training
time of DR-SAC-Accurate is over 150 times longer than standard SAC and over 50 times longer than
DR-SAC-Functional. Considering Pendulum environment is relatively simple, DR-SAC-Accurate
algorithm is hard to utilize in large-scale problems.

Table 5: Training steps and time for three algorithms in Pendulum

Algorithm Training Steps Training Time (Minute)
SAC 10k 1.7

DR-SAC-Functional 10k 4.7
DR-SAC-Accurate 8k 260

Moreover, we test the robustness of three algorithms by comparing their average reward under
different perturbations. To be specific, we change Pendulum environment parameters: length, mass,
and gravity. DR-SAC-Functional and DR-SAC-Accurate are trained with δ = 0.5. Figure 6 shows that
DR-SAC-Functional achieves comparable and even better performance under small-scale perturbation.
For example, DR-SAC-Functional and DR-SAC-Accurate have almost the same performance under
gravity perturbation in all test cases and mass perturbation test when change is less than 120%. In
length perturbation test, DR-SAC-Functional has better performance when the change is less than
30%.

(a) Gravity Factor Perturbation. (b) Mass Factor Perturbation. (c) Length Factor Perturbation.

Figure 6: Pendulum results on TD3-dataset. Curves show average reward of 50 episodes, shaded by
±0.5 standard deviation. Algorithms are SAC, DR-SAC with and without functional approximation.

Efficiency Comparison with RFQI In Section 4.2, existing DR-RL algorithm RFQI also shows
comparable performance under some perturbations. In this paragraph, we want to show that DR-SAC
requires much less training time than RFQI, improving its applicability to large scale problems. Table
1 lists the training time of SAC, DR-SAC, FQI, and RFQI algorithms in three testing environments.
DR-SAC is demonstrated to be well-trained in at most 20% time required by RFQI. Compared with
each non-robust baseline, the training time of DR-SAC is at most 360% of SAC, while RFQI requires
1000− 1300% more training time than FQI. In Figure 7, we provide a plot of performance changes
against the training time in the Reacher environment, where RFQI is shown to be under-trained when
the curve of DR-SAC converges.

Moreover, this efficiency improvement does not solely arise from the functional approximation step,
but also from the inherent optimization efficiency in the loss function structure. The RFQI algorithm
considers the RMDP framework with uncertainty sets defined by the TV distance and is empirically
built on the BCQ algorithm. In RFQI, there exists a step similar to (20) to find the optimal functional
under empirical measurement. Experimental results show that the efficiency gap arises from the
number of GD steps in solving this optimization problem. RFQI sets the default GD steps as 1000
while DR-SAC achieves comparable robustness performance with only 5 steps. To further investigate,
we vary the GD steps in RFQI to 5, 10 and 100 in the LunarLander environment and report the model

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 7: Average Reward of 20 Episodes over Training Time in Reacher Environment.

performance in the unperturbed environment. As shown in Table 6, performance drops sharply when
RFQI uses fewer GD steps, indicating that the loss function structure in RFQI inherently leads to
slower convergence and requires more optimization steps. In our framework, the choice of actor-critic
based non-robust baseline, KL divergence induced uncertainty set and generative modeling in nominal
distribution estimation together yields a more optimization-friendly formulation, contributing to our
method’s practical efficiency.

Table 6: GD steps, training time and performance in LunarLander

Algorithm DR-SAC RFQI RFQI RFQI RFQI (Used)
GD Steps 5 5 10 100 1000

Training Time (min) 36 12 21 139 238
Performance 240.0 175.9 181.9 192.9 201.2

C.3.2 ROBUSTNESS OF VAE MODEL

A consistent challenge in DR-RL algorithm design is that unknown nominal distributions p0s,a often
appear in the loss function. In Section 3.2 and Appendix A.1, we review methods used in other model-
free DR-RL algorithms and motivate the necessity of generative models in our setting. Although
generative models inevitable introduce additional estimation error when constructing empirical
measures p̃0s,a, our ablation studies demonstrate that DR-SAC is largely insensitive to the VAE
modeling, therefore improving its applicability. In the Pendulum environment, where the state and
action space dimensions are 3 and 1 respectively, we train DR-SAC with VAEs of latent dimensions
1, 5, 10, 20, 50 and evaluate performance under perturbed pendulum mass. As shown in Figure 8,
DR-SAC maintains superior robustness over the SAC baseline as long as the latent dimension lies
within a reasonable range (between 5 and 20 in our experiments).

To demonstrate the choice of VAE over other generative models, we implemented Diffusion Proba-
bilistic Models and Normalizing Flows as alternatives to the VAE in DR-SAC and conducted ablation
studies on Pendulum and Cartpole. Model performance is provided in Figure 9 and 10. DR-SAC with
Diffusion models achieved comparable robustness to the VAE in Pendulum. However, Flow-based
models showed unstable performance even in unperturbed Pendulumenvironment. Crucially, the
efficiency of sampling process with Diffusion models is a major bottleneck. Diffusion-based training
is at least 4.5 times slower than VAE-based training.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 8: Pendulum results on TD3-dataset with mass perturbation and different VAE latent dimen-
sions. The curves show the average reward of 50 episodes, shaded by ±0.5 standard deviation.

(a) Gravity Factor Perturbation. (b) Mass Factor Perturbation. (c) Length Factor Perturbation.

Figure 9: Pendulum results with different generative models on TD3-dataset. Curves show average
reward of 50 episodes, shaded by ±0.5 standard deviation.

(a) Observation Perturbation: gaussian noise added to
nominal states.

(b) “Force_mag” Perturbation: model parameter
force_mag change.

Figure 10: Cartpole results with different generative models on SAC-dataset. The curves show the
average reward of 50 episodes, shaded by ±0.5 standard deviation.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

C.3.3 USAGE OF V-NETWORK

In this section, we demonstrate that keeping the V -network in the SAC algorithm reduces the
sensitivity on dataset distribution. As introduced in Appendix C.1, offline datasets in this work are
generated by first training a behavior policy and applying the epsilon-greedy method to collect data.
Experimental results shows that SAC without the V -network exhibits unstable performance when the
behavior policy differs across datasets.

Our experiments are conducted in the Pendulum environment. We generate two datasets with
behavior policy trained by an online version of SAC and TD3, denoted as SAC-dataset and TD3-
dataset, respectively. Figure 11 presents the average reward of 20 episodes against training steps in
four scenarios: SAC-dataset vs. TD3-dataset, SAC algorithm with vs. without V -network. Removing
the V -network shows minor influence on offline SAC learning using SAC-dataset. However, for
TD3-dataset, SAC with V -network achieves a stable average reward around −150 quickly, but the
average reward of SAC without V -network fluctuates intensely and never exceeds −200. This
validates that SAC with a V -network is less sensitive to behavior policy and dataset distribution.

Figure 11: Average Reward of 20 Episodes over Training Step in Pendulum Environment.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

D REGRET BOUND

Definition D.1. The distributionally robust regret RMδ
(π) of a policy π ∈ Π is defined as:

RMδ
(π) :=

∥∥V ⋆Mδ
− V πMδ

∥∥
∞ .

For any policy π, the soft value and soft Q-functions satisfy:

V πMδ
(s) = Ea∼π(·|s)

[
QπMδ

(s, a)− α log π(a | s)
]
.

The following inequality holds:∥∥V ⋆Mδ
− V πMδ

∥∥
∞ ≤

∥∥Q⋆Mδ
−QπMδ

∥∥
∞ .

Based on the estimator p̂0s,a, we define the corresponding estimate DR soft value function

V̂ πMδ
(s) = inf

p∈P̂(δ)
Ep

[∞∑
t=1

γt−1 (rt + α · H (π (st))) | π, s1 = s

]
,

where P̂s,a(δ) :=
{
ps,a ∈ ∆(|S|) : DKL

(
ps,a∥p̂0s,a

)
≤ δ

}
. Similarly, the estimate DR soft Q-

function is given by

Q̂πMδ
(s, a) = inf

p∈P̂(δ)
Ep

[
r1 +

∞∑
t=2

γt−1 (rt + α · H (π (st))) | π, s1 = s, a1 = a

]
.

Define V̂ ⋆Mδ
= maxπ∈Π V̂

π
Mδ

and π̂⋆Mδ
∈ argmaxπ∈Π V̂

π
Mδ

.

The estimate T̂ πδ is defined as

T̂ πδ Q(s, a) = E[r] + γ · sup
β≥0

{
−β log

(
Ep̂0s,a

[
exp

(
−V (s′)

β

)])
− βδ

}
,

Assumption D.2. Assume KL(p0s,a∥p̂0s,a) ≤ ε21 and supp(p0s,a) = supp(p̂0s,a).

By Pinsker’s inequality, TV(p0s,a, p̂
0
s,a) ≤ 1

2

√
KL(p0s,a∥p̂0s,a) ≤ 1

2ε1.

Bound of ∥T̂ πδ Q(s, a)− T πδ Q(s, a)∥.
Lemma D.3. Under Assumption D.2,

∥T̂ πδ Q(s, a)− T πδ Q(s, a)∥ ≤ 2γε1
Rmax + α log |A|

(1− γ)δ
e(Rmax+α log |A|)/(1−γ)β .

Proof. As we defined in Section 3.2,

f((s, a), β) := −β log
(
Ep0s,a

[
e−V (s′)/β

])
−βδ, f̂((s, a), β) := −β log

(
Ep̂0s,a

[
e−V (s′)/β

])
−βδ.

From (Xu 2023, Proposition 5), the maximums of f((s, a), β) and f̂((s, a), β) are achieved at
β⋆, β̂⋆ ∈ [0, Vmax/δ], that is,

T πδ Q(s, a) = E[r] + γ sup
β≥0

f((s, a), β) = E[r] + γ sup
β∈[0,Vmax/δ]

f((s, a), β),

T̂ πδ Q(s, a) = E[r] + γ sup
β≥0

f̂((s, a), β) = E[r] + γ sup
β∈[0,Vmax/δ]

f̂((s, a), β).

Hence, ∣∣T̂ πδ Q(s, a)− T πδ Q(s, a)
∣∣ ≤ γ sup

β∈[0,Vmax/δ]

∣∣f̂((s, a), β)− f((s, a), β)∣∣.
Note that supp(p0s,a) = supp(p̂0s,a), which implies that Fp(0) = essinfs′∼p0s,aV (s′) =

essinfs′∼p̂0s,aV (s′) = Fp̂(0). Now, we can assume that the optimal β⋆, β̂⋆ is achieved in [β, Vmax/δ],

where β = min{β⋆/2, β̂⋆/2, 1/2}.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Then, we aim to bound the supremum of
∣∣f̂((s, a), β)− f((s, a), β)∣∣ over the interval [β, Vmax/δ].

Since log x ≤ x− 1 when x ≥ 1, we have

|f̂((s, a), β)− f((s, a), β)| = β
∣∣∣log (Ep̂0s,a[e−V (s′)/β

])
− log

(
Ep0s,a

[
e−V (s′)/β

])∣∣∣
≤ Vmax

δ

∣∣∣Ep̂0s,a[e−V (s′)/β
]
− Ep0s,a

[
e−V (s′)/β

]∣∣∣
min

{
Ep̂0s,a

[
e−V (s′)/β

]
,Ep0s,a

[
e−V (s′)/β

]} .
Since TV(p0s,a, p̂

0
s,a) ≤ ε1 and Vmin ≥ 0, we have∣∣∣Ep̂0s,a[e−V (s′)/β

]
− Ep0s,a

[
e−V (s′)/β

]∣∣∣ = ∣∣∣ ∑
s′∈S

(
p̂0s,a(s

′)− p0s,a(s′)
)
e−V (s′)/β

∣∣∣
≤

∑
s′∈S

∣∣∣p̂0s,a(s′)− p0s,a(s′)∣∣∣e−Vmin/β ≤ 2TV(p0s,a, p̂
0
s,a) ≤ ε1.

In addition,
min

{
Ep̂0s,a

[
e−V (s′)/β

]
,Ep0s,a

[
e−V (s′)/β

]}
≥ e−Vmax/β .

Thus, we obtain

|f̂((s, a), β)− f((s, a), β)| ≤ ε1
Vmax

δ
eVmax/β , where Vmax =

Rmax + α log |A|
1− γ

.

Combining this with the earlier inequality gives∥∥T̂ πδ Q(s, a)− T πδ Q(s, a)
∥∥ ≤ γε1Rmax + α log |A|

(1− γ)δ
e(Rmax+α log |A|)/(1−γ)β := ε2.

Bound of ∥Q̂πMδ
− QπMδ

∥. For any π ∈ Π, let Qk+1 = T πδ Qk, Q̂k+1 = T̂ πδ Q̂k, and Q̂0 = Q0.
By Proposition 3.4, we know that Qk will converge to the DR soft Q-value QπMδ

, which is the fixed
point of Tπδ . That is, Tπδ Q

π
Mδ

= QπMδ
and Qk → QπMδ

. Similarly, there exists a fixed point of T̂πδ
such that T̂πδ Q̂

π
Mδ

= Q̂πMδ
and Q̂k → Q̂πMδ

. Then

∥Q̂πMδ
−QπMδ

∥ = ∥T̂πδ Q̂πMδ
− Tπδ QπMδ

∥
= ∥T̂πδ Q̂πMδ

− Tπδ Q̂πMδ
+ Tπδ Q̂

π
Mδ
− Tπδ QπMδ

∥
≤ ε2 + γ∥Q̂πMδ

−QπMδ
∥

=⇒ ∥Q̂πMδ
−QπMδ

∥ ≤ ε2
1− γ

.

Regret bound. We define the updating policy as

π̂k+1 = argmin
π∈Π

DKL

π(· | s)
∥∥∥∥∥∥
exp

(
1
α Q̂

π̂k

Mδ
(s, ·)

)
Z π̂k(s)

 , k = 0, 1, · · ·

By Proposition 3.6, the policy sequence {π̂k} converges to the optimal policy π̂⋆Mδ
under the estimate

DR soft policy iteration as k →∞.

For each state s ∈ S, we have V ⋆Mδ
(s)− V

π̂⋆
Mδ

Mδ
(s) ≥ 0. By definition, V̂ ⋆Mδ

(s) = V̂
π̂⋆
Mδ

Mδ
(s). Then,

we have

V ⋆Mδ
(s)− V

π̂⋆
Mδ

Mδ
(s) ≤

∣∣∣V ⋆Mδ
(s)− V̂ ⋆Mδ

(s)
∣∣∣+ ∣∣∣∣V̂ π̂⋆

Mδ

Mδ
(s)− V

π̂⋆
Mδ

Mδ
(s)

∣∣∣∣
=

∣∣∣∣sup
π
V πMδ

(s)− sup
π
V̂ πMδ

(s)

∣∣∣∣+ ∣∣∣∣V̂ π̂⋆
Mδ

Mδ
(s)− V

π̂⋆
Mδ

Mδ
(s)

∣∣∣∣
≤ sup

π

∣∣∣V πMδ
(s)− V̂ πMδ

(s)
∣∣∣+ ∣∣∣∣V̂ π̂⋆

Mδ

Mδ
(s)− V

π̂⋆
Mδ

Mδ
(s)

∣∣∣∣
≤ 2 sup

π

∣∣∣V πMδ
(s)− V̂ πMδ

(s)
∣∣∣

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Thus,

RMδ
(π̂⋆Mδ

) =

∥∥∥∥V ⋆Mδ
− V

π̂⋆
Mδ

Mδ

∥∥∥∥
∞
≤ 2 sup

π

∥∥∥V πMδ
− V̂ πMδ

∥∥∥
∞
≤ 2 sup

π

∥∥∥QπMδ
− Q̂πMδ

∥∥∥
∞
≤ 2ε2

1− γ
.

32

	Introduction
	Related Works

	Formulation
	Notation and Basics of Soft Actor-Critic
	Robust Markov Decision Process

	Algorithm: Distributionally Robust Soft Actor-Critic
	Distributionally Robust Soft Policy Iteration
	Solving Dual Optimization using Generative Model
	Distributionally Robust Soft Actor-Critic

	Experiments
	Settings
	Performance Analysis
	Ablation Studies

	Conclusions
	Discussion
	Necessity of Generative Model
	Algorithm Details

	Proofs
	Proof of Proposition 3.3
	Proof of Proposition 3.4
	Proof of Proposition 3.5
	Proof of Theorem 3.6
	Proof of Proposition 3.7

	Experiment Details
	More Setting details
	Extra Experiment Results
	Ablation Study Details

	Regret Bound

