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ABSTRACT

We introduce a framework to address the problem of real-time joint estimation
of surface geometry and its attributes (normals and textures) from neural SDFs.
This problem was only partially approached by previous works, which do not
support attributes nor dynamic surfaces in real-time. The framework is built on
the nesting condition, which establishes a criteria for the neighborhoods of zero-
level sets of a small sequence of neural SDFs to be nested. This allows mappings
between such neighborhoods, enabling the definition of algorithms to use multiple
neural SDFs to increase sphere tracing performance, while being able to compute
the surface normals efficiently, and to map attributes between the surfaces. This
framework does not use spatial data-structures and its components, besides
real-time rendering of dynamic neural SDFs, can be used to augment meshes with
smooth neural normals and textures. Our GEMM-based normal computation
does not depend on auto-differentiation nor computational graphs, resulting in
a performance improvement.

1 INTRODUCTION

Neural signed distance functions (SDFs) are an emerging model representation in Computer Graphics.
They are coord-based neural networks approximating SDFs of surfaces, which can be rendered by
finding their zero-level sets. Sphere tracing (ST) (Hart et al., 1989; Hart, 1996) is a standard algorithm
for that task. It depends on evaluating the SDF many times along each view ray, which may be
prohibitive in a real-time rendering context if the SDF is neural. Additionally, after estimating the
hit points, it is necessary to compute their normals for the light simulation. Auto-differentiation
is employed when using neural SDFs, a process that requires a computational graph, which may
be unavailable in a CUDA renderer, and imposes additional overhead. Finally, a complete 3D
rendering pipeline should consider textures. However, the current literature is still lacking in works
that approach this component for level sets of neural SDFs in a real-time context.

An alternative to render neural SDFs is to extract a triangle mesh using marching cubes (Lorensen &
Cline, 1987). However, due to the non-real-time nature of marching cubes, its application may be
prohibitive in certain contexts involving neural SDFs. For instance, rendering dynamic SDFs requires
mesh extraction at each time instant of the animation, posing a memory challenge if performed as
preprocessing (extracted meshes use hundreds of MB in high resolutions while neural SDFs use
a few KB). The performance is also a concern when surfaces are extracted while the animation
is playing. Additionally, the smooth nature of the level sets of neural SDFs, which is a desired
property in rendering, may be compromised by discretizing them into triangle meshes. ST offers a
solution to capture this smoothness. The algorithm is employed for rendering complex shapes, such as
fractals (Hart et al., 1989) and may use recent ray tracing hardware (da Silva et al., 2021). Advancing
neural SDF rendering through ST is an important topic rooted in classic Computer Graphics.

In this work, we approach the problem of real-time rendering of level sets of dynamic neural SDFs
including attributes (detailed normals and textures) using ST. That problem is crucial for Computer
Graphics because level sets of neural SDFs are becoming a common surface representation. Thus,
rendering them in real-time with support for dynamic behavior and attributes is an important task.
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We propose a framework to address the aforementioned problem. It is based on nested neighborhoods
and mappings between them. We define three algorithms: multiscale ST, neural attribute mapping,
and a GEMM-based computation of normals. The multiscale ST uses the neighborhoods to minimize
the overhead of iterations, using coarse versions of the SDF for acceleration. We provide experiments
showing that it allows rendering of level sets of neural SDFs in real-time. Additionally, our framework
supports dynamic SDFs, which would otherwise need level set extractions for each animation frame.
We also dismiss the need for spatial data structures.

To represent attribute functions on level sets of SDFs we define the neural attribute mapping. It maps
attributes from a neural SDF to another, usually a coarser one. This procedure is smooth and easy to
apply since it does not depend on parameterizations. As a result, it can also fetch attributes for discrete
triangle meshes or skip later ST iterations. The neural attribute mapping is well-defined because we
require the attribute function to be constant along the streamlines of the gradient of the SDF, restricted
to a (tubular) neighborhood. This mapping can also be used in addition to marching cubes, as the
neural attributes may be applied directly at the mesh vertices without any parameterization.

Finally, we propose a GEMM-based analytical computation of normals, which does not need auto-
differentiation nor a computational graph. We compute the surface normals in a modified forward
pass of the network without the dependence of a machine learning library to do so. That means the
algorithm may be used on a common renderer with access to a GEMM library.

2 RELATED WORK

Implicit functions are an essential topic in computer graphics (Velho et al., 2007). SDFs are important
examples of such functions (Bloomenthal & Wyvill, 1990) and arise from solving the Eikonal
problem (Sethian & Vladimirsky, 2000). Recently, neural networks have been used to model SDFs
(Park et al., 2019; Gropp et al., 2020). Sinusoidal networks (SIRENs) Sitzmann et al. (2020) are an
example of such, being multilayer perceptrons (MLPs) using sine as their activation function. In this
work, we adopt the framework for training SIRENs proposed in (Novello et al., 2022).

Marching cubes (Lorensen & Cline, 1987; Lewiner et al., 2003) and ST (Hart et al., 1989; Hart,
1996) are classical visualization methods for rendering level sets of SDFs. Neural versions of those
algorithms were proposed by (Liao et al., 2018; Chen & Zhang, 2021; Liu et al., 2020). While
the initial works in neural SDFs use marching cubes to generate visualizations of the resulting
level sets (Gropp et al., 2020; Sitzmann et al., 2020; Park et al., 2019), recent performance-driven
approaches have been using ST, since no intermediary representation is needed for rendering (Davies
et al., 2020; Takikawa et al., 2021). Our proposed multiscale ST considers a similar path.

Surface representations and rendering: Recent works propose (neural) surface representations
disentangling base geometry and details. Wang et al. (2022) describe a representation using base
and displacement networks to compute a final detailed surface, which are extracted via marching
cubes for rendering. Morreale et al. (2022) employ coord-based neural networks to model surfaces
parametrically. In this case, the networks are used to represent the surface parameterizations.
Differently from our approach, those methods do not deal with the rendering problem, but establish
surface representations. Sharp & Jacobson (2022) describe a way to perform geometric queries for
neural implicit surfaces using range analysis. One of those queries is ray casting to render surfaces.
However, the approach is not real-time (evaluations are in the order of seconds). None of those
approaches support dynamic surfaces nor textures.

Real-time neural SDFs: Fast inference is needed to sphere trace neural SDFs in real-time. Davies
et al. (2020) show that this is possible using General Matrix Multiply (GEMM) (Dongarra et al., 1990;
Müller, 2021), but the capacity of their networks does not represent geometric detail. Other works
in neural SDFs store features in the nodes of octrees (Takikawa et al., 2021; Martel et al., 2021),
or limit the frequency band in training as in BACON (Lindell et al., 2021). However, octree-based
approaches cannot directly handle dynamic models. NGLOD (Takikawa et al., 2021) is the reference
real-time approach for rendering neural SDFs. It uses a sparse voxel octree (SVO) to represent the
neural SDF and render its zero-level set using a sparse ST algorithm. Specifically, the vertices of
the voxels store features. Then for a point p and a level L of the SVO, the features are trilinearly
interpolated inside each voxel containing p up to the level L. The resulting L interpolated points are
summed and passed as input to a neural network fθL . Thus, besides the SVO structure, NGLOD uses
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a sequence of L networks to represent the levels of detail. Moreover, the interpolation may result in
neural SDFs with non-continuous gradients at the voxels boundaries leading to discretization artifacts
(see Sec. 5.1). Additionally, NGLOD does not address real-time rendering of dynamic surfaces nor
textures as our method does. Our approach supports continuous normals, by leveraging sinusoidal
networks to fit each level of the SDFs using (Novello et al., 2022). Additionally, we use the extension
in (Novello et al., 2023) to train dynamic SDFs.

Our approach is flexible regarding the surface representation which is uncoupled from the rendering.
Given a neural SDF parameterized by BACON, or a sequence of SIRENs representing level-of-detail,
our method renders them without additional training (Sec. 3.3). On the other hand, rendering using
NGLOD would require the computation of the SVO and training the whole sequence of MLPs fθL .

Attribute mapping: Normal mapping (Cohen et al., 1998; Cignoni et al., 1998) is a classic method to
transfer detailed normals between meshes, inspired by bump mapping (Blinn, 1978) and displacement
mapping (Krishnamurthy & Levoy, 1996). Besides depending on interpolation, normal mapping
also suffers distortions of the parameterization between meshes, which are assumed to have the
same topology. Using the smooth properties of neural SDFs allows us to map the gradient of a finer
neural SDF to a coarser one. This mapping considers a volumetric neighborhood of the coarse level
set instead of parameterizations not relying on interpolations like the classic one. Inspired by the
classical approach in (Bertalmıo et al., 2001), we define the attribute function on a neighborhood of a
the zero-level set of a surface by considering it constant along the normals.
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Figure 1: Overview. Multiscale ST:
to sphere trace S2 we first sphere
trace the boundary of a neighbor-
hood of S1 (gray), resulting in q1.
Then we continue to sphere trace S2,
reaching q2. Neural attribute map-
ping: since q2 belongs to a (tubu-
lar) neighborhood of S, we evaluate
the normal N at q2 of a parallel sur-
face of S (red dotted). These sur-
faces share the same normals. Tex-
ture color is acquired by making it
constant along the line q + tN .

Figure 2: Illustration of a ray inter-
secting a surface S nested in a neigh-
borhood of another surface.

Texture mapping (Catmull, 1974) is a technique for cost-
effective rendering that involves mapping images onto surfaces
using parameterizations. In the domain of neural rendering,
Texture Fields (Oechsle et al., 2019) shares similarities with
our neural attribute mapping but differs in input and color
spaces. Our method processes a mesh with UV-mapped tex-
tures, while Texture Fields demand a 3D shape and an object
image, using view dependent depth map rendering. Our ap-
proach uses a surface’s tubular neighborhood, to define color
along normals and is independent of viewpoints. Texture
Fields, though effective, is non-real-time due to its use of 4 or
6 ResNet blocks and complex networks for latent code gen-
eration, surpassing the complexity of Texture Fields itself. In
contrast, our method adopts simpler architectures like MLPs
for efficient representation. GET3D (Gao et al., 2022) uses
Texture Fields for the textures in its 3D model generation,
sharing an analogous contextualization.

3 NESTED
NEIGHBORHOODS OF NEURAL SDFS

Given the iterative nature of ST, a way to increase its perfor-
mance is to optimize or avoid iterations. We propose to use
neural SDFs with a small number of parameters to approxi-
mate earlier iterations and mapping the normals and the texture
of the desired neural SDF, avoiding later iterations. Both tasks
can be accomplished by mapping neural SDFs using nested
neighborhoods.

3.1 OVERVIEW

The basic idea comes from the following fact: if the zero-level
set of a neural SDF f is contained in a neighborhood V of the zero-level set of another neural SDF,
then we can map f into V . We use an example with three SDFs as an overview and follow the
notation in Fig. 1. Let S1, S2, S be surfaces pairwise close with SDFs h1, h2, f sorted by complexity.
We use S1 and S2 to illustrate the multiscale ST and S to illustrate the attribute mapping.
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Multiscale ST: Suppose that the ray p+ tv, with origin at a point p and direction v, intersects S2 at a
point q2. To compute q2, we first sphere trace the boundary of a neighborhood of S1 (gray) containing
S2, by using f1. This results in q1. Then we continue to sphere trace S2 using h2, reaching q2. In
other words, we are mapping the values of h2 to the neighborhood of S1. Using induction allows us
to extend this idea to a sequence of SDFs (Sec. 3.2).

Neural Attribute Mapping: For shading, we need a normal at q2, obtained by evaluating N2 =
∇h2(q2). Instead, we propose to pull the finer details of S to S2 to increase fidelity. This is done by
mapping the normals from S to S2 using N = ∇f(q2). To justify this choice, note that q2 belongs to
a neighborhood of S. Thus, N is the normal of S at its closest point q = q2 − ϵN , where ϵ is the
distance f(q2) from q2 to S. By doing so, we transfer the normal N of S at q to q2. Observe that
N is also the normal of the ϵ-level set of f at q2 (red dotted). Similarly, the texture color is mapped
from q to q2 by making it constant along q + tN between q and q2.

3.2 DEFINITION

A neural SDF f : R3 → R is a smooth neural network such that |∇f | ≈ 1. We call its zero-level set
a neural surface and denote it by S. In this work, we deal with the problem of rendering S using the
sphere tracing algorithm. Thus, given a point p0 and a direction v, we must iterate pi+1 = pi+vf(pi).
However, evaluating f(pi) may be prohibitive for real-time applications, thus we use a coarse neural
SDF (with less complexity) h : R3 → R for the early iterations of the algorithm; h ≈ f .

For the above proposal to work, we need S to be nested in a δ-neighborhood of h−1(0), i.e. S ⊂[
|h| ≤ δ

]
. Thus, we ray trace h−1(δ) iterating pi+1 = pi + vh(pi) and continue the iterations in the

δ-neighborhood using the target SDF f (see Fig 2). Therefore, if the ray p0 + tv intersects S, the
above procedure converges.

To use more neural SDFs we need an additional condition. Specifically, let h1 and h2 be coarser
neural SDFs (sorted by complexity) approximating f . To extend the above procedure to work on the
sequence h1, h2, f , we can first sphere trace a coarser level set h−1

1 (δ1), then, h−1
2 (δ2), and finally,

S. For such algorithm to converge, we need
[
|h2| ≤ δ2

]
to be nested in

[
|h1| ≤ δ1

]
, otherwise, we

may miss the hit point (See Fig. 3 (b)). The choice of δ1 and δ2 values plays an important role on
rendering. Having different values for them is also necessary to avoid issues (see Fig. 3).

Figure 3: Practical δi choice. The number of ST iterations is fixed. (a) δi are equal to 0.02, resulting
in holes. More iterations would be needed using the finer (more complex) SDF to fill those holes,
defeating the idea to minimize iterations. (b) δi are equal to 0.001. Now the holes are closed, but
parts of the silhouette are missing (notice the hand). (c) δ1 = 0.02 and δ2 = 0.006. In this case the
nesting condition is satisfied, implying in no holes and a better silhouette capture.

In practice, we may choose how to use functions h2 and f to adapt to a specific performance budget.
For example, we may choose not to iterate using h2, but directly map the normals of the surface in f
to the surface in h1. This setup relies on sphere tracing iterations using the coarse SDF, decreasing
the cost per iteration. Another possible case is to use h2 for a better surface approximation, and map
normals of the surface of f as before. We can also use h2 and f for sphere tracing and do not perform
normal mapping. This setup has the best silhouette. Section 5.2 presents an evaluation of those cases.

We can extend these sequences to support evolutions of neural SDFs. For this, suppose that the
sequence of networks h1, h2, f , has the space-time R3×R as domain. Then, we require the sequence
of neural SDFs h1(·, t), h2(·, t), f(·, t) to satisfy the above nesting condition, for each t. Varying t
animates the sequence. See Appx A.2 for more details on training dynamic SDFs.
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3.3 NESTING THE NEIGHBORHOODS

This section describes approaches to create sequences of neural SDFs with nested neighborhoods. The
objective is to train a sequence of neural SDFs sorted by inference time and to find small upper-bound
thresholds that ensure the nesting condition.

BACON (Lindell et al., 2021) is a multiresolution network to represent neural SDFs. Its LODs
are sorted by inference time and can be used to define our neural SDFs. Specifically, let h1 and
h2 be LODs of a BACON f , and ϵ > 0 be a small number. Defining ε1 = |h1−h2|∞+ ϵ and
ε2 = |h2−f |∞+ϵ results in |h1 − h2|∞<ε1 and |h2 − f |∞<ε2. Then, Prop 1 gives the thresholds δi
implying that h1, h2 and f satisfy the nesting condition.
Prop. 1. Let h and f be neural SDFs satisfying |h− f |∞ < ε for ε>0. Thus, for each δ > 0 we
have that

[
|h| < δ

]
⊂

[
|f | < ε+ δ

]
.

Prop 1 is a consequence of the following fact: for each p ∈
[
|h| < δ

]
, we have

|f | (p) = |f(p)− h(p) + h(p)| ≤ |f(p)− h(p)|︸ ︷︷ ︸
<ε

+ |h(p)|︸ ︷︷ ︸
<δ

< ε+ δ.

MLPs for a single surface: By the spectral bias (Rahaman et al., 2019), MLPs tend to learn lower
frequencies first. Thus, we propose training MLPs h1 and h2 with increasing capacity and frequency
range (SIREN’s ω0) to approximate the finer neural SDF f , resulting in a sequence of neural SDFs
sorted by inference time and by detail representation capacity. As in the BACON case, we can define
thresholds δi using Prop 1 resulting in a sequence of nested neural SDFs h1, h2 and f .

To compute δj we need to evaluate the infinity norm on the training domain of the neural network. In
practice, we approximate it using the maximum absolute difference in a sample pi (Sec. 5.2).

We train h1, h2, f from fine to coarse and use the previously trained SDFs as ground truth for the
next. That is, we consider f as ground truth for h2, which in turn is ground truth for h1. During
the training of h2, we evaluate |h2 − f |∞, and choose the training step with the smallest norm. We
do the same for h1. We note that the resulting norm |h2 − f |∞ is small during most of the training,
a consequence of |h2 − f |2 being a term in our loss function. Additionally, the above procedure
provides a nested sequence that gives a robust rendering. Besides the resulting deltas being small
(0.02 and 0.006 in Fig. 3), we note that decreasing them results in loss of silhouette (Fig. 3 (c)).

3.4 MULTISCALE SPHERE TRACING

Let f be a neural SDF, and {hi} be a sequence of m ≤ 2 auxiliary neural SDFs such that {hi}, f
is a nested sequence. Let p be a point and v be a direction, we define the multiscale ST (Alg. 1) to
approximate the intersection (if it exists) between S and γ(t) = p+ tv, with t > 0.

Specifically, we assume p /∈
[
|h1| ≤ δ1

]
. The multiscale ST is based on the fact that to sphere

trace S we can first sphere trace h−1
m (δm) using hm (Fig. 2). Lines 3-6 describe the ST of h−1

j (δj)
for j = 1, . . . ,m (line 1). If j = m we sphere trace S instead of its neighborhood (line 4). In the
dynamic case, the algorithm operates on time-dependent nested neural SDFs.

ALGORITHM 1: Multiscale ST
Input: Sequence of nested neural SDFs {hi}, f ,

point p, direction v, threshold ϵ>0
Output: End point p

1 for j = 1, . . . ,m do
2 t = +∞;
3 while t > ϵ do
4 t = (j==m)?f(p):hj(p)− δj ;
5 p = p+ tv;
6 end
7 end

If γ ∩S ̸= ∅, the ST approximates the first hit
point between γ and S. This is due to the nesting
condition, which ensures that if γ∩S ̸=∅ implies
γ ∩ h−1

2 (δ2) ̸= ∅, and then γ ∩ h−1
1 (δ1) ̸= ∅.

For the inference of a neural SDF, in Line 4 of
Alg. 1, we use the GEMM alg. (Dongarra et al.,
1990) for each layer. To finish the rendering, we
need to compute the normals and the textures.

4 NEURAL ATTRIBUTE MAPPING
Let S be a surface nested in a δ-neighborhood of the zero-level set of a neural SDF h, that is,
S ⊂

[
|h| ≤ δ

]
. Let g :

[
|h| ≤ δ

]
→ C be an attribute function represented by a neural network. The

neural attribute mapping assigns to each p ∈ S the attribute g(p). If ∇h has no critical points in[
|h| ≤ δ

]
, we can connect p to a point q ∈ h−1(0) by integrating −∇h. We assume that the function

g is constant along the resulting path. This property is characterized by ⟨∇g,∇h⟩ = 0 which we use
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as a constraint during the training of g. Therefore, such a procedure maps the attributes defined on
h−1(0) to the surface S. Next, we present two applications: normal mapping and texture mapping.

4.1 NEURAL NORMAL MAPPING

We introduce neural normal mapping as an example of attribute mapping. Assume f to be a finer
neural SDF having S nested on its δ-neighborhood. The neural normal mapping assigns to each p ∈ S
the attribute g(p) :=∇f(p). This is a restriction of ∇f to S and maps the normal of f−1(0), along the
minimum path connecting it to p. The attribute g is constant along the path since ∥∇f∥=1 (Fig. 1).

We explore two cases. First, let S be a triangle mesh. We use the neural normal mapping to transfer
the detailed normals of the level sets of f to the vertices of S. This approach is analogous to the classic
normal mapping, which maps detailed normals stored in textures to meshes via parameterizations.
However, practical UV parameterization demands highly-manual UV unwrapping. Since our method
is volumetric and automatic such parameterizations are not needed (see Fig. 7 - middle).

For the second case, let S be the zero-level set of another coarse neural SDF. We can use the neural
normal mapping to avoid the overhead of additional ST iterations (see Fig. 7 - left). In this case, we
do not need to extract a surface using marching cubes, which may generate meshes with prohibitive
resolutions for real-time applications and cannot extract animations from dynamic neural SDFs.
Animated neural SDFs are supported by mapping the normals of f(·, t) onto the animated surface.

4.2 NEURAL TEXTURE MAPPING

We follow the above notation and consider S to be a surface nested in the δ-neighborhood of a neural
SDF f . We define an attribute function g : R3 → C to encode a texture on the δ-neighborhood of f . In
this case, we consider the codomain C to be the RGB space. We denote the attribute mapping associated
to the triple {S, f, g} a neural texture mapping. Such mapping is responsible for transferring the
texture defined on the δ-neighborhood to the surface S. To train the set of parameters ϕ of the network
g we use the following loss functional: L(ϕ) =

∫
f−1(0)

(g − g)2dx+
∫[

|f |≤δ
]⟨∇g,∇f⟩2dx. where

the first term forces g to fit to the ground-truth texture g, and the second term asks for g to be constant
along the gradient paths, that is, it regularizes the network on the δ-neighborhood of f .

4.3 GEMM-BASED ANALYTICAL NORMAL CALCULATION FOR MLPS

Figure 4: Rendering of the normals calculated us-
ing our approach. They are naturally smooth as a
consequence of working on the continuous setting.

We propose a GEMM-based analytical compu-
tation of normals, which are continuous and do
not need auto-differentiation. This results in
smooth normals, as shown in Fig 4.

Our derivation develops directly from the chain
rule applied to the MLP. Recall that a MLP with
n− 1 hidden layers has the following form:

f(p)=Wn ◦ fn−1 ◦ · · · ◦ f0(p) + bn, (1)

where fi(pi)=φ(Wipi+bi) is the i-layer. The activation φ is applied on each coordinate of the linear
map Wi :RNi→RNi+1 translated by bi∈RNi+1 . The gradient of f is given using the chain rule:

∇f(p)=Wn · Jfn−1(pn−1) · · · · · Jf0(p), with Jfi(pi) = Wi ⊙ φ′[ai| · · · |ai] (2)

J is the Jacobian, pi :=fi−1◦· · ·◦f0(p), ⊙ is the Hadamard product, and ai=Wi(pi)+bi. Eq. 2 is
used in (Gropp et al., 2020; Novello et al., 2022) to compute the level set normals analytically.

We now use Eq. 2 to derive a GEMM-based algorithm for computing the normals of Sθ in real-time.
Those normals are given by ∇f which is a sequence of matrix multiplications. These multiplications
are not appropriate for a GEMM setting because Jf0(p) ∈ R3×N1 . The GEMM algorithm organizes
the input points into a matrix, where its lines correspond to the points and its columns organize
them and enable parallelism. We can solve this problem using three GEMMs, one for each normal
coordinate. Thus, each GEMM starts with a column of Jf0(p), eliminating one of the dimensions.
The resulting multiplications can be asynchronous since they are completely independent.
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The j-coord of ∇f is given by Gn=Wn ·Gn−1, where Gn−1 is given by iterating Gi=Jfi(pi)·Gi−1,
with the initial condition G0 = W0[j]⊙ φ′(a0). The vector W0[j] denotes the j-column of W0. We
use a kernel and a GEMM to compute G0 and Gn. For Gi with 0<i<n, observe that

Gi=(Wi ⊙ φ′ [ai| · · · |ai]) ·Gi−1=(Wi ·Gi−1)⊙ φ′(ai).

The first equality comes from Eq. 2 and the second from a commutative property of the Hadamard
product. The second expression needs fewer computations and is solved using a GEMM followed by
a kernel. Please refer to Appx A.1 for a detailed algorithm.
5 EXPERIMENTS

Model Nets Dist.

Arm. (64,1) 0.0035
(256,3) 0.0021

Bunny
(64,1) 0.0024
(256,1) 0.0019
(256,3) 0.0021

Buddha
(64,1) 0.0051
(256,1) 0.0019
(256,3) 0.0016

Lucy
(64,1) 0.0071
(256,1) 0.0024
(256,3) 0.0017

Table 1: Hausdorff dist. be-
tween the trained models and
the ground-truth.

Neural Armadillo Training (s)
(64, 1) 23.6
(256, 2) 95.1
(256, 3) 128.7
(64, 1) ▷ (256, 2) 118.7
(64, 1) ▷ (256, 3) 152.3
IDF 100.1
NGLOD 1628.0

Table 2: Although our method
is real time for rendering, its
training time is comparable to
IDF. IDF depends on march-
ing cubes to render, losing the
smooth properties of neural
SDFs. Our training is also
faster than NGLOD.

We compare each part of our framework against SOTA methods and
present ablation studies. For the sphere tracing related experiments,
we fix the number of iterations for better control of parallelism. All
experiments are conducted on an NVidia Geforce RTX 3090.

We use a simplified notation to refer to the MLPs. Here, (64, 1)▷
(256, 3) means a neural SDF sequence with a MLP with one 64×64
matrix (2 hidden layers with 64 neurons), and a MLP with three
256×256 matrices (4 hidden layers with 256 neurons). Another
example: (64, 1) is a single MLP.

5.1 COMPARISONS

Surface: Our first set of experiments compare our neighborhood-
nesting approach against SOTA methods for surface representation
and rendering, namely implicit displacement fields (IDF) (Wang
et al., 2022), and NGLOD (Takikawa et al., 2021). IDF has SOTA
quality for surface representations that disentangle shape and detail.
NGLOD is the reference for real-time rendering of neural SDFs.

Table 2 compares the training times. Even though our rendering is
real-time, we have comparable training times against IDF, which
needs to extract a parametric surface before rendering. Our training
is one order of magnitude faster than NGLOD.

Figure 5 shows a rendering comparison. 5a uses the real-time config-
uration for NGLOD, recommended by the authors in the repository
documentation. As discussed in Sec. 2, its formulation results in
non-continuous normals, causing discretization artifacts. We also present a non-real-time LOD 5
configuration (5b), which has less discretization artifacts. 5c shows our real-time neural normal
mapping applied into a coarse surface. Since our approach works on the smooth setting, we support
smooth normals. Fig 5d shows the surface generated by IDF, after a surface extraction using marching
cubes with 512 resolution. Note that IDF and NGLOD do not support dynamic surfaces nor textures.
IDF would need to train a surface and extract it for each time step to be dynamic. Analogously,
NGLOD would need to create octrees and train surface extractors for each time step. Fig 8 shows
that our approach runs in real time for dynamic surfaces.

Normals: We compare our GEMM-based normal calculation against PyTorch’s autograd. As shown
in Table 4 (Appx A.1), our technique performs around 2× faster. We tested 6 different networks
trained for Armadillo, Happy Buddha, and Lucy, varying between 2 and 3 hidden layers.

Textures: Since our approach is the first to address textures for neural SDFs in real-time, we compare
against the ground-truth meshes with UV-textures.Table 7 shows the MSE between the images
generated by our method and the ground-truth. Please refer to Fig 10 (Appx A.3) for the images used
to compute the MSEs. Fig 6 shows the neural texture mapping applied to coarse surfaces.

Since our method defines the textures in a neighborhood of the surface, no parameterization or UV
map is needed. Inference is simple and consists of a single MLP evaluation for a batch of points. The
results show that our approach achieves good appearance while uncoupling it from geometry in a
compositional manner.

5.2 ABLATION STUDIES

7
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Figure 5: Render compari-
son.

(a) NGLOD LOD 0 (real-
time). Note the discretiza-
tion artifacts (mosaic ap-
pearance).

(b) NGLOD LOD 5 (non-
real-time). Less artifacts.

(c) Ours (real-time). Nor-
mal mapping of a fine
(256, 3) SDF into a coarse
(64, 1) SDF. Note the
smooth normals.

(d) IDF (not real-time). Sur-
face extracted using MC.

Infinity norm and surface quality: We evaluate the infinity norm ap-
proximation (Sec. 3.3). We performed experiments to estimate it by
varying the sample sizes (1K, . . ., 200K) used in the approximation. We
sampled these points in a ∆-neighborhood of the zero-level set. We use
∆=0.1, · · · , 0.5 which provides appropriate neighborhoods, since our
training domain is restricted to [−1, 1]3. For each measurement, we sam-
ple a batch of points uniformly. The reported distances are the averages
of the distances computed over 1000 evaluations of the above tests for
each case. Table 5 (in Appx A.3) shows that the computation is robust
and does not require a large sample.

To evaluate the efficiency of coarse neural SDFs to represent the ground-
truth SDFs, Table 1 shows the Hausdorff distances between their neural
level sets and the original meshes. All distances are within the third dec-
imal digit, which means they are very close to the ground-truth. This fact
corroborates our assumption that coarse surfaces in nested neighborhoods
can be used to accelerate their rendering.

Neural normal mapping and multiscale ST: Regarding image qual-
ity/perception, Fig. 7 shows the case where the coarse surface is the
zero-level of a neural SDF (left) and when it is a triangle mesh (middle).
An overall evaluation of the algorithm with other models is given in Fig. 9
(Appx A.3). In all cases, normal mapping increases fidelity.

The quantitative results corroborate that statement. Table 6 in Appx A.3
shows time/memory/MSE measured in a Python render. Note that the
normal mapping increases fidelity (up to 30% MSE improvement in
comparison with the coarse Armadillo) and speed up the rendering (up
to 6x improvement in comparison with the baseline).

The result may be improved using the multiscale ST, as shown in Fig 7
(right). Adding ST iterations using a neural SDF with a better approxima-
tion of the surface improves the silhouette. This is aligned with the results
presented in Table 6. The last two rows of each example show cases with
iterations in the second SDF, up to 20x improvement in comparison with
the pure normal mapping for Lucy.

Figure 6: Neural texture mapping. All networks are (256, 3), except for the the earth, which is
(512, 3). The surfaces are marching cubes of (64, 1) SDFs, except for the bunny, which is (128, 2).
No parameterization or UV map is needed.

Real-time renderer: We evaluate a GPU version implemented in a CUDA renderer, using neural nor-
mal mapping, multiscale ST, and the GEMM-based analytical normal calculation (implemented using
CUTLASS). Table 3 shows the results. Notice that the framework achieves real-time performance
and that using neural normal mapping and multiscale ST improves performance considerably.

Dynamic SDFs: Fig. 8 shows an evaluation of a dynamic SDF interpolating the Falcon and Witch.
The baseline neural SDF is (128, 2) and the coarse is (64, 1). The normal mapping case runs at 73
FPS using CUDA. See the supp. video for the animation and additional examples.

6 CONCLUSION

We presented a novel approach for real-time joint estimation of surface geometry and its attributes
(normals and textures). It supports dynamic SDFs and does not need spatial data structures. The

8
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Figure 7: Left: neural normal mapping into a neural SDF surface. First, the coarse (64, 1) SDF. Then,
the neural normal mapping of the (256, 3) SDF into the (64, 1). Middle: neural normal mapping
into half of a triangle mesh. The normals of the (256, 3) SDF are used. The mesh is the marching
cubes of the (64, 1) SDF. The mean square error (MSE) is 0.00262 for the coarse case and 0.00087
for the normal mapping, an improvement of 3x. The baseline is the marching cubes of the (256, 3)
SDF. Right: Silhouette evaluation. First a (64, 1)▷(256, 3), then a (64, 1)▷(256, 2)▷(256, 3)
configuration. Notice how the silhouette improves with the additional (256, 2) level.

multiscale ST accelerates the surface evaluation, the neural attribute mapping transfers surface
attributes from a neural SDF to another surface, and the GEMM-based analytical normal computation
provides smooth normals without the need of auto-differentiation. Neural attribute mapping has
potential to impact 3D content generation workflows, since it does not need any parameterization
such as UV mapping. Model FPS Speedup Mem

(256,3) 19.8 1.0X 777
(64, 1) 128.8 6.5X 18
(64, 1) ▷ (256, 1) 73.1 3.7X 281
(64, 1) ▷ (256, 2) 53.0 2.7X 538
(64, 1) ▷ (256, 3) 41.6 2.1X 795
(64, 1) ▷ (256, 1) ▷ (256, 3) 39.1 2.0X 1058

Table 3: Real-time SIREN evaluations using our
GEMM normals in a CUDA renderer. The number
of iterations is 20 for the first neural SDF and 5
for the second in the last row. The last network is
used for normal mapping. Images are 512×512.
Memory is in KB. All cases using multiscale ST
and neural normal mapping result in speedups.

This approach opens paths for future works. One
possibility is exploring other attribute mappings,
such as BRDFs, and hypertextures. Any at-
tribute that lies in a neighborhood of a surface
is a potential candidate. Multiscale ST could
also probably be applied into neural SDF-based
3D reconstruction or inverse rendering tasks to
reduce the training time. Nested neighborhoods
could probably be adapted for unsigned distance
functions too. Improvements can be done for
further performance optimization. For example,
using fully fused GEMMs may decrease the overhead of GEMM setup (Müller, 2021). Approaches
to minimize parameters in the networks could also impact the performance.

Coarse

Neural normal mapping

Multiscale sphere tracing

Baseline

Coarse

Neural normal mapping

Multiscale sphere tracing

Baseline

Figure 8: Interpolating Falcon and Witch. Coarse: (64, 1), fine: (64, 1)▷ (128, 2), and baseline:
(128, 2). Note that the normal mapping and the multiscale ST increase fidelity. Running at 73 FPS.
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A APPENDIX

A.1 GEMM-BASED NORMAL COMPUTATION ALGORITHM

ALGORITHM 2: Normal computation
Input: neural SDF fθ , positions P
Output: Gradients ∇fθ(P )

1 for j = 0 to 2 (async) do
2 using a GEMM: // Input Layer
3 A0 = W0 · P + b0
4 using a kernel:
5 G0 = W0[j]⊙ φ′(A0); P0 = φ(A0)

// Hidden layers
6 for layer i = 1 to n− 1 do
7 using GEMMs:
8 Ai = Wi · Pi−1 + bi;

Gi = Wi ·Gi−1

9 using a kernel:
10 Gi = Gi ⊙ φ′(Ai); Pi = φ(Ai)
11 end
12 using a GEMM: // Output layer
13 Gn = Wn ·Gn−1

14 end

Algorithm 2 presents the gradient computation
for a batch of points as described in Section 4.3.
The input is a matrix P ∈ R3×k with columns
storing the k points generated by the GEMM
version of Algorithm 1. The algorithm outputs
a matrix ∇fθ(P ) ∈ R3×k, where its j-column
is the gradient of fθ evaluated at P [j]. Lines
2− 5 are responsible for computing G0, Lines
6 − 11 compute Gn−1, and Line 13 provides
the result gradient Gn. Table 4 shows a com-
parison between this algorithm and automatic
differentiation using pytorch.

A.2 NEURAL SDF TRAINING

For the sake of self-containment, we describe
how we train the neural networks used in our
experiments. The idea is to make an overview
of the established approaches we use.

Model Autograd Ours Resolution
Armadillo 256x2 0.007 0.003 512x512
Armadillo 256x2 0.024 0.010 1024x1024
Armadillo 256x3 0.010 0.005 512x512
Armadillo 256x3 0.025 0.012 1024x1024
Buddha 256x2 0.008 0.005 512x512
Buddha 256x2 0.021 0.014 1024x1024
Buddha 256x3 0.011 0.005 512x512
Buddha 256x3 0.024 0.012 1024x1024
Lucy 256x2 0.007 0.004 512x512
Lucy 256x2 0.021 0.012 1024x1024
Lucy 256x3 0.011 0.007 512x512
Lucy 256x3 0.025 0.015 1024x1024

Table 4: Runtime comparison, in seconds, between
Pytorch autograd and our algorithm to calculate
the normals.

Static surfaces: We apply the method described
in (Novello et al., 2022) to train a neural SDF.
Specifically, let S be a surface, and fθ : R3 →
R be a sinusoidal MLP. To compute the param-
eters θ such that f−1

θ (0) ≈ S, it is common to
consider the Eikonal problem:

1− ∥∇fθ∥ = 0 subject to fθ = 0 on S. (3)

Which asks for fθ to be the SDF of a set con-
taining S. It can be derived from Eq 3 that〈
∇fθ, N

〉
= 1 on S, which implies that ∇fθ

must be aligned with the normals of S. Then,
they use Eq (3) to define a loss function to train
fθ.

L(θ) =
∫
R3

(
1− ∥∇fθ∥

)2
dp+

∫
S

f2
θ +

(
1−

〈
∇fθ, N

〉)
dS.

Where the first term encourages fθ to be the SDF of a set X , the second term encourages X to contain
S and asks for the alignment between ∇fθ and the normal field of S.

Dynamic surfaces

We consider the approach in (Novello et al., 2023) to evolve the SDF g : R3 → R of the surface S.
For this, the authors considered the level set equation (LSE) (Sethian, 1999) to model the implicit
evolution of g. Thus, the domain of the neural SDFs must be extended to R3×R, where the parameter
t ∈ R controls the evolution. Specifically, they train fθ : R3 × R → R by forcing it to approximate a
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samples Delta dist samples Delta dist
1000 0.1 0.0075 5000 0.1 0.0077
1000 0.2 0.0107 5000 0.2 0.0107
1000 0.3 0.0113 5000 0.3 0.0117
1000 0.4 0.0117 5000 0.4 0.0118
1000 0.5 0.0125 5000 0.5 0.0118

10000 0.1 0.0076 50000 0.1 0.0073
10000 0.2 0.0110 50000 0.2 0.0103
10000 0.3 0.0113 50000 0.3 0.0118
10000 0.4 0.0127 50000 0.4 0.0117
10000 0.5 0.0121 50000 0.5 0.0118
100000 0.1 0.0073 200000 0.1 0.0076
100000 0.2 0.0107 200000 0.2 0.0109
100000 0.3 0.0118 200000 0.3 0.0126
100000 0.4 0.0129 200000 0.4 0.0121
100000 0.5 0.0121 200000 0.5 0.0125

Table 5: Evaluation of the sup norm approximation. We vary the sample of points, in a Delta-
neighborhood of the coarse zero-level set, for norm estimations. We also vary the Delta parameter to
verify the robustness computation regarding points far away from the zero-level set.

solution of the LSE which is given as follows:
∂fθ
∂t

+ v ∥∇fθ∥ = 0 in R3 × (a, b),

fθ = g on R3 × {0}.
(4)

This equation evolves the level sets of g towards their normals times a function v. The interval (a, b)
can be used to control the resulting neural animation St of S. As in the static case, the LSE defines a
loss function to train fθ.

L(θ) =
∫

R3×(a,b)

(
∂fθ
∂t

+ v ∥∇fθ∥
)2

dpdt

︸ ︷︷ ︸
LLSE(θ)

+

∫
R3×{0}

(
fθ − g

)2
dp

︸ ︷︷ ︸
Ldata(θ)

. (5)

The constraint LLSE forces fθ to satisfy the LSE and works as a regularization of fθ that requires it to
follow the underlying deformation. The constraint Ldata asks for fθ to satisfies fθ = g on R3 × {0}.

A.3 ADDITIONAL EXPERIMENTS

Surface representation ablation: Table 6 shows an extensive evaluation of the multiscale ST and
neural normal mapping algorithms. We highlight the neural normal mapping and multiscale ST cases,
which considerably improve the time and MSE performance, respectivelly.

Infinity norm computation: Table 5 shows the numbers used for the discussion in Section 5.1
about the computation of the infinity norm. The table shows that the computation is robust to
variations in the size of the neighborhood and sample size.

Broader perceptual evaluation: On the paper we exemplify results using one model for each
experiment. Fig. 9 shows a broader perceptual evaluation of the multiscale sphere tracing and the
neural normal mapping using several models. Fig. 10 also shows the images we use to calculate the
MSE to compare the neural texture mapping with the rendering baseline.

Image resolution ablation test: We perform quantitative evaluation tests, varying the image
resolution. This is shown by Tables 8 through 10. All of them have the same structure: the first
section is the coarse MLP, the second is the baseline MLP, the third is the multiscale sphere tracing
(MS), and the fourth is the normal mapping (NM). The second column shows the number of sphere
tracing iterations for each MLP, separated by commas in case the finer MLP is also iterated. We
highlight the time in the normal mapping section and the mean square error (MSE) in the multiscale
sphere tracing section to emphasize how those techniques impact the evaluation metrics.
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Coarse Normal mapping Multiscale ST Baseline

Figure 9: Comparison between our method and the SIREN baseline. The columns represent dif-
ferent configurations. From left to right: (64, 1), (64, 1) ▷ (256, 1) (Bunny and Dragon) and
(64, 1) ▷ (256, 2) (Happy Buddha and Lucy), (64, 1) ▷ (256, 3), and the baseline (256, 3).
The second column uses neural normal mapping and the third uses multiscale sphere tracing. Notice
that fidelity is improved in the second column and the third column refines the results.
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Baseline Ours

Figure 10: Images we use to calculate the MSE between the ground-truth textured meshes and our
approach.
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SIRENs Iters Time Mem MSE

A
rm

ad
ill

o

(256,3) 40 2.442 777 -
(64, 1) 40 0.298 18 0.00588
(64, 1)▷(256, 3) 40, 0 0.409 795 0.00452
(256, 3) 15 0.936 777 0.01237
(64, 1)▷(256, 3) 30,10 0.895 795 0.00746
(64, 1)▷(256, 3) 30,30 1.934 795 0.00057

B
ud

dh
a

(256,3) 40 2.228 777 -
(64,1) 40 0.299 18 0.00485
(64, 1)▷(256, 3) 40, 0 0.413 795 0.00441
(256,3) 15 0.928 777 0.00589
(64, 1)▷(256, 3) 30,10 0.893 795 0.00355
(64, 1)▷(256, 3) 30,30 1.945 795 0.00048

B
un

ny

(256,3) 40 2.237 777 -
(64,1) 40 0.287 18 0.00229
(64, 1)▷(256, 3) 40, 0 0.403 795 0.00191
(256,3) 15 0.928 777 0.00793
(64, 1)▷(256, 3) 30,10 0.886 795 0.00417
(64, 1)▷(256, 3) 30,30 1.920 795 0.00065

L
uc

y

(256,3) 40 2.239 777 -
(64,1) 40 0.312 18 0.00518
(64, 1)▷(256, 3) 40, 0 0.420 795 0.00470
(256,3) 15 0.941 777 0.00280
(64, 1)▷(256, 3) 30,10 0.927 795 0.00363
(64, 1)▷(256, 3) 30,30 1.977 795 0.00024

BACONs Iters Time MSE
(256,6) 100 10.067 -
(256, 2) 100 4.829 0.00473
(256, 2)▷(256, 6) 100,0 4.945 0.00309
(256, 2)▷(256, 6) 50,30 5.526 0.00061
(256, 2)▷(256, 6) 50,50 7.438 0.00040

(256,6) 100 9.851 -
(256, 2) 100 4.836 0.00455
(256, 2)▷(256, 6) 100,0 4.946 0.00284
(256, 2)▷(256, 6) 50,30 5.520 0.00086
(256, 2)▷(256, 6) 50,50 7.450 0.00077

(256,6) 100 9.861 -
(256, 2) 100 4.835 0.00458
(256, 2)▷(256, 6) 100,0 4.952 0.00260
(256, 2)▷(256, 6) 50,30 5.524 0.00025
(256, 2)▷(256, 6) 50,50 7.455 0.00013

(256,6) 100 9.871 -
(256, 2) 100 4.852 0.00400
(256, 2)▷(256, 6) 100,0 4.968 0.00207
(256, 2)▷(256, 6) 50,30 5.559 0.00023
(256, 2)▷(256, 6) 50,50 7.488 0.00018

Table 6: Evaluation of our method using two SIRENs (Sitzmann et al., 2020) (left) and BACON (Lin-
dell et al., 2021) (right) in a Python render. Iters represent iterations used in each one (0 means no
iteration and thus pure neural normal mapping). Time is in seconds and memory is in KB. The MSE
is compared with the baseline (in italic). We emphasize in bold how the neural normal mapping has
minimal time impact and how increasing iterations on the second SDF improves MSE. We use a
BACON with 8 layers, with output in layers 2 and 6. For fairness, we use the same layers as SDFs for
our method. All BACONs use 2151 KB of memory because the network contains all level of detail.

Model MSE
Spot 0.0329
Bob 0.0434
Bunny 0.0720
Egg 0.0291
Earth 0.0033

Table 7: MSE between our textured images and the ground truth meshes.

Armadillo (256x256) Iters Time(s) MSE
(64, 1) 15 0.0212 0.0184
(64, 1) 20 0.0238 0.0120
(64, 1) 30 0.0325 0.0067
(64, 1) 40 0.0426 0.0056
(256, 3) 15 0.0726 0.0168
(256, 3) 20 0.0894 0.0093
(256, 3) 30 0.1261 0.0023
(64, 1) ▷ (256.3) MS 30,10 0.0847 0.0102
(64, 1) ▷ (256.3) MS 30,20 0.1219 0.0035
(64, 1) ▷ (256.3) MS 30,30 0.1575 0.0007
(64, 1) ▷ (256.3) NM 40 0.0434 0.0046

Armadillo (512x512) Iters Time(s) MSE
(64, 1) 15 0.0488 0.0183
(64, 1) 20 0.0586 0.0117
(64, 1) 30 0.0777 0.0067
(64, 1) 40 0.0973 0.0056
(256, 3) 15 0.2447 0.0166
(256, 3) 20 0.3307 0.0091
(256, 3) 30 0.4548 0.0026
(64, 1) ▷ (256, 3) MS 30,10 0.2706 0.0098
(64, 1) ▷ (256, 3) MS 30,20 0.3959 0.0037
(64, 1) ▷ (256, 3) MS 30,30 0.5183 0.0008
(64, 1) ▷ (256, 3) NM 40 0.1250 0.0047

Armadillo (1024x1024) Iters Time(s) MSE
(64, 1) 15 0.1431 0.0182
(64, 1) 20 0.1713 0.0116
(64, 1) 30 0.2522 0.0067
(64, 1) 40 0.2891 0.0057
(256, 3) 15 0.9481 0.0165
(256, 3) 20 1.2108 0.0091
(256, 3) 30 1.7144 0.0026
(64, 1) ▷ (256, 3) MS 30,10 0.8893 0.0098
(64, 1) ▷ (256, 3) MS 30,20 1.4360 0.0037
(64, 1) ▷ (256, 3) MS 30,30 1.9357 0.0009
(64, 1) ▷ (256, 3) NM 40,40 0.4113 0.0048

Table 8: Image size evaluation for the Armadillo. We evaluate square images with resolution 256,
512, and 1024 pixels. The best time and MSE are highlighted. The MS suffix means multiscale ST,
and the NM suffix means normal mapping.
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Buddha (256x256) Iters Time(s) MSE
(64, 1) 15 0.02371 0.01227
(64, 1) 20 0.02719 0.00911
(64, 1) 30 0.03248 0.00719
(64, 1) 40 0.04294 0.00713
(256, 3) 15 0.07295 0.00912
(256, 3) 20 0.09062 0.00473
(256, 3) 30 0.12203 0.00120
(64, 1) ▷ (256, 3) MS 30,10 0.08475 0.00550
(64, 1) ▷ (256, 3) MS 30,20 0.11944 0.00175
(64, 1) ▷ (256, 3) MS 30,30 0.16732 0.00049
(64, 1) ▷ (256, 3) NM 40 0.04733 0.00658

Buddha (512x512) Iters Time(s) MSE
(64, 1) 15 0.05388 0.01221
(64, 1) 20 0.06792 0.00915
(64, 1) 30 0.08188 0.00734
(64, 1) 40 0.10191 0.00727
(256, 3) 15 0.24713 0.00895
(256, 3) 20 0.32203 0.00472
(256, 3) 30 0.44999 0.00117
(64, 1) ▷ (256, 3) MS 30,10 0.25617 0.00530
(64, 1) ▷ (256, 3) MS 30,20 0.39894 0.00177
(64, 1) ▷ (256, 3) MS 30,30 0.53451 0.00052
(64, 1) ▷ (256, 3) NM 40 0.12666 0.00668

Buddha (1024x1024) Iters Time(s) MSE
(64, 1) 15 0.17758 0.01221
(64, 1) 20 0.18585 0.00911
(64, 1) 30 0.24527 0.00728
(64, 1) 40 0.30179 0.00718
(256, 3) 15 0.95683 0.00895
(256, 3) 20 1.20325 0.00474
(256, 3) 30 1.72849 0.00119
(64, 1) ▷ (256, 3) MS 30,10 0.87383 0.00535
(64, 1) ▷ (256, 3) MS 30,20 1.39137 0.00180
(64, 1) ▷ (256, 3) MS 30,30 1.95539 0.00054
(64, 1) ▷ (256, 3) NM 40 0.40734 0.00659

Table 9: Image size evaluation for Buddha. We evaluate square images with resolution 256, 512, and
1024 pixels. The best time and MSE are highlighted. The MS suffix means multiscale ST, and the
NM suffix means normal mapping.

Lucy (256x256) Iters Time(s) MSE
(64, 1) 15 0.02448 0.00673
(64, 1) 20 0.03082 0.00612
(64, 1) 30 0.03498 0.00615
(64, 1) 40 0.04696 0.00619
(256, 3) 15 0.08059 0.00397
(256, 3) 20 0.10305 0.00180
(256, 3) 30 0.13671 0.00032
(64, 1) ▷ (256, 3) MS 30,10 0.08307 0.00513
(64, 1) ▷ (256, 3) MS 30,20 0.12159 0.00117
(64, 1) ▷ (256, 3) MS 30,30 0.16263 0.00021
(64, 1) ▷ (256, 3) NM 40 0.04782 0.00602

Lucy (512x512) Iters Time(s) MSE
(64, 1) 15 0.05538 0.00678
(64, 1) 20 0.07184 0.00625
(64, 1) 30 0.08435 0.00625
(64, 1) 40 0.10085 0.00637
(256, 3) 15 0.24135 0.00397
(256, 3) 20 0.32049 0.00189
(256, 3) 30 0.44454 0.00043
(64, 1) ▷ (256, 3) MS 30,10 0.24557 0.00526
(64, 1) ▷ (256, 3) MS 30,20 0.38773 0.00124
(64, 1) ▷ (256, 3) MS 30,30 0.53365 0.00026
(64, 1) ▷ (256, 3) NM 40 0.14132 0.00614

Lucy (1024x1024) Iters Time(s)) MSE
(64, 1) 15 0.16215 0.00682
(64, 1) 20 0.19107 0.00628
(64, 1) 30 0.27376 0.00628
(64, 1) 40 0.31857 0.00642
(256, 3) 15 0.93262 0.00393
(256, 3) 20 1.23098 0.00185
(256, 3) 30 1.71587 0.00041
(64, 1) ▷ (256, 3) 30,10 0.96133 0.00520
(64, 1) ▷ (256, 3) 30,20 1.44421 0.00121
(64, 1) ▷ (256, 3) 30,30 1.95704 0.00025
(64, 1) ▷ (256, 3) 40 0.44357 0.00617

Table 10: Image size evaluation for Lucy. We evaluate square images with resolution 256, 512, and
1024 pixels. The best time and MSE are highlighted. The MS suffix means multiscale ST, and the
NM suffix means normal mapping.
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