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Abstract

Identifying changes in a pair of 3D aerial LiDAR point
clouds, obtained during two distinct time periods over the
same geographic region presents a significant challenge due
to the disparities in spatial coverage and the presence of
noise in the acquisition system. The most commonly used
approaches to detecting changes in point clouds are based
on supervised methods which necessitate extensive labelled
data often unavailable in real-world applications. To ad-
dress these issues, we propose an unsupervised approach
that comprises two components: Implcit Neural Represena-
tion (INR) for continuous shape reconstruction and a Gaus-
sian Mixture Model for categorising changes. INR offers a
grid-agnostic representation for encoding bi-temporal point
clouds, with unmatched spatial support that can be regu-
larised to enhance high-frequency details and reduce noise.
The reconstructions at each timestamp are compared at ar-
bitrary spatial scales, leading to a significant increase in
detection capabilities. We apply our method to a benchmark
dataset comprising simulated LiDAR point clouds for ur-
ban sprawling. This dataset encompasses diverse challeng-
ing scenarios, varying in resolutions, input modalities and
noise levels. This enables a comprehensive multi-scenario
evaluation, comparing our method with the current state-of-
the-art approach. We outperform the previous methods by
a margin of 10% in the intersection over union metric. In
addition, we put our techniques to practical use by applying
them in a real-world scenario to identify instances of illicit
excavation of archaeological sites and validate our results
by comparing them with findings from field experts.

1. Introduction

In contemporary times, we observe the Earth through
various sensors at unprecedented spatial and temporal reso-
lutions. One of the most popular Earth Observation tech-
nologies is LiDAR: by using laser light to measure dis-
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tances, it creates detailed three-dimensional maps or point
cloud representations of the Earth’s surface and objects,
see Fig. 1. LiDAR has been applied to autonomous driv-
ing [26], robotics [31], digital terrain mapping [51], city
planning [36], urban sprawling [9, 10, 23], and cultural her-
itage [18, 43, 50]. The surge in popularity can be attributed
to three main factors. Firstly, LiDAR data exhibit a remark-
able level of precision, with spatial resolutions typically
falling below 1 m in most applications (though they can be
larger based on the distance to the scanned scene or specific
detector characteristics), effectively capturing the intricate
details of a 3D environment. Secondly, LiDAR acquisition
systems remain unaffected by varying lighting conditions.
Lastly, LiDAR possesses the capability to map terrain and
unveil structures concealed by vegetation canopies [4, 6].

The process of comparing two or more slightly co-
registered EO data to identify and analyse discrepancies
that have emerged between them is called Change Detec-
tion (CD). In this work, we focus on the application of CD
to urban sprawl, shown in Fig. 1, and on the identification
of illicit excavations of archaeological sites (looting) by de-
tecting relevant changes in height. Urban sprawl monitor-
ing, which entails the identification of recently erected and
demolished structures within multi-temporal LiDAR point
cloud datasets, has been identified as a method to assist
landscape and city managers in promoting sustainable de-
velopment [9]. The identification of illicit excavations of
archaeological sites holds paramount significance due to the
potential for looting to cause damage, displacement, or ir-
revocable loss of priceless archaeological artefacts.

The majority of existing techniques handle data that are
defined on discrete regular grids (e.g., images) with super-
vised learning frameworks. Over the past decade, Deep
Neural Networks (DNN) have risen to prominence as the
state-of-the-art solution for CD on LiDAR data [11,23,54].
However, these approaches require a preprocessing step to
cleanse and project a raw 3D LiDAR point cloud onto a
consistent 2D regular grid with predefined spatial resolu-
tion. The prevailing projection techniques encompass the
use of the Digital Elevation Model (DEM) [32] and Digi-



(a) Point cloud at t = 0 (pc0) (b) Point cloud at t = 1 (pc1) (c) pc1 with annotated change

Figure 1. Simulated airborne LiDAR data for change detection of a clipped test data area.

Figure 2. Proposed unsupervised CD of PCs based on implicit
neural representation and clustering.

tal Surface Model (DSM) [15, 28, 54]. Consequently, the
accuracy of these models hinges on the accuracy of the
projection, and memory complexity increases proportion-
ately with the desired resolution, limiting their application
to large point clouds (PCs). In contrast, our investigation
delves into the application of CD directly onto the off-grid,
raw 3D LiDAR PCs in an unsupervised manner, which suits
better real-world applications.

In summary, our approach involves two main steps, il-
lustrated in Fig. 2. In the first step, we use INR [53] to
encode the bi-temporal PC as a continuous function of both
time and space. This function is estimated blindly from data
using the total variation (TV) norm [3] to enforce disconti-
nuities along the time dimension to model sharp temporal
changes and increase robustness to noisy measurements. In
the second step, we categorise the change in altitude given
by decoding the surface at both timestamps at an arbitrary
resolution. To validate the proposed approach, we consider
two EO datasets. The first is an open simulated airborne Li-
DAR dataset comprising 15 distinct PCs. The goal here is
to identify both newly built and demolished buildings. The
second dataset consists of a pair of PCs over the Kulen, a re-
gion of Cambodia featuring numerous archaeological struc-
tures lying under the forest where instances of illegal exca-
vations have been recorded. Our goal is to precisely pin-
point locations where looting has taken place and to record
the shape and attributes of the looting pits.

Contributions. This paper tackles the lack of extensively

labelled 3D PCs for CD in real-world applications by intro-
ducing an effective unsupervised pipeline. Specifically:

• Using a single and scalable Implicit Neural Represen-
tation to encode the height of two geo-referenced 3D
point clouds as a continuous quantity.

• Denoising and regularising the encoded surface with
total variation norm over the time dimension.

• Proposing an end-to-end unsupervised change de-
tection pipeline that leverages on automatic hyper-
parameter tuning and a simple clustering algorithm.

2. Related works
The off-grid and noisy nature of PCs collected by a Li-

DAR system detrimentally impacts the performances of CD
methods. Moreover, weather conditions and remote sen-
sor trajectory may differ for two measurements at different
timestamps, leading to spatial unmatching support. Despite
this, supervised methods for CD can achieve great perfor-
mances even in challenging noisy data. However, their us-
age is still limited to a few real-world applications due to
the prohibitive cost of collecting and labelling datasets.

For these reasons, unsupervised methods represent an at-
tractive alternative. Such methods can be broadly classi-
fied into three categories [9]: those based on distance com-
putation [19, 45], those based on optimal transport [8, 17]
and those adapting PC DNN for unsupervised learning
[10, 12]. Distance-based methods, such as C2C [19], and
M3C2 [25, 45] divide the PC via octrees, estimate the sur-
face normal and orientation to calculate pair-wise euclidean
distances. Alternatively, optimal transport-based methods
estimate a distance based on the projection matrix of the
first PC onto the second. In both cases, the actual changes
are then classified via empirical thresholding, or the OTSU
method [33]. These methods have been developed and ap-
plied to the only available airborne LiDAR dataset for build-
ing CD [9]. However, datasets usually contain millions of
points because they are acquired with high-spatial resolu-
tion acquisition systems [42]. The previous methods do not
scale well with the data size and have to subdivide the PC



for analysis. The adaptation of PC DNN for unsupervised
learning are very recent and were absent at the initial time
of writing (they have yet to be peer-reviewed) [10, 12]. PC
DNN use Kernel Points [49] to compare co-referenced sub-
sets of the two PCs. SSL-DCVA uses intermediate repre-
sentation of the cylinders in the DNN to build an estimator
for change [12] inspired by DCVA [41]. DC3DCD inspires
itself from DeepCluster [5] with pseudo-labels for training.
Based on recent reviews [47,52], the aforementioned meth-
ods are the only unsupervised methods and fully automatic
state-of-the-art approaches for PC CD.

Other methods for unsupervised CD do not use raw 3D
LiDAR data directly. Instead, they used 2D images obtained
by projecting the 3D PCs on a 2D regular grid, e.g., for
DEM and DSM [56]. Due to the grid’s regularity, order-
ing and consistency, these projected 2D images are ideally
suited for convolutional operations. Hence, convolutional
neural network-based architectures can be applied to the 2D
digital models for building CD [44, 54, 55]. However, these
projections lead to precision loss of the LiDAR data as the
height measurements are interpolated to output the DSM or
the DEM [9]. In contrast, we use INR to model the sur-
face and obtain an intermediate 2D images at any desired
resolution of the surfaces height.

Novel DNN models, called INRs [53], have tackled
off-grid PC analysis [23, 38] and 3D surface reconstruc-
tion [21, 46, 48] in both supervided and unsupervised way.
The INRs are coordinate-based continuous deep learning
models that map coordinates to a target value, called field
(e.g. from pixel position to colour in an image). This func-
tion can be estimated by fitting observation and inducing de-
sired properties by application-based regularisation terms.
The major property of these parametric models is their ca-
pability to natively interpolate the target field.

A common limitation of INR is their poor capability of
capturing high-frequency details of the surface, referred to
as spectral bias. To address this, positional encoding and
Random Fourier Features (RFF) [39, 48] of the input co-
ordinates have become standard practice. This allowed to
apply INR to a new plethora of applications and methodolo-
gies, such as 3D shape reconstruction from sparse images,
animation of human bodies and faces, as well as video cod-
ing [53]. Moreover, RFF have improved Physics-Informerd
Neural Networks (PINNs) [40], which are coordinate-based
DNNs trained to fit observations while solving partial dif-
ferential equation evaluated with network’s backpropaga-
tion algorithm [13, 22].

An alternative approach to surpass the spectral bias is
SIREN [46], where the standard nonlinearities are replaced
with periodic sine functions. Such architectures show a
very low reconstruction error, both in fitting the target
field and its gradient with respect to the input. SIRENs
have become standard backbone networks for both INR and

PINNs [53]. Despite their success, SIRENs suffer from dif-
ficulties in training as they are prone to overfit or being
stuck in local minima, for which careful parameter tuning
is required. These issues have been addressed in subse-
quent works [16, 27], where novel architectures have been
proposed claiming easier training and faster convergence.
Nevertheless, SIREN’s performance depends on the appli-
cations. As reported in this work, SIREN doesn’t consis-
tently outperform RFF-based architecture.

Most of the INR-based models for 3D reconstruction re-
cover the object shape by minimising the signed distance
between any given point and the closest surface [35]. Then,
the associated INR is a function of the three spatial co-
ordinates. A positive sign implies the point lies outside
the object and vice versa. The shape contours are then
found by checking the 0 iso-line of the learned function.
Neural Unsigned Distance Fields [7] remove the sign from
the distance function and encode continuous locations for
a stronger regularisation, leading to better reconstruction.
Nonetheless, these methods require knowledge of the nor-
mals vectors of each point within the PC [21]. While the
rudimentary normal estimation of LiDAR data might be
achieved using conventional geometrical methods, our pre-
liminary investigations have demonstrated that errors stem-
ming from such preprocessing steps significantly under-
mine the performances. As elucidated in Section 3, the phe-
nomenon of urban sprawl can be reasonably approximated
through a continuous function across a 2D spatial domain,
while the exploration of 3D aspects will be deferred to forth-
coming research endeavors.

3. Method
We want to detect changes in two geo-referenced LiDAR

PCs with unsupervised methods. A PC at time t will be de-
noted by Xt ⊂ R3 where each element is a 3D coordinate,
i.e. (x, y, z) ∈ Xt. We will denote by t0 = 0 and t1 = 1 the
two timestamps for which we wish to detect change. If the
support of X0 and X1 match, we naturally define the addi-
tion of an element by a positive difference, i.e. the 2D point
(x, y) is of the label ”Addition” if the associated altitudes:
z1 − z0 > α, where zt corresponds to the altitude at time
t and with α a fixed scalar. Similarly, we can define the
”Deletion” class by a negative difference.

In general, the above operations are not directly applica-
ble to LiDAR PCs as the supports do not match due to dif-
ferent acquisition conditions. To fix the support, some have
used projection methods [9] and optimal transport [17]. In
the current paper, we fix the support matching by estimating
a surface from the PC, allowing us to interpolate and query
any spatial point. In other words, we reconstruct the surface
at a given time point. We can then compute the difference
to find additions or deletions. It is important to note that
we are estimating a function that maps a position to an al-



titude, which is different from the actual PC. Some points
will share the same (x, y) but have different altitudes due to
the inclination of the LiDAR emitter and the verticality of
elements in the maps, especially with buildings.

3.1. Regression model

We denote by fθ a DNN model with learnable param-
eters θ. Given an input vector v, we estimate the density
by fθ with inputs in V and values in R. As a baseline, we
can independently reconstruct the first and second PC with
V = R2. We learn two functions and name this model (D).
The formulae for CD with the baseline method is:

∆z(x, y) = (fθ1 − fθ0)(x, y). (1)

Here θt corresponds to the set of DNN parameters to recon-
struct the surface at time t that are optimised by minimising
the mean squared error (MSE) between the estimated and
observed altitude.

A more compact and efficient representation is possible
where we modify the input v ∈ R3 of the network to incor-
porate time. In particular, we learn a single model (S) with
parameters θ, and the detection formula is modified to:

∆z(x, y) = fθ(x, y, t1)− fθ(x, y, t0) (2)

A priori, it is not evident to know in advance which method
is better suited for a given dataset. In some configurations
of the simulated datasets, X0 and X1 are not drawn from
the same distribution, which could potentially be harmful to
the single model. Therefore we investigate the benefits of a
single model as opposed to two. In the following sections,
we will describe in more detail the different regularisations
and model specificities we apply to improve reconstruction.

3.2. Random Fourier Features

As common in INR models, we map the input v to a
higher dimensional space with RFF. It has been shown that
this projection is crucial for estimating high frequencies for
a better reconstruction [48]. For a fixed model, RFF is de-
fined as follows:

B ∈ RM×3, ∀(i, j), Bij ∼ N (0, σ)

γB(v) = [cos(2πBv), sin(2πBv)]

The size of B depends on the size of v, and here we sup-
posed v ∈ R3. The mapping size M and the scale σ are
two hyper-parameters that need tuning.

3.3. Network architecture

We propose several network architectures comprising
MLP layers, different activations, and skip layers in Ta-
ble A.2 of the Appendix. We show in Fig. A.1 a particular
model that we name ‘skip-ten-only’. In particular, the net-
work size will depend on the data complexity. We use skip

layers allowing a better gradient flow [20]. The activation
functions will be ReLu or hyperbolic tangent (tanh), as tanh
allows the resulting fθ to be C∞, we do not use any activa-
tion layers for the last layer. We use a similar architecture to
the one presented in Fig. A.1 for the SIREN methods. We
allow the final model to fine-tune the architecture for both
methods by making it a hyperparameter.

3.4. Total variation norm (TVN)

The total variation norm, defined as
∑

|ui+1 − ui| is a
standard regularisation scheme for sequential like data [3].
It is also helpful to smooth spatial patterns, as a sudden al-
titude change should be penalised. Such a scheme has been
generalised to a continuous version by enforcing that the re-
sulting gradient of the function fθ be sparse over the spatial
coordinates [40]. It is possible to add to the loss function
the regularisation term RTV = |∂fθ∂x |+ |∂fθ∂y |.

3.5. Time difference (TD)

Similarly to the discrete total variation norm, we can en-
force that the change over time be sparse, which indicates to
the DNN that most points do not change over time, but we
will allow some to change. To enforce such a constraint,
we add the following regularisation to the loss function:
RTD = |fθ(x, y, t1) − fθ(x, y, t0)|. This regularisation is
only possible when the input v contains time, and therefore
it cannot be applied where we reconstruct the surface for
two models (1). This regularisation over time is very simi-
lar to the total variation norm over the temporal domain. We
stress that shape reconstruction does not need this regulari-
sation term, and this is only a CD regulariser. In particular,
adding this term to the loss allows us to fuse the informa-
tion from both PCs more efficiently and enables the PCs to
benefit from each other mutually.

3.6. SIREN

From an architectural point of view, the SIREN net-
work [46] is a simple modification of an MLP where stan-
dard activation functions, e.g. ReLU and tanh, are continu-
ous sine functions. This substitution enables the modelling
of a continuous complicated signal without the need for ex-
plicit upsampling in various domains. The SIREN network
can then be described by

f(x) = Wn(gn−1 ◦ gn−2 ◦ . . . ◦ g0x) + hn,

where gi(hi) = sin(Wihi + hi).
(3)

SIREN operates as a composition of sinusoidal transfor-
mations recalling the principle behind RFF. In fact, it has
been shown that positional encoding with RFF is equivalent
to periodic nonlinearities with one hidden layer as the first
DNN layer [2]. Good initialisation of the weights is critical
for their successful training. To avoid saturation of the sine



activations, a scalar hyperparameter σ is introduced to scale
the layers’ weights, like for RFF.

3.7. Unsupervised labelling of ∆z

Once the surface reconstruction is performed, we have
access to ∆z given by equation (1) or (2). The OTSU
threshold method has been used to separate binary sources
[30,33] for CD. However, in our case, we have three sources
to distinguish and use a Gaussian Mixture Model (GMM)
with three components [29]. We show in Fig. A.2 the ap-
plication of GMM to ∆z for a small clipped sample. The
success of the GMM depends on the distribution of ∆z.
GMM will divide the distribution into three, regardless of
the shape of the distribution and lead to a random score.

4. Experimental setting

4.1. Simulated dataset

We use the publicly simulated airborne LiDAR dataset
for CD: Urb3DCD [9]. Even if this dataset is simulated,
it mimics true data with different noise levels and sensors
used in practice. Five simulation configurations are given:
1 - low resolution – low noise, 2 - high resolution – low
noise, 3 - low resolution – high noise, 4 - photogrammetry
and 5 - multi-sensor. The photogrammetry setting is low
resolution, high noise and tight scan angle for each times-
tamp. They mimic satellite acquisition. The multi-sensor
simulation is characterised by pc0 and pc1 having differ-
ent resolutions and noise levels. pc0 is low resolution and
high noise, whereas pc1 is high resolution and low noise.
In this situation #pc1 >> #pc0 which is different to other
subsets where #pc1 ≈ #pc0. # denotes the cardinality
of the set. Each configuration is divided into training and
testing datasets. We will only apply the method to the test-
ing sets as the methods used are unsupervised. For each
testing configuration, three simulated datasets exist where
the ground truth is different for each. The testing set com-
prises three different geographical areas of the city of Lyon
in France [9]. Only the second PC pc1 is annotated with
additions and deletion changes and will be used to evaluate
the methods. In Fig. 1c, we overlay pc1 with the annotation.

This dataset was updated (Urb3DCD-v2) to include veg-
etation changes and mobile objects in two simulation set-
tings, low density and multi-sensor LiDAR acquisition.
This version is used to compare the DC3DCD model [10].

4.2. Metrics

The minimised MSE used to cross-validate training will
not be used for evaluation. Due to the noise level, a good
performance on this metric will not imply a good recon-
struction. Indeed an MSE of 0 implies that the model per-
fectly reconstructs the data and the noise.

Intersection over union uses predicted and true labels:
IoU(P,G) = P∩G

P∪G . This metric is very sensitive to small
changes, especially when the ground truth is small, like in
our situation. The IoU will be measured after applying the
GMM to ∆z. In particular, a low score could mean that the
GMM is unfit for converting the differences into labels or
that the surface reconstruction failed.

Average AUC will be computed to highlight good-
performing methods irrespective of the GMM results. We
compute the standard AUC over three settings: addition
vs no addition, deletion vs no deletion and change vs no
change. In the last setting, we use |∆z|.

4.3. Training procedure for surface reconstruction

In detail, we will describe how we train our network fθ
given a PC. When a single network is used, pc0 and pc1
are concatenated, and the input dimension is three. With
no loss of generality, we will consider that we have a sin-
gle PC pc of dimension two or three. We normalise the
PC to be in [−1; 1] on each axis which is a requirement for
the methods RFF and SIREN [46]. We randomly split the
dataset in two where 80% is retained for training and the
other 20% is used for validating the surface reconstruction.
We minimise and backpropagate through the training loss
and evaluate the MSE performance on the validation. We
use Optuna [1] to find the best set of hyperparameters via
bayesian optimisation that minimises the validation MSE.
The tuned hyper-parameters are the model architecture, the
learning rate, the batch size, the scale of the gaussian map-
ping, the scalars associated with the regularisation terms
λTD, and λTV . When we use the SIREN model, we also
optimise the scale size by multiplying the signal in the si-
nusoidal activation function, the number of layers, and the
number of hidden units for each layer. We use the opti-
misation method Adam [24] wrapped with the Layer-wise
Adaptive Rate Scaling (LARS) [34] that enables the use of
an enormous batch size that for us is essential to carry out
our experiments in a reasonable time. To speed up com-
putation, we set the number of epochs to 50, use learning
rate decay and early stopping. To compute the TV norm,
we sample random elements from pc that we corrupt with
noise and backpropagate their prediction to the input [40].

5. Results and discussion
5.1. Feature mapping

In Fig. 3, we show the IoU (in %) results between the
different mapping methods: no feature mapping, RFF and
SIREN. In Fig. A.3 of the Appendix, we show the results
for the AUC metric. In Fig. 4, we show some resulting
crops trained with no feature mapping, RFF and SIREN.
We show additional crops as well as the whole map for data
(3) in Fig.A.4, A.5, A.6 and A.7 of the Appendix. For both



Figure 3. IoU results (in %) for different feature mapping meth-
ods for every LiDAR airborne simulated dataset.

metrics, IoU and AUC, RFF outperforms SIREN and the
default configuration by a fair margin. In terms of aver-
age performance (given in %) with standard deviation, RFF
reaches an IoU of 53.0±12. and an AUC of 97.6±0.7 and,
SIREN 39.0 ± 10. and 95.9 ± 2.8, and not using any map-
ping reaches 30.± 15. and 95.9± 3.8. A deconvolution of
the reported values is given in Table A.1 in the Appendix.
From the visualisation in Fig. 4, no feature mapping leads
to a reconstruction where the building delimitation is un-
clear and fuzzy. SIREN gives the sharpest reconstruction
with close to no noise between the buildings. Conversely,
SIREN’s projection onto the support of the second times-
tamp, given in the final row, is subject to many false posi-
tives along building boundaries. The RFF method produces
distinctive buildings, like SIREN, but with a noisier out-
put. However, the number of false positives in the final row
is smaller. This ablation study shows the necessity of fea-
ture mapping to achieve good IoU and, therefore, a good
reconstruction. Capturing high-frequencies is essential to
our current problem due to the verticality of buildings.

5.2. Hyper-parameter influence

In Fig. 5, we show a study on the regularisation param-
eter λTD and λTVN for both RFF, in darker and SIREN, in
lighter colours. We measure the IoU and RMSE for both
and compare them to the setting without penalty. Naturally,
a too-strong penalty damages the performance, and a too-
low value will render the penalisation negligible. Only for
the method using RFF and TD regularisation do we see a
6% improvement in IoU compared to the baseline. This
optimal λTD does not necessarily correspond to a minimal
RMSE, metric used for the validation scheme. Similarly
to Section 5.1, RFF features obtain better performance on
both metrics and a more stable reconstruction noticeable by
a lower RMSE and smaller confidence intervals.

The literature reports better reconstruction for SIREN

over the RFF methods. However, in our situation, SIREN
gives lower performances in terms of IoU and MSE. SIREN
suffers more from the mathematical formulation given in
Section 3, which is ill-posed because of many points on
the sides of the buildings. As SIREN induces qualitatively
a better reconstruction, i.e. sharper edges and less noise.
Having samples from the PC sharing similar geographical
coordinates but radically different altitudes (along the verti-
cality of the building) leads SIREN to slightly misplace the
boundaries of the buildings, leading to many false positives
along their edges, and hence a lower IoU. SIREN’s MSE is
higher, as the MSE penalises false positives more strongly
as they correspond to larger differences between the ground
truth and the prediction. The sharper edges of SIREN, com-
pared to RFF, are harmful in terms of IoU and MSE. In
other words, SIREN’s reconstruction is sharper and, due to
noise, wrongly estimates the building size. In contrast, the
RFF method has softer edges, i.e. less overfitting induced
by capturing fewer high-frequencies. This leads to a better
mean error along the building edges and, to a lower minimi-
sation of the MSE and fewer false positives.

5.3. Comparison to state of the art

In Table 1, we benchmark our methods on Urb3DCD
and compare them to previous state-of-the-art in unsuper-
vised detection, M3C2 [25] and OT [17]. RFF outperforms
the other methods by a large margin, about 13% and 8%
in IoU over the previous state of the art. In addition, the
previous state-of-the-art maximised the IoU with respect to
a predefined threshold, whereas our method is completely
unsupervised. For example, SIREN still improves over the
previous state-of-the-art even if the results do not show this
because the metric report for SIREN is unbiased.

The experiments favour the use of one single function for
both timestamps. We have a 2% difference in IoU between
using a single model (S) and two models (D) when no reg-
ularisation is applied. The best model uses regularisation.

The final performed comparison is with DC3DCD on
Urb3DCD-v2, and the results are shown in Table 2. To
compare fairly, we use the same weakly supervised setting
as the authors to map unlabelled classes, which for us cor-
responds to our binned distance, to labelled classes [10]. In
Table 2, we compare, DNN to DNN, and show that INR
outperforms the only other unsupervised DNN for CD on
the building classes. We explain the poor scores on the
vegetation classes because the hyper-parameters and post-
processing were optimised on Urb3DCD, i.e., for building
change. In particular, the TVN penalty (which penalises
the detection of small objects) and the TD penalty (detec-
tion of small growth) should be relaxed for the specific
task of vegetation changes. DC3DCD shows better perfor-
mance than our method when coupled with specific man-
ual input features [10]. However, it should be noted that



Figure 4. Visualisation of a crop where in each column we show a different method comprising a single DNN trained on dataset (3). In the
two first rows, we reconstruct the surface along a regular grid for timestamp t0 and t1. In the third row, we show the difference ∆z on the
support of X1 with it’s predicted labels from the GMM, we filter out points where |∆z| < 2m. Each column shows a different method. In
the final row and in the first column we show the true cloud point overlaid with the ground truth. To compare fairely, the color map ranges
from dark purple, 160m altitude, to yellow, 205m, for the first two rows and from -30m to 30m for the visualisation of ∆z.

(a) IoU vs λ (b) RMSE vs λ

Figure 5. Influence of parameter λ, refering to either λTD or λTV N , with respect to the IoU or reconstruction metric. We show 95%
confidence intervals for each estimator. Each points followed other hyper-parameter selection procedures (20 attemps to minimise the
reconstruction) and was repeated 20 times. In red dashes, we show the model with λ set to 0.

our model comprises approx. 600K trainable parameters,
whereas DC3DCD has more than 100M parameters [49]. 1

5.4. Application to Cultural heritage

The two-fold purpose of using LiDAR PCs to identify
looting activities is to validate model ‘S+RFF+TVN+TD’

1This is only an approximation as the precise number requires the num-
ber of kernel points, which is unknown.

on real (non-simulated) bi-temporal pairs of LiDAR PCs
and assess its capability to detect looting, which is a press-
ing global-scale problem. We processed one bi-temporal
pair of LiDAR PCs acquired over the Phnom Kulen region
(Cambodia), where temples and ancient dams of the Angkor
era are largely obscured by thick and closed canopies. Still,
LiDAR deals well with this environment thanks to its capa-
bility to penetrate landscapes covered by continuous vege-



Table 1. Comparaison to state-of-the-art on the IoU metric (in %), we only report the best configuration when no feature mapping and
SIREN. We show the best performing model in each row. D denotes the model with two DNN given by equation (1) and S the model with
a single DNN given by equation (2). The complete table can be found in Table A.1 of the Appendix.

Data M3C2 [25] OT [17] None SIREN RFF (Proposed Method)

S+TVN S D D+TVN S S+TVN S+TD S+TVN+TD

(1) 29.87 40.65 37.22 40.14 50.13 44.68 52.49 55.87 54.73 49.68
(2) 53.73 55.20 45.22 53.98 57.39 59.33 56.45 61.17 60.34 59.52
(3) 38.72 39.26 33.11 38.57 46.54 43.17 51.87 46.94 54.00 53.33
(4) 35.01 39.89 33.54 39.01 48.62 49.70 51.38 51.10 53.40 53.99
(5) 37.78 48.17 37.97 40.48 42.55 43.16 42.95 43.26 40.55 47.17

Avg 39.02 44.63 37.41 42.43 49.04 48.00 51.02 51.67 52.60 52.74

Table 2. Comparaison to state-of-the-art on the IoU metric per
class on Urb3DCD-v2 (in %). In each column, we highlight the
best achieving model.

Method DC3DCD SIREN+S+TVN+TD RFF+S+TVN+TD

Unchanged 90.90± 0.70 84.83± 6.32 87.47± 3.17
New building 64.06± 5.13 62.62± 11.4 71.81± 2.76
Demolition 54.35± 3.84 47.92± 10.51 57.63± 5.09
New veg. 58.14± 20.03 4.26± 4.87 5.44± 5.88

Veg. Growth 1.45± 2.05 0.62± 0.29 1.54± 1.42
Missing veg. 0.94± 0.78 3.89± 4.83 8.82± 7.53

Mobile Object 47.57± 2.58 0.26± 0.19 0.58± 0.26

tation. The first, pc0, was acquired in 2012, and the second,
pc1, in 2015. Fig. 6 shows detected looting. Archaeologists
drew the red bounding box to identify an area where looting
occurred. The archaeologists verified the predicted changes
through visual inspection and confirmed that all the looting
pits inside the bounding box were correctly identified. The
false positive in the top right part can be easily filtered due
to the 20 meter diameter, which is too big to be considered
as a looting pit.

6. Conclusion
The amount of Earth observation acquired with 3D Li-

DAR data is rising exponentially, which opens up the possi-
bility of monitoring human activity through CD algorithms.
In particular, we focused on urban planning and looting ac-
tivities identification. Thanks to advances in DNN, we can
now estimate and reconstruct large areas with high preci-
sion that allows passing the reconstructed surfaces to down-
stream tasks. However, the amount of training data and their
discrete modelling limits their application to real scenarios.
To address these issues, we propose a novel unsupervised
grid-agnostic scheme for CD based on surface reconstruc-
tion and clustering, which achieves 52.74% IoU (in %), sur-
passing previous state-of-the-art M3C2 and OT by 10% on
average on the Urb3DCD dataset. Moreover, we demon-
strated in this paper that RRF mapping outperforms SIREN
for CD on PC data acquired from airborne LiDAR sensors

Figure 6. Detection of looting pits on a bi-temporal pair of LiDAR
point clouds. The ground truth bounding box identified the geo-
graphical area where looting occurred. The red points represent
detected looting pits.

and allows us to identify looting activity correctly.

Code availability
The code with a colab notebook is made fully available

at the following URL: NN-4-change-detection. The code
runs efficiently with hyperparameter selection thanks to the
Optuna [1] package. We use GPU computation with Py-
Torch [37] and combine each experiment into a pipeline
with Nextflow [14] for easy reproducibility.
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Corpetti, Sébastien Lefèvre, and Xiao Xiang Zhu. Deep un-
supervised learning for 3d als point clouds change detection.
arXiv preprint arXiv:2305.03529, 2023. 2, 3

[13] Diego Di Carlo, Dominique Heitz, and Thomas Corpetti.
Post processing sparse and instantaneous 2d velocity fields
using physics-informed neural networks. In 20th Interna-
tional Symposium On Application Of Laser And Imaging
Techniques To Fluid Mechanics, 2022. 3

[14] Paolo Di Tommaso, Maria Chatzou, Evan W Floden,
Pablo Prieto Barja, Emilio Palumbo, and Cedric Notredame.
Nextflow enables reproducible computational workflows.
Nature biotechnology, 35(4):316–319, 2017. 8

[15] Mustafa Erdogan and Altan Yilmaz. Detection of building
damage caused by van earthquake using image and digital
surface model (dsm) difference. International Journal of Re-
mote Sensing, 40(10):3772–3786, 2019. 2

[16] Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico
Kolter. Multiplicative filter networks. In International Con-
ference on Learning Representations, 2021. 3

[17] Marco Fiorucci, Peter Naylor, and Makoto Yamada. Optimal
Transport for Change Detection on LiDAR Point Clouds.
arXiv e-prints, Feb. 2023. 2, 3, 6, 8

[18] Marco Fiorucci, Wouter Verschoof-van der Vaart, Paolo
Soleni, Bertrand Saux, and Arianna Traviglia. Deep learning
for archaeological object detection on lidar: New evaluation
measures and insights. Remote Sensing, 14:1694, 03 2022. 1

[19] Daniel Girardeau-Montaut, Michel Roux, Raphaël Marc,
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Nuninger. Visualization of lidar-derived relief models for de-
tection of archaeological features. Journal of Archaeological
Science, 39(11):3354–3360, 2012. 3


