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Abstract

As deep learning (DL) models are increasingly being integrated into our everyday lives,
ensuring their safety by making them robust against adversarial attacks has become in-
creasingly critical. DL models have been found to be susceptible to adversarial attacks by
introducing small, targeted perturbations to disrupt the input data. Adversarial training has
been presented as a mitigation strategy that can result in more robust models. This adver-
sarial robustness comes with additional computational costs required to design adversarial
attacks during training. The two objectives — adversarial robustness and computational
efficiency — then appear to be in conflict with each other. In this work, we explore the
effects of neural network compression on adversarial robustness. We specifically explore
the effects of fine-tuning on compressed models, and present the trade-off between stan-
dard fine-tuning and adversarial fine-tuning. Our results show that adversarial fine-tuning
of compressed models can yield large improvements to their robustness performance. We
present experiments on several benchmark datasets showing that adversarial fine-tuning of
compressed models can achieve robustness performance comparable to adversarially trained
models, while also improving computational efficiency.

1 Introduction

The growing computational costs of large-scale deep learning (DL) models is concerning due to their in-
creasing energy consumption and corresponding carbon emissions (Strubell et al., 2019; Sevilla et al., 2022).
A wide range of solutions that improve the computational efficiency at different stages of a DL model life-
cycle are being explored to mitigate these costs (Bartoldson et al., 2023). Compressing neural networks
to improve their computational efficiency during training and deployment has shown tremendous success.
Extreme model compression by neural network pruning, with high levels of weight sparsification (LeCun
et al., 1989; Hoefler et al., 2021), and quantization, by using low precision weights and/or activation maps,
have surprisingly shown little to no performance degradation (Hubara et al., 2016; Dettmers et al., 2022).
The conventional trade-off when performing model compression is between compute efficiency and test per-
formance. However, it is unclear how compression of neural networks affects other model properties such as
adversarial robustness, which is important in critical applications (Biggio et al., 2013; Huang et al., 2017).

Adversarial training (Aleksander et al., 2018; Alexey et al., 2016; Tramer et al., 2018) is one of the standard
approaches to improve the robustness of DL models. This is performed by adding noise to the original
training data in a specifically designed way (a.k.a. adversarial examples/attacks) and then training the
model with these noisy data (Goodfellow et al., 2015). Designing these adversarial examples incurs additional
computational costs compared to standard training procedures (Shafahi et al., 2019; Wong et al., 2020).
This increase in computational cost is at odds with the objective of improving computational efficiency, for
instance, when performing model compression. The key question that this work is concerned with is: Can
adversarial robustness be efficiently achieved for compressed neural networks?

We investigate the possibility of simultaneously attaining the dual objective of computational efficiency and
adversarial robustness. We show that adversarial fine-tuning of already compressed models is able to achieve
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similar performance compared to uncompressed models that are adversarially trained from scratch, resulting
in compounding efficiency gains. To this end, we make the following contributions.

1. Study the influence of adversarial robustness on model compression;

2. Present adversarial fine-tuning of compressed neural networks as a means to achieving robustness
efficiently;

3. Perform comprehensive experiments using model pruning and quantization on multiple benchmark
datasets with and without adversarial fine-tuning;

4. Characterize the impact of model compression on robustness using intermediate feature-map anal-
ysis.

2 Related Works

Model compression: Model compression in machine learning (ML) refers to the process of reducing the
size of an ML model while maintaining its performance as much as possible. Smaller models require fewer
computational resources and generally have lower inference times, making them more efficient for deployment
on resource-constrained environments.

Model pruning (Gorodkin et al., 1993) is a technique that removes model parameters that have little influence
on test performance. Generally speaking, pruning can be categorized as unstructured and structured pruning.
In unstructured pruning, individual parameters can be removed. In structured pruning, groups of parameters
(such as weights of a kernel or transformer layers) are removed in one operation.

Quantization (Hubara et al., 2018; Wang et al., 2022) reduces the precision of model weights or of intermediate
activation maps (Eliassen & Selvan, 2024) from high to lower precision (32 bit to fewer, in modern computers).
Quantization can yield large reductions in memory usage and inference time, and can be adapted to particular
hardware devices for acceleration.

In addition to model pruning and quantization, knowledge distillation has shown potential to compress large
networks into smaller ones (Hinton et al., 2014). For large-scale models, the gains of distillation are shown
to be substantial, as observed with vision (Chen et al., 2017) and large language models (Sanh et al., 2019).

Another successful approach to compress neural networks is tensor factorization of model weights (Novikov
et al., 2015). Techniques such as tensor trains (Oseledets, 2011) have been used to factorize weights of neural
networks resulting in considerable reduction in the overall number of trainable parameters (Yin et al., 2021).
Using knowledge distillation in conjunction with tensor decomposition has been shown to be more beneficial
as this can help the factorized tensor cores to relearn some of the representations that are destroyed during
the factorization process (Wang et al., 2022).

Effects of model compression: The primary goal of model compression is to improve model efficiency,
by reducing the number of parameters or the memory consumption, while preserving the downstream test
performance. Recent works have shown drastic reduction in number of parameters (Wang et al., 2022) or
extreme quantization (Dettmers et al., 2022) while retaining competitive performance compared to uncom-
pressed models. There are no formal theories that explain these behaviors where extreme model compression
is possible. Some recent attempts explaining these behaviors are based on the lottery ticket hypothesis which
speculates the existence of sub-networks within larger networks that can be retrieved by model compres-
sion (Frankle & Carbin, 2019).

In addition to the trade-off between test performance and efficiency, model compression could affect other
model properties. For instance, even though the overall test performance of compressed model is comparable
to the original one, there might be subset of data that suffers disproportionately high portion of the error,
which causes unexpected effects on fairness (Ramesh et al., 2023; Hooker et al., 2020; Stoychev & Gunes,
2022). Furthermore, recent works show that knowledge distillation has positive effects (Jung et al., 2021;
Chai et al., 2022) on improving fairness and adversarial robustness (Maroto et al., 2022) of DL models.
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Robustness-aware model compression: In order to mitigate the negative effects of model compression
on adversarial robustness (Jordao & Pedrini, 2021), several works have taken robustness as an additional
regularization term (eg., Lipschitz regularization) during model compression and attempted to compress the
models concurrently with robustness (Goldblum et al., 2020; Gui et al., 2019; Ye et al., 2019; Lin et al.,
2019). Robustness-aware pruning (Jian et al.; Sehwag et al., 2020) techniques have also been proposed
recently which turn out to be useful in safety-critical and computationally resource-constrained applications.
It has also been shown that adversarial fine-tuning (Jeddi et al., 2021) of a standardly trained model could
prove to be useful enough to improve the adversarial robustness instead of full adversarial training. In
this work, rather than jointly optimizing for efficiency and robustness, we propose a simpler yet effective
approach, i.e., adversarial fine-tuning of compressed models, to simultaneously enhance both efficiency and
robustness.

3 Methods for Model Compression and Adversarial Robustness

The standard process of model compression usually consists of three steps: (1) train a large over-
parameterized model which is likely to overfit to some extent; (2) apply compression techniques to reduce the
size of the trained model while preserving its performance as much as possible; (3) fine-tune the compressed
model, this helps recovering some of the lost performance and ensuring it performs well on the target task.
We consider two compression methods in this work: structured pruning and quantization.

3.1 Structured pruning

We consider ¢1-norm based filter pruning (Li et al., 2017), which is a simple but effective way of structured
pruning for convolutional neural networks (CNNs). Suppose we have an input of shape cip X hin X Wi
where ¢;, is the number of input channels, and hj, X wy, is the height and width of the input features. A
convolutional layer, denoted by F}, is a mapping that takes an input of shape ¢y X hin X wiy to an output
of shape cout X hout X Wout, Which is realized by cou¢ many filters of shape ¢, X k X k:

F = [Fl F. ] . RCinXhinxwin N RcoutXhout X Wout

U SO .

Each filter consists of ¢;, kernels of shape k x k that maps individually the corresponding channel in the
input of shape hi, X wi, to an output of shape houy X Wous, depending on padding and stride parameters:

Cin
Fj — E FZ j . Rcin X Rin X Win 3 Rhout XWout
k) ‘ )
=1

where each filter F; ; acts on the i-th channel of the input.

Cin

Now compute the ¢;-norm of each filter Fj, and denote by s; = || Fj|[1 = >_;2*; [|Fi,j|l1. Depending on the
sparsity of pruning, we sort the filters by the values s; and leave out those with the minimum ¢;-norm. Note
that each time a filter is removed, the output features of the next layer and the corresponding kernels in the
next layer are removed. In this way, the new filters are obtained for both the current layer and the next
layer. We do the pruning process for both standardly and adversarially trained models, which is also called
post-train pruning. Note that structured pruning can also be applied to other model architectures, such as
transformers, by replacing filters with corresponding model weights.

3.2 Quantization

A quantization scheme consists of a quantizer that maps a real number, r, to an integer: ¢(r) = |r/s] — z,
and the dequantizer: 7 = s(q(r) + z), where s € R is called a scaling factor, and z € Z is called a zero point.
This procedure is also called uniform quantization, since the quantized values are uniformly distributed due
the rounding operator |-].

The scaling factor s is usually of form s = (3 —a)/(2° — 1), where |, (] is the clipping range and b is the bit
width of quantization, a.k.a. b-bit quantization. A common choice of a and § is the min-max value of the
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real number r, i.e., « = min(r) and f = max(r). In this case, —« is not necessarily equal to 3, hence we call
it asymmetric quantization. We can also set —a = 8 = max(| min(r)|, | max(r)|), which is called symmetric
quantization. Both of them have their advantages: asymmetric quantization usually gives tighter clipping
range, and symmetric quantization simplifies the computations. However, using symmetric quantization
wastes half of the precision on ReLU activation, because none of the negative values in the quantization
grid is used. For these reasons we use symmetric quantization for weight and asymmetric quantization for
activation maps in this work.

We mostly use Post-Training Quantization (PTQ) (Nagel et al., 2021) throughout this work. PTQ is a
method which can be easily applied and it is efficient compared to, e.g., Quantization Aware Training
(QAT) (Jacob et al., 2018). As the name suggests, PTQ takes a pre-trained model and quantizes it. The
method may be data-free, but can also be applied with a small unlabeled dataset to adjust the quantization.
The implementation that we use, takes care of the adjustment of calibrating scaling factors and zero points.
This ensures that the resulting quantization ranges strike a favorable balance between rounding and scaling
€rrors.

3.3 Adversarial Training

Consider the n-dimensional Euclidean space R” endowed with norm | -||. For p > 0 and x € R, the £,-norm
is defined as ||x|, = (31, |z:[P)Y/? if p < oo, and |x||, = max;|z;| if p = co. Given a finite dataset
S = {(xi,y:)}Y, € R"! where each data (x;,y;) is assumed to be ii.d. sampled from some unknown
distribution D, we are trying to learn a function f : R™ — R that maps all x; to y;.

Assume the functions are taken from some hypothesis space H, we define the generalization loss of f € H
as L(f) = E(x,y)~p[l(f(x),y)], where [ : R? — R is a loss function. The empirical loss of f is defined as

. 1
Ls(f) = ~ Zl(f(xi)ayi)~ (1)

A standard model is a function in #H that minimizes the empirical loss, i.e., fo: = argminscy ig(f).

For perturbation ¢ > 0 and norm | - ||, the adversarial loss of f is defined as L(f,e) =
E(x,y)~p[maxs<c [(f(x +6),y)], and the empirical adversarial loss is defined as

1 N

Ls(1:€) = 57 2 s 1/ + 9.3 @

A robust model is a function in H that minimizes the empirical adversarial loss, i.e., fqp =
argminyrey Ls(f,¢€).

For a model f € H, the test performance of f over dataset S is given by the test accuracy on clean data:
#{(xi,yi) : f(x;) = yi}/N, and the robustness performance of f over S is computed by the test accuracy
on all possible adversarial perturbations: #{(x;,v:) : f(x; +0) = v;, V ||0]] < £}/N. However, solving the
maximization problem in eq. (2) is usually difficult, therefore evaluating the exact robustness performance
of a model is not tractable. In practice, we use a simple and common strategy, called Projected Gradient
Descent (PGD) (Madry et al., 2018), to obtain a lower bound of the maximum. In fact, with PGD, the
gradient descent is performed over the negative loss function: at step ¢, we update x* by

X' = Projp x, o) (X' + a - sign(Vxl(f(%), ) lx=xt )

where B(x;, ¢) is the ball around x; with radius € and some norm || - ||, « is the step size of the PGD iteration,
and Projgx, ) is the projection map.

Denote by 67 94 the adversarial perturbation obtained by PGD, then each x; + 69 ¢ gerves as an adversarial
attack. The robustness performance of f is estimated (and in fact, upper bounded) based on the number of
correct predictions on the worst-case perturbation, i.e., #{(x;,4:) : f(x; + 6°9%) = y;}/N. For conciseness,
we follow the notations in Table 1 throughout the paper.
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Table 1: Overview of notations for models with different training, compression, and fine-tuning methods
used in this work.

Notation Description

fst (resp. frp) standard (resp. robust) model

fe any compressed model

fP (resp. f9) pruned (resp. quantized) model

D (resp. f1) pruned standard (resp. robust) model

& (resp. f5) quantized standard (resp. robust) model

Tst(f) (resp. Taa(f)) standardly (resp. adversarially) fine-tuned model

Tt (f2) (resp. Tot(fL)) pruned (resp. quantized) standard model with standard fine-tuning
Tse(fF,) (vesp. Tse(f?)) pruned (resp. quantized) robust model with standard fine-tuning

7}4( P (vesp. Taa(fL)) pruned (resp. quantized) standard model with adversarial fine-tuning
Taa(f5) (resp. Taa(fl)) pruned (resp. quantized) robust model with adversarial fine-tuning

4 Data & Experiments

Data and models: All experiments were performed on the Fashion-MNIST and CIFAR10 datasets, which
are commonly used for adversarial robustness benchmarks. A simple 8-layer CNN with 6 convolutional
blocks and 2 fully-connected layers is defined, and used for the Fashion-MNIST dataset. For CIFAR10 we
use the ResNet-18 architecture (He et al., 2016) that has been pre-trained on CIFAR10 for 300 epochs. All
experiments were performed using Pytorch (Paszke et al., 2019) on a single Nvidia Titan RTX with 16GB
GPU memory. We use the neural network intelligence (NNI) library (Microsoft, 2021) to use quantization
and pruning and follow the structure of (Kolter & Madry) for the PGD attacks. For quantized models, we
use the training framework proposed by authors in (Jacob et al., 2018) that uses integer-only arithmetic
during inference and floating-point arithmetic during training.

Hyperparameters: All standard and adversarial training is performed for a fixed 20 epochs using stochastic
gradient descent (SGD) with no momentum. The learning rate is set to 1071 in the first four epochs, after
which it is reduced to 1072, All PGD attacks were run for 20 iterations, with the learning rate set to 1072.
According to the standard for Fashion-MNIST and CIFAR10 within adversarial robustness literature (Croce
et al., 2020), we set the adversarial perturbation & for £o,-norm to 0.1 and 8/255, for Fashion-MNIST and
CIFARI10, respectively. The same PGD attack is used for both adversarial training and robustness evaluation.
The hyperparameters of fine-tuning after compression are slightly different, see Appendix A.1 for details.

Pruning ratio and quantization precision: In order to choose the appropriate compression level for
structured pruning and quantization, we explored which fine-tuning settings would be best suited. This was
studied using the Fashion-MNIST dataset and the 8-layer CNN model with 50% sparsity ratio for structured
pruning and INT8 quantization, following the general settings used in the literature (Kuzmin et al., 2024).
Using these configurations, the models were trained standardly and adversarially with no fine-tuning, stan-
dard fine-tuning 7 (+), and adversarial fine-tuning 7,4(-). We found that adversarial fine-tuning is the most
useful technique in terms of improving test performance and adversarial robustness. Therefore, we fix a con-
figuration of adversarial fine-tuning of standard models, and perform a comprehensive sweep of compression
extents for both datasets. We use [0.1,0.2,...,0.9] for sparsity ratios and [INT16, INT8, INT4, INT2, INT1] for
quantization precision.

For each dataset, we then choose the levels where the test performance of the compressed standard models
with adversarial fine-tuning 7,4(fS,) are comparable. This results in our choice of using 80% sparsity ratio
versus INT8 quantization for Fashion-MNIST, and 50% versus INT8 for CIFAR10, as shown in Figure 1.
This, we argue, is a fairer way of fixing compression levels between methods like pruning and quantization
instead of arbitrary choices that could give undue advantage to one of the methods, which was the case
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in (Li et al., 2017). The assumption that halving precision by lowering precision, say from INT16 to INT8,
need not correspond with 50% sparsity ratio.
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Figure 1: Performance of compressed models on Fashion-MNIST and CIAFR10 with adversarial fine-tuning
Tad(+). We perform ¢;-norm pruning (Figure la, Figure 1b) and post-train quantization (Figure 1c, Figure 1d)
on standard and robust models. In each subfigure, the horizontal axis shows the level of compression
performed on the model, and the vertical axis shows the performance. Each model was trained three times
and averaged out, error bars show the standard deviation between runs. Note that the scaling of performance
are different for pruning and quantization.

Experiments: We perform a series of experiments to investigate the three-way interplay among compute ef-
ficiency, test performance and robustness performance. At a high-level, these experiments can be categorized
based on whether or not model compression, adversarial training, and fine-tuning were performed:

1. Full model training: fq, frp;
2. Model compression with standard fine-tuning: 7. (fS,), Tot(£5);

3. Model compression with adversarial fine-tuning: Toq(fS;), Taa(f5)-

The superscript, ¢, could correspond to pruning or quantization. See Table 1 for an overview of notations
used. The trends from these experiments are described in detail in the next section.
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5 Results

Full model training: In this setting, no model compression is performed and it serves as our baseline

to assess the impact of compression on robustness. We
perform standard and adversarial training by minimiz-
ing eq. (1) and eq. (2), respectively. Full models (with
no compression) are used for both Fashion-MNIST and
CIFAR10 datasets, and the results are reported in Ta-
ble 2. We clearly notice that the standard models, fg,
have poor adversarial robustness for both datasets (first
row for each dataset in Table 2). Performing adversarial
training results in the robust models, f,4, and improves
the robustness for both datasets with an expected drop in
test performance (second row for each dataset in Table 2).
Adversarial fine-tuning of the standard models also im-
proves the robustness in line with results from (Jeddi
et al., 2021), reported here for Fashion-MNIST, Toa(fst),
which increases robustness from 4.26+-2.36 to 77.53+£1.17
with a small drop in test performance.

Model compression with standard fine-tuning:

Table 2: Baseline performance of standard and
robust models over Fashion-MNIST and CI-
FAR10 datasets comparing their test performance
and robustness. For Fashion-MNIST, we addi-
tionally consider standard model with adversarial
fine-tuning Toq(+).

Dataset Model Test Robustness
fst 90.49+0.22 4.26+2.36
Fashion-MNIST fro 87.874+0.33  82.51+0.16
Tad(fst) 85.37+£0.44 77.53+1.17
fst 88.74+0.00 0.051+0.00
CIFARLO fro 85.72+0.27  57.22 £0.91

As discussed in Section 3, we use 1) struc-

tured pruning of model weights, and 2) PTQ with symmetric quantization for weights combined with

asymmetric quantization of activation maps,

as our preferred model compression techniques. Table 3: Performance of compressed standard and robust
Furthermore, we follow the procedure of stan-  models on Fashion-MNIST dataset. We consider {1-pruning
dard fine-tuning of the compressed models for with 80% sparsity ratio and INT8 post-train quantization
a fixed number of epochs. This enables us to for 8-layer CNN. After compression, we consider further
compare these compression methods, in a sim-  performing standard fine-tuning 7y (+), adversarial fine-
ilar way as conducted in (Kuzmin et al., 2024),  tuning 7,4(-), and without fine-tuning.

but for adversarial robustness.

Once this equivalence in performance is estab- 310401 Performance Fine-Tuning

lished, we evaluate and compare the robustness None Toe () Taa()
performance. This broader assessment enables » test 33.2143.96  88.9441.03 83.9141.53
a more accurate understanding of the trade-offs o robustness 00.33+0.64  00.2840.64  76.74+2.33
and benefits associated with ¢;-norm pruning . test 90.40+0.16  90.074+0.56  84.93+0.71
and quantization. To isolate the effects of fine- st robustness 11.7242.71  7.00£1.44  79.4340.59
tuning after compression we also report the per- test 16.68+4.57 87.71+0.40  84.53+1.21
formance without standard fine-tuning for both " robustness  14.404547  16.26+5.45 78.84+2.04
compression methods. All results for these ex- tost 87.0040.34  89.54+0.47  87.51+0.04
periments for standard training and standard " robustness  82.80£0.14 25.66+£10.61  82.65%0.11

fine-tuning are reported in Table 3 for Fashion-
MNIST, and Table 4 for CIFAR10, respectively.

o Standard training: We first look at the influence of standard fine-tuning, 7 (+), on standard models,

P q

2y fd (see corresponding rows in Table 3). We first observe that the test performance of the pruned

models drop significantly without fine-tuning (“Fine-Tuning: None” column). Furthermore, we
observe that both standard fine-tuning 7, () and adversarial fine-tuning 7,4(-) are more important
for pruning than for quantization. The pruned standard model after standard fine-tuning, 75 (f%,),
achieves comparable test performance to the full models, fs;, as shown in Table 2. In the case of
quantization, it is interesting to note that the test performance of the standard models is not affected
by standard fine-tuning, 75 (fZ). This is to be expected as PTQ usually does not involve fine-tuning.
Standard fine-tuning, however, does not help recover any adversarial robustness as expected for both

pruned and quantized standard models (see the “robustness” rows for f%,, f1).
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o Adversarial training: We next look at the influence of standard fine-tuning on robust models,
Tt (f5), Tse(f), (bottom rows in Table 3). We note that for robust models, standard fine-tuning
helps recover the test performance for both pruning and quantization, whereas results in a significant
reduction of robustness.

Model compression with adversarial fine-tuning: One of the main questions considered in this work
is to jointly improve the robustness and computational efficiency of DL models. In this experiment, we
adversarially fine-tune, 7,4(-), compressed models instead of standard fine-tuning. These results are reported
in the last column “Tg4(+)” of Table 3 and Table 4.

Adversarial fine-tuning allows the models to fully recover its test performance of the compressed robust
models, f5, and only slightly decreases it for

the compressed standard models, f5. Both Taple 4: Performance of compressed standard and robust
st> Jrp, show a sharp increase in adversarial models on CIFAR10 dataset. We consider ¢;-pruning with
robustness after 7oq(-). Notably, the com- 50% sparsity ratio and INT8 post-train quantization for
pressed standard models, undergoing adversar- ResNet-18. After compression, we consider further per-

ial fine-tuning, 7aq4(fs;), of only three epochs forming standard fine-tuning 7 (-), adversarial fine-tuning
achieves robustness which is within a 5% differ- 7~ (+), and without fine-tuning.

ence from the fully adversarially trained model,

f5,- For instance, the pruned standard models Fine-Tuning
after adversarial fine-tuning, T,4(f%,), achieves =~ Model Performance None T () Toa()
robustness of 76.74 + 2.33 which after stan- tost 26.6510.01  89.7410.83  8L.9810.71
dard fine-tuning, _7;§(fft)7 was close to zero i robustness  00.004£0.00  00.00+£0.00  56.99+0.11
at 00.28 + 0.64. Similarly, for quantized stan- — 88934000 90.7510.16  842110.03
dard models with only three epochs of adversar- a
. . q st robustness 0.09+0.00 0.01£0.00 60.03+0.67
ial fine-tuning, T,4(fZ), the robustness perfor- " " "
. ‘ test 74.9540.67 89.31+1.33  83.18+0.88
mance improved from 7.0041.44 to 79.43+0.59, 3 e
. . . or . .
see Table 3. These findings align with those robustness  35.31£0.77  03.2620.32 57.1340.42
of (Jeddl et al., 2021), Suggesting that a Sig- v test 85.64+0.32 90.75+0.72 84.31+0.22
rb robustness ~ 58.0840.92  03.9840.59  57.2340.63

nificant portion of adversarial training can be
achieved with minimal fine-tuning, even after
compression. In our work, we have shown that these gains are also carried over for compressed models.

Experiments on large-scale datasets and networks using AutoAttack (Croce & Hein, 2020): We
extend our experiments to a broad range of datasets (MNIST, FashionMNIST, SVHN, CIFAR-10, CIFAR-
100, and Tiny ImageNet) and larger architectures (WideResNet-50, Vision Transformer). To obtain more
reliable estimates of robust accuracy, we evaluate all compressed, standard, and robust networks using
AutoAttack with APGD-CE and APGD-DLR. Consistent with the results in Table 3 and Table 4, the
findings in Table 5 and Table 6 show that simply applying standard or adversarial fine-tuning to compressed
standard networks yields standard and robust accuracies comparable to those of full standard and robust
models. Results for a wider range of quantization bit widths and pruning ratios are provided in Appendix B.4.

6 Discussions

Adversarial fine-tuning instead of adversarial training: Based on the experiments in Section 5, we
have shown that adversarial fine-tuning, T,q(-), can improve the robustness of compressed models. With
only three epochs of adversarial fine-tuning, the robustness performance shows a remarkable improvement,
from about 0% to almost the same levels as full robust models. These gains are across the two datasets
and both the compression methods considered in this work, as captured in Table 3 and Table 4 for
Fashion-MNIST, and CIFARI10, respectively. This in our view is a remarkable results, as the efficiency gains
due to compression and adversarial fine-tuning can aggregated over. These experiments show that both ef-
ficiency and robustness can be jointly improved by performing adversarial fine-tuning on compressed models.
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Table 5: Performance of compressed standard and robust models is evaluated on the MNIST, FashionMNIST,
SVHN, CIFAR10, CIFAR100, and TinylmageNet datasets. We apply post-training quantization at INT8
precision levels to WideResNet-50 and ViT architectures. After compressing the standardly trained models,
we perform either standard fine-tuning, denoted as Tg:(-), or adversarial fine-tuning, denoted as Toq(-).
Accuracy values are reported as “x/”, with the left value corresponding to standard accuracy and the right

to robust accuracy by AutoAttack.

Dataset Model Fot fro Tee () Taa(fL)
MNIST WRN 99.26+0.04/51.03+1.22 99.374+0.04/92.244+0.07 99.0740.06/53.82+0.94 99.10£0.08/92.43+0.13
ViT 92.54:|:0.02/31.56:|:0.91 92.01:t0.03/77.06:t0.08 91.18:t0.53/37.94:t2.33 90.45i0.15/74.25i0.07
FMNIST WRN 91.20ﬂ:0.26/4.96i0.93 85.81:t0.21/9.44:t0.14 89.72:t0.96/6.60:t0.61 85.69:t0.46/11.25:t0.97
ViT 85.224+0.44/13.844+0.49 80.91+0.26/24.22+0.51  84.62+0.06/16.5340.99 79.1740.32/22.10+0.30
SVHN WRN 90.42+0.25/6.51+1.59 89.51+£0.22/38.37+£0.44 89.33+£0.41/2.55+0.81 90.874+0.29/38.76+0.29
ViT 84.43+2.17/0.394+0.21 79.59+0.51/21.38+1.30 84.97+1.36/0.29+0.06 81.50+1.52/27.454+0.51
CIFARI0 WRN 68.634+0.39/0.631+0.11 60.24+1.48/15.89+0.51 66.57+2.82/3.334+0.24 65.15+1.05/17.094+1.43
ViT 62.65+1.60/0.924+0.13 59.03+1.30/10.93+1.28 63.47+1.15/1.164+0.23 58.94+2.26/13.25+0.79
CIFAR100 WRN 40.994+0.12/0.0940.02 29.78+1.40/2.00+0.14 34.654+1.26/0.734+0.08 33.78+0.89/2.78+0.11
ViT 36.95:|:3.47/0.50:|:0.04 34.61:t0.23/2.48:t0.33 32.63:t2.49/0.24:t0.09 35.35:t2.24/3.34:t0.13
TImageNet WRN 31.82ﬂ:0.26/0.07i0.03 29.28:t0.44/0.22:t0.02 26.47:t1.06/0.07:t0.02 26.80i0.08/0.25:t0.03
g ViT 32.934+0.18/0.01+0.00 30.99+0.49/0.23+0.05 28.46+0.34/0.07£0.03 31.49+0.10/0.22+0.04

Table 6: Performance of compressed standard and robust models is evaluated on the MNIST, FashionMNIST,
SVHN, CIFAR10, CIFAR100, and TinyImageNet datasets. We apply £;-pruning with 80% sparsity ratio to
WideResNet-50 and ViT architectures. After compressing the standardly trained models, we perform either
standard fine-tuning, denoted as Tg(-), or adversarial fine-tuning, denoted as T,4(:). Accuracy values are
reported as “x/”, with the left value corresponding to standard accuracy and the right to robust accuracy

by AutoAttack.

Dataset Model st fro ﬁt(fft) %d(fgt)
MNIST WRN 99.26+0.04/51.03+1.22 99.374+0.04/92.24+0.07 98.65+0.02/39.77+1.64 98.88+0.05/91.8240.20
ViT 92.544+0.02/31.56+0.91 92.01+0.03/77.064+0.08 91.33£0.02/21.96+1.64 91.01£0.10/74.084+0.35
FMNIST WRN 91.204+0.26/4.96+0.93 85.81+0.21/9.444+0.14 89.05+0.45/5.66+£0.27 83.07+0.26/9.56+0.72
ViT 85.224+0.44/13.8440.49 80.9140.26/24.2240.51 82.174+0.60/14.45+0.80  79.114+0.85/24.44+0.76
SVHN WRN 90.424+0.25/6.51+£1.59 89.51+0.22/38.37+0.44 88.20+0.27/9.47+0.83 88.29+0.21/35.461+0.66
ViT 84.43+2.17/0.39£0.21 79.59+0.51/21.384+1.30 82.14+0.95/1.02£0.25 77.22+1.80/17.424+1.20
CIFAR10 WRN 68.631+0.39/0.63+£0.11 60.24+1.48/15.89+0.51 60.49+2.36/6.50+£1.28 50.41+4.58/15.651+3.95
ViT 62.65+1.60/0.92+0.13 59.03+1.30/10.93+1.28 56.92+2.10/5.35+£1.25 51.80+£2.50/18.40+1.85
CIFAR100 WRN 40.99+0.12/0.0940.02 29.784+1.40/2.00+0.14 29.82+1.95/1.25+0.16 23.16+1.58/4.98+1.22
ViT 36.95+3.47/0.504+0.04 34.61+£0.23/2.484+0.33 26.72+£2.95/0.98+0.14 23.12+1.60/4.54+1.23
TImaseNet WRN 31.824+0.26/0.07£0.03 29.2840.44/0.2240.02 26.86+0.71/2.42+0.19 23.9240.92/7.47+0.90
g ViT 32.934+0.18/0.01£0.00 30.9940.49/0.234+0.05 26.25+1.14/3.99+0.42 24.70£0.90/7.96+0.71

Pruning versus quantization: Works that compare the test performance of pruning and quantization
previously have used compression ratios that might not be fair. For instance, comparing compressed models
with 50% pruning ratio and INT8 quantization precision (Li et al., 2017). We performed a systematic tuning
of compression levels for structured pruning and quantization, to match their test performance, as shown
in Figure 1. This results in the use of 80% sparsity ratio versus INT8 precision for Fashion-MNIST dataset,
and 50% versus INT8 for CIFARI10. This is reasonable as CIFAR10 is a more complex dataset and to match
the same performance with INT8 the sparsity ratio has to be smaller. Furthermore, consistent with the
literature, we also find that model pruning depends on fine-tuning to recover test performance, whereas
quantization does not necessarily benefit from fine-tuning.

Robust and non-robust features after compression: To better characterize the influence of fine-
tuning on compressed models, we present an analysis of the intermediate feature maps of the CNN models.
We hypothesize that visualizing these feature maps could provide insights into how test performance and
robustness is recovered when performing adversarial fine-tuning.
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We use the intermediate feature maps for the standard and robust models. For ease of interpretation, we use
our 8-layer CNN and evaluate it on Fashion-MNIST images from the “bag” class. The analysis is done for
three standard/robust model pairs: baseline, pruned and quantized models. The t-SNE embedding (Van der
Maaten & Hinton, 2008) of these feature maps can be seen in Figure 2.

The top row in Figure 2 shows the features created by the standard and robust baseline models, fg, frp.
The second row depicts the quantized (with PTQ) standard model with standard fine-tuning, 75 (f%), and
adversarial fine-tuning, Toq(fZ%). The bottom row consists of the pruned (with 80% sparsity ratio) standard
model, with standard fine-tuning, 74 (f%), and adversarial fine-tuning, T,4(f%). Columns show the feature
representations for the input layer, the 6th, 7th and 8th hidden layer, of the CNN model.

In a typical CNN, when examining features for natural images, we often notice distinct clusters representing
different classes or patterns (Zeiler & Fergus, 2014). However, when the model encounters adversarial
examples (perturbations), these clusters become less clear and start to overlap. This is shown in Figure 2,
where the features of the standard models start to scatter in the later layers of the model. This might suggest
that the misclassification do not register until later in the model when more abstract features are considered.

An interesting aspect of the robust features is their stability and consistency. They seem to remain in
the same position or maintain their clustering in the feature space, regardless of adversarial perturbations.
This consistency suggests that these features are resilient to the perturbations of adversarial examples.
Furthermore, our feature analysis clearly shows how the robust models have the ability to classify standard
and adversarial images alike. This observation also holds for compressed models (the second and third rows
in Figure 2). The distinction between standard and adversarial images is clearer when looking at the features
produced by the 6th, 7th and 8th hidden layer of the models.

Adversarial robustness of factorized neural networks: We further extend this analysis to another
common class of neural network compression methods. Let
fd and Tdb denote the decomposed standard and robust Taple 7@ Performance of compressed stan-

models, respectively, and adopt the same experimental set- Jard and robust models on Fashion-MNIST

tings as in pruning and quantization. Table 7 reports the dataset. We consider tensor decomposition
results on the Fashion-MNIST dataset, demonstrating that with 50% compression ratio for 8-layer CNN.

our observations also hold for factorized compression meth-  After compression, we consider further per-
ods, including those based on singular value decomposition  forming standard fine-tuning 7, +(+), adversar-
and tensor decomposition (Novikov et al., 2015; Wang et al., jg] fine-tuning 7,4(-), and without fine-tuning.
2022).

. P . Fine-Tuning
Computational gains: In our experiments we have shown Model

Performance
that robustness can be achieved by fine-tuning of compressed None 7et() Taal)
models with only three epochs. Performing adversarial fine- B test 2473 86.07 8120
tuning instead of adversarial training can reduce the compu- fet robustness 3.05  3.60 75.40
tation time from about 118 minutes to only about 14 min- ) test 30.75 85.30 81.83
utes on the CIFAR10 dataset. Furthermore, adversarial fine- b robustness  24.11 12.02 76.21

tuning of compressed models is cheaper than fine-tuning of

baseline models, and yields further reduction in computa-

tion time. For CIFAR10, we estimated that adversarial fine-tuning of a compressed model required around
10 minutes. This indicates that the gains in computational efficiency are compounded when adversarial
fine-tuning is performed on compressed models while retaining reasonable test and robustness performance,
as shown in Table 3 and Table 4.

Limitations: We have performed multiple experiments to highlight the key results about the influence of
adversarial fine-tuning of compressed neural networks. However, there still remain some limitations to our
work and future extensions.

In all our experiments we found fine-tuning for three epochs was adequate to improve the robustness per-
formance. The number of fine-tuning epochs might be task-, dataset-, and model- dependent and should
be carefully treated as another hyperparameter. Furthermore, we did not perform any cross-architectural
experiments on the two datasets. For instance, training ResNet-18 on Fashion-MNIST could allow us to
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Figure 2: Features created by a 8-layer CNN on the subset of Fashion-MNIST dataset with class “bag”.
The first column shows t-SNE visualization generated from standard and adversarial images from white
box attacks on the standard and robust models.. The last three columns show the features generated by
the last three hidden layers (layer 6, 7, 8) of three different model pairs: standard and robust baseline
models (fq versus frp), quantized (with INT8 post-train quantization) standard models with and without
adversarial fine-tuning (fZ versus T,4(f%)), and pruned (with 80% sparsity) standard model with standard
and adversarial fine-tuning (7. (f%,) versus Toa(f%)).

explore to what extent a relatively more complex network can maintain robustness after compression. Con-
versely, the trade-off between efficiency and test performance when using a smaller network on CIFARI10
could also shine some light on the influence of using models with less scope for pruning.

7 Conclusion

In this work, we set out to explore the interplay between model compression, test performance, and adver-
sarial robustness. We have shown that adversarial fine-tuning of compressed models can yield robustness
performance that is comparable to models that are adversarially trained from scratch.

With adversarial fine-tuning, the robustness performance of standard models is close to that of robust
models. Our results across different neural networks and datasets suggest that adversarial fine-tuning might
be a lighter substitute for adversarial training even when used alongside compression techniques like neural
network pruning, quantization, or factorization. For PTQ with adversarial fine-tuning, all results have less
than a 5% point distance for both test and robustness performance between the standard and robust models.

11
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In general, robust models perform better on both standard and adversarial performance measures. Ad-
versarial fine-tuning does lend itself as an approach with lightweight training, for cases where less energy
consumption and speed is favored over a marginal increase in performance. This yields a joint improvement
of robustness and compute efficiency, as fine-tuning for a handful of epochs is considerably cheaper than full
adversarial training. Based on these results, we conclude that we can obtain compressed models that are
both efficient and robust.
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A Experimental Set-up

A.1 Parameters for optimization during fine-tuning

After compression, the optimization hyperparameters are adjusted for both standard and adversarial fine-
tuning. For pruning, the learning rate is increased to 0.1. For both PTQ and QAT, a momentum of 0.9 is
added, and the learning rate is fixed at 0.01.

A.2 Implementation details for t-SNE visualization of features

We use t-SNE embedding implemented in scikit-learns to perform the visualizations. We set the perplexity
to 30 and learning rate to “auto”. Before applying the embedding, the features of the three last layers of
every model pair are flattened.

We also visualize the inputs, both on clean images and on the images attacked by PGD with respect to each
model, which is why we end up with three different labels (and not four) for the input plots in the first
column of Figure 2.

B Additional Results

B.1 Performance of compressed models on Fashion-MNIST without fine-tuning

We evaluate the test and robust performance of standard and robust models with different compression
levels. Adversarial training is still an essential and effective way of improving the robustness performance of
compressed models, as shown in Figure 3.
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(a) Standard and robust model with pruning (b) Standard and robust model with PTQ

Figure 3: Performance of 8-layer compressed CNN models on Fashion-MNIST without fine-tuning. We
perform ¢;-norm pruning (f?, left) and post-train quantization (f9, right) on standard and robust models.
In each subfigure, the horizontal axis shows the level of compression performed on the model, and the
vertical axis shows the performance. Each model was trained three times and averages out, error bars show
the standard deviation between runs.

B.2 Performance of quantized robust models using QAT

We test the robustness performance of a quantized robust model f? with QAT. For Fashion-MNIST, we
adversarially train the model from scratch with QAT, whereas for CIFAR10 we adversarially train on top
of the pre-trained model ResNet-18. Our experiment reveal that in line with our comparison framework,
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the test performance among the various compression schemes remains highly similar, with differences of less
than 5% points, as shown in Figure 4.
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(a) Robust model on Fashion-MNIST with QAT (b) Robust model on CIFAR10 with QAT

Figure 4: Performance of 8-layer compressed 8-layer CNN on Fasion-MNIST (f7,, left) and ResNet-18 on
CIFARI0 (f?%, right) without fine-tuning. We perform quantization-aware training with different precision
on robust models. In each subfigure, the horizontal axis shows the level of compression performed on the
model, and the vertical axis shows the performance. Each model was trained three times and averages out,

error bars show the standard deviation between runs.

B.3 With versus without adversarial fine-tuning

This section provides parallel experimental results of Table 3 and Table 4, where we evaluate the effectiveness
of adversarial fine-tuning on compressed models.

Fashion-MNIST: Examining the results on the Fashion-MNIST dataset as depicted in Table 8, we find
that with adversarial fine-tuning, the standard model demonstrates comparable performance to the robust
model in terms of both test and robustness performance. This similarity can be attributed to the relatively
straightforward nature of the Fashion-MNIST dataset, where robustness property are less intricate compared
to more complex datasets. Notably, PTQ emerges as the highest performing method, achieving an robustness
performance of 82.65%. Even though QAT takes much longer to train, it does not seem to perform better
than PTQ in our specific setting, and has a higher standard error. However, QAT does slightly outperform
PTQ on test performance.

Table 8: Performance of 8-layer CNN on Fashion-MNIST dataset. For standard models, we consider the
model fg without compression, the pruned model fF, with 80% sparsity ratio, the quantized model fZ
with INT8 post-train quantization. For robust models, we consider the model f,, without compression, the
pruned model f% with 80% sparsity ratio, the quantized model f, with INT8 post-train quantization and
quantization-aware training. All compressed models are adversarially fine-tuned Tgq(+).

Model Test Robustness
fst 90.4940.22 4.2642.36

Taa(fE) 83.91 +£1.53  76.74 £2.23
Toa(f%) (PTQ) 84.93+0.71  79.43+0.59
fro 87.87+0.33 82.51+0.16
Taa(fE) 84.5341.21  78.8442.04

Taa(f?,) (PTQ) 87.5140.04 82.65+0.11
Taa(f},) (QAT) 88.27+0.42  81.18+1.08
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CIFARI10: Analyzing the results on the CIFAR10 dataset presented in Table 9, we see similar results as
the Fashion-MNIST. After adversarial fine-tuning of the baseline models the test performance is reclaimed
with difference of less than 5% points. Additionally the standard model performs as well as the robust model
with only 3 epochs of adversarial fine-tuning. The model without compression, the pruned model and the
quantized model all achieve robust performance of 57.50+0.75, showing again the effectiveness of adversarial
fine-tuning. Surprisingly, PTQ outperforms QAT in on both test and robust performance.

Table 9: Performance of ResNet-18 on CIFAR10 dataset. For standard models, we consider the model f;
without compression, the pruned model f£, with 50% sparsity ratio, the quantized model fZ with INT8 post-
train quantization. For robust models, we consider the model f,;, without compression, the pruned model f7;
with 50% sparsity ratio, the quantized model f2 with INT8 post-train quantization and quantization-aware
training. All compressed models are adversarially fine-tuned 7g4().

Model Test Robustness
fst 88.7440.00 0.0040.00
TaalfE) 82.6240.17 56.56+0.77
Taa(fd) (PTQ) 84.21+0.93 60.03+0.67
frb 85.7740.95 57.9340.27
Taa(fh) 83.55+0.86  57.27+0.47

Toa(f%) (PTQ) 84.31+0.22  57.2340.63
Toa(f%) (QAT)  83.1940.69  55.3840.52

Even though the benefits of QAT are not revealed in the results of Table 8 and Table 9, we see that when
performing QAT on a much more over-parameterized network, eg., ResNet-18 on CIFARI10, it better retains
both test and robust performances when being quantized to INT4, see Figure 4. However, for the 8-layer
CNN on Fashion-MNIST, QAT with INT4 precision does not seem to work at all, as shown in Figure 1.

18



Under review as submission to TMLR

B.4 Complete results of Table 5 and Table 6

Table 10: Performance of compressed standard and robust models is evaluated on the MNIST, FashionM-
NIST, SVHN, CIFAR10, CIFAR100, and TinyImageNet datasets. We apply post-training quantization at
INT16, INT8, and INT4 precision levels to WideResNet-50 and ViT architectures. After compressing the stan-
dardly trained models, we perform either standard fine-tuning, denoted as T4 (-), or adversarial fine-tuning,

denoted as Tqa().

accuracy and the right to robust accuracy.

Accuracy values are reported as “x/x”, with the left value corresponding to standard

fst

fro

Bit

Tat(£4,)

Taa(f2)

99.26+0.04/51.03+1.22

99.3740.04/92.2440.07

INT16
INT8
INT4

99.14+0.04/51.36+0.54
99.07+0.06/53.82+0.94
95.224+0.92/58.06+1.24

99.28+0.04/92.67+0.14
99.10+0.08/92.431+0.13
92.8442.40/90.39+2.36

92.5440.02/31.56+0.91

92.01£0.03/77.06+0.08

INT16
INT8
INT4

91.334+0.02/38.27+2.17
91.1840.53/37.944+2.33
88.95+0.21/34.86+0.17

90.3040.24/74.3940.02
90.45+0.15/74.254+0.07
86.80+0.80/72.771+0.66

91.2040.26/4.96+£0.93

85.814+0.21/9.4440.14

INT16
INT8
INT4

90.38+0.14/6.71+1.82
89.7240.96/6.60£0.61
88.074+0.19/6.27+0.15

85.374+0.32/11.344+0.74
85.6940.46/11.254+0.97
85.7145.76/10.68+7.09

85.22+0.44/13.844+0.49

80.91+0.26/24.2240.51

INT16
INT8
INT4

83.2840.76/12.26+0.71
84.62+0.06/16.53+0.99
78.03+£1.02/15.57+5.82

79.58+0.42/22.11+0.11
79.17+0.32/22.104+0.30
78.97+0.52/14.074+0.53

90.42+0.25/6.51+1.59

89.51+0.22/38.371+0.44

INT16
INT8
INT4

88.71+0.44/5.69+0.85
89.33+0.41/2.5540.81
82.274+2.94/10.61+2.93

90.9240.43/37.63+0.95
90.87+0.29/38.761+0.29
81.4442.45/39.934+2.12

84.43+2.17/0.3940.21

79.5940.51/21.38+1.30

INT16
INT8
INT4

85.31£0.39/0.28+0.30
84.97+1.36/0.2940.06
84.70+0.36/3.56+0.22

83.88+2.29/24.16+4.57
81.50+1.52/27.454+0.51
82.80+3.32/20.101+0.80

68.634+0.39/0.63+0.11

60.2441.48/15.8940.51

INT16
INT8
INT4

63.7442.78/2.27+0.17
66.574+2.82/3.33+0.24
62.39+3.75/3.83+0.34

65.70+1.95/15.21+2.44
65.154+1.05/17.094+1.43
61.174+2.57/10.7440.42

62.65+1.60/0.92+0.13

59.03+1.30/10.93+1.28

INT16
INT8
INT4

60.96+1.69/1.74+0.22
63.47+1.15/1.16+0.23
55.814+1.43/1.3140.10

60.40+1.25/14.1940.29
58.94+2.26/13.254+0.79
56.894+0.17/11.624+0.38

40.9940.12/0.09£0.02

29.784+1.40/2.00+0.14

INT16
INT8
INT4

35.69+0.59/0.574+0.04
34.654+1.26/0.73+£0.08
25.04£0.31/0.43£0.03

33.8941.17/2.6440.07
33.7840.89/2.78+0.11
24.81+0.44/2.35+0.05

36.95+3.47/0.50+0.04

34.61+0.23/2.484+0.33

INT16
INT8
INT4

33.88+3.47/0.50+0.04
32.63+2.49/0.2440.09
26.50+1.28/0.7440.06

34.33+3.07/3.2440.19
35.354+2.24/3.3440.13
31.53+0.56/2.134+0.04

31.8240.26/0.07£0.03

29.28+0.44/0.2240.02

INT16
INT8
INT4

27.9440.49/0.04£0.01
26.474+1.06/0.07£0.02
16.56+0.18/0.06+0.03

28.11£0.53/0.24+0.06
26.80+0.08/0.25+0.03
17.744+0.10/0.704+0.09

Dataset Model
WRN-50
MNIST
ViT
WRN-50
FMNIST
ViT
WRN-50
SVHN
ViT
WRN-50
CIFAR10
ViT
WRN-50
CIFAR100
ViT
WRN-50
TImageNet
ViT

32.93+0.18/0.01£0.00

30.9940.49/0.234+0.05

INT16
INT8
INT4

27.7240.21/0.06+0.01
28.46+0.34/0.07£0.03
26.074+0.01/0.11£0.02

30.8440.68/0.224+0.07
31.4940.10/0.2240.04
25.03+£0.37/0.14+0.02
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Table 11: Performance of compressed standard and robust models is evaluated on the MNIST, FashionM-
NIST, SVHN, CIFAR10, CIFAR100, and TinyImageNet datasets. We apply ¢1-pruning with 20%, 50%, 80%
sparsity ratio to WideResNet-50 and ViT architectures. After compressing the standardly trained models,
we perform either standard fine-tuning, denoted as 7 (-), or adversarial fine-tuning, denoted as Tq(-). Ac-
curacy values are reported as “x/x”, with the left value corresponding to standard accuracy and the right to
robust accuracy.

Dataset

Model

fst

frb

Ratio

ﬁt(f:t)

,Tad(f:t)

MNIST

WRN-50

99.264+0.04/51.03+1.22

99.3740.04/92.2440.07

N

98.164+1.26/41.794+5.99
98.58+0.57/47.09+4.52
98.654+0.02/39.77+1.64

99.04£0.08/92.14+0.21
98.96+0.20/92.26+0.31
98.88+0.05/91.824+0.20

ViT

92.5440.02/31.56+0.91

92.0140.03/77.06+0.08

90.574+1.26/23.03+5.99
91.134+0.20/28.33+2.23
91.334+0.02/21.96+1.64

91.43+0.10/76.814+0.30
91.38+0.11/76.704+0.30
91.01£0.10/74.08+0.35

FMNIST

WRN-50

91.2040.26/4.964+0.93

85.814+0.21/9.44+0.14

87.07+0.74/8.75+0.82
87.04+0.83/7.46+£3.07
89.05+0.45/5.66+£0.27

85.4440.17/11.53+0.63
85.024+0.41/11.4740.08
83.07£0.26/9.56+£0.72

ViT

85.2240.44/13.84+0.49

80.9140.26/24.2240.51

80.434+0.97/19.25+0.96
80.9940.91/17.29+0.98
82.1740.60/14.4540.80

79.17+£0.68/27.881+0.70
78.29+0.84/26.301+0.93
79.114£0.85/24.44+0.76

SVHN

WRN-50

90.424+0.25/6.514+1.59

89.514+0.22/38.37+0.44

88.80+1.06/12.35+1.58
89.704+0.28/13.74+1.24
88.20+0.27/9.47+0.83

89.43+0.49/36.77+0.26
89.55+0.37/37.301+0.20
88.29+0.21/35.461+0.66

ViT

84.43+2.17/0.39+£0.21

79.59+0.51/21.38£1.30

82.38+1.13/3.21+£0.78
83.714£0.46/2.62+0.72
82.1440.95/1.02+0.25

79.65+0.85/21.164+0.91
79.63+£2.77/20.31£1.13
77.2241.80/17.4241.20

CIFAR10

WRN-50

68.63+0.39/0.63+0.11

60.244+1.48/15.89+0.51

58.13+5.91/7.43+£2.44
61.38+7.65/8.85+4.65
60.49+2.36/6.50+£1.28

60.23+4.84/20.78+4.66
57.76+£5.01/20.351+4.62
50.41+£4.58/15.65+3.95

ViT

62.65+1.60/0.92+0.13

59.03+1.30/10.93+1.28

57.25+3.17/8.60£1.45
60.53+3.87/6.88+£2.14
56.924+2.10/5.35+1.25

56.91+3.30/22.604+2.40
56.03+4.81/21.22+1.45
51.80£2.50/18.404+1.85

CIFAR100

WRN-50

40.9940.12/0.0940.02

29.78+1.40/2.00£0.14

34.19+0.54/2.11+£0.14
32.73+£1.47/2.13£0.17
29.82+1.95/1.25+0.16

31.22+1.47/7.82£1.28
31.43+£1.97/5.42+1.46
23.16+1.58/4.98+1.22

ViT

36.95+3.47/0.50+£0.04

34.614+0.23/2.48+0.33

29.16+1.85/2.07£0.25
29.56+2.53/1.84+0.29
26.72+£2.95/0.98+0.14

29.4241.28/7.65+£1.05
28.554+1.04/6.73£1.52
23.12+1.60/4.54£1.23

TImageNet

WRN-50

31.82+0.26/0.07£0.03

29.28+0.44/0.22+0.02

25.46+0.72/0.33£0.03
27.78+0.96/0.51£0.32
26.86+0.71/2.42+0.19

29.86+0.79/9.38+0.55
28.07+0.80/9.62+0.84
23.92+0.92/7.47£0.90

ViT

32.93+0.18/0.01£0.00

30.9940.49/0.23+£0.05

o O O [eleNe) o O o (e eNe) o O o o O O o O O o O O [eNeNe} o O O [eNeNeNNeoNoN-]

0 0N o 0N 0 0N o 0N 0 0N o 0N 0 0N 0 0N w0 0N 0 0N 0 N | 0O,

26.76+0.83/1.41+0.25
28.88+0.96/2.62+0.33
26.25+1.14/3.99+0.42

29.60+0.61/9.55+0.62
29.1740.80/9.74+0.84
24.70+£0.90/7.96+£0.71
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