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Abstract

The transformer architecture is widely used in machine learning models and consists65
of two alternating sublayers: attention heads and MLPs. We prove that an MLP65
neuron can be implemented by a masked attention head with internal dimension 165
so long as the MLP’s activation function comes from a restricted class including65
SiLU and close approximations of ReLU and GeLU. This allows one to convert an65
MLP-and-attention transformer into an attention-only transformer at the cost of65
greatly increasing the number of attention heads.65

1 Introduction68

The transformer architecture was introduced in the landmark 2017 paper Attention is All You Need72
(Vaswani et al., 2023) and traditionally consists of alternating attention and multilayer-perceptron72
(MLP) sublayers. Although initially used for machine translation, transformers have been used across72
a wide range of tasks, including language modeling (Radford et al., 2018; Devlin et al., 2019; Liu72
et al., 2018), computer vision (Khan et al., 2022; Cornia et al., 2020), and image generation (Parmar72
et al., 2018).72

This work seeks provide a new perspective on the role of MLP layers in transformers, by proving74
that they can be implemented by attention layers. In Theorem 2 we show that by including a “bias74
token” akin to the persistent memory vectors in Sukhbaatar et al. (2019) and using a slightly unusual74
attention-masking pattern, an MLP layer of size ℓ can be written as the sum of ℓ attention heads74
with internal dimension 1. We then show in Theorem 4 that one can apply this process throughout74
the entire transformer, converting the typical MLP-and-attention transformer into an attention-only74
transformer. Finally, the limitations of this method are discussed.74

2 Background77

Notation. Throughout, we will use Mn,k to denote the set of real-valued n-by-k matrices. We will80
write 0 and 1 for matrices where every entry is 0 or 1, respectively, of size specificied or implicit in80
the text.80

For matrices X ∈ Mn1,k1
and Y ∈ Mn2,k2

of any size, we will write X ⊕ Y for the block matrix83
in Mn1+n2,k1+k2

with X and Y as diagonal blocks and 0 elsewhere. For matrices X ∈ Mn,k1
and83

Y ∈ Mn,k2
, we will write [X|Y ] ∈ Mn,k1+k2

for the matrix made by appending one to the other.83

We write ReLU,SiLU and GeLU for the usual activation functions as in Hendrycks & Gimpel (2023).85
In particular, SiLU(x) = xσ(x), where σ(x) = 1/(1 + exp(−x)).85

We will say that a generalized SiLU function is a function of the form f(x) = a1SiLU(a2x) for some87
a1, a2 ∈ R.87
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The class of generalized SiLU functions includes SiLU(x) and approximations of GeLU and ReLU.91
In particular, GeLU(x) ≈ SiLU(1.702x)/1.702 (Hendrycks & Gimpel, 2023) (reaching a maximum91
absolute error of 0.0203 at x = ±2.27) and ReLU(x) ≈ SiLU(kx)/k for large k (reaching a91
maximum absolute error of 0.2785

k at x = ± 1.278
k ).91

We will now present a slightly abstracted definition of MLPs, attention heads, and transformers,95
which the reader may confirm encompasses the classical transformer framework described in Vaswani95
et al. (2023).95

Definition 1. An MLP with no biases and one hidden layer is a function f : Mn,k → Mn,k of the96
form f(X) = α(XV1)V2 where α : R → R is some real-valued function applied entry-wise to96
matrices, and V1 ∈ Mk,ℓ, V2 ∈ Mℓ,k are fixed parameter matrices. We call ℓ the size of the hidden96
layer, and the function α is called the activation function.96

A mask matrix Λ is a matrix with entries in {0, 1} such that every row has at least one nonzero entry.98

Let X,Λ ∈ Mn,k, and suppose Λ is a mask matrix. Then define the masked softmax function100

msoftmax(X,Λ) := rownorm (exp(X)⊙ Λ)

where rownorm denotes row-wise ℓ1 normalization, and ⊙ denotes element-wise multiplication.104
That is, the masked softmax function acts like the usual row-wise softmax but applied to only the104
entries of X where the mask Λ is 1. At the entries where Λ is 0, the output of the masked softmax104
function takes the value 0.104

A masked attention head is a function h : Mn,k → Mn,k of the form106

h(X) = msoftmax(XWQKXT ,Λ)XWOV

for some matrices WOV ,WQK ∈ Mk,k, and mask matrix Λ ∈ Mn,n. We call WOV and WQK the113
parameter matrices for this attention head.113

A transformer is a function t : MN,D → MN,D of the form X0 7→ X1 7→ ... 7→ Xm = t(X0), where115

Xj+1 =

LayerNorm(Xj +
∑
i

hj,i(Xj)) or

LayerNorm(Xj + fj(Xj))

for some attention heads hj,i or MLPs with one hidden layer fj . Note the use of Layer Normalization124
(Ba et al., 2016) and skip connections, where one performs some computation f on Xj and defines124
Xj+1 = LayerNorm(Xj + f(Xj)), as opposed to Xj+1 = f(Xj).124

3 Implementing MLP Layers with Attention Heads127

In this section we show that MLP layers whose activation functions are generalized SiLU functions130
are in fact a sum of attention heads.130

Theorem 2. Let f(X) = α(XV1)V2 be an MLP on MN,D with no biases and one hidden layer of135
size ℓ, and suppose α is a generalized SiLU function α(x) = a1SiLU(a2x). Then there are ℓ masked135
attention heads {hi}ℓi=1 on MN+1,D+1 such that135

f(X)⊕ [0] =

ℓ∑
i=1

hi(X ⊕ [1])

for all X ∈ MN,D.139

In particular, for the ith attention head, one uses parameter and mask matrices141
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WQK = a2

[
0 −V i

1

0 0

]
WOV = a1a2V

i
1V

i
2 ⊕ [0]

Λ =

[
IN 1
0 1

]
where the block decompositions are into size N and 1, V i

1 denotes the ith column of V1, V i
2 denotes158

the ith row of V2, and 1 denotes the column vector of all 1s.158

We provide a sketch of the proof in the case of ℓ = a1 = a2 = 1. For the full proof see Appendix A.161

Proof Sketch. Since ℓ = 1, we will write V1 and V2 are single-column matrices, so we will write V1165
and V2 in place of V i

1 and V i
2 . Due to our choice of a particularly constrained masking pattern, our165

masked softmax function will only consider two tokens, the former of which has a pre-attention value165
from the main diagonal of (X ⊕ [1])WOV (X ⊕ [1])T = −XV1 ⊕ [0] and the latter of which is 0.165
Writing −x for the former entry, we have softmax([−x, 0]) = rownorm([e−x, 1]) = [σ(x), σ(−x)].165

That is, by our choice of WQK and Λ we have made our head have attention pattern171 [
diag(σ(XV1)) σ(−XV1)

0 1

]
. Then, the complete output of this attention head h is171

h(X ⊕ [1]) =

[
diag(σ(XV1)) σ(−XV1)

0 1

] [
X 0
0 1

] [
V1V2 0
0 0

]
=

[
diag(σ(XV1))XV1V2 0

0 0

]
= SiLU(XV1)V2 ⊕ [0]

as desired.195

196

Remark 3. The additional term ⊕[1] in Theorem 2 is similar to the persistent vectors of Sukhbaatar201
et al. (2019). In that work, the authors propose a new architecture, which they call the all-attention201
architecture, in which attention can also be paid to certain static vectors, learned for each attention201
head, called the persistent vectors. Our approach could also be implemented in that architecture with201
a single persistent vector (0, 0, 0, .., 0, 1) shared across all attention heads in place of the ⊕[1] terms.201

Note also that the WQK and WOV matrices used in Theorem 2 can be factored into the matrices WQ,203
WK , WV , WO ∈ MD+1,1 from Vaswani et al. (2023) satisfying WQK = WQW

T
K/

√
D + 1 and203

WOV = WV WO. In particular, we can take WQ = WV = a2[V
i
1 |0]T , WK =

√
D + 1[0| − 1]T ,203

and WO = a1[V
i
2 |0]T . Since WK is shared across all attention heads, we only need to store two sets203

of parameters, the vectors WQ = WV and WO.203

This provides an alternative perspective on MLP neurons: a neuron in an MLP is an attention head205
with internal dimension 1 and a particularly restrictive masking pattern in which each token attends205
only to itself and a static “bias” token.205

We now turn to a have the necessary tools to show that a decoder-only transformer as in Liu et al.208
(2018); Radford et al. (2018) can be implemented entirely with attention heads.208

Theorem 4. If a transformer’s MLP layers are activated by a generalized SiLU function, they can be212
substituted with attention heads.212

We again provide just a sketch of the proof and direct the reader to Appendix A for the full proof.215

Proof Sketch. We will create a new transformer on MN+1,D+1 whose residual stream X ′
j on every219

sublayer satisfies X ′
j = Xj ⊕ [1]. This is sufficient to prove the main claim since the output of219
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this new transformer will be X ′
2m = X2m ⊕ [1] and therefore contain the output of the original219

transformer.219

For any MLP layer in the original transformer, we use Theorem 2 to replace the MLP layer with221
attention heads. For any attention head layer, we can slightly augment the WQK ,WOV , and Λ221
matrices to work on the larger size. Due to skip connections, the resulting matrix retains the ⊕[1]221
term, as desired.221

Remark 5. It is instructive to compare this construction to the negative results of Dong et al. (2021),225
which find that without skip connections or MLPs, a self-attention network converges rapidly to a225
rank-1 matrix. Since we obviously do away with the MLP layer, our result depends on the use of skip225
connections. In particular, the “bias term” of ⊕[1] is zeroed out by the construction in Theorem 2,225
so applying the construction in Theorem 4 without a skip connection results in X ′

0 = X0 ⊕ [1], but225
X ′

1 = X1 ⊕ [0]. Then, in the j = 2 sublayer, the construction in Theorem 2 would fail for lack of this225
bias term, as, without it, the pre-attention matrix (X ′)WQK(X ′)T is 0.225

We additionally show in Appendix B that attention heads can separately implement the components228
of an MLP layer, namely activation functions and linear transformations.228

4 Limitations231

The technique described in Theorem 4 faces several practical limitations. First is the quantity of234
attention heads: we use one attention head per dimension of the hidden layer, which can easily234
increase the number of attention heads by several orders of magnitude, partially offset by the new234
attention heads having smaller internal dimension. For example, in GPT-3 (Brown et al., 2020) the234
MLP layer has hidden dimension 49152, so this method would require 49152 additional 1-dimensional234
attention heads in each layer. This is an increase from from GPT-3’s normal set of 96 attention heads234
per layer, each with internal dimension 128.234

Second, it may be the case that replacing a feedforward network with attention heads slows down236
model inference or training. In particular, this approach replaces matrix multiplication with many236
vector-by-vector multiplications. One also computes many terms that are “thrown away” in the236
masking step. Combined, these suggest that converting an MLP layer to attention heads might236
increase computational costs.236

5 Discussion239

We have proven that attention heads can implement an MLP layer and that any transformer can be242
converted to an attention-only transformer. This approach provides a useful new perspective on the242
relative importance of MLP layers and attention heads in language models. MLP layers in a model242
like GPT-3 are larger than attention layers by a 2:1 margin if one measures by number of parameters242
but by 500:1 if one measures by number of attention heads.242

One implication of these results is that it is theoretically possible to train an attention-only transformer244
that matches the performance of an MLP-plus-attention transformer. It remains unknown whether244
such an architecture would be competitive with the more classical transformer architecture in terms244
of practical considerations like training or inference speed. Such a test would be a promising future244
area of research.244
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A Proofs of Main Results259

In this section we present fully detailed proofs of our main results.263

Proof of Theorem 2. We first prove the claim in the case of ℓ = a1 = a2 = 1. In this case, since266
there is only one column in V1, then V1 = V i

1 , and similarly V2 = V i
2 . Consider the attention matrix266

msoftmax((X ⊕ [1])WQK(X ⊕ [1])T ,Λ). Multiplying matrices on the level of their blocks, we get266
that the first argument of the masked softmax is266

(X ⊕ [1])WQK(X ⊕ [1])T =

[
X 0
0 1

] [
0 −V i

1

0 0

] [
X 0
0 1

]T
=

[
0 −XV1

0 0

]
Now consider the masked softmax term in the jth row for j ≤ N . This row has exactly two unmasked286
values, the diagonal entry and the rightmost entry, taking the values 0 and −(XV1)j , respectively.286
Applying exp and rownorm results in σ((XV1)j) and σ(−(XV1)j), respectively. Thus, the masked286
softmax term becomes286

msoftmax((X ⊕ [1])WQK(X ⊕ [1])T ,Λ) = msoftmax(

[
0 −XV1

0 0

]
,

[
In−1 1
0 1

]
)

=

[
diag(σ(XV1)) σ(−XV1)

0 1

]
Substituting these values into the expression for h(X) gives306
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h(X ⊕ [1]) = msoftmax((X ⊕ [1])WQK(X ⊕ [1])T ,Λ)(X ⊕ [1])WOV

=

[
diag(σ(XV1)) σ(−XV1)

0 1

]
(X ⊕ [1])WOV

=

[
diag(σ(XV1)) σ(−XV1)

0 1

] [
X 0
0 1

] [
V1V2 0
0 0

]
=

[
diag(σ(XV1))XV1V2 0

0 0

]
=

[
SiLU(XV1)V2 0

0 0

]
=

[
f(X) 0
0 0

]
= f(X)⊕ [0]

as desired. This completes the ℓ = a1 = a2 = 1 case.345

For a general a1, a2, apply the previous case to an MLP with weight matrices a2V1 and a1V2.347

Finally, for the fully general case with ℓ > 1, for each 1 ≤ i ≤ ℓ, let fi(X) = α(XV i
1 )V

i
2 , and note349

that f =

ℓ∑
i=1

fi. Let hi denote the attention head corresponding to fi given by the ℓ = 1 case. Then349

we have that349

f(X)⊕ [0] =

ℓ∑
i=1

fi(X)⊕ [0]

=

ℓ∑
i=1

hi(X ⊕ [1])

as desired.355

Proof of Theorem 4. We will show that we can create a new transformer t′ on MN+1,D+1 whose359
residual stream X ′

j on every sublayer satisfies359

X ′
j = Xj ⊕ [1]

This is sufficient to prove the main claim since the output of this new transformer will be X ′
2m =363

X2m ⊕ [1] and therefore contain the output of the original transformer.363

Without loss of generality, assume that the MLP layers have no bias terms (i.e., that we’ve already365
used the “bias trick” to fold bias terms into the weight matrix).365

To prove that there is a transformer t′ that satisfies X ′
j = Xj ⊕ [1] on every sublayer, we proceed by367

induction. For the base case of j = 0, we tweak the transformer’s context window and embedding367
weights so that X ′

0 = X0 ⊕ [1].367

We split the inductive case depending on whether the original transformer’s sublayer used attention369
or an MLP. If the original layer was an MLP, then by Theorem 2 there are attention heads h′

j,i such369

that fj(X)⊕ [0] =
∑

h′
j,i(X ⊕ [1]), so in our transformer t′, using these attention heads yields369
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X ′
j+1 = LayerNorm(X ′

j +
∑

h′
j,i(X

′
j))

= LayerNorm((Xj ⊕ [1]) +
∑

h′
j,i(Xj ⊕ [1]))

= LayerNorm((Xj ⊕ [1]) + (fj(X)⊕ [0])))

= LayerNorm(Xj + fj(X))⊕ [1]

= Xj+1 ⊕ [1]

as desired.379

If instead, the transformer used attention heads on the jth sublayer, we must tweak our original381
attention heads to account for the new size. To this end, we will show that for each of the original381
attention heads h = hj,i, we can create an attention head h′ such that381

h′(X ⊕ [1]) = h(X)⊕ [0]

Let WQK ,WOV , and Λ denote the original parameter and masking matrices for h. Then define385

W ′
QK = WQK ⊕ [1]

W ′
OV = WOV ⊕ [0]

Λ′ = Λ⊕ [1]

Then,393

h′(X ⊕ [1]) = msoftmax((X ⊕ [1])W ′
QK(X ⊕ [1])T ,Λ′)(X ⊕ [1])W ′

OV

= msoftmax((X ⊕ [1])(WQK ⊕ [1])(X ⊕ [1])T , (Λ⊕ [1]))(X ⊕ [1])(WOV ⊕ [0])

= msoftmax(XWQKXT ⊕ [1],Λ⊕ [1])(XWOV ⊕ [0])

= (msoftmax(XWQKXT ,Λ)⊕ [1])(XWOV ⊕ [0])

= msoftmax(XWQKXT ,Λ)XWOV ⊕ [0]

= h(X)⊕ [0]

as desired. Now, creating such h′
j,i for each of the original attention heads hj,i, we have404

X ′
j+1 = LayerNorm(X ′

j +
∑

h′
j,i(X

′
j))

= LayerNorm((Xj ⊕ [1]) +
∑

h′
j,i(Xj ⊕ [1]))

= LayerNorm((Xj ⊕ [1]) +
∑

hj,i(X)⊕ [0]))

= LayerNorm((Xj +
∑

hj,i(X)))⊕ [1]

= Xj+1 ⊕ [1]

as desired. This completes the inductive step and the proof.414

415

B Linear Transformations and Activation Functions with Attention Heads418

Theorem 2 shows that attention heads can implement an MLP layer, but can they separately implement422
the components of an MLP, a linear transformation and an activation function? In this section we422
show that the answer is yes.422

We first show that an attention head can perform an arbitrary linear operation row-wise on the matrix.424
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Theorem 6. Let h : MN,D → MN,D be an attention head with masking matrix Λ = IN . Then428
h(X) = XWOV .428

Proof. Because Λ = In, after masking, the attention matrix msoftmax(XWQKXT ,Λ) will have432
nonzero entries only along the diagonal. Since the rows of the attention matrix are normalized to sum432
to 1, it follows that msoftmax(XWQKXT ,Λ) = In. Then,432

h(X) = msoftmax(XWQKXT ,Λ)XWOV = InXWOV = XWOV

as desired.434

Now we will show that one can apply a generalized SiLU function entrywise.437

Theorem 7. Let α be a generalized SiLU function. Then there are D attention heads h1, ..., hD on441
MN+1,D+1 such that441

α(X)⊕ [0] =

D∑
i=1

hi(X ⊕ [1])

Proof. This follows immediately from applying Theorem 2 to the MLP f(X) = α(XIN )IN =448
α(X), whose hidden layer is of size ℓ = D.448

Note that a transformer usually makes use of skip connections, so that the residual stream experiences451
the transformation X 7→ X + sublayer(X). Thus, to get the transformation X 7→ α(X), one can451
combine these two theorems, using D+1 attention heads to produce sublayer(X) = α(X)−X , in451
which case X 7→ X + sublayer(X) = α(X).451
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