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Abstract

In this paper, we introduce LInK, a novel framework that integrates contrastive learning
of performance and design space with optimization techniques for solving complex inverse
problems in engineering design with discrete and continuous variables. We focus on the
path synthesis problem for planar linkage mechanisms. By leveraging a multi-modal and
transformation-invariant contrastive learning framework, LInK learns a joint representation
that captures complex physics and design representations of mechanisms, enabling rapid re-
trieval from a vast dataset of over 10 million mechanisms. This approach improves precision
through the warm start of a hierarchical unconstrained nonlinear optimization algorithm,
combining the robustness of traditional optimization with the speed and adaptability of
modern deep learning methods. Our results on an existing benchmark demonstrate that
LInK outperforms existing methods with 28 times less error compared to a state-of-the-art
approach while taking 20 times less time on an existing benchmark. Moreover, we introduce
a significantly more challenging benchmark, named LINK-ABC, which involves synthesizing
linkages that trace the trajectories of English capital alphabets—an inverse design bench-
mark task that existing methods struggle with due to large non-linearities and tiny feasible
space. Our results demonstrate that LInK not only advances the field of mechanism design
but also broadens the applicability of contrastive learning and optimization to other areas
of engineering.

1 Introduction

Linkage mechanisms play a pivotal role in mechanical engineering, serving as fundamental components
in applications ranging from the automation of manufacturing processes to the development of robotic
systems. These mechanisms are crucial for translating input motions—often rotational—into desired output
trajectories or paths, thereby enabling the execution of complex tasks through relatively simple inputs. The
design of linkage mechanisms relies heavily on kinematics—the study of motion without considering the
forces involved—and kinematic synthesis, the design process of mechanisms to achieve specific motions.

Despite the focused interest in kinematics and kinematic synthesis, designing complex kinematic systems
remains a challenge Lipson (2008), often requiring trial and error, specialized expertise, or heuristic ap-
proaches to find effective solutions. The complexity arises because kinematic synthesis requires defining
both the discrete components of a mechanism and their connections, as well as determining their continuous
spatial locations, making it a mixed combinatorial and continuous problem.

In this paper, we focus on the inverse design of planar linkage mechanisms, where the design involves
determining how many joints a mechanism has, what type of joints they are (either fixed or revolute joints,
and how these joints are connected to one another using rigid linkages. On top of this, the initial position
of the joints in space must also be determined. At each of these levels, mechanisms can be infeasible,
and the majority of randomly sampled mechanisms tend to be invalid Heyrani Nobari et al. (2022). By
examining the continuous values of initial positions, the non-linear and discontinuous nature of the problem
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becomes apparent. For instance, Figure 7 illustrates a mechanism that writes the letter “B”, where all design
variables are held constant except for one joint (highlighted in red), which is moved in the x and y directions
to demonstrate the feasible regions for these variables. The red-shaded area indicates where the mechanism
fails to function. The three grey patches of feasibility for just one joint underscore the problem’s non-linearity
and discontinuity, featuring multiple feasible regions. Furthermore, adjusting one joint alters the shape and
number of feasible regions for all others. This discussion has focused solely on the continuous variables of
joint positioning, yet the combinatorial challenge of defining the mechanism’s structure also plays a critical
role. Not surprisingly, kinematic synthesis is sometimes regarded more as an art than a science due to its
complexities 10. (2018).

In this paper, we introduce a contrastive learning and optimization framework to address such inverse design
challenges, exemplifying broader issues in kinematic synthesis and engineering design that involve integrat-
ing continuous and discrete variables within functional and engineering constraints. Our approach not only
addresses existing difficulties in kinematic design but also leverages deep learning to drive advancements in
mechanical systems (Regenwetter et al., 2022). A significant challenge in applying deep learning to engi-
neering is the accurate capture of physics-based performance, achieving precision in meeting requirements,
effective representation of design and performance spaces, and the mitigation of data scarcity.

To demonstrate the effectiveness of our proposed framework, we focus on a specific type of kinematic syn-
thesis, called, the path synthesis problem. This problem involves designing the aforementioned linkage
mechanisms such that they can trace a desired curve with one circular motion of a single actuator. Planar
linkage mechanisms use revolute and prismatic pairs to produce rotating, oscillating, or reciprocating mo-
tions which can combine into complex motions that trace desired curves. These mechanisms are commonly
found in everyday machinery, such as in the moving parts of printing presses, auto engines, and robotics,
making their design critical to a wide range of applications.

Most research on the inverse design of planar linkage mechanisms has applied deep learning to a limited prob-
lem of only generating a specific set of mechanism types (typically, four-bar and six-bar mechanisms) (Cabrera
et al., 2002; Varedi-Koulaei & Rezagholizadeh, 2020; Ebrahimi & Payvandy, 2015; 10., 2010; Khan et al.,
2015b; McGarva, 1994; Chu & Sun, 2010a; Deshpande & Purwar, 2019a; Vasiliu & Yannou, 2001; Deshpande
& Purwar, 2019b; 2020; Khan et al., 2015a). In other cases, deep learning frameworks such as deep rein-
forcement learning, are applied to one task (a single target curve) at a time, only to find a single solution
for a given desired curve (Fogelson et al., 2023) instead of quickly generating a set of solutions for multiple
target curves. Additionally, as we show later, existing methods lack high precision and have large errors in
achieving the target.

To tackle these challenges of path synthesis in planar linkage mechanisms, we introduce Learning-accelerated
Inverse Kinematics (LInK), which synergizes optimization with deep learning—termed “deep optimization”–
to accelerate the process and surpass traditional methods in performance. Our approach utilizes a multi-
modal, transformation-invariant contrastive learning framework to accurately represent and integrate the
different modalities of performance and design spaces, enabling rapid retrieval of mechanisms from extensive
datasets. Specifically, we train a multimodal contrastive learning model on a dataset of 10 million linkage
mechanisms and their simulated kinematics, pre-compute embeddings for these mechanisms, and later re-
trieve them using embeddings of target curves produced by the same model (see Figure 3). Additionally, we
refine these mechanisms through a hierarchical optimization algorithm, leveraging optimization’s inherent
robustness and accuracy to improve the precision of our generated mechanisms. This integration of advanced
engineering design techniques allows us to excel in designing linkage mechanisms, significantly surpassing
existing methods in both efficiency and precision with 28 times better performance and a 20 times increase in
speed compared to prior works on an established benchmark. We also create a significantly more challenging
benchmark and show that our method can find solutions for all tasks in it too.

Our key contributions in this paper can be summarized as follows:

• We introduce a contrastive learning approach to learn joint embeddings of design and performance
space for problems with both continuous and discrete parameters.
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Figure 1: This figure illustrates the LInK algorithm’s workflow. LInK first precomputes joint embeddings
for mechanisms and curves, allowing it to retrieve numerous candidate mechanisms for any new target curve
within seconds. With these high-quality initial candidates, a rapid BFGS optimization process efficiently
converges to path synthesis solutions. These solutions significantly outperform existing methods in both
speed and performance.

• We introduce a hierarchical deep optimization framework for integrating multi-modal contrastive
learning-based warm-start with traditional optimization for inverse kinematic design of planar link-
age mechanisms. We show that the proposed approach significantly outperforms the state-of-the-art
in both speed and performance.

• We develop a graph neural network framework named ’Hop Attention,’ designed to effectively capture
features sensitive to the number of hops within a graph neural network. This feature is essential for
analyzing planar linkage mechanisms.

• We propose a new set of benchmark problems for inverse kinematics in planar linkage mechanisms,
advancing beyond existing benchmarks with two new problems that introduce significantly higher
levels of complexity and exceed the simple shapes produced by less complex mechanisms.

2 Background and Related Works

This section outlines relevant literature and contextualizes the research presented here. We begin with an
overview of the specific problem we aim to address and its inherent complexities. We then review traditional
computational methods and recent learning-based advancements applied to this problem. Finally, we discuss
prior works that have influenced our framework and the methodologies it incorporates.

2.1 Inverse Kinematics & The Path Synthesis Problem

Inverse Kinematics: Inverse kinematics is a computational technique primarily used in robotics, com-
puter graphics, and biomechanics to determine the positions and angles of a mechanism’s joints, such as
in a robotic arm. This method specifically targets positioning the end effector, the terminal component
of the mechanism, at a desired location or along a predetermined trajectory. While standard applications
involve adjusting joint angles within an existing configuration, inverse kinematic synthesis involves designing
new mechanisms to achieve specified motion objectives. The process is challenging due to its nonlinear and
combinatorial nature, which often leads to multiple viable solutions for a given target. This complexity
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Figure 2: Left: Demonstrates the path synthesis problem which involves a mixed combinatorial and conoth
the combinatorial and continuous values. This figure also shows how mechanisms are represented as graphs.
Right: This figure illustrates the path the solver takes to solve the kinematics of a given mechanism, showing
how the skeleton of a mechanism (combinatorial design variables) is involved in the mechanism solution.
Initially, the solver starts with the known joints (i.e., fixed and actuated joints highlighted red), and step
by step the solver solves joints with two solved neighbors (Eqn. 10). In thtinuous nature and involves a
non-linear solver whose solutions depend on bis example, three steps are taken to solve the mechanism. The
numbered joints indicate the order of solution.

underscores the importance of inverse kinematics as a field that requires precise, controlled movements and
positioning.

Planar Linkage Mechanisms: In our study of inverse kinematics, we focus on planar linkage mechanisms,
which consist of interconnected rigid links joined by joints that move within a two-dimensional plane (see
Fig. 2). These joints include revolute joints, which allow free rotation while keeping the linkage endpoints
fixed, and fixed joints, which restrict the linkage end to a stationary position in 2D space. The mechanisms
under study have a single degree of freedom, controlled by a rotary actuator connected to a fixed joint. This
actuator’s movement dictates the entire mechanism’s configuration, determining the positions of all other
joints and linkages based on its rotation.

Graph Representation and Optimization Formulation: We model mechanisms as graphs. Let M =
(J, L) represent an undirected graph of a planar linkage mechanism, where J = {j1, j2, . . . , jn} is the set of
nodes (joints), and L = {(ji, jj)|ji, jj ∈ J} is the set of edges (linkages). Each node ji has a 2D position in
space and a binary feature describing its type (fixed or free joint), denoted as (xi, yi, Ti), where xi and yi

are the positions of joint i in space and Ti = 1 for fixed joints and Ti = 0 for free joints (see Fig. 2). In our
representation, joint j0 is always fixed and joint j1 is always free and there always exists a linkage (0, 1) ∈ L
which connects joints j0 and j1 which is the driven linkage actuated around joint j0 (see Fig. 2). In the
specific problem we tackle in this paper, the goal is to generate a mechanism of any size (n ≥ 2) such that
the path traced by the final joint matches a given target path (see Fig. 2). This problem can be formulated
as an optimization problem:

min
M,θstart,θend

||F (M, θstart, θend) − Ptarget||2

s.t. DOF (M) = 1
Singularity(M, θstart, θend) = 0

(1)

Where M is the graph describing the mechanism and θstart and θend describe the range of motion for the
actuator, F (M) is the path traced by the mechanism M and Ptarget is the target path , while DOF (M) is the
degrees of freedom for mechanism M , which has to be always 1 (to be exactly defined by the motion of the
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single actuator), and Singularity(M, θstart, θend) is a function that determines if there are any singularities
in a given mechanism M for the actuator range of motion from θstart to θend.

Singularity Constraints: Singularities occur when the mechanism M cannot be solved, leading to a
locked state where the actuator cannot complete its intended range of motion (as shown in Figure 7 with
the red region). The challenge involves defining the mechanism M , which includes specifying the number
of joints (integer), their positions (continuous), their types (binary), and the linkage arrangement L. This
arrangement L can be represented by the adjacency matrix of M , containing (n2−n)

2 binary values for n
joints. The problem is non-linear and involves different variable types and singularities are all non-linear
and non-differentiable with respect to all or some of the optimization variables. Graph structure also adds
combinatorial complexity. This complexity makes traditional optimization infeasible for large n, offering an
opportunity for deep learning to address these difficult problems.

2.2 Computational Design of Planar Linkage Mechanisms

This section outlines significant research efforts aimed at solving inverse kinematics problems similar to
the one discussed in this paper. The literature on path synthesis methods falls into three main categories:
Numerical atlas-based, Optimization-based, and Deep learning-based approaches, with detailed discussions
provided in Appendix A.

Numerical Atlas-Based Approaches: These involve creating a database of mechanisms and their paths,
which serves as a "numerical atlas" to find the best match for a target path. However, comparing targets to
large databases can be computationally expensive, so these databases are often limited in size or to specific
mechanism types, like four-bar or six-bar mechanisms McGarva (1994); Chu & Sun (2010b); Sun et al.
(2015).

Optimization-Based Approaches: These involve mostly modified versions of common conventional al-
gorithms. Methods include genetic algorithms Lipson (2008); Khan et al. (2015b), Fourier descriptor-based
optimization Ullah & Kota (1997); Wu et al. (2011), and mixed integer conic/non-linear programming
(MICP, MINLP) Pan et al. (2023). These approaches often refine existing solutions Bächer et al. (2015);
Thomaszewski et al. (2014) or are limited to specific problems Lipson (2008); Baskar & Plecnik (2021).
Despite their generalizability, the effectiveness of these methods is limited by their computational intensity
and they often struggle (as our results also show) to work for large mechanisms with many joints and target
points due to the highly-constrained nature of the problem.

Deep Learning-Based Approaches: These aim to accelerate and enhance path synthesis by integrat-
ing traditional methods into data-driven frameworks. Techniques involve using generative models such as
variational autoencoders (VAEs)Kingma & Welling (2014), clustering-based searchesDeshpande & Purwar
(2019a;b; 2020), and reinforcement learning (RL) Fogelson et al. (2023). While promising, these methods ei-
ther require retraining (RL-based methods) for new targets and can be limited by dataset size and mechanism
type Deshpande & Purwar (2021); Vasiliu & Yannou (2001).

In this paper, we propose a hybrid method that combines the speed of deep learning with the precision of
optimization, aiming to surpass current state-of-the-art methods in both inference time and performance.

2.3 Contrastive Learning and Retrieval

Retrieval, in the context of machine learning, refers to the process of finding and returning relevant informa-
tion from a dataset in response to a query. This can involve matching query features with features of items
in the dataset to identify the best matches based on similarity metrics. While most deep learning retrieval
research has focused on vision applications like content-based image retrieval (CIBR) Dubey (2022); Chen
et al. (2023), our work shifts attention to cross-modal retrieval, particularly retrieving graphs of mechanisms
based on their 2D kinematic paths. See Appendix B for more details.

Most cross-modal works involve retrieving images based on multi-modal information, such as text and other
images. Early works like the correspondence autoencoder (Corr-AE) Feng et al. (2014) train autoencoders
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for text and images to create embeddings close to each other. The Deep Visual-Semantic Hashing (DVSH)
model Cao et al. (2016) and similar methods like Textual-Visual Deep Binaries (TVDB) Shen et al. (2017) cre-
ate joint embedding spaces for text-based retrieval. Adversarial learning approaches, such as Self-Supervised
Adversarial Hashing (SSAH) Li et al. (2018), use adversarial networks to learn features and hash codes for
different modalities Wang et al. (2017); Zhang et al. (2018); Gu et al. (2019); Ji et al. (2019). These methods
primarily specialize in text and image, making them less adaptable to general cross-modal tasks. For our
work, we need methods robust to general cross-modal retrieval, leading us to contrastive learning-based
retrieval.

Contrastive learning is a technique in machine learning where the model learns to distinguish between similar
(positive) and dissimilar (negative) pairs of data points Jaiswal et al. (2021). This method is often used
in unsupervised or self-supervised settings to effectively encode information about data without requiring
explicit labels for every example. It focuses on pulling representations of similar items closer and pushing
representations of dissimilar items farther apart in the embedding space. Seminal works in this field have
demonstrated its effectiveness in both supervised and unsupervised tasks Hjelm et al. (2018); van den Oord
et al. (2019); Chen et al. (2020a), with foundational works like SimCLR Chen et al. (2020a;b) establishing
a general framework for contrastive learning. This inspired further developments such as the Contrastive
Language-Image Pretraining (CLIP) model, which generates a cross-modal embedding space for text and
images through a generalized loss function:

LCLIP = − log exp(sim(f1, f2)/τ)∑N
j=1 exp(sim(f1, fj)/τ)

, (2)

where sim(fi, fj) measures the cosine similarity between feature embeddings fi and fj , and τ is the tem-
perature parameter. This generalizability makes CLIP suitable for downstream tasks, such as multi-modal
retrieval applications used in our methodology. Shared cross-modal embedding spaces have been shown to
be effective for retrieval in such cases. For instance, Izacard et al. (2022) use contrastive embedding spaces
for document retrieval. Similar approaches have been explored for tasks like temporal moment retrieval from
videos based on text Zhang et al. (2021) and text-based molecular retrieval for molecule design Liu et al.
(2023). Contrastive learning has immense potential for simultaneous modeling of design and performance
spaces in engineering applications. For the current problem, we create a contrastive learning-enabled cross-
modal approach for retrieving mechanisms based on their kinematic paths, with more details provided in
subsequent sections.

3 Methodology

Our methodology is illustrated in Figure 1, where we begin by retrieving potential matches from a dataset
of 10 million mechanisms using a processed version of the input curve. These initial matches seed our
optimization algorithm to refine the designs further. This section elaborates on our dual approach. Firstly,
we train a contrastive learning model that bridges the physics underlying the mechanisms with their design
representations. This model is crucial for accurately identifying relevant mechanisms from the extensive
dataset. Secondly, we detail our optimization algorithm, termed the Learning-accelerated Inverse Kinematics
(LInK) algorithm, which builds upon the foundations laid by the contrastive retrieval model. This ’deep
optimization’ strategy enhances our capability to fine-tune and improve the designs based on the initial
matches identified by the retrieval process.

3.1 Contrastive Learning Framework

The first stage of our framework involves retrieving candidates from a massive dataset of linkage mechanisms
for a given target curve such that these candidates are best suited to be refined for the given input. We use the
LINKS dataset proposed by Heyrani Nobari et al. (2022), which includes 100 million mechanisms with up to
20 joints. Searching through such a massive dataset of this size by comparing curves and using conventional
methods would be prohibitively expensive and time-consuming. Furthermore, most conventional metrics for
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Figure 3: Overview of the cross-modal contrastive learning approach in LInK. Three different representations
across multiple modalities are brought into the same embedding space using contrastive learning. The bottom
figure also demonstrates the GHop architecture for hop attention that enables us to capture the kinematics
of mechanisms.

searching in such datasets are sensitive to rotations, scale, and other spatial transformations, which makes
them less useful. In our approach to facilitate this, we build a cross-modal contrastive embedding to quickly
search through a massive dataset in practical time. In this section, we describe the details of how we built
this model and how we build robustness to different spatial and geometric transformations.

3.1.1 Mechanism Representation & Model

We employ a subset of 10 million mechanisms from the LINKS dataset, which undergoes extensive prepro-
cessing for normalization. To achieve scale invariance, we standardize the actuator arm length to 0.05 units.
We further normalize these mechanisms with respect to translation by centering the actuators at the origin.
Additionally, the mechanisms are aligned such that the actuator angle is set to zero, standardizing both
position and rotation. This normalization process is critical for effective training of our contrastive learning
model. Furthermore, we meticulously process the dataset to eliminate any redundant joints i.e., there is one
joint in the mechanism whose kinematic solution depends on the kinematics of all the other joints.

In our approach, we model planar linkage mechanisms as undirected graphs M as we described prior with
slight variation. The only difference in the graphs we use for training is that instead of only two joint
types and initial positions, the node features of the graph are defined such that The first element row
indicates if a node is fixed or moving (i.e. 0 for moving joints and 1 for fixed joints), the second element
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indicates whether a joint is actuated and the third indicates if a given joint is the terminal joint (i.e., the
joint which should produce the target curve), and the two other elements in each row are set to be the
initial positions of the nodes at time zero. In training our model, we employ a sophisticated multi-layer,
multi-level architecture inspired by the Graph Isomorphism Network (GIN) approach proposed by Xu et al.
(2019). Off-the-shelf graph models proved inadequate due to the intricate relationship between mechanism
configurations and their kinematics, which standard message-passing techniques struggle to capture. To
address this, we devised a novel architecture, which we term Graph Isomorphism Hop-Attention (GHop),
inspired by mechanism solvers. This architecture enables both shallow and deep message passing within
the same graph structure, optimizing computational efficiency. Our approach modifies the traditional GIN
computation as follows:

h(k)
v = MLP(k)

(
1 + ϵ(k)

)
· h(k−1)

v +
∑

u∈N (v)

h(k−1)
u

 , (3)

where h
(k)
v is the output features for node/joint v at layer k and ϵ(k) is a learnable parameter as described in

the original work by Xu et al. (2019) and N (v) refers to the set of neighbors of node v. In our approach, we
introduce hop-attention, where at the end of computing all layers we compute a final feature for each node
through a graph attention (GAT) driven attention mechanism. To do this we take the outputs of all layers
concatenate them for each node and perform a single GAT convolution on the resulting graph:

h(GAT )
v =

n=N

∥
n=1

σ

 ∑
j∈Ni

αn
ijWn

k=K

∥
k=1

h(k)
v

 , (4)

where h
(GAT )
v is the output of the graph attention convolution and N is the number of attention heads in the

GAT and W n is the weights of each attention head linear transformation while σ is a non-linearity function
and h

(k)
v is the output of the k-th layer of the GIN model. Then we use this output of the GAT as the

query and the outputs of each layer for a given node as the keys and values for a multi-headed dot-product
attention which is applied to obtain the final output of each layer. This means that at the end of each
node/joint in the graph/mechanism, we have the following:

hv =

i=N

∥
i=1

softmax


WQ

i

[
h

(GAT )
v

] (
WK

i

[
h

(1)
v h

(2)
v · · · h

(M)
v

]T
)T

√
dk


(

WV
i

[
h(1)

v h(2)
v · · · h(M)

v

]T
) WO,

(5)

where hv is the final output for node/joint v and N is the number of attention heads and
[
h

(GAT )
v

]
is a single

row matrix with h
(GAT )
v as its only row and

[
h

(1)
v h

(2)
v · · · h

(M)
v

]
is a matrix whose columns are assembled by

the output of each layer of the GIN model. WQ
i , WK

i , WV
i refer to the weight of the linear transformation

applied at each attention head, and WO is the final linear transformation applied to the concatenated
attention head outputs resulting the final representation for each node/joint. The intuition behind this kind
of architecture is evident in the solver’s approach to computing the kinematics of the mechanisms. In the
solver we start with the known joints (i.e. 0-1 hops), then propagate the solution to a joint with two known
neigbours (1st hop) and repeat this process until all joints are solved (variable number of hops depending
on the mechanism skeleton). This means to correctly describe the kinematics of the mechanism each joint
requires a different number of hops (see figure 2) and conventional graph convolution approaches simply do
not account for this as the nature of problems they encounter are not like the ones we have in our problem.
Given this, it is intuitive to add a mechanism to account for the variable number of hops needed for each
joint, and our GHop approach enables this through a simple yet effective attention mechanism. One thing to
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note is the hop attention mechanism (HAT) is independent of the graph convolution mechanism used and any
graph convolution or message passing approach can be used with HAT, which should enable improvement
in existing models in problems that involve similarly hop-count sensitive challenges (see figure 3 for details
on the architecture).

The final stage of our methodology involves employing an 8-layer model and a hidden size of 768 to compute
the final features for each node and take an attention-pooled embedding for each mechanism as the overall
mechanism embedding.

3.1.2 Path Representation & Building Robust Invariances for Retrieval

In our approach to mechanism retrieval, the goal is to identify mechanisms that accurately trace a target
curve without concern for the curve’s scale, location, orientation, or the tracing velocity at different parts of
its motion. To achieve invariance to these factors, we employ specific preprocessing steps:

• Normalization for Scale and Translation: We utilize the first two steps of Procrustes analysis to
normalize the scale and translation of the curves. This is done by centering the curve around its
mean and scaling it by its standard deviation:

Xnormalized = X − X√∑N

i=1
(X1

i
−X1)2+(X2

i
−X2)2

N

, (6)

Where X is the curve being normalized represented as a N × 2 matrix, and X is the average value
across each column of X, and X1

i refers to the x value of the i-th row of X, and X2
i refers to the y

value of the same row of X.

• Building Rotation Invariance: To build invariance to rotation, we randomly rotate curves during
training.

• Timing Invariance: We also need to build invariance to timing; i.e., the curves should be made up
of points that are equidistant from one another. To do this, we simply take any given curve and
interpolate points across the curves such that the points are equidistant.

These steps, illustrated in Figure 3, ensure that our contrastive learning model becomes robust to irrelevant
geometric transformations, focusing purely on the kinematic compatibility of the mechanisms with the target
curves.

Modeling Partial Target Curves: The curves in the LINKS dataset are always closed. However, the
target curves that one can give to a model during testing may not always be closed. To effectively manage
both closed and open target curves in our contrastive cross-modal space, we implement a robust preprocessing
strategy that accommodates varying curve types. To do this, we randomly generate partial curves of the
original curves that a mechanism generates, normalize them exactly like we do for the full curves, and remove
timing from them (see Figure 3). We then introduce partial curves as a separate module into the overall
contrastive learning space to ensure that open curves are also handled by the contrastive representation
space. This is a unique contribution of this approach, as previous approaches are limited to closed curves.

3.1.3 Consolidated Methodology

In this section, we consolidate our methodologies for training contrastive learning models and searching
within the dataset. Our approach maps both mechanisms and curves into a unified representation space using
contrastive learning. This mapping allows any introduced curve to be accurately paired with corresponding
mechanism candidates based on its spatial representation. We employ a dual-model strategy for curves
alongside a specialized graph-based model for mechanisms. Specifically, the mechanism model utilizes the
previously discussed GI-HAT architecture. For curve processing, we utilize two ResNet50 models (He et al.,
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2015): one handling full curves and another for partial curves. The training leverages two distinct contrastive
losses, akin to the methodology used in the CLIP model (Radford et al., 2021):

LLInK = LCLIP1 + γLCLIP2 (7)

where LCLIP1 is the loss for the contrastive signal between the mechanism models output, and LCLIP2 is
the contrastive loss for the partial and full curves models, and γ is a hyperparameter for applying different
weights to these losses.

The individual CLIP-based loss terms, LCLIP1 and LCLIP2, are computed as follows:

LCLIP1 = 1
N

N∑
i=1

− log exp(sim(fi, gi)/τ)∑N
j=1 exp(sim(fi, gj)/τ)

(8)

LCLIP2 = 1
N

N∑
i=1

− log exp(sim(gi, hi)/τ)∑N
j=1 exp(sim(gi, hj)/τ)

(9)

where sim(a, b) measures the cosine similarity between feature embeddings a, and b extracted by any of the
models, and τ is the temperature parameter controlling the sharpness of the similarity scores. Importantly,
the output of the mechanism model corresponds to fi, the output of the full curve model corresponds to gi,
and the output for the partial curve model corresponds to hi, and N is the batch size. Notably, mechanisms
are matched to their corresponding curves, presumed dissimilar to others in the batch. While this assumption
holds given our diverse dataset, no specific measures have been implemented to handle potential similarities
between different mechanisms’ curves. This setup is visualized in figure 3, detailing the interaction between
these components in our training framework.

Once these models are trained, we have effectively established an approach to map mechanisms (design
space) and curves (performance space) into a unified space. This mapping enables rapid searches across
our extensive dataset for any given curve by leveraging precomputed embeddings of all mechanisms. For
retrieval, we compute cosine similarities between the target curve’s embedding and those of the mechanisms,
subsequently ranking them by similarity.

3.2 Path Synthesis Framework

Our framework for path synthesis includes three stages.

1. Initial Search: In the first stage, we perform a search on a 10 million sample subset of the LINKS
dataset and find an initial pool of candidates based on the input curves using a contrastive learning-
based search.

2. Batch Optimization: In the second stage, we perform a gradient-based optimization based on the
BFGS BROYDEN (1970); Fletcher (1970); Goldfarb (1970); Shanno (1970) method upon all of the
mechanisms retrieved in the first stage. To accelerate the process, we implement a batch BFGS op-
timization on GPU which performs the BFGS optimization on multiple mechanisms simultaneously.
We describe this in more detail in this section. In this stage we only perform 10 steps of optimization
as optimizing the larger initial pool of candidates can be slow.

3. Final Refinement: After the batch optimization of the candidates, we then re-evaluate the mecha-
nisms and pick the top 10% of mechanisms amongst the candidates to move to the next stage. In the
final stage of optimization, we further refine the smaller candidate pool using the BFGS optimization
for 150 steps. at which point the final design is output to the user.

Each step of this framework is crafted to ensure a fast yet accurate synthesis of paths, optimizing performance
and computational efficiency. The following sections will delve deeper into the specifics of these optimization
techniques.
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3.2.1 GPU-Accelerated Batch Simulation of Linkage Mechanisms & Differentiation

In our gradient-based optimization step, we focus only on optimizing the positions of joints in mechanisms as
connectivity parameters, which determine how joints are linked, are not differentiable. To efficiently conduct
these optimizations, we employ a differentiable and vectorized solver that allows for rapid simulation and
differentiation, enabling practical batch processing on GPUs.

We write a solver to simulate mechanisms, similar to the one proposed in Heyrani Nobari et al. (2022) for
dataset generation. This solver handles the kinematics of mechanisms geometrically. While it is not suitable
for the rare instances of mechanisms with complex kinematic loops—a limitation discussed further in the
prior work Heyrani Nobari et al. (2022)—it suits our needs. The advantage of this solver is twofold. The
entire process is differentiable with respect to the initial positions of the joints in a given mechanism and
the process can be vectorized for a batch of simulations which makes this solver the perfect candidate for
a differentiable GPU accelerated framework like ours. Here we will briefly discuss the solver and how we
vectorized the solver for batches of simulations.

The operation of this solver involves a process akin to a graph traversal algorithm (See Figure 2). Starting
with joints of known positions (such as the actuator arm at a specific angle or fixed joints), the solver
iteratively computes the positions of adjacent joints that connect to two already determined positions.
This sequence continues until the positions of all joints in the mechanism are established, ensuring efficient
computation across batches of mechanism simulations.

To vectorize and parallelize this process we have to perform two things:

• Pre-Sorting Mechanisms: To facilitate vectorization and batch processing, we first establish
a consistent solution path for all mechanisms in the dataset. By pre-sorting the joints of each
mechanism in a solution-ready order, we eliminate the need to identify the solution path in real time
during simulations. This sorting, conveniently, has already been handled by Heyrani Nobari et al.
(2022) method, as proposed by the creators.

• Resizing Mechanisms: The other necessary step that allows for the batch solution by a vectorized
GPU solver is that all of the mechanisms must have the same size (i.e., the same number of joints).
To do this, we add unconnected fixed joints to all mechanisms that are smaller than the largest
mechanism in the dataset such that the mechanisms in the dataset all have the same number of joints.
This step ensures that multiple mechanisms can be processed simultaneously without discrepancies
in size.

With the mechanisms appropriately sorted and resized, the next step is to implement a vectorized solver that
can efficiently handle batches of mechanisms. This solver operates on the principle of solving for any given
joint based on the positions of two known adjacent joints at each timestep using the followingequation Bächer
et al. (2015):

XT
i = XT

j + ||XT
i − XT

j || × R(ϕ)
XT

k − XT
j

||XT
k − XT

j ||
(10)

where XT
i is the position of joint i at timestep T and R(ϕ) is the 2D rotation matrix for ϕ which is computed

as:

ϕ = Sign
[(

X0
j,y − X0

i,y

)
×

(
X0

j,x − X0
k,x

)
−

(
X0

j,y − X0
k,y

)
×

(
X0

j,x − X0
i,x

)]
×

cos−1 ||XT
j − XT

k ||2 + ||XT
i − XT

j ||2 − ||XT
i − XT

k ||2

2 × ||XT
j − XT

k ||2 × ||XT
i − XT

j ||
(11)

where X0
i is the initial positions of joint i. As can be seen, these equations are easily vectorizable for multiple

mechanisms (essentially by turning the X vectors into tensors with an additional dimension with the same
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size as the batch size) and multiple time steps (all T s that need to be solved for). Furthermore, all of the
above-mentioned equations are differentiable (except the sign function which will not be differentiable at
zero), which allows us to use backpropagation to compute the gradients with respect to the initial positions
X0 and run the simulation much faster in a vectorized fashion for a batch of mechanisms and for all timesteps
simultaneously. We implement such a GPU-accelerated solver using Pytorch and use the automatic differ-
entiation features of Pytorch to obtain the gradients of the solution with respect to the initial positions of
the joints.

To optimize mechanisms for path synthesis we need to use this differentiable solver to compute gradients for
an objective function. In our approach, we look at two metrics simultaneously. The first metric we look at
is the bi-directional Chamfer distance (CD) defined by:

dCD (S1, S2) = 1
|S1|

∑
x∈S1

min
y∈S2

∥x − y∥2 + 1
|S2|

∑
y∈S2

min
x∈S1

∥x − y∥2 (12)

where S1 is the set of points in the target curve and S2 is the set of points in the curve traced by a mechanism.
Chamfer distance is a well-established point cloud-based shape comparison metric and as we have seen this
plays a major role in our approach. Although Chamfer distance provides a great metric for comparing the
general shape of the curves, it lacks information about path connectivity or ordering. As such we also have
to look at some metric that encompasses this. For this purpose, we use the objective function proposed by
Pan et al. (2023) in their MICP optimization approach. This metric is defined as the ordered distance (OD):

dOD = min
o1∈O1

2π

N

N∑
i=1

∥∥∥Xcoupler
o1(i) − Xtarget

i

∥∥∥2
(13)

where N is the number of points sampled in both the target curve and mechanism traced curve and Xcoupler
i

is the i-th point on the curve traced by the mechanisms and Xtarget
i is the i-th point on the target curve.

This while o1(i) is the i − th point in the optimal ordering to match the curves and O1 is the set of all
possible clockwise and counter-clockwise orderings of the curve traced by a mechanism. The constant 2π is
kept for consistency across different works to allow for meaningful comparison of results to prior works that
use this metric. Finally, in our gradient-based optimization, we have the following objective function:

d = γ1 × dOD + γ2 × dCD, (14)

In our approach, we assign weights to each metric in the optimization process, with γ1 = 0.25 for Chamfer
distance and γ2 = 1.0 for ordered distance. Using Chamfer distance alone sometimes results in solutions
that disregard the ordering of points, focusing merely on matching point clouds. Incorporating ordered
distance helps prevent this issue by maintaining the sequence integrity of points, leading to more accurate
path tracing. However, relying solely on ordered distance can yield suboptimal solutions and slow down the
convergence rate of the optimization process. Typically, a combination of both metrics tends to produce
robust solutions.

3.2.2 Batch BFGS Optimization on GPU

The BFGS approach for gradient-based optimization has been established as a robust method for uncon-
strained non-linear gradient-based optimization. However, there are two important matters that we must
address before being able to apply this method to our problem. First, our problem is not unconstrained.
This is because if the initial positions of the mechanism being optimized are moved to a position that leads
to the term in the inverse cosine seen in equation 11, becoming greater than 1 or less than -1, we will have
a locking/infeasible mechanism. As such, instead of using a simple line search for the optimization steps
in BFGS, we use a heuristic approach to prevent infeasible and locking configurations. We thus use the
common Wolfe conditions (Wolfe, 1971) for inexact line search to find the step size in each iteration of
optimization; however, on top of the Wolfe conditions, we also check that a given stepsize does not lead to
infeasible mechanisms by checking if the simulation has resulted in any NaN values.
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The traditional approach of performing BFGS optimization individually for each mechanism is inefficient
and time-consuming, particularly when leveraging CPU computation. To address this and take advantage
of GPU acceleration, we have developed a new batch BFGS scheme that vectorizes the BFGS Hessian
updates and line searches across multiple mechanisms simultaneously. This adjustment allows us to process
all optimizations in parallel, significantly speeding up the refinement of candidates and speeding up the
generation of optimal solutions. For the sake of brevity, further details on how this is done are omitted here;
interested readers are referred to our publicly available code for the detailed implementation.

3.3 Implementation Details of the Optimization Framework

Our methodology begins by precomputing embeddings for 10 million mechanisms from the LINKS dataset
using our contrastive learning model tailored for mechanisms. For any provided target curve, we normalize
it as outlined earlier, including a smoothing step for hand-drawn or rough curves. This smoothing involves
a fast Fourier transform to retain only the first seven frequencies, which we use to reconstruct and compute
the curve’s embedding. All further optimization processes utilize the original, unsmoothed curves. This step
is only done for computing the embedding of the target curve; the other optimization steps use the original
input curves directly.

Given the embedding for the target curve, we then measure the cosine distance between the target embed-
ding and all of the precomputed embeddings of the mechanisms in our dataset and pick the top 500 most
similar (i.e., lowest cosine distance) mechanisms for the optimization. As mentioned earlier, we then perform
10 steps of batch BFGS on all of the 500 mechanisms and the target curves. To do this, we normalize the
target curve and the paths generated by the candidate mechanisms, then find the optimal orientation of the
target for the curves the candidate mechanisms produce. We then perform a brute-force grid search with
200 equally spaced rotation angles (equally spaced from 0 to 2π), and identify the optimal rotation that
minimizes the Chamfer distance. This rotation is identified for each mechanism in the candidate set. The
target curves are then rotated to match the candidate paths as well as possible. Then we perform the BFGS
with curves that have been oriented properly. Once the initial 10 steps of BFGS are performed, we then
pick the top 50 best-performing at this stage of optimization and perform an additional 150 steps of BFGS
on them. We call this ‘deep optimization’ framework for path synthesis the ‘Learning-accelerated Inverse
Kinematics (LInK)‘. We look at LInK’s performance and efficiency in the following sections.

3.4 Manufacturability Considerations

So far we have only focused on the topic of kinematics and path synthesis. However, not all mechanisms that
can be kinematically solved can additionally be manufactured. These mechanisms involve many linkages
that move in space that have to be staked in layers, and these linkages can collide with each other; since each
joint can be attached to multiple linkages, the joints may have to exist in many layers, and can therefore
collide with linkages in each layer. This issue can be overcome with exotic designs for joints that enable
circumventing collisions, but that would be costly and difficult to achieve in practice. As such, we must
establish if any given mechanism is manufacturable with conventional parts. We can thus formulate an
optimization problem to obtain the optimal configuration for a given linkage mechanism such that the total
number of layers needed to manufacture a mechanism is minimized.

Each linkage will have a z value, which we denote with zi for the i-th linkage in the set of linkages L. Each
joint has an attachment to some number of linkages and collides with a set number of linkages as well. For
each joint j in the set of all joints J , we denote the set of linkages attached to it as Aj and the set of linkages
colliding with the joint as Cj for the j-th joint. Finally, each linkage is in collision with some other linkages.
We denote the set of linkages colliding with the i-th linkage as Oi, which excludes self-collision. Finally, a
subset of J denoted G ⊂ J is the set of grounded joints. Our objective is to minimize the maximum of zi for
all linkages. To obtain Oi, Aj and Cj , we simulate the mechanism and find the colliding geometries. Given
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the above notation, we have the following design variables (the set X contains all design variables):

Design Variables X :
zi ∀i ∈ L

uj ∀j ∈ J

vj ∀j ∈ J

yji ∈ {0, 1} ∀j ∈ J − G and ∀i ∈ Cj

xik ∈ {0, 1} ∀i ∈ L and ∀k ∈ Oi

M which will represent the maximum value amongst zi

(15)

With these design variables and assuming N is a very large constant, we have the following optimization
problem:

min
X

M

s.t. 0 ≤ zi < |L|, ∀i ∈ L

zi − zj + N ∗ xij ≥ 1, ∀i ∈ L and ∀j ∈ Oi

zj − zi + N ∗ (1 − xij) ≥ 1, ∀i ∈ L and ∀j ∈ Oi

uj ≤ zi, ∀i ∈ Aj

vj ≥ zi, ∀i ∈ Aj

zi ≥ vj + 1 − N × yji, ∀j ∈ J − G and ∀i ∈ Cj

zi ≤ uj − 1 + N × (1 − yji) , ∀j ∈ J − G and ∀i ∈ Cj

M ≥ zi, ∀i ∈ L

(16)

This optimization simulation will yield z values which will be integers ranging from 0 to a maximum of
|L| − 1, which would be equivalent to having one layer per linkage. It is also important to note that the
collisions for fixed joints are not considered. This is because each linkage can be grounded in space without
the need for a joint pass through the mechanism. This formulation lends itself very well to mixed-integer
linear programming (MILP) algorithms. In this case, we use Gurobi to solve the problem and determine if
any given mechanism yields a feasible MILP problem; if so, what the optimal configuration for that given
mechanism is. Note that since all of the operations in our approach happen in batches, at every step, we
obtain many candidates, and as such we easily check the manufacturability of each mechanism from best
to worst performing until the most manufacturable mechanism is found. This is an important aspect of the
process that prior methods have ignored; few check for manufacturability at all. In our work from here on
to the end, all mechanisms we identify as solutions are manufacturable; the above MILP is feasible for the
mechanisms that are shown and discussed in this paper. For more details on this aspect of the work and
visualizations of linkage assemblies please see Appendix C.

4 Results & Discussion

In this section, we conduct a few different sets of experiments using our model and compare the results of
our approach to the state of the art. Before discussing the details of the experiment, it is important to first
discuss our experimental settings and the evaluation metrics we use to evaluate both our method and other
approaches.

4.1 Evaluation Metrics & Experiment Details

As we discussed before in path synthesis the primary aim is to come up with mechanisms that allow for the
tracing of a desired target path. As such to measure the performance of any model for this task we need to
look at metrics that allow for comparing two given paths purely based on their shape/path. Here we track
two highly correlated metrics but each provides slightly different insight. These metrics are the Chamfer
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distance and ordered distance as discussed in Equation 12 and Equation 13 respectively. We also discussed
the trade-offs of each metric with regards to comparing paths in Section 3.2.1. However, as far as comparison

Finally, it is important to note that in all of our tests, we resample all curves, both target and traced curves
by the mechanisms, by interpolating the curves to 2000 equidistant points. This is necessary to remove
timing bias in the curves traced by mechanisms since the motion of the mechanism is not at a constant
velocity. Removing timing is needed since the objective of path synthesis is to trace a path without any
prescribed kinematics such as speed and acceleration. Now that the metrics and how we measure them are
established we will conduct some tests to compare our method to prior works and finally, we will introduce
two new benchmarks for this problem to establish a concrete benchmark for future works to try to handle.

4.2 Path Synthesis Case Studies

Pan et al. 8 Test Curves
(8 Curves)

LINKS Test Set
(200 Curves)

Alphabet Test
(26 Curves)

Figure 4: This figure shows the 8 test curves used in prior works (Left) and 24 random samples from the
LINKS test subset (Middle) and the alphabet test curves (Right).

We will first test our model on three sets of problems and report the results of our approach on each of these
test cases. Currently, the existing literature lacks standardized test sets. As such, it is hard for us to compare
our model against the state of the art as these methods have limited code availability, and replicating them
can be complicated. Despite this, a specific set of test curves have been proposed by Pan et al. (2023), which
have been evaluated using multiple methods. However, this set is very small (i.e., only 8 curves), and is not
well suited for rigorous testing of path synthesis methods such as ours. However, we use this dataset as it
provides an avenue for comparison to the state of the art.

Table 1: This table presents the quantitative results of our model on the three different test sets we use to
evaluate our model. For each test case, we run our model 5 times and report the best solution found within
the 5 runs. The numbers following ± are the standard deviation across the samples in each test case. Note
that although we normalize the LINKS test curves and the alphabet test curves we use the original scaling
on the 8 test curves as they were measured in prior works at that scale.

Test Set Curve Types Chamfer Distance Ordered Distance
LINKS Test Subset Curves Generated By Random Planar Mechanisms 0.0057 ± 0.0039 0.0016 ± 0.0042
Popular 8 Curves Test Hand-Drawn Curves 0.034 ± 0.029 0.015 ± 0.021
Alphabet Benchmark Curves Mimicking Capital Letters of The English Alphabet 0.051 ± 0.041 0.229 ± 0.671
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Moving beyond, we also introduce two sets of benchmark problems, each of which provides a different insight
into the performance of any method on this problem. First, we use in our approach 200 curves traced by a
subset of the LINKS dataset Heyrani Nobari et al. (2022), which we set aside during training for the purpose
of testing our method. These curves represent problems that we call ‘in-distribution,‘ as these curves are part
of the same distribution of data used for training the model. However, it is important to test any method
upon curves that are very different from the distribution of the data and provide an additional challenge
by being particularly exotic shapes; curves which planar linkage mechanisms would be ordinarily considered
capable of producing. In line with this, we introduce a rather challenging problem: tracing the capital letters
in the English alphabet. To do this, we provide 26 continuous curves that align with the shapes of the capital
letters in the English alphabet. This set includes shapes that are drastically different from the typical curves
in the dataset, hence giving us an ‘out-of-distribution’ test case. Furthermore, these curves are riddled with
sharp corners and features that are particularly difficult for planar linkage mechanisms to handle.

Path Traced By Generated Mechanism Target Path

Figure 5: This figure shows the best results from LInK on the 8 test curves used in prior works and the
overlayed resulting path traced by the mechanism and the target. As it is visible here LInK has matched
the target curves effectively without much challenge. For visualization of the underlying mechanisms please
see Appendix C.

Path Traced By Generated Mechanism Target Path

Figure 6: This figure shows 20 random results from LInK on the larger LINKS test subset. We do not
visualize mechanisms and only visualize the curve traced by the mechanisms to save space. As it can be
seen in almost all cases the solution found is nearly identical to the target curve, which shows that when it
comes to in-distribution target curves LInK performs exceptionally well.

Each of the three cases discussed above is visualized in figure 4, which displays all of the curves in the
alphabet and the test curves proposed by Pan et al. (2023), while showing a random subset of the dataset
test curves. We run our model for all three test cases and display the results visually in figures ?? and
5 for the alphabet and 8 test curves respectively. Finally, we show a few random example solutions from
the LINKS test set in figure 6. As it can be seen when it comes to the 8 test curves our model performs
exceptionally well and as we will see later when compared to the state of the art our approach significantly
outperforms prior methods. Furthermore, we see that the model’s performance on the in-distribution test
case is also very good, which should be expected as these samples are similar to the training curves. However,
we can see that the curves produced for the alphabet test case do not follow a similar trend. Although for
some letters the model has performed well, for many of the complex curves the results are under-whelming
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Path Traced By Generated Mechanism Target PathPath Traced By Target Joint Path Traced By Joint

Feasible Region Infeasible Region

Moved Joint For Feasibility Analysis

Figure 7: Right: This figure shows results from LInK on the larger alphabet test set. As can be seen, the
paths produced by the generated mechanisms do not capture the alphabet shapes as well as we see in the
other test sets. This shows that despite LInK performing well even on this test this test set presents a
more challenging benchmark for path synthesis and can serve as a good benchmark for future methods. The
ordered distance value for each curve is displayed above the curves for each alphabet path. Left: Showing
the mechanism that traces B and the feasible region highlighted in blue where the highlighted joint can
move without causing a singularity. This shows the non-linear and discontinuous nature of the problem and
highlights the challenge of performing kinematic synthesis. Note that this is only assuming all other joints
keep the same positions. Changing the position of any joint could change the feasible region for all other
joints making the problem very challenging from the perspective of conventional optimization.

and do not trace the curves as expected. This test set, therefore, serves as a great benchmark for future
methods as it presents a more demanding challenge, given the other challenges we test our model seem to
be handled relatively easily.

Beyond the qualitative results discussed so far, we measure the performance of our model on each of the test
sets and report both the ordered distance and Chamfer distance in table 1. As it can be seen as we saw earlier
the qualitative observations we had are indeed confirmed with both metrics, with the model performing well
on the in-distribution test and the 8 test curves, while performing notably worse on the challenging alphabet
curves (see the ordered distance of the alphabet test).

4.3 Comparison To State of Art Methods

In their work, Pan et al. (2023) proposed 8 curves for which they used MICP to perform path synthesis and
reported their results. Since then, the current state-of-the-art method in path synthesis using deep learning
(i.e., GCP-HOLO Fogelson et al. (2023)), has evaluated their method on this set as well. As such, we will
test our method on this set of target paths as well, and compare our performance to the state of the art
based on these paths.
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Figure 8: This figure shows how the performance of the LInK method changes with the maximum number
of nodes for each curve. As expected, we see a general decrease in error with an increase in complexity, with
diminishing returns.

Table 2: This table presents the performance metrics for our method LInK compared to the state-of-the-
art deep learning model GCP-HOLO proposed by Fogelson et al. (2023) and optimization-based methods
MINLP and MICP proposed by Pan et al. (2023). The values reported here are ordered distance in Eqn.13.
The values for GCP-HOLO, MICP, and MINLP are reported based on the measurements in the original
papers Fogelson et al. (2023); Pan et al. (2023). We observe that on average, LInK has 61X less error than
GCP-HOLO, while being 33X faster (shown in Table 3)

Target Curve LInK LInK (8) LInK (12) LInK (16) GCP-HOLO MINLP MICP

0.0094 2.53 0.079 0.026 2.73 0.71 2.58

0.0086 0.42 0.012 0.012 0.32 1.25 1.37

0.013 0.21 0.015 0.013 0.44 0.70 0.77

0.0041 2.01 0.23 0.061 1.58 1.39 2.52

0.018 0.85 0.28 0.024 0.32 1.25 1.37

0.0039 0.34 0.0063 0.0056 1.07 0.77 1.28

0.0043 0.16 0.010 0.010 0.87 1.36 1.36

0.060 0.45 0.090 0.072 0.38 0.36 0.32

Mean 0.015 0.87 0.089 0.029 0.92 0.97 1.45

In Table 2, we present the results of our approach for each of the 8 curves: both GCP-HOLO and MICP
are used, and as we can see, LInK significantly out-performs these approaches by an order of magnitude
demonstrating more than 94% improvement over the state of the art. One of the main explanations for
the shortcomings of the approaches mentioned in this study is that these approaches are limited to smaller
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mechanisms, due to the high computational cost of dealing with increasingly larger mechanisms with these
models. Despite limiting their size, these models are still significantly slower than our proposed framework.
We discuss the efficiency and inference speed in later sections. Regardless, we run LInK on limited-sized
datasets to demonstrate that LInK outperforms the state-of-the-art even when limited to smaller mechanisms.
For these runs, we only conduct the contrastive search on the subset of mechanisms that are smaller than a
certain threshold (See LInK(8) through LInK(16) in table 2).

4.4 Inference Speed & Scalability

We have so far only looked at the pure performance of the mentioned methods in terms of how well they can
perform path synthesis. However, an important aspect of path synthesis algorithms is their limitations in
terms of inference speed and scalability to large, complex mechanisms. To test the scalability and inference
speed of different methods, we investigate both the inference time and size of the mechanisms each method
can produce.

Table 3: This table shows the average inference time for each method. For SOTA methods we report the
rough inference time reported by the authors (they report a range, and we report the middle of that range
here), as the code for the work by Pan et al. (2023) is not publicly available. For GCP-HOLO, we run both
of their variants on our hardware using an Intel i9-14900K and an RTX 4090 GPU, which provides better
inference speed than the authors reported. We also run our model on the same hardware. In each case, 10
tests are run, and the average time is reported below. The percentages are reported based on the inference
speed up compared to MINLP. We observe that on average, LInK is 33X faster than the fastest GCP-HOLO.

Model Maximum of Joints Solver timesteps Inference Speed (s)
MINLP Pan et al. (2023) 7 20 36000 (00.00%)
MICPPan et al. (2023) 7 20 27000 (25.00%)
GCP-HOLOFogelson et al. (2023) 11 20 2475.12 (93.12%)
GCP-HOLO + CMAE-ESFogelson et al. (2023) 11 20 2498.23 (93.06%)
LInK (Ours) 20 2000 75.18 (99.79%)

Table 3 presents the inference speed and maximum mechanism sizes each method is capable of producing
within that inference time. Furthermore, we show in this table the simulation fidelity, which determines
the number of points sampled for each method. We can see that LInK is not only 99.67% faster than the
MINLP method, but it is also more than 95% faster than the fastest method in the state of the art capable
of producing mechanisms that go beyond 4-bar and 6-bar mechanisms, GCP-HOLO. Beyond this, we see
that LInK is capable of producing much more complex mechanisms with up to 20 joints and simulating
with 2000 timesteps during optimization. This is in contrast with the 11 joints and 20 timesteps that the
best competing method is working with while having 95% slower inference. These results demonstrate that
frameworks like LInK can be very powerful for speeding up these kinds of optimization-based methods by
removing the majority of the burden from the optimizer, enabling faster and more precise optimization.

4.5 Validating The Effectiveness of GHop Architecture

To validate the superiority of our GHop architecture over standard GNN architectures, we conducted a
comparative performance analysis. We trained the LInK framework using baseline Graph Convolutional
Network (GCN) and Graph Isomorphism Networks (GIN) models, each configured with an equivalent number
of layers, hops, and hidden sizes, resulting in approximately the same parameter count: 38M for both GCN
and GIN, and 31M for GHop.

We evaluated the effectiveness of each model by monitoring the LCLIP1 loss on validation data throughout
the training period. The results indicated that the GHop architecture consistently achieved lower validation
losses compared to the GCN and GIN models, which failed to reduce the loss to comparable levels. This
discrepancy in performance was significant, with GHop’s validation loss being less than half that of the
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GCN, and the naive GIN model even showed a higher loss, suggesting a poor capture of the contrastive
relationships between mechanisms and curves.

These findings are graphically represented in Figure 9, where GHop’s superiority is clearly evident, illustrating
its enhanced capability in the LInK framework compared to traditional GNN architectures.

Figure 9: This figure shows how the validation performance (LCLIP1) of each GNN architecture changes in
the LInK training. We see here that the proposed GHop architecture is performing significantly better than
alternative GNN architectures.

5 Conclusion & Future Work

In this work, we introduced LInK, a novel framework that combines contrastive learning with optimization
techniques for effectively solving complex engineering design problems, with a specific focus on the path
synthesis problem for planar linkage mechanisms. By leveraging a vast dataset and employing a multi-modal,
transformation-invariant contrastive learning framework, LInK adeptly captures intricate physics and design
representations, enabling the rapid and precise retrieval and optimization of mechanisms. This approach not
only significantly expedites the search process, but also enhances precision through a hierarchical optimization
algorithm. The results demonstrate the effectiveness of LInK through improvement in both speed and
performance by orders of magnitude.

For future work, the adaptability and robustness of LInK open new avenues for exploring its applicability
across a broader spectrum of engineering challenges beyond linkage synthesis. As demonstrated, the integra-
tion of contrastive learning-based joint design and performance space representation and optimization has
the potential to facilitate advancements in areas where traditional methods falter due to the complexity or
combinatorial nature of design spaces. Further research could explore the extension of LInK’s methodology
to more complex mechanisms, the incorporation of dynamic simulation for moving mechanisms, and a fully
end-to-end generative model.
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A Broader Discussion On Computational Kinematic Synthesis of Planar Linkage
Mechanisms

As discussed prior most methods in kinematic synthesis fall into 3 primary categories: Numerical atlas-based
approaches, Optimization-based approaches, and Deep learning-based approaches.

Numerical Atlas: In numerical atlas approaches first a database of mechanisms is created or gathered
and simulated to obtain the paths that each mechanism traces in the database. Then these mechanisms and
their corresponding paths are used as a “numerical atlas”. Given a target path, one can look up all of the
mechanisms in a database to find the best matching candidate in the database McGarva (1994); Chu & Sun
(2010b); Sun et al. (2015). It can be computationally expensive to compare a target to a large number of
mechanisms therefore in the majority of these approaches, the database is usually limited in size or limited
to a handful of mechanism types, such as a four-bar or a six-bar mechanism.

Optimization-Based Kinematic Synthesis: A different kind of approach to solving this kind of problem
is applying different optimization approaches. Some use genetic algorithms to the problem Lipson (2008);
Khan et al. (2015b), While others have developed Fourier descriptor-based optimization algorithms Ullah
& Kota (1997); Wu et al. (2011). At the same time, many approaches focus on specific problems without
generalizability or refining existing solutionsLipson (2008); Bächer et al. (2015). Most of the aforementioned
methods commonly work with existing solutions Bächer et al. (2015); Thomaszewski et al. (2014) or are lim-
ited to specific kinds of mechanisms or problems Lipson (2008); Baskar & Plecnik (2021). Most promising
amongst the recent developments is the method proposed by Pan et al. (2023), which formulates the opti-
mization problem discussed prior as a mixed integer conic-programming (MICP) and mixed-integer nonlinear
programming (MINLP). However, these methods use a branch and bounds method to optimize the problem,
which limits their capacity in the number of joints and the number of points in their target curves Pan et al.
(2023). Furthermore, even for simple problems the time to solve any given input is significant (in the order
of 5-10 hours) which makes these kinds of methods not only limited by mechanism size and target path point
count but prohibitive for generating multiple candidates for the same problem or generating solutions for
complex targets that require many points to describe.

Deep Learning And Kinematic Synthesis: Given these limitations in the conventional approaches,
data-driven and deep learning approaches have been proposed to accelerate and improve path synthesis
results. These studies often integrate traditional methods, such as the “numerical atlas” and optimization
techniques, into data-driven frameworks. For instance, Deshpande & Purwar (2019a) have refined a method
that merges the numerical atlas concept with optimization strategies (Deshpande & Purwar, 2019a;b; 2020),
utilizing variational autoencoders (VAEs) (Kingma & Welling, 2014) and a clustering-based search to identify
suitable candidates for generating the required coupler curves. Additionally, their subsequent research applies
VAEs and conditional VAEs (Sohn et al., 2015) to create mechanisms. However, the datasets employed in
these studies are typically small and restricted to certain mechanism types (e.g., four-bar, six-bar, etc.), with
one instance being a dataset comprising 6818 linkage mechanisms (Deshpande & Purwar, 2021). Other data-
driven studies have explored mechanism generation by conditioning on specific paths (Vasiliu & Yannou,
2001), yet this approach is also mainly limited to four-bar mechanisms. In contrast to these strategies,
methods are attempting to apply machine learning to emulate optimization techniques. An example of this
is a study employing deep Q learning (Mnih et al., 2013). More recently Fogelson et al. (2023) have introduced
a novel reinforcement learning approach that accelerates the process of optimization in comparison to MICP-
based approaches mentioned before. Although these reinforcement learning-based strategies are not confined
to particular mechanisms, they require retraining for each new target shape, thus limiting their generality
and introducing issues similar to the aforementioned MICP-based methods.

It is clear that machine learning techniques hold significant potential in this domain, yet current methodolo-
gies exhibit two main shortcomings. Firstly, many techniques are constrained to specific types of mechanisms
and problems. Secondly, when these methods are not limited by mechanism type, they mimic optimization
and perform the task rather slowly. In our work, we developed a hybrid method that combined the acceler-
ation that is associated with deep learning frameworks and the precision and robustness that is associated
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with optimization to strike a balance and significantly outperform the state of the art in both inference time
and raw performance.

B Detailed Review of Deep Learning-Based Retrieval and Contrastive Learning

Here we provide a more in-depth review of the works we discussed in the main body of the paper for further
context around the topics of deep learning-based retrieval and contrastive learning.

B.1 Learning Based Retrieval

When it comes to deep learning-based approaches for retrieval the majority of research has been dedicated to
vision applications, specifically content-based image retrieval (CIBR). Dubey (2022) and Chen et al. (2023)
have conducted comprehensive surveys on the deep learning developments for different types and applications
of CIBR, which provide a more in-depth discussion on the topic for readers seeking a more detailed review of
the topic. Here we will focus on discussing some of the more directly related works of research on the topic.
In our work, we aim to retrieve mechanisms (represented as graphs) given target kinematics (2D paths),
which makes the approach one that involves different modalities of data representation. As such here we
focus on cross-modal retrieval methods, discuss some of the ways that others have approached problems of
this nature, and refer readers to the aforementioned surveys for a review of other types of retrieval models.

Cross-modal image retrieval refers to the task of retrieving images in a dataset based on information involving
more than one modality. A prominent example of this is text and image-based retrieval, which comes up
in text query-based image retrieval and image labeling based on text retrieval. One of the earliest works
on the topic by Feng et al. (2014) called correspondence autoencoder (Corr-AE) trains two autoencoders
simultaneously one for text and one for images and attempts to build correspondence by encouraging the
embeddings of the two autoencoders to be close to each other through an L2 loss function between the text and
image embeddings produced by each autoencoder. Cao et al. (2016) introduce a novel Deep Visual-Semantic
Hashing (DVSH) model that introduces an end-to-end deep learning architecture called visual-semantic fusion
network, which simultaneously captures spatial dependencies in images and temporal dynamics in text. This
network is responsible for learning a joint embedding space that mitigates the heterogeneity between the two
modalities, thereby generating compact, similarity-preserving hash codes, which can be used for text-based
retrieval. Others have looked at similar approaches with slight differences in architecture and implementation
such as Textual-Visual Deep Binaries (TVDB) Shen et al. (2017) and many more approaches that have been
explored for this kind of cross-modal task with similar overall methodologies Wei et al. (2017); Yang et al.
(2017); Wu et al. (2017) with slight nuances the detailed description of which is outside the scope of this
section. Furthermore, some research has been focused on performing the same task through adversarial
learning approaches. For example Li et al. (2018) introduces Self-Supervised Adversarial Hashing (SSAH).
The methodology combines adversarial learning with a self-supervised semantic network to achieve this
goal. Two adversarial networks are employed to learn the high-dimensional features and corresponding hash
codes for different modalities. Simultaneously, a self-supervised semantic network, leveraging multi-label
annotations, guides the adversarial learning process to maximize semantic relevance and feature distribution
consistency between modalities. Again various works of research have been proposed along the same lines of
using adversarial networks Wang et al. (2017); Zhang et al. (2018); Gu et al. (2019); Ji et al. (2019) for this
kind of text-to-image or image-to-text retrieval.

The common pattern across the aforementioned works and the majority of works that surround the topic
is the fact that these methods all focus primarily on text and image, which means the authors often tailor
their approaches and architecture to specialize in this kind of task specifically. This makes these models
much better at performing cross-modal retrieval on images and text but makes the approaches very difficult
to adapt to general cross-modal retrieval tasks such as the one we are performing in this work. This means
that we must look at methods that are robust to cross-modal retrieval tasks which do not specialize at their
core to deal specifically with image and text and this is where contrastive learning-based retrieval methods
come into play.
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B.2 Contrastive Learning and Contrastive Learning Based Retrieval

As discussed before most of the methods built for retrieval using deep learning were built to be specialized
and included mechanisms specific to text and image datasets which are not adaptable to general tasks like
the one we intend to perform here. Given this and the fact that the inverse kinematic problem involves a
very general and context-free nature, the kinematics simulations are the only directly available information
for any given mechanism and this exists in isolation, unsupervised and self-supervised approaches are best
suited for building a robust retrieval mechanism for kinematic synthesis. These requirements lend themselves
rather well to contrastive learning.

Contrastive learning at its core refers to unsupervised or self-supervised learning methods that aim to de-
velop models that learn to distinguish between similar and dissimilar data points Jaiswal et al. (2021).
These methods gained popularity as a result of the early seminal works in deep contrastive learning Hjelm
et al. (2018); van den Oord et al. (2019); Chen et al. (2020a) that demonstrated the powerful capabilities
of these approaches for both conventionally supervised deep learning problems (e.g. contrastive learning
feature extraction for classification and regression) and unsupervised representation learning. Among these
early approaches, the work by Chen et al. (2020a;b), known as an effective framework for contrastive learn-
ing (SimCLR) stands out as a rather generalizable and robust framework. Although SimCLR itself was built
and tested on a single modality of data, primarily images, similar approaches soon emerged in other works
of research that adapted similar techniques to contrastive learning on multiple modalities. Most notably the
work by Radford et al. (2021), introduces the Contrastive Language-Image Pretraining (CLIP) model, which
creates a crossmodal embedding space for text and images. However, unlike highly specialized text-image
retrieval models the CLIP approach is rather generalizable to other cross-modal embedding spaces. This
is evident in the loss function used by CLIP (Equation 2). This means that so long as trainable models
can be implemented for data representations in each modality the CLIP approach applies to the problem.
Given this robustness and generalizability, we incorporate the CLIP loss in our approach for unsupervised
representation learning in the inverse kinematics problem.

The concept of a shared cross-modal embedding space is highly analogous to the retrieval problem discussed
before. This is because these models map data from different modalities into the same space based on
similarity, which makes these embedding spaces ripe for retrieval problems. As it turns out, this has been
explored in many works of research surrounding cross-modal retrieval. In an approach very similar to what
we do here Izacard et al. (2022) uses this concept of contrastive embedding spaces for retrieval for the task
of document retrieval. These kinds of approaches have also been explored for cross-modal retrieval tasks
as well, such as temporal moment retrieval from videos based on text Zhang et al. (2021) or text-based
molecular retrieval for molecule design Liu et al. (2023), which demonstrates the effectiveness of cross-modal
embedding spaces built using contrastive learning for retrieval tasks. In our approach, we employ contrastive
learning-enabled cross-modal spaces for mechanism retrieval based on kinematic objectives. The details of
our implementation are discussed in later sections.

C Additional Visualizations

Here we will visualize the mechanisms that trace the curves in the 8 test curves and alphabet tests. For
each set of tests, we will visualize the kinematics of the entire mechanisms in 2D graph and path figures
and provide the optimal assembly of the mechanisms in 3D as well to visualize what the actual assembled
mechanism would look like. Note that these solutions are the best perfoming solutions as such they tend to
have more joints since higher complexity mechanisms tend to produce more precise solutions.

C.1 Eight Test Curves

Figure 10 shows the mechanisms associated with the solutions found by LInK for each of the 8 test curves.
This figure shows the mechanisms and their kinematic in 2D while Figures 11, 12 show the optimal assemblies
for each of these mechanisms to avoid collisions while using the fewest layers in the z-axis according to the
optimization scheme described in Section 3.4.
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Target Curve Traced Curve Traced Coupler Curves By None-Terminal Joints

Figure 10: This figure shows the best results from LInK on the 8 test curves. As it is visible here LInK has
matched the target curves effectively without much challenge. Here we visualize the mechanisms in 2D and
also plot the paths traced by all the joints in each mechanism.
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Figure 11: This figure shows the 3D optimal assemblies for mechanisms displayed in Figure 10(first four
curves).
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Figure 12: This figure shows the 3D optimal assemblies for mechanisms displayed in Figure 10(last four
curves).

C.2 Alphabet Test Curves

The figures in this subsection are similar in nature to the figures in the prior subsection. Again it is important
to note the fact that these are the best perfoming solutions which means that even for simpler curves such
the letter ‘O’ the produced mechanism is more complex because the more complex mechanisms achieve an
exceptionally accurate solution. Note that the LInK approach can be set to be limited any number of joint
count as we mentioned in the main text to obtain simpler mechanisms.
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Target Curve Traced Curve Traced Coupler Curves By None-Terminal Joints

Figure 13: This figure shows the best results from LInK on the first 9 alphabet test curves. As it is visible here
LInK has matched the target curves effectively without much challenge. Here we visualize the mechanisms
in 2D and also plot the paths traced by all the joints in each mechanism.
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Target Curve Traced Curve Traced Coupler Curves By None-Terminal Joints

Figure 14: This figure shows the best results from LInK on the 9-18 alphabet test curves. As it is visible here
LInK has matched the target curves effectively without much challenge. Here we visualize the mechanisms
in 2D and also plot the paths traced by all the joints in each mechanism.
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Target Curve Traced Curve Traced Coupler Curves By None-Terminal Joints

Figure 15: This figure shows the best results from LInK on the last 8 alphabet test curves. As it is visible here
LInK has matched the target curves effectively without much challenge. Here we visualize the mechanisms
in 2D and also plot the paths traced by all the joints in each mechanism.
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Figure 16: This figure shows the 3D optimal assemblies for mechanisms displayed in Figure prior figures for
the alphabet mechanisms (A-D).
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Figure 17: This figure shows the 3D optimal assemblies for mechanisms displayed in Figure prior figures for
the alphabet mechanisms (E-H).
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Figure 18: This figure shows the 3D optimal assemblies for mechanisms displayed in Figure prior figures for
the alphabet mechanisms (I-L).
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Figure 19: This figure shows the 3D optimal assemblies for mechanisms displayed in Figure prior figures for
the alphabet mechanisms (M-P).
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Figure 20: This figure shows the 3D optimal assemblies for mechanisms displayed in Figure prior figures for
the alphabet mechanisms (Q-T).
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Figure 21: This figure shows the 3D optimal assemblies for mechanisms displayed in Figure prior figures for
the alphabet mechanisms (U-X).
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Figure 22: This figure shows the 3D optimal assemblies for mechanisms displayed in Figure prior figures for
the alphabet mechanisms (Y, Z).
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