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Abstract
In this paper we derive a PAC-Bayesian error
bound for a class of stochastic dynamical sys-
tems with inputs, namely, for linear time-invariant
stochastic state-space models (stochastic LTI sys-
tems for short). This class of systems is widely
used in control engineering and econometrics, in
particular, they represent a special case of recur-
rent neural networks. In this paper we 1) for-
malize the learning problem for stochastic LTI
systems with inputs, 2) derive a PAC-Bayesian er-
ror bound for such systems, and 3) discuss various
consequences of this error bound.

1. Introduction
The Probably Approximately Correct (PAC)-Bayesian learn-
ing theory is an important tool for analysing theoretical
properties of machine learning algorithm, see (Guedj, 2019;
Alquier, 2021; Zhang, 2006; Grünwald, 2012; Alquier et al.,
2016; Germain et al., 2016; Sheth and Khardon, 2017). In
this paper we will present PAC-Bayesian error bounds for
time-series supervised learning, with quadratic loss. More
precisely, we consider time-series realised by stochastic lin-
ear time-invariant (LTI) systems in state-space form with
(stochastic) inputs and unbounded (sub-Gaussian) noise.
The proposed bound is based on Rényi divergence and con-
verge to zero as the number of data points N goes to infinity
with the rate O( 1√

N
), for a fixed posterior.

Motivation for studying PAC-Bayesian bounds for dy-
namical systems in state-space form: While there is a
wealth of literature on PAC-Bayesian bounds for static mod-
els (Alquier, 2021; Guedj, 2019), much less is known for
dynamical systems. Moreover, existing results on dynam-
ical systems often concentrate on autoregressive models.
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However, for various learning problems involving sequen-
tial, online or time-series data dynamical systems in state-
space form represent a more general and more expressive
hypothesis class, see Section 2 for a more detailed discus-
sion. In a nutshell, the hidden states in state-space models
encode a growing window of past observations, allowing for
potentially more accurate predictions. These favorable prop-
erties of state-space models are well-known in econometrics
(Durbin and Koopman, 2012) and control theory (Ljung,
1999). Recently, they were also explored in machine learn-
ing, in the form of structured state-space models (SSMs),
due to their relatively low inference complexity and often
high performance (Gu et al., 2021; 2023; Gu and Dao, 2023;
Li et al., 2021; Wang and Xue, 2023). Note that recurrent
neural networks (RNNs) and their various versions (LSTM,
etc.) are all dynamical systems in state-space form. PAC-
Bayesian bounds for state-space representations have the
potential for providing theoretical guarantees for existing
learning algorithms and potentially deriving new ones, see
Remark 2.5.

Motivation for LTI systems: The motivation for working
with PAC-Bayesian bounds for LTI systems is as follows.
First, LTI systems are among the simplest class of dynami-
cal systems in state-space form with partially observed state.
In turn, state-space representations with partially observed
states 1) are widely used for modeling physical systems,
2) they contain various standard models such as recurrent
neural networks (RNN), or structured state-space models
(SSMs), 3) are more general than autoregressive models,
in particular, in contrast to autoregressive models, state-
space models allow integrating a growing number of past
observations for generating predictions. In particular,, PAC-
Bayesian bounds for LTI models could help to derive such
bounds for more general classes of systems. For exam-
ple, LTI systems are special cases of RNNs and they are a
building blocks of SSMs.

Moreover, despite their simplicity, LTI systems are widely
used in econometrics and control theory, due to their ability
to model various physical processes, see (Ljung, 1999; Pil-
lonetto et al., 2022). In particular, learning of LTI systems
is an active research topic, both on its own and as a interme-
diate step in LQG reinforcement learning (Lale et al., 2020;
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Simchowitz, 2021; Simchowitz and Foster, 2020; Hazan
et al., 2018). In particular, finite-sample bounds for LTI sys-
tems have received significant attention (Lale et al., 2020;
Oymak and Ozay, 2022; Simchowitz, 2021; Simchowitz
et al., 2019; Sarkar et al., 2021; Tsiamis and Pappas, 2019;
Hazan et al., 2018; Lee and Lamperski, 2019). However,
the cited papers provide error-bounds for specific learning
algorithms. Moreover, they concentrate on parameter es-
timation error, and not on the generalisation gap (i.e. the
difference between the generalisation and empirical loss).
PAC-Bayesian bounds also represent a finite-sample bound
for learning LTI systems. However, in contrast to the results
cited above, the PAC-Bayesian error bounds of this paper,
characterize the generalization gap for a wide variety of
learning algorithms. The PAC-Bayesian bound can be used
for bounding the parameter estimation error, see Remark
4.4.

Related work: Error bounds for certain classes of non-
linear dynamical systems were also derived in (Sattar et al.,
2022; Sattar and Oymak, 2022; Blanke and Lelarge, 2023;
Foster and Simchowitz, 2020; Mania et al., 2022; Sayedana
et al., 2022; Shi et al., 2022; Roy et al., 2021; Ziemann
et al., 2022; Ziemann and Tu, 2022; Li et al., 2023), but
they assume full state observation and they provide an error
bound for a specific learning algorithm. In contrast, we
consider models with unobserved (hidden) states.

The literature on LTI systems (Ljung, 1999) traditionally
focused on statistical consistency, with a few papers (Campi
and Weyer, 2002; Vidyasagar and Karandikar, 2006) on
PAC bounds. However, the latter papers are applicable
only for bounded signals. PAC bounds for RNNs (which
contain LTI systems as a special class) were developed in
(Koiran and Sontag, 1998; Sontag, 1998; Chen et al., 2020)
using VC dimension, and in (Wei and Ma, 2019; Akpinar
et al., 2020; Joukovsky et al., 2021; Chen et al., 2020) using
Rademacher complexity, and in (Zhang et al., 2018) using
a PAC-Bayesian bounds. However, all the cited papers
assume noiseless models, a fixed number of time-steps, that
the training data are i.i.d sampled time-series, and the signals
are bounded. Moreover, several papers (Koiran and Sontag,
1998; Sontag, 1998; Hanson et al., 2021) assume Lipschitz
loss functions, while we use quadratic loss function.

PAC-Bayesian error bounds for dynamical systems were
considered in (Alquier and Wintenberger, 2012; Alquier
et al., 2013; Haussmann et al., 2021; Banerjee et al., 2021;
Shalaeva et al., 2020), but for different learning problems:
(Alquier and Wintenberger, 2012; Alquier et al., 2013; Sha-
laeva et al., 2020) considers autoregressive models, (Hauss-
mann et al., 2021) considers stochastic differential equa-
tions, (Banerjee et al., 2021) Markov-chains with observed
states. PAC-Bayesian bounds were proposed for (super-
)martingales (Haddouche and Guedj, 2022b; Seldin et al.,

2012), however they are not applicable to LTI, as the em-
pirical loss for LTI systems is not a super martingale. PAC-
Bayesian bounds were also derived for online learning (Had-
douche and Guedj, 2022a), but again, those bounds are not
applicable to LTI systems. In (Eringis et al., 2023a; 2021)
PAC-Bayes bounds based on KL-divergence were devel-
oped for LTI systems with unbounded signals However,
those bound do not converge to zero. In contrast, in this pa-
per we use Rényi divergence, and the error bound converges
to zero with O( 1√

N
), at least when the Rényi divergence be-

tween the prior and posterior is bounded, e.g., the posterior
is fixed. In (Eringis et al., 2023c;a) KL-based PAC-Bayesian
bounds were developed for state-space systems, in particu-
lar for LTI systems, but all the signals were assumed to be
bounded. In contrast, we consider unbounded signals.

Motivation for using Rényi instead of KL divergence:
In this paper we follow the approach (Bégin et al., 2016;
Alquier and Guedj, 2018) and we use Rényi divergence be-
tween the prior and posterior to formulate PAC-Bayesian
bounds. In contrast, most of the existing literature considers
PAC-Bayesian bounds which use Kuehlback-Leibner (KL)
divergence to express this difference. The use of KL diver-
gence leads to tighter bounds. However, the use of Rényi
divergence allowed us to avoid certain technical difficul-
ties which arise for LTI systems with unbounded signals
and quadratic loss function. At the same time, the latter
assumptions are standard in applications of LTI systems
in econometrics and control (Durbin and Koopman, 2012;
Ljung, 1999), and hence cannot be ignored. The difficulty
of using KL bounds for dynamical systems with unbounded
signals and quadratic loss were also apparent in (Shalaeva
et al., 2020; Eringis et al., 2021; 2023a), where the derived
KL-based bounds do not converge to zero as the number
of data points N → ∞. For a more detailed discussion on
these technical difficulties see Section B, Appendix.

Further challenges related to state-space systems: As
it was mentioned above, the hidden states of LTI systems
potentially encode information on unbounded number of
past inputs. This requires adjusting the standard definition
of generalisation loss and prevents the application of PAC-
Bayesian bounds for autoregressive models to LTI systems.
We refer to Section 2, for a more detailed discussion.

Main contribution and novelty: The main contribution of
the paper is that (1) it proposes a PAC-Bayesian bound, i.e.,
a bound on the generalisation gap (2) the bound is O( 1√

N
)

in terms of the length N of the time-series, (3) the bound
is valid for a potentially large class of learning algorithms,
(4) the bound applies to stochastic LTI systems in state-
space form, with unbounded signals and hidden states, and
for learning from a single time series. To the best of our
knowledge, there are no other comparable PAC bounds in
the literature for this learning problem.
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Outline of the paper: In Section 2 we present the informal
problem formulation and the main result. In Section 3 we
state the formal assumptions. In Section 4 we state the
main results of the paper. A numerical example is presented
in Section 5. Some of the proofs and further numerical
examples are presented in Appendix.

2. Informal statement of the result
Notation and terminology: To enhance readability we oc-
casionally use ≜ to denote ”defined by”. Let F denote a
σ-algebra on the set Ω and let P be a probability measure
on F. Unless otherwise stated all probabilistic considera-
tions will be with respect to the probability space (Ω,F,P),
and we let E(z) denote expectation of the stochastic vari-
able z. We use bold face letters to indicate stochastic vari-
ables/processes. Each euclidean space is associated with
the topology generated by the 2-norm ∥ · ∥2, and the Borel
σ-algebra generated by the open sets. The induced matrix
2-norm is also denoted ∥ · ∥2. We will call a square matrix a
Schur matrix, if all its eigenvalues are inside the unit disk.
We denote by Im the m×m identity matrix.

Features and labels: Let us fix two stochastic processes:
the label process y(t) ∈ Rny , and input process u(t) ∈
Rnu , which share a time axis t ∈ Z, i.e., y(t),u(t) are
random vectors on (Ω,F,P). We want to predict the
values of y(t) based on the past and present values of the
inputs {u(s)}s≤t and possibly the past values of {y(s)}s<t.
We will aim at learning predictors based on the finite sample
D = {y(t)(ω),w(t)(ω)}N−1

t=0 , ω ∈ Ω.

Predictors (parameterized linear time-invariant (LTI)
systems): In this paper we consider the class of predictors
F such that the following holds. The goal of each predic-
tor f ∈ F , is to estimate the current label y(t) based on
available features w(s) ∈ W, s ∈ Z where w(s) is either:

• w(s) = u(s), W = Rnu in which case the to be learnt
models will predict the current label y(t) based on the past
and current inputs {u(s)}ts=t0 , or

• w(s) = [yT (s), uT (s)]T , W = Rny+nu , in which case,
the to be learnt models will use past labels {y(s)}t−1

s=t0 in
addition to the past and current inputs {u(s)}ts=t0 to predict
the current label y(t).

To unify notation we write the input-output data as
{y(i),w(i)}i∈I for any I ⊆ Z. Clearly, this notation
contains redundant information, in the case of feature
w(s) = [yT (s), uT (s)]T .

We will assume that the elements of F are parametrized
by a parameter set Θ, where Θ is a subset of an Eucledian
space, and that the elements of F arise as outputs of linear
time-invariant state-space systems driven by w, i.e., every
f ∈ F is of the form f = fθ for some θ ∈ Θ, and there ex-

ist matrices Â(θ), B̂(θ), Ĉ(θ), D̂(θ) of suitable dimensions
such that for every sequence {w(k)}tk=t0

, t0 ≤ t

x̂(t+ 1) = Â(θ)x̂(t) + B̂(θ)w(t), x̂(t0) = 0 (1a)

fθ({w(k)}tk=t0) = Ĉ(θ)x̂(t) + D̂(θ)w(t). (1b)

If feature w(s) = [yT (s), uT (s)]T , W = Rny+nu , then
we assume that D̂(θ)w(t) depends on u(t) only, i.e., the
first ny columns of D̂(θ) are zero.

Predictors of the form (1) are used in an online manner,
i.e., as soon as w(t) becomes available, we compute the
estimate fθ({w(k)}tk=t0

) of y(t). Intuitively, t0 represents
the starting time from which observations become available.
Without loss of generality, during the deployment and learn-
ing of predictors, we can assume that t0 = 0. However, for
some theoretical considerations, t0 ̸= 0 will also be useful.

The celebrated (stationary) Kalman-filters are predictors of
the type (1)1. Note that the number of data points used to
predict y(t) increases with t, and hence it is unbounded.
That is, while we would like to learn a predictor from a se-
quence of inputs of length N , we deploy the learnt predictor
on inputs of arbitrary length during the deployment. This is
in contrast to auto-regressive predictors, where only a finite
portion of the past values of w is used to predict y(t).

Empirical and generalisation losses: In order to quantify
the goodness of each predictor f ∈ F , we shall define
two quantities: empirical loss, and generalisation loss. For
any predictor f ∈ F , and data set {y(i),w(i)}N−1

i=0 the
empirical loss of f is defined in the usual manner, i.e.,

L̂N (f) ≜
1

N

N−1∑
i=0

∥f({w(s)}is=0)− y(i)∥22. (2)

Note that we use the quadratic loss function, which is a
standard choice for regression in general, and time-series
prediction in particular. Note that, L̂N (f) is a random vari-
able w.r.t. the probability space (Ω,F,P).

In classical PAC-Bayesian literature, one defines generali-
sation loss as E[∥f({w(s)}ts=0)− y(t)∥22]. For time-series
prediction that choice is not suitable, as it captures the pre-
diction error at time instance t, when only the last t + 1
inputs are used for prediction. However, during the deploy-
ment of predictors, both t and the number of past inputs
used for prediction increases. Moreover, as t increases, the
prediction error tends to decrease, as more and more data
points are used for prediction. This phenomenon can be ob-
served not only for predictors of the form (1), but for more
general ones, for instance in non-stationary Kalman-filters2

1Note that Kalman-filters are not learnt from data, but they are
constructed from a known model of the data generator. Neverthe-
less, they represent a useful analogy.

2In non-stationary Kalman-filters, in contrast to the stationary
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(Lindquist and Picci, 2015). The latter are known to gener-
ate the smallest possible prediction error. For this reason,
the standard practice in learning dynamical systems (Ljung,
1999) is to define the generalisation loss as the limit:

L(f) ≜ lim
t→+∞

E[∥f({w(k)}tk=0)− y(t)∥22] (3)

That is, the generalisation loss captures the long-term,
steady-state prediction error obtained during the deploy-
ment of the predictor on an increasing number of past inputs
3. If L(f) is small as t → ∞, then with high probability
the prediction error ∥f({w(s)}ts=0)− y(t)∥22 will be small.
The existence of the limit on the right-hand side of (3) is a
standard result (Hannan and Deistler, 1988; Lindquist and
Picci, 2015) and it will be recalled in Lemma 3.4.

Data generators (noisy LTI systems): In addition to spec-
ifying the class of predictors, we need assumptions on the
data, i.e., we assume that y(t) is the output of a noisy LTI
state-space representation driven by the input u, i.e.,

x̂g(t+ 1) = A0x̂g(t) +B0u(t) +K0e
s(t)

y(t) = C0x̂g(t) +D0u(t) + es(t)
(4)

where A0, B0,K0, C0, D0 are suitable matrices and es(t)
is a zero-mean i.i.d. process. Moreover, u is generated by a
noisy LTI state-space representation, possibly driven by the
output process y. That is, we allow u(t) to depend on past
outputs {y(s)}s<t. That is, in the terminology of system
identification, we consider both the open-loop and the close-
loop settings. In the formal statement of the main result,
we will use an assumption which is more general than the
existence of (4). This will be done in order to keep the result
more general and the statements more streamlined.

This assumption can be viewed as a realizability assumption,
as data generator (4) gives rise to the predictor ftrue

x̂g(t+ 1) = Â0x̂g(t) + B̂0w(t), x̂g(0) = 0

ftrue({w(s)}ts=0) = Ĉ0x̂g(t) + D̂0w(t)
(5)

where Â0 = A0, B̂0 = B0, Ĉ0 = C0 if W = Rnu and
Â0 = A0 − K0C0, B̂0 =

[
K0 B0 −K0D0

]
, Ĉ0 = C0,

D̂0 = D0 if W = Rnu+ny . When w = [yT (s), uT (s)]T ,
the predictor ftrue corresponds to stationary Kalman-filter,
and it is optimal in the sense that the generalisation loss
L(ftrue) is the smallest possible among all the predictors f
which arises via a LTI state-space representation (1).

The learning problem: We can then formulate the learn-
ing problem considered in this paper as follows.

one, the matrix B(θ) may depend on time, so it is not realizable
by an LTI system.

3In (Ljung, 1999) instead of letting t → +∞ , t is fixed and
k → −∞, which is equivalent, see Lemma 3.4.

Problem 2.1 (Learning problem). Find a parameter θ⋆ from
the sampled data D = {y(t)(ω),w(t)(ω)}N−1

t=0 of the ran-
dom variables {y(t),w(t)}N−1

t=0 such that L(θ⋆) is as small
as possible. The corresponding optimal predictor fθ⋆ is
denoted by f⋆.

In particular, if ftrue corresponds to the element of F pa-
rameterized by the parameter θtrue, and the correspondence
θ 7→ fθ is one-to-one (the parameterization is identifiable
)4, then θ⋆ = θtrue. That is, finding the predictor with the
smallest generalisation loss amounts to learning the param-
eters of the data generator, i.e. our learning problem is
consistent with the standard system identification problem.

PAC-Bayesian approach, main result: We use the
Bayesian perspective, i.e., we start with a prior density π
on the hypothesis class F . We then use the sampled data to
refine the prior density into a posterior density ρ̂, such that
the average generalisation loss according to ρ̂ is minimal.

Since F is a class of functions defined on sequences of
arbitrary length, the definition of a probability density on
F is not trivial. To circumvent this problem, we use the
correspondence between the parameter values from Θ and
the elements of F , and we will use densities defined on
Θ instead of densities defined on F . Since Θ is a subset
of an Eucledian space, densities on Θ can be defined in
a classical way. We will need to take expectations of a
function g on F w.r.t. the probability distribution induced
by a density ρ on Θ. To this end, we can identify g with
the function θ 7→ g(fθ) on Θ, and take the expectation of
the latter function w.r.t. the probability distribution induced
by ρ. By a slight abuse of notation, we we will denote
the latter expectation by Ef∼ρg(f). The latter expectation
exists under some mild assumptions. We defer the formal
definition to Definition 3.5.

With this notation in mind, the posterior ρD computed from
data D, should be such that Ef∼ρDL(f) is small. Then, fol-
lowing standard practices in PAC-Bayesian learning, prob-
lem 2.1 can be solved by either taking θ⋆ such that fθ⋆ is the
the mean model according to ρD, or sampling θ∗ randomly
from ρD, or taking the most likely parameter according to
ρD, i.e., θ⋆ = argmaxθ∈Θ ρD(θ).

Since L(f) is unknown, we could try to minimize the av-
erage empirical loss Ef∼ρD L̂N (f) instead. However, this
would not allow us to integrate the prior π, and could cause
over-fitting. Instead, we derive an upper bound

Ef∼ρL(f) ≤ Ef∼ρL̂N (f) + rN (ρ, π)

and we choose ρD by minimizing Ef∼ρL̂N (f) + rN (ρ, π)
over all densities ρ.

4Identifiability is a standard assumption in parametric system
identification (Ljung, 1999).
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This calls for deriving upper bounds for the generalisation
gap Ef∼ρL(f) − Ef∼ρL̂N (f). In this paper we derive
such an error bound. To state the main result, for any two
densities ρ and π, we denote by

D̄2(ρ∥π) ≜

(
Eθ∼π

(
ρ(θ)

π(θ)

)2
) 1

2

(6)

the 2 Rényi divergence between ρ and π. Here, Eθ∼π de-
notes the expectation with respect to the probability measure
on Θ induced by π. Let Mπ be the family of all densities on
Θ, the induced probability measure of which is absolutely
continuous w.r.t. the probability measure induced by π.

Theorem 2.1 (Main result, informal). Let π be any density
on the parameter set Θ and let δ ∈ (0, 1] be arbitrary. Then
the following inequality holds with probability at least 1−2δ
over the data

∀ρ ∈ Mπ : Ef∼ρ|L(f)− L̂N (f)| ≤ rN (ρ, π) (7)

rN (ρ, π) ≜
K√
δN

D̄2(ρ∥π)
[
G1 +

4√
N

G2

]
(8)

where K, G1 and G2 are constants which depend on the
prior π and the hypothesis class F . In particular, with
probability at least 1− 2δ over the data,

∀ρ ∈ Mπ : Ef∼ρL(f) ≤ Ef∼ρL̂N (f) + rN (ρ, π) (9)

The formal counterpart of Theorem 2.1 is presented in The-
orem 4.1.
Remark 2.2 (O( 1√

N
) bound). The bound rN (ρ, π) con-

verges to zero as N → ∞ at rate O( 1√
N
) for fixed ρ and π.

That is, for large enough N , it will give a non-trivial guaran-
tee on the generalization loss. For data dependent posteriors
the asymptotic behavior of rN (ρ, π) depends on that of the
Rényi divergence between the posterior and the prior. The
latter could grow with N . However, for reasonable posteri-
ors this is not the case, as they tend to concentrate around
the best model, see Section C, Appendix. A formal analysis
of the asymptotic behavior of the Rényi divergence remains
a topic of future research.
Remark 2.3 (Dependence on δ). As it is customary for
bounds based on Rényi divergence (Bégin et al., 2016)
rN (ρ, π) depends on 1√

δ
. This is in contrast to the depen-

dence on ln( 1δ ) of other PAC bounds. This more conserva-
tive dependence is the price to pay for Rényi bounds being
easier to derive, see Section B, Appendix.
Remark 2.4 (Comparison with prior work). The conver-
gence rate O( 1√

N
) of Theorem 4.1 is comparable with the

results of (Alquier and Guedj, 2018) for auto-regressive
models. However, it holds for the state-space case. It is also
comparable with the finite-sample bounds (Lale et al., 2020;
Simchowitz et al., 2019; Sarkar et al., 2021; Tsiamis and

Pappas, 2019; Hazan et al., 2018), which apply in a more
restricted setting, see Remark 4.4 for mode details.
Remark 2.5 (Application for learning). Various learning
algorithms can be derived by finding a data-dependent pos-
terior ρD such that Ef∼ρD L̂N (f)+rN (ρD, π) is small. The
term rN can be viewed as a regularisation term. Interpreting
priors or prior dependent expressions as regularisation terms
was explored for LTI systems in the book (Pillonetto et al.,
2022). For an explicit expression for the minimizer of the
right-hand side of (8) see (Alquier and Guedj, 2018).

Once a posterior ρD is obtained, there are several standard
ways to use it for choosing a parameter θ⋆. Without claiming
completeness, we mention the following two possibilities.

For instance, we could take θ⋆ such that fθ⋆ is the mean of
fθ according to ρD, i.e.

Eθ∼ρDfθ({w(s)}ts=0) = fθ⋆({w(s)}ts=0) (10)

for all t ≥ 0, see Remark A.8 of Appendix for conditions
when this is the case. Then with probability 1− 2δ,

L(fθ⋆) ≤ Ef∼ρD L̂N (f) + rN (ρD, π), (11)

see Lemma A.7, Appendix for the proof of (11).

Alternatively, we can sample θ⋆ from the posterior ρD. We
can formulate a naive counterpart of (8), as follows: for any
δ ∈ (0, 0.5), δ1 ∈ (0, 1) with a probability (1− 2δ)(1− δ1)
over all samples θ⋆ drawn from ρθ and over the data

L(fθ⋆) ≤ L̂N (fθ⋆) +
1

δ1
rN (ρD, π) (12)

for the formal proof of (12) see Lemma A.6. That is, with
a high probability we have an upper bound on the generali-
sation loss L(fθ⋆) in terms of the empirical loss L̂N (fθ⋆).
The derivation of single draw bounds which are less con-
servative than (12) is not entirely trivial (Hellström et al.,
2023), and thus remains a topic of future research.
Remark 2.6 (Relationship with parameter estimation). In
system identification literature, one is often interested in
the parameter estimation error, i.e., the difference between
the learnt model f and the true model ftrue from (5). In
contrast, Theorem 4.1 bounds the the generalisation gap, i.e.,
the difference L(f) − L̂N (f) between the generalisation
loss and the empirical loss L̂N (f). The latter depends not
only on how far the model f is from the true one ftrue, but
also on the various statistical properties of f and ftrue. In
fact, even if f = ftrue, the generalisation and empirical
losses are not zero, and the generalisation gap need not be
zero. However, the PAC-Bayesian bound can be used to
bound the parameter estimation error, see Remark 4.4.

3. Formal problem formulation
Assumption 3.1 (Predictors). Given integers nθ and n̂,
a compact set Θ ⊂ Rnθ , and a tuple Σ(θ) ≜
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(Â(θ), B̂(θ), Ĉ(θ), D̂(θ)) of continuous matrix functions
Â : Rnθ → Rn̂×n̂, B̂ : Rnθ → Rn̂×nw , Ĉ : Rnθ →
Rny×n̂, D̂ : Rnθ → Rny×nw , with Â(θ) Schur, and5

D̂(θ) =
[
0 D̂u(θ)

]
for all θ ∈ Θ. The class of predictors

F is then given by

F =

{
fθ :

∞⋃
k=1

Wk → Rny | θ ∈ Θ

}
(13)

with fθ determined by (1).

That is, predictors fθ will be functions realised by stable LTI
system. We denote a predictor by f when θ is clear from the
context. Note that, the predictor fθ can be identified with
either Σ(θ) or simply the parameter θ. Next, we state the
formal assumptions on the data generator.
Assumption 3.2 (Data generator). Label y(t) and input u(t)
are generated by a LTI state-space representation

xg(t+ 1) = Agxg(t) +Kgeg(t) (14a)[
y(t)
u(t)

]
= Cgxg(t) + eg(t) (14b)

with eg(t) a zero mean, sub-Gaussian, i.i.d. process, and
Ag ∈ Rn×n,Kg ∈ Rn×m, Cg ∈ Rm×n, n > 0, m =
ny+nu≥2, and x(t), y(t),u(t) all stationary, mean square
integrable, zero-mean, and Ag and Ag−KgCg are Schur
matrices, and eg(t) is uncorrelated with xg(t− k), k ≥ 0.

From standard theory on stochastic LTI systems (Lindquist
and Picci, 2015), it follows that eg(t) is the innovation pro-
cess of [yT (t) uT (t)]T and (14) is in the so called forward
innovation form, see (Lindquist and Picci, 2015) for the
definition of these concepts.
Remark 3.3 (Existence of (4) implies Assumption 3.2). As-
sume that (4) holds, with Schur matrices A0 and A0−K0C0,
es(t) a zero-mean i.i.d. process, and x̂g(t) stationary. In
the open-loop case, when u(t) is an ARMA process such
that there is no feedback6 from y(t) to u(t), by (Lindquist
and Picci, 2015) Assumption 3.2 holds, and by (Eringis
et al., 2023b) the matrices Ag,Kg, Cg can be computed
from those of (4) and from the ARMA representation of
u(t). In addition, when es(t) = 0 then (4) can be viewed
as an optimal predictor of y(t). When u(t) is generated by
an LTI systems driven by y(t), i.e.,

xu(t+1) = Auxu(t)+Kuy(t), u(t) = Cuxu(t) (15)

i.e., in the closed-loop case, then again (14) can be obtained
by adding (15) to (4), and letting xg(t) = [x̂T

g (t) ,x
T
u (t)]

T .

5This assumption is necessary, since otherwise we would be
using the components of y(t) to predict y(t), which is not mean-
ingful.

6see Definition 17.1.1. of (Lindquist and Picci, 2015) for the
definition of a feedback-free process.

Recall the definitions of the empirical and generalisation
loss from (2) and (3). In the sequel we will need the follow-
ing interpretation of the generalisation loss.

Lemma 3.4 ((Hannan and Deistler, 1988)). The limit
ŷf (t) ≜ lims→−∞ f({w(k)}tk=s) exists in the mean-
square sense, the process ŷf (t) is stationary, and

E[∥ŷf (t)−y(t)∥22]
= lim

τ→+∞
E[∥f({w(k)}τk=0)− y(τ)∥22]

= lim
s→−∞

E[∥f({w(k)}tk=s)− y(t)∥22]

In particular, the limit of the right-hand side of (3) exists
and L(f) = E[∥ŷf (t)− y(t)∥22.

Intuitively, ŷf (t) can be interpreted as the prediction of
y(t) generated by the predictor f based on all (infinite) past
and present values of the features. The generalisation loss
is then the variance of the difference ŷf (t) − y(t). Note
that the latter does not depend on t, as y(t) and ŷf (t) are
both stationary processes. Note also that limt→∞(ŷf (t)−
f({w(k)}tk=0) = 0, since Â(θ) is Schur. Hence for large t,
ŷf (t) is an approximation of the output of the predictor f .

Next, we formalize the notion of an expectation of a function
on F w.r.t. to a density on the parameter space Θ.
Definition 3.5. Let BΘ be the σ-algebra of Lebesque-
measurable subsets of the parameter set Θ ⊂ Rnθ , and
m denote the Lebesque measure on Rnθ . With the identifi-
cation θ ↔ fθ = f in mind we then define

E
f∼ρ

g(f) ≜
∫
θ∈Θ

ρ(θ)g(fθ)dm(θ) (16)

where ρ is a probability density function on the measure
space (Θ, Bθ,m), and g : F → R is such that Θ ∋ θ 7→
g(fθ) is measurable and absolutely integrable map. For a
probability density π on (Θ, Bθ,m), denote by Mπ the fam-
ily of probability densities on (Θ, Bθ,m) whose probability
measure is absolutely continuous w.r.t. that of π.

4. Main Results
In this section we present the formal counterpart of Theorem
2.1. To this end, for each f = fθ ∈ F and corresponding
Σ(θ) = (Â, B̂, Ĉ, D̂) choose M̂ = M(θ) > 1 and γ̂ =
γ̂(θ) ∈ [0, 1), such that ∥Âk∥2 ≤ M̂γ̂, and such that the
functions θ 7→ M(θ), θ 7→ γ̂(θ) are continuous. Define

gp(f) ≜
M̂∥Ĉ∥2∥B̂∥2

1− γ̂
(17)

Gp(f) ≜ gp(f)
(
1 + ∥D̂∥2 + gp(f)

) 1

1− γ̂
(18)

We can think of Gp(f) as an upper-bound on the difference
between the infinite past and the finite past response of the
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predictor, i.e., between the responses when the predictor was
started at time zero with zero initial state or it was already
in stead-state at time zero. In other words, Gp(f) measures
the robustness of the predictors w.r.t. state disturbances.

Next, we define the norm Ge(f) of the following LTI system
which is driven by the noise of the data generator and whose
output is the infinite horizon prediction error:

x̃(t+ 1) = Aex̃(t) +Keeg(t),

y(t)− ŷf (t) = Cex̃(t) +Deeg(t)
(19)

where Ae,Kc, Ce, De are defined as follows: Let
Ag,Kg, Cg be the matrices of the data generator from (14),
then De = I − D̂w, Ce =

[
C1 − D̂Cw −Ĉ

]
, and

Ae =

[
Ag 0

B̂Cw Â

]
, Ke =

[
Kg

B̂w

]
where Cg =

[
CT

1 CT
2

]T
and C1 has ny rows and C2

has nu rows; and (Cw, B̂w, D̂w) = (C2,
[
0 B̂

]
,
[
0 D̂

]
)

if w = u, and (Cw, B̂w, D̂w) = (Cg, B̂, D̂), if w =
[yT uT ]T . Then we define

Ge(f) ≜∥De∥2+
∞∑
k=0

∥CeA
k
eKe∥2 (20)

We can think of Ge(f) as the ℓ1-norm (Chellaboina et al.,
1999) of the error system (19), i.e. the distance between the
predictor f and the data generator. In particular, the smaller
Ge(f) is, the closer f is to the optimal predictor (5).

Let eg be the sub-Gaussian noise process of the data gener-
ator (14), and let µmax(Qe) > 0 be such that for any t ∈ Z,
there exists a Gaussian z(t) ∼ N (0, Iny+nu

) for which

E[∥eg(t)∥r2] ≤ µmax(Qe)
r
2E[∥z(t)∥r2], 0 < r ∈ N, (21)

If eg ∼ N (0, Qe), Qe > 0 is Gaussian, then µmax(Qe) can
be taken as the maximal eigenvalue of the covariance Qe =

E[eg(t)e
T
g (t)], and z(t) = Q

−1/2
e eg(t), see for instance

Eringis et al. (2023a, Lemma A.1). For the general case,
an explicit formula for µmax(Qe) is shown in Lemma A.9,
Appendix. In both cases, µmax(Qe)

√
nu + ny is an upper

bound on the variance of eg .

We can now state the following PAC-Bayesian bound using
Rényi divergence.

Theorem 4.1 (Main result, formal version of Theorem 2.1).
Under Assumptions 3.1-3.2 it follows that for any density π
on Θ and any δ ∈ (0, 0.5),

P
({

ω ∈ Ω | ∀ρ ∈ Mπ :

Ef∼ρ

∣∣∣L(f)− L̂N (f)(ω)
∣∣∣ ≤ rN (ρ, π)

})
> 1− 2δ (22)

where rN (ρ, π) is as in (8), Mπ is as in Definition 3.5, and
K, G1 and G2 are defined as follows

K ≜ µmax(Qe)
√
(nu + ny + 1)! (23)

G1 ≜ 6ny

(
Ef∼πG

4
e(f)

) 1
2 (24)

G2 ≜ ∥Σgen∥2ℓ1
(
Ef∼πG

2
p(f)

) 1
2 (25)

∥Σgen∥ℓ1 =∥Iny+nu
∥2 +

∞∑
k=1

∥CgA
k−1
g Kg∥2 (26)

where Gp(f) is as in (18), Ge(f) is as in (20), and
µmax(Qe) is as in (21).

Discussion on the constants The constant ∥Σgen∥ℓ1 is the
induced ℓ1-norm of the generating system (14) (Chellaboina
et al., 1999). It exists due to stability of (14): the larger this
constant is, the more sensitive the data generator is to the
driving noise eg . The constant µmax(Qe) in an upper bound
on the level of noise in the data. The term K depends only
on the noise covariance of the data generator. The term G1

is the average difference between the data generator and the
predictors, where the average is computed w.r.t. the prior π
on the predictors. Intuitively, KG1 is related to the average
( w.r.t. π) generalisation loss. The term G2 describes the
average (w.r.t. π) robustness (ℓ1-gain) of the predictor class
multiplied by the ℓ1-gain of the predictor. Intuitively, KG2

bounds the gap between the empirical loss obtained using
finitely many past data and infinitely many past data.
Remark 4.2 (Computing G1 and G2). It may seem that the
knowledge of the generator system might be necessary to
evaluate rRN . In fact, it is sufficient to have an upper bound C
on ∥Σgen∥ℓ1 , as Ge(f) ≤ ∥Σgen∥ℓ1 + Gp(f)∥Σgen∥ℓ1 ≤
C(1 + Gp(f)). Furthermore, if we have an upper bound
Gp = supθ∈F Gp(f), then we can take G1 = 6ny(C +
GpC)2 and G2 = C2Gp.

Proof. As the first step, for every f ∈ F let us define the
infinite past empirical loss VN (f) as

VN (f) =
1

N

N−1∑
t=0

∥y(t)− ŷf (t)∥22 (27)

where ŷf (t) is defined in Lemma 3.4. That is, VN (f) can be
viewed as the empirical loss of the predictor f if it has been
run for an infinite amount of time in the past. In particular,
E[VN (f)] = L(f), i.e., this empirical loss has the usual
property that its expectation is the generalisation loss. In
system identification literature (Ljung, 1999), empirical loss
is defined as VN (f), and the transient behavior is ignored.

The proof relies on the Rényi’s change of measure from
Theorem 8 of (Bégin et al., 2016). Let us call a function Z
defined on Ω×F a random function if the function (ω, θ) 7→
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Z(ω, fθ) is measurable w.r.t. to the Cartesian product F×
BΘ of σ-algebras. If Z is a random function, then Z(f) :
Ω ∋ ω 7→ Z(ω, f) is a random variable. Moreover, if
Z takes values in [0,+∞), then for any density ρ on Θ,
ω 7→ Ef∼ρZ(f)(ω) is also a random variable, and θ 7→
E[Z(fθ)] is a measurable function w.r.t. BΘ.

Lemma 4.3. Let X ,Y be random functions defined on Ω×
F and δ ∈ [0, 1), then it follows that

P
({

ω | ∀ρ ∈ Mπ : Ef∼ρ |X(f)− Y (f)| (ω) ≤

D̄2(ρ∥π)
(
Ef∼πE

[
(X(f)− Y (f))2

]) 1
2

δ
1
2

})
≥ 1− δ.

The proof of Lemma 4.3 is presented in Appendix. Using
Lemma 4.3 with X(f, ω) = L(f), Y (f, ω) = VN (f, ω), it
follows that with probability 1− δ,

∀ρ ∈ Mπ : Ef∼ρ |L(f)− VN (f)| ≤

δ−
1
2 D̄2(ρ∥π)

(
Ef∼πE

[
|L(f)− VN (f)|2

]) 1
2

(28)

and by applying Lemma 4.3 with X(f, ω) = VN (f, ω)
Y (f, ω) = LN (f, ω), it follows that with probability 1− δ,

∀ρ ∈ Mπ : Ef∼ρ

∣∣∣VN (f)− L̂N (f)
∣∣∣ ≤

δ−
1
2 D̄2(ρ∥π)

(
Ef∼πE

[∣∣∣VN (f)− L̂N (f)
∣∣∣2]) 1

2

. (29)

We prove in Corollary A.5, Appendix, that

E
[
|L(f)− VN (f)|2

]
≤
(
6nyK√

N

)2

(Ge(f))
4
, (30)

and we prove in Lemma A.2, Appendix, that

E

[∣∣∣VN (f)−L̂N (f)
∣∣∣2] ≤ (4K∥Σgen∥2ℓ1

N

)2

G2
p(f) (31)

By substituting the upper bound (30) into (28), and the
upper bound (31) into (29) and applying the union bound,
we obtain the statement of the theorem.

The inequalities (30) and (31) are the key to the proof of the
theorem. Their proofs rely on structural properties of LTI
systems and control theory.

Remark 4.4 (Bound on parameter estimation error). The
bound from Theorem 7 can used for parameter estimation
too. To this end, let θtrue ∈ Θ be such that predictor
Σ(θtrue) equals the predictor (5) corresponding to the data
generator. Let ρD be a data-dependent posterior, and as-
sume that θ⋆ either satisfies (10), or θ⋆ is randomly sampled
from ρD. From (11)–(12) respectively, we can then derive

bounds in high-probability on the H2 distance between the
predictor Σ(θ⋆) and the predictor Σ(θtrue), see (84)–(85) in
Appendix. Assuming that the LTI systems Σ(θ) are all min-
imal, we can use Theorem 5.2, Lemma 5.1 of (Oymak and
Ozay, 2022) to derive an error bound (in high-probability)
on the difference between the matrices of Σ(θ⋆) and that of
Σ(θtrue), see (92)-(94) of the supplementary material for
more details.

These bounds involve either the average the empirical er-
ror Ef∼ρD L̂N (f) or the empirical error L̂N (fθ⋆). They
apply to any learning algorithm which can be presented
as sampling/take average from a posterior, see (Pillonetto
et al., 2022) for examples. This is in contrast to (Oymak
and Ozay, 2022; Lale et al., 2020; Simchowitz and Foster,
2020), where the upper bounds for parameter estimation
error were formulated for a specific learning algorithm. On
the downside, the bounds (84)-(85) and (92)-(94) depend
on the empirical loss for the learnt posterior, which can be
large if the learning algorithm is not good.
Remark 4.5 (Extension to r-Rényi divergence). Theorem 4.1
can be extended to hold for general r-Rényi divergence,i.e.,
(7) holds with δ−

1
2 D̄2(ρ∥π) replaced by δ−

1
r D̄r(ρ∥π),

where D̄r(ρ∥π) is the r-Rényi divergence (Bégin et al.,
2016) between ρ and π with a suitable choice of K,G1, G2.
However, it is known that D̄2(ρ∥π) ≤ D̄r(ρ∥π) for all
r > 2, which means that extensions of (7) to general r-
Rényi divergence might lead to looser bounds. For this
reason, in this paper we will not pursue this extension.

5. Numerical Example
For the purposes of this numerical example, we shall gener-
ate the data via sampling eg(t) and propagating it through
the generator system The data is generated by (14), such
that nu = ny = 1, eg(t) ∼ N (0, Qe)

Ag =

[
0.16 −0.30
0 −0.05

]
, Kg =

[
0.33 −0.75
0 −0.09

]
,

Cg =

[
1 1
0 1

]
, Qe =

[
0.054 0.018
0.018 0.248

]
We choose predictors with two states, i.e., n̂ = 2, and we pa-
rameterise all entries in Σ(θ) = (Â(θ), B̂(θ), Ĉ(θ), D̂(θ)).
In Figure 1, results of a numerical simulation are shown.

We make the following choices (1) the prior distribution is
chosen as π(θ) = N (0, 0.02I), (2) posterior is chosen as
the Gibbs distribution ρ(θ) = Z−1π(θ) exp{−λL̂N (fθ)},
where Z = Ef∼π exp{−λL̂N (f)} is the normalisation
constant and λ = 0.0043, for the sake of comparison with
(Eringis et al., 2023a), and (3) δ = 0.1, i.e. the bound holds
with probability at least 0.8.

All quantities are approximated Markov-Chain Monte-Carlo
simulation. Our bound converges to zero, i.e., rN (ρ, δ) +

8
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Ef∼ρL̂N (f) converges to Ef∼ρL(f). This is in contrast to
he bound proposed in (Eringis et al., 2023a) for a similar
example, which converged to a non-zero constant. However,
our bound remains fairly conservative. Optimizing it by a
better choice of priors and parametrizations remains a topic
of future research. More details on this example and an
example with real-life data are presented in Appendix C.

100 101 102 103 104 105

10−3

10−1

101

103
Ef∼ρ|L(f)− L̂N (f)|
rN

Figure 1. Results of a synthetic example, the case of w = u, 10
different realisations of data, rN = rN (ρ, π)

6. Conclusion
In this paper we have derived an alternative to KL diver-
gence based PAC-Bayesian bounds for LTI systems. The
error bound converges to 0 as the number of samples N
grows, with a rate of convergence O( 1√

N
). Future research

will be directed towards extending these results to more
general state-space representations and using the results of
the paper for deriving oracle inequalities (Alquier, 2021).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs
Throughout the proof we will use the following notation. For any predictor f ∈ F we define the random variable

ŷf (t | t0) ≜ f({w(k)}tk=t0)

Intuitively, ŷf (t | t0) is the output of (1) at time t, when the predictor was initialised at time t0 instead of 0, i.e., the past
t− t0 + 1 values of w are used to predict y(t).

Proof of Lemma 4.3. Recall the Rényi change of measure (Bégin et al., 2016): for any function ϕ on F such that θ 7→ ϕ(fθ)
is measurable,

∀ρ ∈ Mπ : Ef∼ρϕ(f) ≤ D̄2(ρ∥π)
(
Ef∼πϕ

2(f)
) 1

2 .

By choosing ϕ(f) ≜ |X(f)− Y (f)|

∀ρ ∈ Mπ : Ef∼ρ|X(f)− Y (f)| ≤ D̄2(ρ∥π)
(
Ef∼π|X(f)− Y (f)|2

) 1
2 (32)

holds. Now by the Markov’s inequality we also have

P(Ef∼π|X(f)− Y (f)|2 < δ−1E[Ef∼π|X(f)− Y (f)|2]) > 1− δ (33)

Note that by Fubini’s theorem E[Ef∼π|X(f) − Y (f)|2] = Ef∼πE[|X(f) − Y (f)|2]. Using this together with (33) we
obtain from (32) the desired inequality.

Lemma A.1. Let r ∈ N, r > 0, then with notation as above, the following holds.

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r
2

]
≤ ∥Σgen∥rℓ1Gr(eg) (34)

with m = nu + ny , and

∥Σgen∥ℓ1 = ∥Iny+nu∥2 +
∞∑
k=1

∥CgA
k−1
g Kg∥2 (35)

Gr(eg) =

{
2

r
2µmax(Qe)

r
2 (m+ r

2 − 1)!, r is even
2µmax(Qe)

r
2

√
(m+ r − 1)!, r is odd

(36)

Proof. The proof of Lemma A.1 is an extension of the proof of Eringis et al. (2023a, Lemma A10) to the case of sub-
Gaussian signals. Note that from standard LTI theory (Ljung, 1999) it follows that

[
yT (t) uT (t)

]T
can be expressed

as [
y(t)
u(t)

]
=

∞∑
k=1

CgA
k−1
g Kgeg(t− k) + eg(t) =

∞∑
k=0

αk(y,u)eg(t− k) (37)

with e(t) stationary, where α0(y,u) is the identity matrix and αk(y,u) = CqA
k−1
g Kg , k > 0. We can then apply Lemma

A.14 to get

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r
2

]
≤

( ∞∑
k=0

∥αk(y,u)∥2

)r

E [∥eg(t)∥r2] (38)

Let us denote ∥Σgen∥ℓ1 =
∑∞

k=0 ∥αk(y,u)∥2, the ℓ1 norm of the generative system. Furthermore we can apply Lemma
A.12 and Lemma A.13 to obtain,

E[∥eg(t)∥r2] ≤ Gr(eg)

Gr(eg) =

{
2

r
2µmax(Qe)

r
2 (m+ r

2 − 1)!, r is even
2µmax(Qe)

r
2

√
(m+ r − 1)!, r is odd

with m = ny + nu we have the statement of the lemma.
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Lemma A.2. For each f ∈ F choose γ̂ ∈ [γ̂∗, 1), and M̂ > 1 such that ∥Âk∥2 ≤ M̂γ̂k with γ̂∗ = γ̂∗(Â) the spectral
radius of Â. Recall the definition of VN (f) from (27). Then, the following holds

E[
∣∣∣VN (f)− L̂N (f)

∣∣∣2] ≤ ( 4

N
Ggen

)2

G2
p(f) (39)

with

gp(f) ≜
M̂∥Ĉ∥2∥B̂∥2

1− γ̂
(40)

Gp(f) = gp(f)
(
1 + ∥D̂∥2 + gp(f)

) 1

1− γ̂
(41)

Ggen = µmax(Qe)∥Σgen∥2ℓ1
√
(nu + ny + 1)! (42)

Proof of Lemma A.2. The proof of Lemma A.2 is the extension of the proof of Eringis et al. (2023a, Lemma A12) to the
case of sub-Gaussian signals and r = 2. The latter allows for a simplified proof. The proof goes as follows.

Define z∞(t) = y(t)− ŷf (t), and zfin(t) = y(t)− ŷf (t|0)

E[
∣∣∣VN (f)− L̂N (f)

∣∣∣2] = E

∣∣∣∣∣ 1N
N−1∑
t=0

∥z∞(t)∥22 − ∥zfin(t)∥22

∣∣∣∣∣
2
 (43)

≤ 1

N2

N−1∑
t1=0

N−1∑
t2=0

E
[(
∥z∞(t1)∥22 − ∥zfin(t1)∥22

) (
∥z∞(t2)∥22 − ∥zfin(t2)∥22

)]
(44)

applying Cauchy-Schwarz inequality we obtain

E[
∣∣∣VN (f)− L̂N (f)

∣∣∣2] ≤ 1

N2

N−1∑
t1=0

N−1∑
t2=0

(√
E
[
(∥z∞(t1)∥22 − ∥zfin(t1)∥22)

2
]
·
√

E
[
(∥z∞(t2)∥22 − ∥zfin(t2)∥22)

2
])
(45)

=

(
1

N

N−1∑
t=0

√
E
[
(∥z∞(t)∥22 − ∥zfin(t)∥22)

2
])2

(46)

For now let us focus on E
[(
∥z∞(t)∥22 − ∥zfin(t)∥22

)2]
, using the fact that a2 − b2 = (a− b)(a+ b)

E
[(
∥z∞(t)∥22 − ∥zfin(t)∥22

)2]
= E

[
(∥z∞(t)∥2 − ∥zfin(t)∥2)2 (∥z∞(t)∥2 + ∥zfin(t)∥2)2

]
(47)

Applying Cauchy-Schwarz inequality again we get

E
[(
∥z∞(t)∥22 − ∥zfin(t)∥22

)2] ≤√E
[
(∥z∞(t)∥2 − ∥zfin(t)∥2)4

]
︸ ︷︷ ︸

a

√
E
[
(∥z∞(t)∥2 + ∥zfin(t)∥2)4

]
︸ ︷︷ ︸

b

(48)

now we need to upper-bound two terms: a and b.

E
[
(∥z∞(t)∥2 − ∥zfin(t)∥2)4

]
= E

[(∣∣∣∥z∞(t)∥2 − ∥zfin(t)∥2
∣∣∣)4] ≤ E

[
(∥z∞(t)− zfin(t)∥2)4

]
(49)

By Lemma A.15 we get

E[∥z∞(t)− zfin(t)∥42] ≤
(
M̂∥Ĉ∥2∥B̂∥2

γ̂t

1− γ̂

)4

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥4
2

]
(50)
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Now coming back to the term E
[
(∥z∞(t)∥2 + ∥zfin(t)∥2)4

]
First notice that (∥z∞(t)∥2 + ∥zfin(t)∥2)2 ≤ 2∥z∞∥22 + 2∥zfin(t)∥22, we can see this by first expanding

(∥z∞(t)∥2 + ∥zfin(t)∥2)2 = ∥z∞(t)∥22 + 2∥z∞(t)∥2∥zfin(t)∥2 + ∥zfin(t)∥22 (51)

and then apply the inequality of arithmetic and geometric means, we get 2∥z∞(t)∥2∥zfin(t)∥2 ≤ ∥z∞(t)∥22 + ∥zfin(t)∥22.
Now, similarly we have

(2∥z∞(t)∥22 + 2∥zfin(t)∥22)2 ≤ 2(2∥z∞(t)∥22)2 + 2(2∥zfin(t)∥22)2 = 8∥z∞(t)∥42 + 8∥zfin(t)∥42 (52)

With this, we have

E
[
(∥z∞(t)∥2 + ∥zfin(t)∥2)4

]
≤ E

[
8∥z∞(t)∥42 + 8∥zfin(t)∥42

]
= 8E

[
∥z∞(t)∥42

]
+ 8E

[
∥zfin(t)∥42

]
(53)

By Lemma A.16 and Lemma A.17 we get

E
[
(∥z∞(t)∥2 + ∥zfin(t)∥2)4

]
≤ 16

(
1 + ∥D̂∥2 +

M̂∥B̂∥2∥Ĉ∥2
1− γ̂

)4

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥4
2

]
(54)

Defining gp ≜ M̂∥B̂∥2∥Ĉ∥2/(1− γ̂), taking (54) and (50) into (48) we get

E
[(
∥z∞(t)∥22 − ∥zfin(t)∥22

)2] ≤ 4γ̂2tg2p

(
1 + ∥D̂∥2 + gp

)2
E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥4
2

]
(55)

Taking the above into (46), and for the sake of notation let

B4 ≜ E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥4
2

]
we get

E[
∣∣∣VN (f)− L̂N (f)

∣∣∣2] (56)

≤

(
1

N

N−1∑
t=0

√
4γ̂2tg2p

(
1 + ∥D̂∥2 + gp

)2
B4

)2

(57)

=

(
2

N
gp

(
1 + ∥D̂∥2 + gp

)√
B4

N−1∑
t=0

γ̂t

)2

(58)

=

(
2

N
gp

(
1 + ∥D̂∥2 + gp

)√
B4

1− γ̂N

1− γ̂

)2

(59)

=

(
2

N
gp

(
1 + ∥D̂∥2 + gp

) 1− γ̂N

1− γ̂

)2

B4 (60)

By Lemma A.1 we get

E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥4
2

]
≤ ∥Σgen∥4ℓ1G4(eg) = ∥Σgen∥4ℓ14µmax(Qe)

2(nu + ny + 1)!

≤
(
2∥Σgen∥2ℓ1µmax(Qe)

)2
(nu + ny + 1)!

With this we obtain the statement of the lemma

E[
∣∣∣VN (f)− L̂N (f)

∣∣∣2] ≤ (4gp
N

(
1 + ∥D̂∥2 + gp

) 1− γ̂N

1− γ̂

)2(
∥Σgen∥2ℓ1µmax(Qe)

√
(nu + ny + 1)!

)2

≤
(
4gp
N

(
1 + ∥D̂∥2 + gp

) 1

1− γ̂

)2(
∥Σgen∥2ℓ1µmax(Qe)

√
(nu + ny + 1)!

)2
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Lemma A.3. let m = nu + ny , then for r ≥ 2, the quantity

σ(r) = max {(µmax(Qe)
r4(m+ r − 1)!), (µmax(Qe)

r3r(m+ r − 1)!)}
= µmax(Qe)

r3r(m+ r − 1)!

satisfies

σ(r) ≥ sup
t,k,l

E[∥e(t, k, l)∥r2]

e(t, k, j) =

{
Qe − eg(t− k)eTg (t− j), k = j

−eg(t− k)eTg (t− j), k ̸= j

Proof. The proof of Lemma A.3 is an extension of the proof of Eringis et al. (2023a, Lemma A.16) to the case of
sub-Gaussian processes. First let us take the case when k ̸= j. Then

E[∥e(t, k, l)∥r2] = E[∥ − eg(t− k)eTg (t− j)∥r2]

As eg(t) is i.i.d. we have

E[∥e(t, k, l)∥r2] ≤ E[∥eg(t− k)∥r2]E[∥eg(t− j)∥r2]

and due to stationarity of eg(t), we have E[∥eg(t− k)∥r2] = E[∥eg(t− j)∥r2], therefore

E[∥e(t, k, l)∥r2] ≤ E[∥eg(t)∥r2]2

and again due to stationarity of eg(t), the moments do not depend on t, and using Lemma A.13 we obtain

σ(r) ≥ µmax(Qe)
r4((m+ r − 1)!) ≥ E[∥e(t, k, l)∥r2]2

Now let us take the case when k = j. Then

E[∥e(t, k, l)∥r2] = E[∥Qe − eg(t− k)eTg (t− k)∥r2]
≤ E[(∥Qe∥2 + ∥eg(t)∥22)r]

= E

 r∑
j=0

(
r
j

)
∥Qe∥r−j

2 ∥eg(t)∥2j2


=

r∑
j=0

(
r
j

)
∥Qe∥r−j

2 E
[
∥eg(t)∥2j2

]
As Qe is a positive definite matrix,∥Qe∥2 = µmax(Qe), and hence

E[∥e(t, k, l)∥r2] ≤
r∑

j=0

(
r
j

)
µmax(Qe)

r−jE∥eg(t)∥2j2 ]

using Lemma A.12 we obtain

E[∥e(t, k, l)∥r2] ≤ µmax(Qe)
r

r∑
j=0

(
r
j

)
2j(m+ j − 1)!.

Since for j ≤ r, (m+ j − 1)! ≤ (m+ r − 1)!, hence

E∥e(t, k, l)∥2r2 ] ≤ µmax(Qe)
r(m+ r − 1)!

r∑
j=0

(
r
j

)
2j
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Notice 3r = (1 + 2)r =
∑r

j=0

(
r
j

)
2j , hence

E∥eg(t, k, l)∥2r2 ] ≤ µmax(Qe)
r3r(m+ r − 1)!

Hence,

σ(r) = max {µmax(Qe)
r4(m+ r − 1)!, µmax(Qe)

r3r(m+ r − 1)!} .

As we are interested in moments higher or equal to two, i.e. r ≥ 2, then

σ(r) = µmax(Qe)
r3r(m+ r − 1)!.

Lemma A.4. With the notation as above, for any even r > 0 the raw moments are bounded

E[(L(f)− VN (f))r] ≤
nr
y

N
σ(r)4(r − 1)Ge(f)

2r (61)

Proof. The proof of Lemma A.4 is an extension of the proof of Eringis et al. (2023a, Lemma A14) to the case of sub-Gaussian
processes and even r. For the sake of completeness, we present it below.

Firstly, let yν(t), ŷf,ν(t), ŷf,ν(t|s) ∈ R1 denote the ν’th component of y(t), ŷf (t), ŷf (t|s) respectively, then,

Lν(f) ≜ E[(ŷf,ν(t)− yν(t))
2] (62)

= lim
s→−∞

E[(ŷf,ν(t|s)− yν(t))
2] (63)

VN,ν(f) ≜
1

N

N−1∑
t=0

(ŷf,ν(t)− yν(t))
2 (64)

Since the prediction error is the output of the LTI system (19), it follows from standard LTI theory (Ljung, 1999), that the
prediction error can be expressed as

(yν(t)− ŷf,ν(t)) =

∞∑
k=0

αkeg(t− k)

with

αk = αk(ν) =

{
Deν , k = 0

CeνA
k−1
e Ke, k > 0

where Deν = 1νDe, and Ceν = 1νCe denote the ν’th row of matrices De, Ce respectively. Then generalised loss Lν(f)
for component ν is expressed as

Lν(f) = E[(yν(t)− ŷf,ν(t))
2]

= E

( ∞∑
k=0

αkeg(t− k)

) ∞∑
j=0

αjeg(t− j)

T


=

∞∑
k=0

αkQeα
T
k ,
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Since E[e(t− k)eT (t− j)] = 0, for all k ̸= j. Now the infinite horizon prediction loss is

VN,ν(f) =
1

N

N−1∑
t=0

(yν(t)− ŷf,ν(t))
2

=
1

N

N−1∑
t=0

( ∞∑
k=0

αkeg(t− k)

) ∞∑
j=0

αjeg(t− j)

T

=
1

N

N−1∑
t=0

∞∑
k=0

∞∑
j=0

αkeg(t− k)eTg (t− j)αj

then

Lν(f)− VN,ν(f) =
1

N

N−1∑
t=0

∞∑
k=0

∞∑
j=0

αke(t, k, j)α
T
j

e(t, k, j) =

{
Qe − eg(t− k)eTg (t− j), k = j

−eg(t− k)eTg (t− j), k ̸= j

For ease of notation let us define

z(t, k, j) = αke(t, k, j)α
T
j

then

E[(Lν(f)− VN,ν(f))
r]

=
1

Nr

N−1∑
t1=0

· · ·
N−1∑
tr=0

∞∑
k1,j1=0

· · ·
∞∑

kr,jr=0

E

[
r∏

l=1

z(tl, kl, jl)

]

Note that, with i.i.d. innovation noise eg(t), if

tr − kr /∈ {ti − ki, ti − ji}r−1
i=1

∧ tr − jr /∈ {ti − ki, ti − ji}r−1
i=1

or similarly
{tr − kr, tr − jr} ∩ {ti − ki, ti − ji}r−1

i=1 = ∅ (65)

then z(tr, kr, jr) is independent of z(ti, ki, ji). To see this, notice that z(ti, ki, ji) = αT
ki
e(ti, ki, ji)α

T
ji

and e(ti, ki, ji) =

E[eg(ti−ki)e
T
g (ti−ji)]−eg(ti−ki)e

T
g (ti−ji), i = 1, . . . , r. As the random variables eg(s) occurring in {z(tl, kl, jl)}r−1

l=1

are all different from those occurring in z(tr, kr, jr), then due to eg being and i.i.d. process, the variable z(tr, kr, jr)
is a function of random variables which are independent of those which define {z(tl, kl, jl)}r−1

l=1 , and hence z(tr, kr, jr)
itself is independent of {z(tl, kl, jl)}r−1

l=1 . Moreover, notice that E(z(tr, kr, jr)] = 0. Indeed, from e(tr, kr, jr) =
E[eg(tr − kr)e

T
g (tr − jr)] − eg(tr − kr)e

T
g (tr − jr) it follows that e(tr, kr, jr) is the difference between the expected

value of eg(tr − kr)e
T
g (tr − jr) and eg(tr − kr)e

T
g (tr − jr), hence its expectation is zero. That is, E[e(tr, kr, jr)] = 0

and thus E[z(tr, kr, jr)] = αT
kr
E[e(tr, kr, jr)]α

T
jr

= 0.

Hence, if (65), it holds that

E

[
r∏

l=1

z(tl, kl, jl)

]
= E

[
r−1∏
l=1

z(tl, kl, jl)

]
E[z(tr, kr, jr)]︸ ︷︷ ︸

=0

= 0. (66)

Let us denote

Z = {ti − ki + kr, ti − ji + kr, ti − ki + jr, ti − ji + jr}r−1
i=1 .

17



PAC-Bayesian Bounds, for LTI Models

for any choice of {tl, kl, jl}r−1
l=1 , jr, kr. Notice that tr /∈ Z implies (65). Then using (66), it follows that

E[(Lν(f)− VN,ν(f))
r] =

1

Nr

N−1∑
t1=0

..

N−1∑
tr−1=0

∞∑
k1,j1=0

..

∞∑
kr,jr=0

∑
tr∈Z

E

[
r∏

l=1

z(tl, kl, jl)

]
. (67)

Indeed, (66) differs from equation above only in the last sum, where instead of sum
∑N−1

tr=0 we take
∑

tr∈Z . However, as it
was pointed out above, for all tr /∈ Z the summands E [

∏r
l=1 z(tl, kl, jl)] are zero.

Note that

E

[
r∏

l=1

z(tl, kl, jl)

]
≤

∣∣∣∣∣E
[

r∏
l=1

z(tl, kl, jl)

]∣∣∣∣∣ ≤ E

[
r∏

l=1

|z(tl, kl, jl)|

]
.

Let us focus on |z(ti, ki, ji)|: note that |z(tl, kl, jl)| ≤ ∥αkl
∥2∥αjl∥2∥e(tl, kl, jl)∥2, and thus

E

[
r∏

l=1

|z(tl, kl, jl)|

]
≤

r∏
l=1

∥αkl
∥2∥αjl∥2E

[
r∏

l=1

∥e(tl, kl, jl)∥2

]

Then using Arithmetic Mean-Geometric Mean Inequality, (Steele, 2004) we have

E

[
r∏

l=1

∥e(tl, kl, jl)∥

]
≤ 1

r

r∑
l=1

E[∥e(tl, kl, jl)∥r2] (68)

Now, let σ(r), be such that the following holds

σ(r) ≥ sup
t,k,l

E[∥e(t, k, l)∥r2], (69)

see Lemma A.3. Then, 1
r

∑r
l=1 E[∥e(tl, kl, jl)∥r2] ≤ σ(r) and then from (68) it follows that

E

[
r∏

l=1

|e(tl, kl, jl)|

]
≤ σ(r) (70)

Combining this with (67), it follows that

E[(Lν(f)− VN,ν(f))
r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑

tr−1=0

∞∑
k1,j1=0

· · ·
∞∑

kr,jr=0

∑
tr∈Z

σ(r)

r∏
l=1

∥αkl
∥2∥αjl∥2 (71)

and the quantity σ(r)
∏r

l=1 ∥αkl
∥2∥αjl∥2 does not depend on tr. Moreover

∑
tr∈Z

σ(r)

r∏
l=1

∥αkl
∥2∥αjl∥2 ≤ σ(r)

r∏
l=1

∥αkl
∥2∥αjl∥2|Z|,

where |Z| is the cardinality of the set Z . Note |Z| ≤ 4(r − 1), therefore

∑
tr∈Z

σ(r)

r∏
l=1

∥αkl
∥2∥αjl∥2 ≤ σ(r)

r∏
l=1

∥αkl
∥2∥αjl∥24(r − 1),

Combining the latter inequality with (71), it follows that

E[(Lν(f)− VN,ν(f))
r] ≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑

tr−1=0

σ(r)4(r − 1)

∞∑
k1,j1=0

· · ·
∞∑

kr,jr=0

r∏
l=1

∥αkl
∥2∥αjl∥2 (72)
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Now notice

Ge,ν(f)
2r =

( ∞∑
k=0

∥αk∥2

)2r

=

 ∞∑
k,j=0

∥αk∥2∥αj∥2

r

=

∞∑
k1,j1=0

· · ·
∞∑

kr,jr=0

r∏
l=1

∥αkl
∥2∥αjl∥2

therefore we obtain

E[(Lν(f)− VN,ν(f))
r]

≤ 1

Nr

N−1∑
t1=0

· · ·
N−1∑

tr−1=0

σ(r)4(r − 1)Ge,ν(f)
2r

≤ 1

Nr
Nr−1σ(r)4(r − 1)Ge,ν(f)

2r

≤ 1

N
σ(r)4(r − 1)Ge,ν(f)

2r

and since

∥αk(ν)∥ =

{
∥1νDe∥2 ≤ ∥De∥2, k = 0

∥1νCeA
k−1
e Ke∥2 ≤ ∥CeA

k−1
e Ke∥2, k > 0

then

Ge,ν ≤ Ge = ∥De∥2 +
∞∑
k=1

∥CeA
k−1
e Ke∥2 (73)

and since 2r > 1 we obtain

E[(Lν(f)− VN,ν(f))
r] ≤ 1

N
σ(r)4(r − 1)Ge(f)

2r (74)

Now recall that

E[(L(f)− VN (f))r] = E

[(
ny∑
ν=1

Lν(f)− VN,ν(f)

)r]
(75)

=

ny∑
ν1

· · ·
ny∑
νr

E

[
r∏

i=1

(Lνi
(f)− VN,νi

(f))

]
(76)

Then using Arithmetic Mean-Geometric Mean Inequality, (Steele, 2004), we get
∏r

i=1 |Lνi(f)− VN,νi(f)| ≤
1
r

∑r
i=1 (Lνi

(f)− VN,νi
(f))

r, where we use the fact that r is even and hence (Lνi
(f)− VN,νi

(f))
r

=
|Lνi

(f)− VN,νi
(f)|r, and thus

E[(L(f)− VN (f))r] ≤
ny∑

ν1=1

· · ·
ny∑

νr=1

1

r

r∑
i=1

E [(Lνi(f)− VN,νi(f))
r] (77)

Now bringing (74) into the above we obtain

E[(L(f)− VN (f))r] ≤
ny∑

ν1=1

· · ·
ny∑

νr=1

1

r

r∑
i=1

1

N
σ(r)4(r − 1)Ge(f)

2r =
nr
y

N
σ(r)4(r − 1)Ge(f)

2r (78)

Corollary A.5. For r = 2, Lemma A.4 and Lemma A.3 imply

E[(L(f)− VN (f))2] ≤ 1

N
(nu + ny + 1)!

(
6nyµmax(Qe)Ge(f)

2
)2

(79)
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A.1. Statement and proof of the mean and the single draw inequalities (11)-(12) from Remark 2.5

Let ρD be a function on Ω×Θ which is measurable w.r.t. F×BΘ and such for any ω ∈ Ω, ρD(ω) : Θ ∋ θ 7→ ρD(ω, θ) is
a probability density on Θ. We refer to ρ as a random density on Ω. Let B be a measurable subset of Θ× Ω and denote by
Pθ∼ρD (B) the random variable ω 7→ Pθ∼ρD(ω)({θ | (ω, θ) ∈ B}), where Pθ∼ρD(ω) is the probability measure induced by
the density ρD(ω). Define the probability measure P× Pθ∼ρD on F×BΘ as follows:(

P× Pθ∼ρD
)
(B) ≜ E[Pθ∼ρD (B)]

Lemma A.6. Consider the assumptions of Theorem 4.1 and the constants from (23)-(26). Assume that ρD is a random
density such that for all ω ∈ Ω, ρD(ω) ∈ Mπ . Then

P× Pθ∼ρD

(
{(ω, θ) | |L(fθ)− L̂N (fθ)|(ω) ≤

D̄2(ρ
D(ω)∥π)]K√
δNδ1

[
G1 +

4√
N

G2

])
> (1− 2δ)(1− δ1)

Proof of Lemma A.6. From Theorem 4.1 it follows that (22) holds. Let B be the subset of all (θ, ω) ∈ Θ× Ω, such that

|L(fθ)− L̂(fθ)|(ω) ≤
D̄2(ρ

D(ω)∥π)K√
δNδ1

[
G1 +

4√
N

G2

]
Let B1 be the set of all ω ∈ Ω, such that

|L(fθ)− L̂(fθ)|(ω) ≤
D̄2(ρ

D(ω)∥π)]K√
δN

[
G1 +

4√
N

G2

]
It follows that P(B1) ≥ 1− 2δ. For every ω ∈ B1 let B2(ω) be the set of all θ ∈ Θ, such that

|L(fθ)− L̂(fθ)|(ω) ≤
1

δ1
Ef∼ρD |L(fθ)− L̂(fθ)|(ω)

It is easy to see that B̄ =
⋃

ω∈B1
{ω} × B2(ω) is a subset of B. Hence, it is enough to show that

(
P× Pθ∼ρD

)
(B̄) >

(1− 2δ)(1− δ1). To this end, notice that Pθ∼ρD (B̄)(ω) equals to Pθ∼ρD (B2(ω))χB1(ω), where χB1 is the characteristic
function of B1. From Markov’s inequality it follows that Pθ∼ρD (B2(ω)) > 1− δ1 and hence Pθ∼ρD (B̄)(ω) > (1− δ1)χB1

.
Hence,

(
P× Pθ∼ρD

)
(B̄) ≥ E[χB1

](1− δ1) ≥ (1− 2δ)(1− δ1).

Lemma A.7. With the notation and assumptions of Remark 2.5, assume that θ⋆ is a random variable, such that for any
ω ∈ Ω, t, t0 ∈ Z, t ≥ t0,

fθ⋆(ω)({w(s)}ts=t0)(ω) = Ef∼ρD(ω)f({w(s)}ts=t0)(ω) (80)

holds. Then for any δ ∈ (0, 0.5),

P
(
{ω | L(fθ⋆) ≤ Ef∼ρD(ω)(L̂N (f)(ω) + rN (ρD(ω), π)}

)
> 1− 2δ (81)

Proof of Lemma A.7. Since for any ω ∈ Ω, fθ⋆(ω)({w(s)(ω)}ts=t0) = Ef∼ρD(ω)f({w(s)}ts=t0)(ω), by Jensen’s inequality
it follows that

Ef∼ρD(ω)∥f({w(s)}ts=t0)− y(t)∥22(ω) ≥
∥Ef∼ρD(ω)f({w(s)}ts=t0)(ω)− y(t)(ω)∥22 =

∥fθ⋆(ω)({w(s)}ts=t0)(ω)− y(t)(ω)∥22

Hence, Ef∼ρD(ω)L̂N (f)(ω) ≥ L̂N (fθ⋆(ω))(ω), and by taking limits as t → +∞ and using (3) it follows that
Ef∼ρD(ω)L(f)(ω) ≥ L(fθ⋆(ω))(ω) for almost all ω ∈ Ω. The statement of the lemma follows now from (8), by choosing
ρ = ρD(ω) for every ω ∈ Ω and using Ef∼ρD(ω)L(f)(ω) ≥ L(fθ⋆(ω))(ω).

Remark A.8. In order for (80) to hold, it is sufficient that

Ĉ(θ⋆)Â(θ⋆)
kB̂(θ⋆) = Eθ∼ρD(ω)Ĉ(θ)Â(θ)kB̂(θ)

for all k ≥ 0, and D̂(θ⋆) = Eθ∼ρD(ω)D(θ). This is the case, for instance, if the transfer function Hfθ of the LTI system
(A(θ), B(θ), C(θ), D(θ)) is linear in θ and θ⋆(ω) = Eθ∼ρD(ω)θ for all ω.

20



PAC-Bayesian Bounds, for LTI Models

INEQUALITIES MENTIONED IN REMARK 4.4 AND FURTHER INEQUALITIES

As the first step, lett Hftrue be the transfer function of the predictor ftrue of the form (5) arising from the data generator
(4). For any f = fθ ∈ F , denote by Hf the transfer function of the corresponding LTI system Σ(θ) Let Φw be the spectral
density of the process w and assume that Φw(iz) ≥ mwI for all z ∈ [−π, π]. It can be shown (see below) that

∥Hftrue
−Hf∥2H2

≤ 1

mw
(L(f)− σ2

es) (82)

where σ2
es is the variance of the noise process es and ∥ · ∥H2

denotes the H2 norm of a transfer function. Note that
L(f) ≥ σ2

es for any f ∈ F and if w = [yT ,uT ]T , then L(ftrue) = σ2
es

Proof of (82) Note that y(t) = es(t) + ŷf⋆(t) and ŷf⋆(t) and ŷf (t) are outputs of LTI systems with transfer functions
Hftrue

and Hf applied to the input x. Moreover, notice that es(t) is uncorrelated with past values of x and hence it is
uncorrelated with ŷf⋆ − ŷf (t), as the latter belongs to the Hilbert-space of square-integrable random variables generated by
the past values of x (Lindquist and Picci, 2015). Hence,

L(f) = E[∥y(t)− ŷf⋆(t)∥22]
= trace(E[(es(t) + ŷf⋆(t)− ŷf (t))

(es(t) + ŷf⋆(t)− ŷf (t))
T ])

= trace(E[es(t)e
T
s (t)])

+ trace(E[(ŷf⋆(t)− ŷf (t))(ŷf⋆(t)− ŷf (t))
T ]).

Note that ŷf⋆(t)− ŷf (t) is the output of the LTI system with the transfer function H∆ ≜ Hftrue −Hf which is driven by
the input x. Hence, from the standard properties of LTI systems it follows that

E[(ŷf⋆(t)− ŷf (t))(ŷf⋆(t)− ŷf (t))
T ] =

1

2π

∫ π

−π

H∆(iz)Φw(iz)H∆(iz)
∗dz.

Hence,

L(f) = trace(E[es(t)e
T
s (t)]) + trace

(
1

2π

∫ π

−π

H∆(iz)Φw(iz)H∆(iz)
∗dz

)
.

Note that trace(E[es(t)e
T
s (t)]) = σ2

es
and

H∆(iz)Φw(iz)H∆(iz)
∗ > mwH∆(iz)H∆(iz)

∗, ∀z ∈ [−π, π]

Hence,

1

2π

∫ π

−π

H∆(iz)Φw(iz)H∆(iz)
∗dz ≥ mw

1

2π

∫ π

−π

H∆(iz)H∆(iz)
∗dz

and therefore

trace

(
1

2π

∫ π

−π

H∆(iz)Φw(iz)H∆(iz)
∗dz

)
≥ mwtrace

(
1

2π

∫ π

−π

H∆(iz)H∆(iz)
∗dz

)
= mw∥H∆∥2H2

. (83)

Hence,
L(f) ≤ σ2

es
+mw∥Hftrue −Hf∥2H2

and therefore
∥Hftrue

−Hf∥2H2
≤ 1

mw
(L(f)− σ2

es)

i.e., (82) holds.

Inequalities on ∥Hftrue −Hfθ⋆
∥H2 .
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If θ⋆ is chosen so that (10), then from (11) it follows with probability 1− 2δ over data

∥Hfθtrue
−Hfθ⋆

∥2H2
≤ 1

mw

(
rN (ρD, π) +

(
Ef∼ρD L̂N (f)− σ2

es

))
(84)

and in the latter case, from (12) it follows that with probability (1− 2δ)(1− δ1) over data and ρ̂D,

∥Hfθtrue
−Hfθ⋆

∥2H2
≤ 1

mw

(
1

δ1
rN (ρD, π) +

(
L̂N (fθ⋆)− σ2

es

))
(85)

Note that L̂N (fθ⋆) ≥ σ2
es , in fact, σ2

es represents a lower bound on the empirical loss and the minimal generalisation loss
possible. The bounds (84)-(85) say that the closer the empirical loss is to the minimal possible value σ2

es , the closer the
estimated system is to the true one in the H2 norm.

Proof of (84) Assume that θ⋆ is a random variable such that (80) holds. We will show that (84) holds, i.e.,

P

({
ω | ∥Hfθtrue

−Hfθ⋆(ω)
∥2H2

≤ 1

mw

(
Ef∼ρD(ω)(L̂N (f))(ω)− σ2

es + rN (ρD(ω), π)
)})

> 1− 2δ. (86)

To this end, if ω ∈ B = {ω | L(fθ⋆(ω)) ≤ Ef∼ρD(ω)(L̂N (f)(ω) + rN (ρD(ω)}, then by (82),

∥Hfθtrue
−Hfθ⋆(ω)

∥2H2
≤ 1

mw

(
Ef∼ρD(ω)(L̂N (f))(ω)− σ2

es + rN (ρD(ω)
)

from which the claim follows using (81).

Proof of (85) We will show that

P× Pθ∼ρD

({
(ω, θ) | ∥Hfθ −Hfθtrue

∥2H2
≤ 1

mw

(
L̂N (fθ)(ω)− σ2

es
+

1

δ1
rN (ρD(ω), π)

)})
> (1− 2δ)(1− δ1)

(87)

To this end, from (82) it follows that for any (ω, θ) such that |L(fθ)− L̂N (fθ)|(ω) ≤ 1
δ1
rN (ρD(ω), π), it holds that

∥Hfθ −Hfθtrue
∥2H2

≤ 1

mw

(
L̂N (fθ)(ω)− σ2

es
+ rN (ρD(ω), π)

)
and hence by Lemma A.6 the inequality follows.

Inequalities for state-space matrices From (84)–(85) we derive the inequalities for the difference between the matrices of
the true and estimated LTI systems.

To this end, let T = 2n̂+ 1, where n̂ is the common state-space dimension of the LTI systems Σ(θ), θ ∈ Θ representing our
class of predictors.

Let H(θ) be the T × T Hankel-matrix of Σ(θ) and let H−(θ) formed by the first 2n̂ block columns of size ny × nw. From
Lemma 5.2 of(Oymak and Ozay, 2022) it follows that

∥H−(θ)−H−(θtrue)∥ ≤
√
2n̂+ 1∥Hfθ −Hfθtrue

∥H2
(88)

Let σmin(H−(θtrue)) be the minimal singular value of H−(θtrue). Let us assume that for any θ, Σ(θ) is a minimal LTI
system. From Theorem 5.2 of (Oymak and Ozay, 2022) it follows that if

∥H−(θ)−H−(θtrue)∥2 ≤ σmin(H−(θtrue))/4 (89)

then there exist a constant C > 0 and a unitary matrix T (θ) such that for any

max{∥Ĉ(θ)T (θ)−1 − Ĉ(θtrue∥F , ∥T (θ)B̂(θ)− B̂(θtrue)∥F } ≤
√
Cn̂

√
2n̂+ 1

∥Hfθ −Hfθtrue
∥H2

(σmin(H−(θtrue)))1/2

∥T (θ)Â(θ)T (θ)−1 − Â(θtrue)∥F ≤
√
Cn̂

√
2n̂+ 1∥Hfθ −Hfθtrue

∥H2
(2∥H(θtrue)∥2 + σmin(H−(θtrue)))

(σmin(H−(θtrue)))2

∥D̂(θ)− D̂(θtrue)∥F ≤ ∥Hfθ −Hfθtrue
∥H2

(90)
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From (88)–(90) it follows that if ρD is such that Ef∼ρD L̂N (f) + rN (ρD, π) is sufficiently small with high probabil-
ity, then we can establish high probability bounds for ∥Ĉ(θ⋆)T (θ⋆)

−1 − Ĉ(θtrue)∥F , ∥T (θ⋆)B̂(θ⋆) − B̂(θtrue)∥F and
∥T (θ⋆)Â(θ⋆)T (θ⋆)

−1 − Â(θtrue)∥F for a suitable unitary matrix T (θ⋆), where θ⋆ is the parameter learned based on ρD.

To this end, assume that ρD is such that for some δ2 ∈ (0, 1) and δ1 ∈ (0, 1)

P
({

ω | Ef∼ρD L̂N (f)(ω) + rN (ρD(ω), π) <(
1

4
√
2n̂+ 1

σmin(H−(θtrue)) + σ2
es

)2

mwδ1

})
> 1− δ2

(91)

First, let us consider the case when θ⋆ is chosen such that (11) holds. From (86), (90) and (91) and the union bound it
follows

P ({ω | ∃T unitary matrix such that,

max{∥Ĉ(θ⋆(ω))T
−1 − Ĉ(θtrue)∥F , ∥TB̂(θ⋆(ω))− B̂(θtrue)∥F }

≤
√
Cn̂

√
2n̂+ 1

(
1

mw

[
Ef∼ρD L̂N (f)(ω)− σ2

es + rN (ρD(ω), π)
]) 1

2

(σmin(H−(θtrue)))1/2

∥TÂ(θ⋆(ω))T
−1 − Â(θtrue)∥F

≤

√
Cn

√
2n̂+ 1

(
1

mw

[
Ef∼ρD L̂N (f)(ω)− σ2

es + rN (ρD(ω), π)
]) 1

2

(2∥H(θtrue)∥2 + σmin(H−(θtrue)))

(σmin(H−(θtrue)))2
,

∥D̂(θ⋆(ω))− D̂(θtrue)∥F ≤
(

1

mw

[
Ef∼ρD L̂N (f)(ω)− σ2

es + rN (ρD(ω), π)
]) 1

2

}) > 1− 2δ − δ2

(92)

If θ⋆ is randomly drawn from ρD we can derive an upper bounds on the estimation error as follows. From Markov inequality
and (91) it follows that (

P× Pθ∼ρD
)({

(ω, θ) | L̂N (fθ)(ω) +
1

δ1
rN (ρD(ω), π)

<

(
1

4
√
2n̂+ 1

σmin(H−(θtrue)) + σ2
es

)2

mw

})
> (1− δ2)(1− δ1)

(93)

Then from (93), (87) and the union bound it follows that(
P× Pθ∼ρD

)
({ω | ∃T unitary matrix such that,

max{∥Ĉ(θ⋆(ω))T
−1 − Ĉ(θtrue)∥F , ∥TB̂(θ⋆(ω))− B̂(θtrue)∥F }

≤
√
Cn̂

√
2n̂+ 1

(
1

mw

[
L̂N (fθ)(ω)− σ2

es + 1
δ1
rN (ρD(ω), π)

]) 1
2

(σmin(H−(θtrue)))1/2

∥TÂ(θ⋆(ω))T
−1 − Â(θtrue)∥F

≤
√
Cn̂

√
2n̂+ 1

(
1

mw

[
L̂N (fθ)(ω)− σ2

es + 1
δ1
rN (ρD(ω), π)

]) 1
2

(2∥H(θtrue)∥2 + (σmin(H−(θtrue)))

(σmin(H−(θtrue))2
,

∥D̂(θ⋆(ω))− D̂(θtrue)∥F ≤
(

1

mw

[
L̂N (fθ)(ω)− σ2

es +
1

δ1
rN (ρD(ω), π)

]) 1
2

}) > (1− 2δ − δ2)(1− δ1)

(94)

That is, with probability 1− 2δ − δ2 over data ( when θ⋆ satisfies (11)) or with probability (1− 2δ − δ2)(1− δ1) over data
and parameters (when θ⋆ is randomly sampled from ρD), the difference between the matrices of the true system and those of
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an isomorphic copy of the estimated system can be bounded by above by an expression which is

O

((
Ef∼ρD L̂N (f)− σ2

es + rN (ρD, π)
)1/2)

or O

((
L̂N (fθ⋆)− σ2

es +
1

δ1
rN (ρD, π)

)1/2
)

i.e., which decreases as Ef∼ρD L̂N (f) + rN (ρD(ω), π) or L̂N (fθ⋆) +
1
δ1
rN (ρD, π) decreases.

If Ef∼ρD L̂N (f) (resp. L̂N (fθ⋆) with high probability w.r.t. ρD) tends to σ2
es as N → ∞, then the upper bounds tends

to zero as N → +∞. Note that when w = [yT ,uT ]T , then σ2
es = L(θtrue), and hence Ef∼ρD L̂N (f) (resp. L̂N (fθ⋆))

converging to σ2
es as N → ∞ means that the average (w.r.t. ρD) empirical error (resp. the empirical error with high

probability w.r.t. ρD) tends to the smallest possible value. If Ef∼ρD L̂N (f) (resp. L̂N (fθ⋆)) tends to σ2
es at a rate O( 1√

N
)

and D̄2(ρ
D∥π) remains bounded, then the upper bound converges to zero as O( 1

N1/4 ), i.e., (92)-(94) is comparable with the
results of (Oymak and Ozay, 2022; Simchowitz, 2021), although it provides an upper bound with a slower convergence rate.
However, in contrast to (Oymak and Ozay, 2022; Simchowitz, 2021), (92)-(94) relates the parameter estimation error with
the empirical loss and the upper bound rN (ρD, π) for any ρD. On the one hand, it is an advantage, as in contrast to (Oymak
and Ozay, 2022; Simchowitz, 2021) (92)–(94) can be applied to any identification algorithm which can be represented as
θtrue which is either the mean model w.r.t. the posterior ρD, or it is randomly sampled from ρD. On the other hand, in order
to get O( 1

N1/4 ) error bounds, the average empirical error w.r.t. ρD has to be small. We conjecture that the error bound above
can be improved to make it O( 1√

N
), this remains a topic of future research.

A.2. Choice of µmax(Qe)

Lemma A.9. Assume that eg(t) is sub-Gaussian such that for some σ > 0 it holds that for all w ∈ Rnu+ny , E[ew
T eg(t)] ≤

e
1
2w

Twσ2

. Then with µmax(Qe) = (4σ
√
nu + ny)

2, there exists z(t) ∼ N (0, Iny+nu
) such that

E[∥eg(t)∥r2] ≤ µmax(Qe)
r
2E[∥z(t)∥r2], (95)

Proof Lemma A.9. From Lemma 1 of (Jin et al., 2019) and Lemma 5.5 of (Vershynin, 2011) it follows that

E[∥eg(t)∥r2] ≤ (
√
ny + nu)

rσr2r/2rΓ(
r

2
)

where Γ is the gamma function. Let z(t) be any random variable such that z(t) ∼ N (0, Iny+nu
). Then with m = ny + nu,

E[∥z(t)∥r2] = 2r/2
Γ(m+r

2 )

Γ(m2 )
.

Hence,

E[∥eg(t)∥r2] ≤ 4r(
√

ny + nu)
rσrE[∥z(t)∥r2]

(
Γ( r2 )Γ(

m
2 )

Γ(m+r
2 )

r

4r

)
We argue that

Γ( r2 )Γ(
m
2 )

Γ(m+r
2 )

≤ π (96)

and hence (
Γ( r2 )Γ(

m
2 )

Γ(m+r
2 )

r

4r

)
≤ rπ

4r
≤ 1

In order to show (96), we can use induction on m. For m = 1 and m = 2 (96) follows from the definition of the
gamma function. Indeed, for m = 2, Γ( r

2 )Γ(
m
2 )

Γ(m+r
2 )

=
Γ( r

2 )Γ(1)

Γ( r
2+1) =

Γ( r
2 )

r
2Γ(

r
2 )

= 2
r ≤ 2 ≤ π. If m = 1, then for r = 1,

Γ( r
2 )Γ(

m
2 )

Γ(m+r
2 )

= Γ(1/2)Γ(1/2)
Γ(1) = π and for r = 2, Γ( r

2 )Γ(
m
2 )

Γ(m+r
2 )

= Γ(1)Γ(1/2)
Γ(3/2) =

√
π√

π/2
= 2 ≤ π. Since for any r > 2 and for

m = 1, Γ( r
2 )Γ(

m
2 )

Γ(m+r
2 )

=
Γ( r−2

2 +1)Γ( 1
2 )

Γ( 1+r−2
2 +1)

= r−2
r−2+1

Γ( r−2
2 )Γ( 1

2 )

Γ( r−2+1
2 )

≤ Γ( r−2
2 )Γ( 1

2 )

Γ( r−2+1
2 )

, then by induction on r, (96) follows for m = 1.

If m > 2, then Γ(m2 ) = m−2
2 Γ(m−2

2 ) and Γ(m+r
2 ) = m+r−2

2 Γ(m−2+r
2 ) and hence the statement follows from the

induction hypothesis.
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A.3. Supporting Lemmas

Lemma A.10. (Eringis et al. (2023a, Lemma A.2)]) If z(t) ∼ N (0, Im), then for all r ∈ N, r > 0 the following holds

E[∥z(t)∥r2] ≤ 2
√

(m+ r − 1)!

Lemma A.11. (Eringis et al. (2023b, Lemma A.3)) For random variable z ∼ N (0, Im), the even moments of ∥z∥2 are
bounded as follows: for any r ∈ N, r > 1,

E[∥z∥2r2 ] ≤ 2r(m+ r − 1)!

Combining (95) and Lemma A.10, we obtain the following lemma.

Lemma A.12. For any r ∈ N, the following holds:

E[∥eg(t)∥2r2 ] ≤ µmax(Qe)
r2r(m+ r − 1)!

Combining (95) and Lemma A.11, we obtain the following lemma.

Lemma A.13. For any r ∈ N, r ≥ 1, r odd, the following holds:

E[∥eg(t)∥r2] ≤ 2µmax(Qe)
r
2

√
(m+ r − 1)!

Lemma A.14. (Eringis et al. (2023b, Lemma A.6)) Let z(t) be any stationary process, and r ∈ N, then for a stochastic
process s(t) =

∑∞
k=0 αkz(t− k), with

∑∞
k=0 ∥αk∥2 ≤ +∞, the following holds

E[∥s(t)∥r] ≤

( ∞∑
k=0

∥αk∥2

)r

E[∥z(t)∥r2] (97)

The following results from (Eringis et al., 2023b) are consequences of Lemma A.14.

Lemma A.15. (Eringis et al. (2023b, Lemma A.7)) Let r ∈ N, then with notation of the proof of Lemma A.2, for all f ∈ F ,
the following holds

E[∥z∞(t)− zfin(t)∥r2] ≤ γ̂rtgrp(f)E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r
2

]
(98)

Lemma A.16. (Eringis et al. (2023b, Lemma A.8)) Let r ∈ N, then with notation of the proof of Lemma A.2, for all f ∈ F
the following holds

E [∥z∞(t)∥r2] ≤
(
1 + ∥D̂∥2 + gp(f)

)r
E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r
2

]
(99)

Lemma A.17. (Eringis et al. (2023b, Lemma A.9)) Let r ∈ N, then with notation of the proof of Lemma A.2, for all f ∈ F
the following holds

E [∥zfin(t)∥r2] ≤
(
∥I∥+ ∥D̂∥2 + gp(f)

)r
E

[∥∥∥∥[y(t)u(t)

]∥∥∥∥r
2

]
(100)

B. Rényi divergence vs. KL-divergence: differences, technical difficulties
Bounds with Rényi divergence tend to be more conservative than those with KL-divergence, but they are easier to derive.
Roughly speaking, bounds based on Rényi divergence require only an estimate on the second order central moment of the
empirical loss. In contrast, bounds based on KL-divergence require bounding all the high-order moments of the empirical
loss. The drawback is that Rényi divergence may lead to more conservative error bounds (Bégin et al., 2016), and that it is
difficult to compute ρ̂ which minimizes the right-hand of (8), see (Alquier and Guedj, 2018).

Unfortunately, the techniques used in the literature for KL-based bounds do not seem to be applicable to LTI systems with
unbounded signals. More precisely, the existing literature tends to exploit a subset of the following properties when deriving
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bounds based on KL-divergence: the empirical loss is sub-Gaussian or sub-exponential (even bounded) (Alquier, 2021), the
data is either assumed to be i.i.d. (Alquier et al., 2013) or a martingale difference sequence (Seldin et al., 2012; Haddouche
and Guedj, 2022b;a), or the data is assumed to be weakly dependent and the loss is Lipschitz (Alquier et al., 2013; Alquier
and Wintenberger, 2012). However, for LTI systems with unbounded signals and square loss function none of the above
techniques seem directly applicable, since:

1. it is not obvious that LTI systems with sub-Gaussian noises lead to sub-Gaussian signals, since the signals are generated
by LTI systems started in infinite past, that is, the signals are infinite sums of sub-Gaussian noises,

2. sub-exponential losses, without additional assumptions, do not automatically lead to useful KL bounds which converge
to zero as the number of data points grows, (Germain et al., 2016; Shalaeva et al., 2020)

More precisely, we only assume that the data generator, which is an LTI system started at infinitely distant past, is driven by
a sub-Gaussian noise. Then the data is an infinite sum of sub-Gaussian random variables. While a finite sum of sub-Gaussian
variables is known to be sub-Gaussian, the same is not obvious for infinite sums. It is a non-trivial result from standard LTI
systems theory that the outputs of LTI systems driven by Gaussian noise (input) is also Gaussian. This being said, Lemma
A1 of the appendix states a bound on the moments of the data, suggesting that sub-Gaussianity could perhaps be shown.
Second, even if the data is sub-Gaussian, it is not immediately obvious that the empirical loss function VN (f), which is is
used to derive the bound, is sub-exponential. The loss VN (f) depends on the prediction ŷf (t) generated by the LTI model
f using infinite amount of past data. Hence, ŷf (t) is an infinite sum of past data (inputs and outputs). Even if the data is
sub-Gaussian, it is not obvious that ŷf (t) is also sub-Gaussian. Again, if the data is Gaussian, it follows from standard LTI
theory than ŷf (t) is Gaussian. Lemma A4 provides bounds on the moments of VN (f), which suggests that it might be
possible to show that VN (f) is sub-exponential.

However, even if the loss functions are sub-exponential, without further assumptions, the resulting PAC bounds will not
converge to zero (for fixed posteriors) as N → ∞ (Germain et al., 2016; Shalaeva et al., 2020; Eringis et al., 2021), rendering
them of limited use.

To sum up, the usual techinques used in the literature to control moment generating functions of the loss do not seem to be
directly applicable for LTI systems considered in this paper. At the same time, the assumptions this paper, i.e. unbounded
signals and square loss, is standard in econometrics and system identification. In fact, the data is often assumed to be
Gaussian (hence unbounded), and the square loss is the traditional choice of the loss function.

C. Numerical examples
C.1. Further details on the example from Section 5 and investigation of the behavior of Rényi divergence

In the following section we showcase the behaviour of the proposed bound with respect to the exponential of Rényi
divergence. That is, we shall repeat the illustrative example depicted in Section 5, with the following modification. We will
explore different posterior distribution schemes. We shall keep using the Gibbs posterior, and try to see how the growth rate
of λN in ρN (θ) ∝ e−λN L̂N (fθ)π(θ). In figure 2, we see the example repeated for:

• λN = 1, i.e. posterior only depends on number of datapoints N through the empirical loss. This case acts as a baseline
for other scenarios.

• λN =
√
N , commonly used rate for λ.

• λN = lnN + 1, to act as an intermediary between the other two cases.

Firstly, in Figure 2 we see that for all considered rates, the numerical example seem to indicate that the bound will eventually
converge to 0.

Secondly, for λN =
√
N , the plot indicates that the divergence D̄2(ρ∥π) converges. Currently we are unsure if it is

because we restrict predictors to only stable systems, thus imposing some constraints on the parameters. Or, if it is due
to numerical issues, since we employ Markov-Chain Monte-Carlo methods to compute these quantities, and due to the
behaviour of the sampler, it results with the bounded divergence. The code for the numerical example can be found in
https://gitlab.com/mpetrec/lti-pac-renyi (files main.m and mainPlots.m).
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Figure 2. Repetition of the example described in Section 5, with different rates for λN . Repeated for 10 realisations of data. In green we
show the divergence D̄2(ρ∥π). Ef∼ρ|L(f)− L̂N (f)| and rN are plotted on the left y-axis, and D̄2(ρ∥π) is plotted on the right y-axis.

C.2. Example with real-life data

We tested the derived bound on the example of hair dryer benchmark from Ljung (1999, Section 17.3). This benchmark
contains one input u and output y. After detrending the data we applied subspace identification (n4sid command of Matlab) to
estimate a data generator of the form (14) order 7. We then used a parametrization Σ(θ) = (A(θ), B(θ), C(θ), D(θ)), where
A(θ)(θ), B(θ), C(θ), D(θ)) range through set of all possible matrices such that A(θ) is Schur, i.e., θ belongs to R16+4+4+1.
Moreover, we took w =

[
yT , uT

]T
, i.e. we used past and current inputs and pas outputs for prediction. We chose a

Gaussian prior ϕ centered around θ0 with variance 0.2. The matrices A0 = A(θ0), B0 = B(θ0) C0 = C(θ0), D0 = C(θ0)
were chosen as follows:

A0 =


−0.0373 0.0672 0.0181 −0.0012
−0.0737 0.0876 −0.0151 −0.0018
0.0317 0.0141 0.0010 0.0287
0.0158 0.0044 0.0138 −0.0109



B0 = 0.001 ·


0.4468 0.0340
0.2581 0.1310
−0.1509 −0.1739
−0.0792 −0.1922


C0 =

[
0.2608 −0.1033 −0.0301 0.0032

]
D0 =

[
0 5

]
We set the posterior to the Gibbs posterior with λ = 1. That is, the posterior ρN is data dependent and it changes with
the number of data points. We chose the confidence parameter δ as 0.1, leading to bounds which hold at least with
probability 0.8. First we used only the real-life data of the benchmark to compute the posterior and to evaluate the
average (w.r.t. posterior) generalization gap and the constants G1 and G2 and to evaluate the bound rN = rN (ρN , π).
The benchmark data set contained N = 103 data points. The constant G2 is of O(104) in this example. This, together
with the small values of N lead to a fairly conservative overall bound, depicted in Figure 3. We conjecture that a more
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careful choice of the prior and of the parametrization could improve the obtained bound, but this remains a topic of
future research. The code is in main realDryerReal.m (for the computations) and makePlotsDryerReal.m (for plotting) in
https://gitlab.com/mpetrec/lti-pac-renyi.

Figure 3. Example of the hair dryer, real data N = 103

We then used the data generator estimated from real-life data to generate N = 106 synthetic data points. Note that the
estimated data generator produced a fit ratio of over 90% on the benchmark data. We then repeated the steps above for
synthetic data, the generalisation gap and the bound rN are depicted in Figure 4. The code is in main realDryerS.m (for
the computations) and makePlotsDryerSim.m (for plotting) in https://gitlab.com/mpetrec/lti-pac-renyi.
We can see that the bound, while still several order of magnitude above the actual generalisation gap, converges to the actual
generalisation gap.

Figure 4. Example of the hair dryer, simulated data N = 106

The behavior of the Rényi divergence is not substantially different from the one described for the example of Subsection C.1.
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