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ABSTRACT

There has been growing sentiment recently that modern large multimodal models
(LMMs) have addressed most of the key challenges related to short video com-
prehension. As a result, both academia and industry are gradually shifting their
attention towards the more complex challenges posed by understanding long-form
videos. However, is this really the case? Our studies indicate that LMMs still lack
many fundamental reasoning capabilities even when dealing with short videos.
We introduce Vinoground, a temporal counterfactual LMM evaluation benchmark
encompassing 1000 short and natural video-caption pairs. We demonstrate that
existing LMMs severely struggle to distinguish temporal differences between dif-
ferent actions and object transformations. For example, the best model GPT-
4o only obtains ∼50% on our text and video scores, showing a large gap com-
pared to the human baseline of ∼90%. All open-source multimodal models and
CLIP-based models perform much worse, producing mostly random chance per-
formance. Through this work, we shed light onto the fact that temporal reasoning
in short videos is a problem yet to be fully solved. We will make our benchmark
publicly available.

1 INTRODUCTION

Large multimodal models (LMMs) have become very competitive in not only image comprehension
but also short video comprehension. Proprietary models such as GPT-4o (OpenAI, 2024a) and
Gemini-1.5-Pro (Gemini Team, 2024) as well as open-source models like LLaVA-OneVision (Li
et al., 2024a) and Qwen2-VL (Wang et al., 2024) demonstrate strong performance in summarizing a
short video’s contents and answering questions regarding its details. This has led many researchers to
believe that short video comprehension has mostly been solved, and consequently, the community’s
focus has been increasingly trending toward creating models that understand longer-form videos that
are 10s of seconds or even minutes long. Our study, however, indicates that existing models are far
from being capable of fully understanding short videos that are just a few seconds long, especially
when there is dense temporal information.

As demonstrated in Wu (2024) and Mangalam et al. (2023), for many existing video benchmarks like
EgoSchema (Mangalam et al., 2023), ActivityNet-QA (Yu et al., 2019), MSVD and MSRVTT (Xu
et al., 2017), the performance of most modern LMMs does not vary significantly with number of
sampled frames. In fact, it is often the case that an LMM only needs to see a single frame to produce
a correct response. This ‘single-frame bias’ (Lei et al., 2023) reduces the video comprehension
problem into the much easier image comprehension problem, essentially discarding the temporal
aspect of a video. Researchers have also proposed harder temporal counterfactual benchmarks (Li
et al., 2024c; Saravanan et al., 2024; Liu et al., 2024b) in order to better evaluate an LMM’s temporal
understanding capabilities. Existing counterfactual datasets test a model’s ability to distinguish
slight changes from a video’s original (positive) caption to the new (negative) caption by asking the
model to match the video with the correct caption. However, they either do not contain any negative
videos corresponding to the negative caption, or simply swap the order of two unrelated videos
to form the positive and negative videos, making it easy to distinguish the negative pair from the
original positive pair due to the videos’ unnaturalness. Hence, these benchmarks may be inflating
the performances of modern LMMs in understanding short videos.

In this paper, we introduce Vinoground, a temporal counterfactual LMM evaluation benchmark
composed of 1000 short and natural video-caption pairs. Vinoground is a challenging benchmark
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Which video best fits the caption: The man moved the lid from the top to the side?

### In the first video, the man is seen moving the lid from the top of the box to the side. 
In the second video, the man is seen moving the lid again, but this time it appears to be 
more about adjusting the lid rather than moving it.
### Conclusion: The caption "the man used one hand to move the lid from the top of the box 
to the side" matches the first video.

Figure 1: GPT-4o answering a video-score question incorrectly. When asked which video matches
the caption, which involves identifying the order of the two events mentioned, GPT-4o does not
mention anything about the temporal order of events. The erroneous analyses are marked in red. It
should also be noted that the analyses for both videos are completely wrong.

aimed to expose the incapabilities of state-of-the-art models in understanding temporal differences
between different actions (e.g., “the man eats then watches TV” vs. “the man watches TV then
eats”) and object transformations (e.g., “water turning into ice” vs. “ice turning into water”). In
each pair of captions, the positive and negative are the same in word composition but different in
order. Our work is inspired by Winoground (Thrush et al., 2022), a challenging counterfactual
benchmark for visio-linguistic compositional reasoning in images. In Winoground, a model must
correctly match two images with their corresponding captions, where both captions use the same
set of words, but are rearranged to describe each image (e.g., “some plants surrounding a lightbulb”
vs. “a lightbulb surrounding some plants”). This evaluates whether a model effectively encodes the
text and images, paying attention to their compositional structures, and whether it can integrate and
synthesize information across both modalities. Our benchmark’s name changes the ‘W’ to a ‘V’ for
“video”, and further employs temporal counterfactuals to emphasize this unique element in video
data. We use text score, video score, and group score to evaluate a model’s ability to choose the right
caption for a video, to choose the right video for a caption, and to match both positive and negative
video-caption pairs correctly, respectively. These measure a model’s textual, visual, and temporal
reasoning capabilities in a balanced manner. Most of our videos are less than 10 seconds long, yet
we find a very large performance gap between an average human and today’s best models.

In sum, our main findings and contributions are:

• Existing temporal counterfactual benchmarks fail to fully expose the incapability of LMMs
in temporal reasoning.

• We introduce Vinoground, the first temporal and natural counterfactual evaluation bench-
mark for evaluating video understanding models.

• Modern SoTA LMM performance is subpar when it comes to temporal reasoning in short
video comprehension tasks; most models perform at random-chance level on video score
and even worse on group score, both being significantly lower than text score.

• We categorize our data into 3 major categories, ‘object’, ‘action’, and ‘viewpoint’, as well
as 4 minor categories, ‘interaction’, ‘cyclical’, ‘spatial’, and ‘contextual’, in order to dissect
each model’s capabilities for each of these categories. We find that existing models are
decent at analyzing video frames at coarse-level but tend to miss fine-grained details.

• Short video comprehension is a problem that is far from being solved.

2 RELATED WORK

Counterfactual Reasoning Counterfactual reasoning (Morgan & Winship, 2015) in the context
of computer vision typically involves curating negative images and captions by manipulating the
original data and observing how the outcome changes (Hendricks et al., 2018; Yeh et al., 2019; Goyal
et al., 2019; Verma et al., 2020; Guo et al., 2023; Zhang et al., 2021; Thrush et al., 2022; Le et al.,
2023; Zhang et al., 2024a). The idea is that a model should understand cause and effect and be able
to make predictions in unseen situations. For evaluation, curating meaningful and hard negatives is
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important. Winoground (Thrush et al., 2022) is a pioneering benchmark for counterfactual reasoning
where each data point contains two images and two corresponding captions. Given an image, a
vision-language model is asked to find the matching caption from the provided two options, and vice
versa. COCO-Counterfactual (Le et al., 2023) explores simple linguistic rules to generate negative
captions and uses an image editing model to produce negative images. In this work, we introduce a
novel benchmark with counterfactuals that are temporal, an attribute specific to the video modality.

Single-Frame Bias and Temporal Reasoning An important aspect of video data is its temporal-
ity, i.e., how events change as time progresses. Modern LMMs sample frames and treat the video as
a set of images, both during training and evaluation. Benchmarks such as EgoSchema (Mangalam
et al., 2023), MSVD and MSRVTT (Xu et al., 2017) exhibit a ‘single-frame bias’ (Lei et al., 2023)
where only one video frame is needed for a model to predict correctly, as a model’s performance
does not vary significantly as the number of frames sampled increases (Wu, 2024; Mangalam et al.,
2023). To better evaluate a model’s temporal understanding capabilities, researchers have developed
datasets such as YouCook2 (Zhou et al., 2018), ActivityNet-QA (Yu et al., 2019) and COIN (Lin
et al., 2022), which mainly involve procedural activities that often have a specific temporal depen-
dency (e.g., if a video shows a person washing and slicing apples, and then baking an apple pie, a
model would easily predict that “bake it to make a pie before washing the apple” is a wrong caption
even without looking at the video). In contrast, Vinoground also includes actions that are entirely
unrelated, making it more challenging for models to infer answers based solely on textual cues.
MVBench (Li et al., 2024b) also includes temporal data that involves 20 different subcategories of
temporal reasoning. However, even with this coverage, this benchmark does not contain any nega-
tives like ours, reducing their difficulty since they do not contain any counterfactual examples. The
best models can perform at ∼ 65% on average on their benchmark while Vinoground’s best results
are far worse (∼ 35% on one of the metrics).

Temporal Counterfactuals Recent benchmarks combine counterfactuals with temporal reason-
ing. EgoSchema (Mangalam et al., 2023) introduces long-form videos where each video has 1
positive caption and 4 negative captions to choose from, while VITATECS (Li et al., 2024c) intro-
duces temporal counterfactual data where a word or phrase is swapped/replaced from the positive
caption to form the negative caption. However, neither has any negative videos and thus do not fully
evaluate an LMM’s dense temporal reasoning capabilities like we do. VELOCITI (Saravanan et al.,
2024) introduces positive/negative videos as a part of their intra-video association benchmark by
clipping random portions in the same video, and asking the model to distinguish between the events.
These videos, however, are not truly counterfactual pairs as different clips within the same movie
are not guaranteed to have a positive-negative relation. TempCompass (Liu et al., 2024b) includes
videos that tests a model’s ability to differentiate the order of events, but the videos are either con-
catenations of two completely unrelated videos with drastic frame changes in between the events,
or reversed in time and thus impossible to happen in real life, and do not belong to the true data
distribution. As we will illustrate in Section 4.4.2, LMMs tend to do much better when it comes to
such videos when compared to our benchmark’s more natural negative videos.

3 VINOGROUND

In this section, we introduce our data curation and categorization process. In order to curate
Vinoground’s video-caption pairs, we first explain how we generate the required captions in Sec-
tion 3.1, how we find the corresponding videos in Section 3.2, and finally the details of categorizing
the videos in Section 3.3. An illustration of the overall process can be found in Appendix A.

3.1 GENERATING COUNTERFACTUAL CAPTIONS

The first step in curating our data is to find counterfactual caption pairs. We want to ensure that the
captions we curate are of high-quality and temporal in nature. While human annotation is a possible
solution, it is costly and hard to scale up. Instead, we leverage a SoTA LLM, specifically the GPT-
4 (OpenAI, 2024b) model, as it is much cheaper, follows the multiple requirements we impose, and
guarantees that there are no duplicate candidates. We require our caption pairs to be composed of the
exact same words, only permuted into different orders. We also want to avoid candidates that could
easily be solved by looking at a single frame of the video such as “a man is waving at a woman”
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The baby plays before he drinks water. The baby drinks water before he plays.

Fire turns into thin air. Thin air turns into fire.

Camera angle from 45 degrees behind to the right side. Camera angle from the right side to 45 degrees behind.

The man writes before he dips his pen in the ink. The man dips his pen in the ink before he writes.

The watermelon is cut then turned. The watermelon is turned then cut.

Moonwalk from left to right. Moonwalk from right to left.

From landed to flying. From flying to landed.

Object

Action

Viewpoint

Interaction

Cyclical

Spatial

Contextual

Figure 2: Example positive/negative video-caption pairs in Vinoground, for each category.

vs. “a woman is waving at a man”. Hence, we ask GPT-4 to create temporal counterfactuals that
require one to process and understand the entire video, and in particular, understand the order of
events in which they happen, such as “a man waves at a woman before he talks to her” vs. “a man
talks to a woman before he waves at her”. We will later showcase in Section 4.3 that we can already
expose LMMs greatly with such videos (i.e., by swapping the order of two events), making more
complicated scenarios unnecessary. We include the detailed prompt we gave to GPT-4 for caption
curation in Appendix F.

3.2 VIDEO CURATION

After curating counterfactual caption candidates, we next try to find corresponding videos for those
captions. We make use of the VATEX (Wang et al., 2019) dataset, which contains 5 distinct captions
for each maximum 10-second long video. We only use the validation and test subsets of VATEX to
make sure none of Vinoground is ever used as training data. This results in a pool of 9000 videos
and 45000 captions.

We want to be able to quickly retrieve potential matches in VATEX according to the generated cap-
tion candidates. We leverage sentence transformers (Song et al., 2020), which are good at summariz-
ing sentence-level information into feature vectors, to extract the features of both our GPT-generated
captions and VATEX’s captions. We subsequently use the Faiss library (Douze et al., 2024) to effi-
ciently index and retrieve the top 20 most similar VATEX captions for each GPT-4 generated caption.
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We manually examine if any retrieved caption is a good match, and if its corresponding video re-
flects the caption as well. For some cases where none of the retrieved captions are a good match, we
search YouTube with the caption candidate to find a matching video.

In the end, we curate 500 counterfactual pairs of video-caption pairs (1000 video-caption pairs in
total) for evaluation. Each video-caption pair is provided in the form of the original YouTube ID,
the clip’s starting and ending timestamps, and the corresponding caption. We also put Vinoground
through 3 rounds of human evaluation by the authors, making sure that the pair of captions truly
contain the same word composition and that the video clips indeed reflect their respective captions.

3.3 CATEGORIZATION

Finally, we want to be able to evaluate LMMs in a fine-grained manner on multiple aspects rep-
resented by our dataset. Hence, we categorize Vinoground according to the unique characteristics
discovered through the data curation process, as shown in Figure 2. We report the number of coun-
terfactual data pairs assigned under each category in Table 1. We define each category as follows:

Category Object Action Viewpoint Interaction Cyclical Spatial Contextual

Count 160 257 83 73 111 103 63

Table 1: The number of video-caption pairs assigned under each category.

We divide Vinoground into 3 major categories: object, action, and viewpoint. Each counterfactual
pair must be in one and only one of the three major categories.

• Object requires LMMs to detect changes in the status of one specific object, such as “water
turning into ice” vs. “ice turning into water.” This category is similar to the “Reversing”
category in TempCompass (Liu et al., 2024b) that evaluates a model’s ability to detect
attribute and directional changes. While TempCompass reverses positive videos in time to
create negatives and thus can be unnatural, we curate real, natural videos that correspond
to the negative captions.

• Action, on the other hand, simply asks models to distinguish the order in which two or
more different actions happened, e.g. “the man eats and then watches TV” vs. “the man
watches TV and then eats.” The two actions need not be correlated at all, and thus less
logical comprehension is necessary for a correct prediction.

• Viewpoint specifically describes changes in the camera angle, perspective, or focus within
the video, such as “a person films the car in front of him before he films himself” vs. “a
person films himself before he films the car in front of him.” The change in viewpoint is
usually accompanied by a drastic difference in between the frames, whereas other events
most likely happen within the same context or background.

We also introduce 4 minor categories: interaction, cyclical, spatial, and contextual. Some pairs
belong to a multitude of these minor categories, while some do not belong to any of them.

• Interaction involves videos where a human changes their way of interacting with an object
in the course of the video, e.g. “the calligrapher writes with his pen before he dips it into
the ink” vs. “the calligrapher dips his pen into the ink before he writes with it.”

• Cyclical tests a model’s ability to identify either procedural temporal activities or two ac-
tions that are dependent on each other. The calligrapher example earlier is also cyclical as
the person repeats the procedure “write, dip, write, dip...”, and the action “dip” happens as
a result of “write” in the positive, while “write” is enabled after “dip” in the negative. In
contrast, the general “action” category can involve completely unrelated actions.

• Spatial It has been shown that LMMs struggle to distinguish physical locations between
objects in image-caption pairs (Zhang et al., 2024a). We want to further evaluate this
deficiency when it comes to temporal understanding as well. Thus, this category involves
object movements and requires positional understanding, such as “the man ran from left
to right” vs. “the man ran from right to left.” Note that this does not include movement of

5
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the background; e.g., when the camera is moving along with the object in question, which
belongs to the next category.

• Contextual requires LMMs to understand changes in the background or general informa-
tion of entire video frames. An example is the pair “the biker rides down the street before
he goes down the stairs” vs. “the biker goes down the stairs before he rides down the street”
where the camera that records the videos is strapped on the biker’s forehead, making the
background the only changing aspect. One cannot infer positional changes by only ob-
serving movements of the object in the video like the “spatial” category, but instead must
focus on the background as the object in question can appear motionless due to the camera
moving along with the object.

We provide in-depth analysis of models’ performances on our benchmark based on the above cate-
gories in Section 4.4.2.

4 EXPERIMENTS

In this section, we evaluate state-of-the-art vision-language models on our benchmark. We first
describe the models and evaluation metrics in Section 4.1; then we explain our experimental setup,
including prompting methods and human studies, in Section 4.2; we analyze the performances of
the models in Section 4.3, and provide further ablation studies in Section 4.4.

4.1 MODELS AND EVALUATION METRICS

We evaluate both CLIP-based models (Radford et al., 2021) and large generative models, both pro-
prietary and open-source. The exact list of models we evaluate can be found in Table 2. CLIP-based
models use contrastive learning between videos and captions, while text-generation LMM models
use next-word prediction to generate a response. Due to the different nature of the CLIP-based
vs. LMM methods, we introduce our metrics in different fashions accordingly.

We use C to denote captions and V to denote videos. For each positive and negative set of counter-
factual video-caption pairs, (Ci, Vi) and (C ′

i, V
′
i ), ∀i ∈ {1, 2, ..., 500}, we ask CLIP-based models

to compute a similarity score e between not only the correct pairs but also the incorrect pairs (Ci, V
′
i )

and (C ′
i, Vi) (identical to Winoground (Thrush et al., 2022)). For generative LMMs, we can only

provide inputs (e.g., 2 captions and 1 video) to the model and ask it to choose between the cap-
tions/videos.

We first evaluate the text score st where the model is presented with both positive and negative
captions but only one of the videos, forming the triplets (Ci, C

′
i, Vi) and (Ci, C

′
i, V

′
i ). For each

triplet, the model is then asked to choose the caption that describes the contained video. We denote
the score function of a model response given any triplet as s; for instance,

s(Ci, C
′
i, Vi) =

{
1 if LMM chooses Ci or e(Ci,Vi) > e(C′

i,Vi) for CLIP-based
0 otherwise

s(Ci, C
′
i, V

′
i ) =

{
1 if LMM chooses C ′

i or e(C′
i,V

′
i )

> e(Ci,V ′
i )

for CLIP-based
0 otherwise

Then the text score for the given counterfactual pair (Ci, Vi) and (C ′
i, V

′
i ) is:

st(Ci, C
′
i, Vi, V

′
i ) = s(Ci, C

′
i, Vi) ∧ s(Ci, C

′
i, V

′
i )

where ∧ is the logical and operator; i.e., st is 1 only if both triplets are correct. This exposes the
models when they guess randomly.

Similarly, for video score sv , the model is presented with one caption and both positive and negative
videos, forming triplets (Ci, Vi, V

′
i ) and (C ′

i, Vi, V
′
i ). For each triplet, the model is asked to choose

the video that is described by the caption. In this case, the response scoring becomes:

s(Ci, Vi, V
′
i ) =

{
1 if LMM chooses Vi or e(Ci,Vi) > e(Ci,V ′

i )
for CLIP-based

0 otherwise

6
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s(C ′
i, Vi, V

′
i ) =

{
1 if LMM chooses V ′

i or e(C′
i,V

′
i )

> e(Ci,V ′
i )

for CLIP-based
0 otherwise

Then the video score is:

sv(Ci, C
′
i, Vi, V

′
i ) = s(Ci, Vi, V

′
i ) ∧ s(C ′

i, Vi, V
′
i )

We also include a group score metric sg:

sg(Ci, C
′
i, Vi, V

′
i ) = st(Ci, C

′
i, Vi, V

′
i ) ∧ sv(Ci, C

′
i, Vi, V

′
i )

sg serves as the ultimate test for a model to demonstrate its temporal reasoning capabilities in both
the textual and visual domains, as both st and sv must be 1. For all three metrics, we report the
mean over all test instances. We include an illustration of the metrics in Appendix B.

4.2 EXPERIMENTAL SETUP

Since for each pair of counterfactuals, we have 2 text-score questions and 2 video-score questions,
we have 2000 questions in total. To evaluate CLIP-based models, we use the evaluation code pro-
vided by the authors to calculate video-caption embeddings and similarity scores. Evaluating text-
generative models is slightly more complicated. We first introduce the different prompts we used.
For text score, we provide the model with the video and the two corresponding captions, and prompt
“⟨video⟩ Which caption best describes this video? A. {Caption 1}, B. {Caption 2}”. For video
score, however, since some LMMs only support 1 video input, we concatenate the positive and neg-
ative videos into a single video with a 2 second black screen in between. When sampling N frames
for the model’s input, we make sure we sample (N − 1)/2 frames from the positive and negative
video fragments and at least 1 frame of black screen in between. More details can be seen in Ap-
pendix I. For the sake of consistency, we provide all models with the single concatenated video,
regardless of how many videos they can actually take as input. We then prompt the model with
“⟨video⟩ Which video segment matches this caption? Note: The video contains two segments sep-
arated by a 2-second black frame. Caption: {Caption}. A. First segment (before black frame), B.
Second segment (after black frame)” to choose between the two video segments. We also report the
results with respect to the number of frames sampled by the model from the video, if supported, to
evaluate the effect of temporality in Section 4.4.1.

In addition, we also use Prolific (https://www.prolific.com) to evaluate human perfor-
mance, and find that our dataset is fairly easy for an average human to complete with high accuracy.
Prolific is a platform similar to Amazon MTurk which recruits workers to complete tasks such as
data annotation. The interface we present to the workers is in Appendix D. To filter out unfaith-
ful workers, we employ a qualification process prior to evaluating on Vinoground. We sample 10
video-question pairs from TempCompass (Liu et al., 2024b) that are of the event order category,
which contains concatenated videos with no correlation, such as “a man lifts weights in a gym, then
a cat plays on the grass”. Such examples are easy enough for an average human to obtain 100% ac-
curacy. We ask the workers the 10 beginner-level questions first, and they are qualified only if they
answer every question correctly. This process results in 170 qualified workers, whose demographics
are also included in Appendix D.

We conduct human evaluation under two settings. First, the Prolific workers are provided the full
videos with audio. To create another environment where we want the workers see the same input
as the models, we uniformly sample 32 frames from each video and concatenate them together
into a new 10-second video with no audio. The results for the two settings are also compared in
Section 4.4.1. For each question, we obtain answers from 10 unique workers. For the 10 answers
from a single question, we calculate the average human response by taking the mode of the 10
answers. We then report the mean over all the questions as the final result.

4.3 MAIN RESULTS

Table 2 presents the results. (Please refer to Appendix H for more detailed results, as we only include
each model’s best performances here.)

First, all CLIP-based models (VideoCLIP, LanguageBind, ImageBind) perform much worse than
random chance, suggesting that contrastive learning does not provide models with enough knowl-
edge of temporality. Among text-generative models, GPT-4o performs best, achieving 54.0% on
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Model Frames Text Video Group

Random Chance N/A 25.00 25.00 16.67

Prolific Human All 93.40 94.00 90.00
32 91.40 90.80 85.20

GPT-4o (OpenAI, 2024a) (CoT) (Wei et al., 2022) 32 59.20 51.00 35.00
GPT-4o 32 54.00 38.20 24.60

0 10.00 24.60 2.00
Gemini-1.5-Pro (Gemini Team, 2024) (CoT) 1fps 37.00 27.60 12.40
Gemini-1.5-Pro 1fps 35.80 22.60 10.20
Claude 3.5 Sonnet (Anthropic, 2024) 4 32.80 28.80 10.60

Qwen2-VL-72B (Wang et al., 2024) 32 50.40 32.60 17.40
Qwen2-VL-7B (Wang et al., 2024) 4fps 40.20 32.40 15.20
LLaVA-OneVision-Qwen2-72B (Li et al., 2024a) 32 48.40 35.20 21.80
LLaVA-OneVision-Qwen2-7B (Li et al., 2024a) 16 41.60 29.40 14.60
InternLM-XC-2.5 (Zhang et al., 2024b) (CoT) 32/1fps 30.80 28.40 9.00
InternLM-XC-2.5 32/1fps 28.80 27.80 9.60
VideoLLaMA2-72B (Cheng et al., 2024) 8 36.20 21.60 8.40
MiniCPM-2.6 (Yao et al., 2024) 16 32.60 29.20 11.20
LLaVA-NeXT-Video-34B (Liu et al., 2024a) (CoT) 32 25.80 22.20 5.20
LLaVA-NeXT-Video-34B 32 23.00 21.20 3.80
LLaVA-NeXT-Video-7B (Liu et al., 2024a) (CoT) 32 21.80 26.20 6.80
LLaVA-NeXT-Video-7B 32 21.80 25.60 6.20
Matryoshka Multimodal Models (M3) (Cai et al., 2024) 6 21.20 25.80 6.80
Video-LLaVA-7B (Lin et al., 2024) 8 24.80 25.80 6.60
Phi-3.5-Vision (Microsoft, 2024) 16 24.00 22.40 6.20
MA-LMM-Vicuna-7B (He et al., 2024) 4 23.80 25.60 6.80
VTimeLLM (Huang et al., 2024) 100 19.40 27.00 5.20

VideoCLIP (Xu et al., 2021) 60 17.00 2.80 1.20
LanguageBind (Zhu et al., 2024) 8 10.60 5.00 1.20
ImageBind (Girdhar et al., 2023) 20 9.40 3.40 0.60

Table 2: Vinoground results for different models and sampled frames. Performances significantly
better than random chance are bolded. The table is separated into four groups by double lines:
random chance and human performance, proprietary text-generative models, open-source text-
generative models, and CLIP-based models from top to bottom. The best performances of pro-
prietary and open-source models are highlighted in red.

the text score metric. Chain-of-Thought (CoT) prompting (Wei et al., 2022) further improves GPT-
4o’s performance, especially on the video score metric where GPT-4o improves by 12.8% while its
group score increases by 10.4%. We include the full CoT prompt and parsing process in Appendix G.
Amongst the open-source models, LLaVA-OneVision and Qwen2-VL demonstrate competitive per-
formance compared to proprietary models, especially with Qwen2-VL-72B’s 50.4% performance
on text score. Using CoT on open-source models, however, helps much less, especially if they are
performing at near chance level. All other models perform at or worse than random chance, showing
that dense temporal reasoning is still very challenging for LMMs.

Similar to Winoground (Thrush et al., 2022), we find that for models that perform better than
chance level, their text score is significantly higher than video score, while group score is the low-
est amongst all three. This shows that they are better at identifying textual differences compared
to visual/temporal differences. For example, GPT-4o’s video score (38.20%) is significantly lower
compared to its text score (54.0%). Many open-source models only have non-random outcomes on
the text score but equal or lower than random chance on video and group scores. Notably, LLaVA-
OneVision-72B is the only open-source model that demonstrates better than chance group score.

The human evaluators perform significantly better than any model, with scores around 90%. This
indicates that Vinoground is a benchmark that can be tackled relatively easily within human capacity.
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Model Frames Text Video Group

Prolific Human All 93.40 94.00 90.00
32 91.40 90.80 85.20

GPT-4o 64 49.00 34.80 19.00
32 54.00 38.20 24.60
8 53.60 31.40 20.60
1 28.20 28.00 10.00

LLaVA-OneVision-Qwen2-72B 64 46.20 31.80 18.60
32 48.40 35.20 21.80
16 47.20 33.80 20.40
8 46.80 29.80 19.00
4 40.40 24.80 13.00
2 33.40 25.20 10.20

LLaVA-OneVision-Qwen2-7B 64 40.20 28.60 12.60
32 42.00 28.40 12.80
16 41.60 29.40 14.60
8 36.00 26.80 12.40
4 29.20 28.00 10.00
2 25.80 22.60 6.80

Table 3: Results of the strongest closed-source and open-source models with different frames sam-
pled. Performances significantly higher than random chance are highlighted, while the best overall
performance of each model are highlighted in red. More frames do lead to better performance, but
too many frames can worsen the results.

When the human evaluators are provided with 32-frame videos, the scores decrease by a few points,
but are still much higher than those of any model.

Finally, we also report performance for GPT-4o with 0 frames sampled as a control to test for text
bias. For text score, we hypothesize that the model will choose the more likely caption since it
cannot see the video, and for the video score, we hypothesize it will choose an answer at random,
which is indeed what happens. The lower than chance performance for text score of 10.0% indicates
that there is some language bias in GPT4o, where it prefers to select one caption over the other
(if it consistently did that for all questions, the text score would be 0). Thus, our balanced way of
computing the scores (i.e., both s(Ci, C

′
i, Vi) and s(Ci, C

′
i, V

′
i )) prevents a model from doing well

only via its language bias. This is in contrast to existing benchmarks like VITATECS (Li et al.,
2024c) and EgoSchema (Mangalam et al., 2023) which lack negative videos, and hence enable
models to potentially answer a question correctly only based on which caption is more likely.

All in all, even the very best models exhibit subpar performance when it comes to dense temporal
reasoning, and this is only using short videos (less than 10 seconds) as well. This strongly indicates
that short video comprehension in LMMs is still far from human-level intelligence.

4.4 IN-DEPTH ANALYSIS OF PERFORMANCE VARIATIONS

4.4.1 FRAMES SAMPLED

Vinoground’s temporal understanding requirements can be demonstrated by varying the different
number of frames sampled, either from the video entirely, or as measured by frames-per-second
(fps). If a dataset suffers from ‘single-frame bias’, a model would not perform very differently when
only 1 or more frames are sampled. The results of the strongest proprietary and open-source models
in Table 3 (and additional results in Appendix H) show that the more frames a model takes, the
better its performance. This indicates that a model does need the entirety of each video to fully
comprehend the task at hand. Interestingly, too many sampled frames, however, can hurt a model’s
performance; for GPT-4o, its 64-frame variant performs 5% worse on all three metrics compared to
its 32-frame variant. We suspect that current models are not good at discarding redundant informa-
tion and isolating signal from noise when there are too many visual tokens.
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Figure 3: Group score for each model, grouped by category. One can observe higher performance
in contextual and viewpoint, and lower performance on other categories.

Note that for our video score metric to function as intended, a model must sample at least one frame
from each video, and at least one black frame in between. This means that the number of frames
sampled must be no fewer than 3. We hence gray out the video score and group score performances
of models sampled at 1 or 2 frames and only focus on their text scores.

Finally, for human evaluators, the ‘All’ group performs better than the 32 frame group, which in-
dicates that humans can answer Vinoground questions better when the full videos are shown. In
contrast, modern LMMs generally lack the ability to process inputs of an entire video without coarse
sampling of frames. This suggests that further research into creating models that can handle more
frames will be an important research direction for temporal reasoning.

4.4.2 CATEGORY

Figure 3 shows results per category as defined in Section 3.3. Interestingly, many models perform
significantly better on the viewpoint and contextual categories, while being significantly worse on
other categories. Here, we only report the group score for a selected set of models due to space.
Please see Appendix E for the full results.

Both viewpoint and contextual bring forth drastic changes in between the video frames whenever the
events change, as contextual involves background changes that occupy most of the frame while in
viewpoint, as the camera angle changes, the entirety of the video frame changes as well. On the other
hand, interaction and cyclical not only require a model to have strong logical understanding of the
connection between events, but also the ability to focus on small temporal changes for the different
actions involved. Spatial, as previously hypothesized, also poses a difficult challenge for models in
understanding changes in object location. Overall, today’s models are much better at understanding
coarse-level information over a set of frames in their entirety than understanding fine-grained details
from a part of each video frame. This also demonstrates how fine-grained comprehension is also
crucial for dense temporal reasoning.

5 CONCLUSION

We introduced Vinoground, a novel temporal counterfactual benchmark encompassing 1000 short
and natural video-caption pairs. We demonstrated that existing video understanding models are quite
incapable in terms of temporal reasoning, even for short (<10 seconds) videos. While an average
human can easily and accurately complete our benchmark, the best model, GPT-4o, performs much
worse, and most models barely perform better than random chance. Our work demonstrates that
there is much more to do still in the area of short video comprehension. We believe our bench-
mark can serve as an important checkpoint in evaluating a model’s true performance for temporal
understanding of different actions, background transitions, and object transformations.

LIMITATIONS
One cannot fully analyze the behavior of proprietary models included in this paper due to the lack
of access to these models, which are GPT-4o, Gemini-1.5-Pro and Claude 3.5 Sonnet.
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REPRODUCIBILITY STATEMENT

We attach the dataset in the submission’s supplementary materials. We will also publicly release it
along with the code used to evaluate the LMMs upon the paper’s acceptance.
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APPENDIX

A DATA CURATION PROCESS

We include an overall illustration of the data curation process in Figure 4.

Generate xxx pairs of 
counterfactuals……

Sentence 
Transformer

FAISS 
Indexing

Top 20 results

VATEX Captions

features

VATEX or YouTube Videos

Figure 4: The data curation process.
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B METRICS ILLUSTRATION

We visualize our text and video score metrics in Figure 5. This shows the 4 possible questions that
can be derived from one counterfactual data point in the dataset.

𝑉!

𝐶! (correct caption) 𝐶!"(incorrect caption)

Which one 
matches?

𝑉!"

𝐶!	(incorrect caption) 𝐶!"(correct caption)

Which one 
matches?

𝐶!

𝑉!
(correct video)

𝑉!"
(incorrect video)

Which one 
matches?

𝐶!"

𝑉!
(incorrect video)

𝑉!"
(correct video)

Which one 
matches?

Figure 5: Visualization of the text and video score metrics.

C RANDOM CHANCE PERFORMANCE

We set the random chance performance for text, video, and group score as 25%, 25%, and 16.67%.
It is intuitive to understand the setup for both text and video score since there are two questions
in the same counterfactual pair for each metric, and the probability of guessing correctly is 50%
each. For the counterfactual pair (Ci, C

′
i, Vi, V

′
i ), a model can only produce six possible permu-

tations of video-caption matchings: {(Ci, Vi), (C
′
i, V

′
i )}, {(Ci, Vi), (Ci, V

′
i )}, {(Ci, Vi), (C

′
i, Vi)},

{(Ci, V
′
i ), (C

′
i, V

′
i )}, {(C ′

i, Vi), (C
′
i, V

′
i )}, and {(C ′

i, Vi), (Ci, V
′
i )}. This is why the random chance

performance for group score is 1/6 = 16.67%.

D PROLIFIC SURVEY INTERFACE AND WORKER DEMOGRAPHICS

We first upload all the videos to Google Drive and embed them into our surveys using Qualtrics.
The 2000 questions from Vinoground are split into 50 surveys, with each survey having 40 random
questions. We then distribute our surveys on Prolific where we pay everyone who completed a
survey $2, or $0.05 per question. The interface is illustrated in Figure 6.

Out of the 170 workers, 91 were male and 79 were female; 13 were students, 119 were non-students,
and 38 have no data/did not consent to provide information; 69 were full-time working, 22 were part-
time working, 20 were not in paid work (e.g. homemaker, retired or disabled), 17 were unemployed,
and 42 have no data/did not consent to provide information; all of the 170 workers were fluent in
English; we report the histogram of workers’ ages in Figure 7.
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Figure 6: The Qualtrics survey that Prolific workers see.

Figure 7: Distribution of Prolific workers’ ages.
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E FULL CATEGORICAL RESULTS

Here we include the selected top-6 strongest models we evaluated and report their results by category
in Tables 4 and 5. We also include the text score and video score bar plots in Figures 8 and 9. We
can see that the general trend is the same as reported in Section 4.4.2, where models perform much
better on contextual and viewpoint, and worse on other categories.

GPT-4o Gemini-1.5-Pro Claude 3.5 Sonnet

category text video group text video group text video group

all 54.00 38.20 24.60 35.80 22.60 10.20 32.80 28.80 10.60

object 52.50 35.62 20.62 36.25 25.62 12.50 30.00 25.00 7.50
action 47.47 35.41 20.23 30.74 22.18 8.56 27.63 28.79 9.34

viewpoint 77.11 51.81 45.78 50.60 18.07 10.84 54.22 36.14 20.48

interaction 50.68 42.47 21.92 30.14 27.40 10.96 20.55 21.92 5.48
cyclical 39.64 41.44 18.92 22.52 19.82 4.50 27.03 25.23 7.21
spatial 47.57 30.10 17.48 37.86 24.27 9.71 31.07 20.39 5.83

contextual 53.97 49.21 33.33 38.10 31.75 11.11 52.38 28.57 15.87

Table 4: The best performances of proprietary models grouped by category. Significantly high
performances are highlighted in blue, while significantly low performances are highlighted in red.

LLaVA-OneVision-72B Qwen2-VL-72B InternLM-XC-2.5

category text video group text video group text video group

all 48.40 35.20 21.80 50.40 32.60 17.40 28.80 27.80 9.60

object 42.50 33.75 17.50 46.88 33.75 18.12 28.75 28.12 12.50
action 42.80 31.91 17.90 44.75 28.79 12.06 25.68 29.96 8.56

viewpoint 77.11 48.19 42.17 74.70 42.17 32.53 38.55 20.48 7.23

interaction 36.99 36.99 16.44 34.25 31.51 6.85 23.29 36.99 6.85
cyclical 36.04 29.73 14.41 36.94 32.43 11.71 18.92 36.04 7.21
spatial 37.86 25.24 10.68 53.40 31.07 17.48 23.30 29.13 8.74

contextual 57.14 31.75 20.63 49.21 39.68 22.22 26.98 26.98 11.11

Table 5: The best performances of selected open-source models grouped by category. Significantly
high performances are highlighted in blue, while significantly low performances are highlighted in
red.

F CAPTION CURATION PROMPT

The prompt we gave GPT-4 to generate potential caption candidates is: “I am trying to find videos
that have appropriate temporal counterfactuals. e.g., i want to find video pairs that can be described
with the following captions: “a man eats then watches TV” vs “a man watches TV then eats”; “the
old man is working hard before the young man is playing” vs “the young man is working hard before
the old man is playing”. Note that for both elements of the same pair, they use the exact same words.
give me 10 examples.” Then in the same conversation, we prompt the model “give me 10 different
ones” until we had 500 pairs of candidates.
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Figure 8: Text score bar plot based on category grouped by model.

Figure 9: Video score bar plot based on category grouped by model.

G COT PROMPT AND PARSING

For chain-of-thought prompting, we simply add “please think step by step” at the end of our ques-
tions (as mentioned in Section 4.2). We then use GPT-4 as the judge with the prompt: “Please
parse the following model response into either A or B. If the model response is just A or B, then
it denotes the model answer, just output it. The model response starts after ====, and end before
====):\n==== ⟨MODEL RESPONSE⟩ ====\nProvide output your answer as a single character
(A or B): ”

H FULL RESULTS ON EVALUATED MODELS

Due to the extensive number of models evaluated and different number of samples used as hyperpa-
rameters, we include the full results of our evaluation that are not mentioned in the main paper in
Table 6.
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Model Frames Text Video Group

Claude-3.5-Sonnet 16 30.00 22.60 8.40
8 32.20 25.40 9.40
4 32.80 28.80 10.60
2 29.40 24.00 8.40
1 26.20 30.00 10.80

Qwen2-VL-72B 32 50.40 32.60 17.40
8 37.40 23.00 7.80
4 26.20 23.80 6.20
2 15.60 24.40 4.00

Qwen2-VL-7B 32 40.00 26.40 11.80
16 36.80 25.80 10.20
8 27.60 23.40 7.80
4 22.20 22.80 5.60
2 21.40 25.60 5.20
4fps 40.20 32.40 15.20
2fps 34.80 27.40 10.60
1fps 26.80 26.60 7.60
0.5fps 23.20 19.60 4.80

MiniCPM-2.6 32 28.40 27.00 9.40
16 32.60 29.20 11.20
8 33.40 25.60 9.00
4 25.80 27.40 8.60
2 22.80 23.20 4.60
1 27.00 27.00 8.00

LLaVA-NeXT-Video-34B (CoT) 32 25.80 22.20 5.20
LLaVA-NeXT-Video-34B 32 23.00 21.20 3.80

16 21.00 21.80 4.40
8 21.20 22.00 5.20
4 16.60 21.60 3.40
2 15.40 21.60 2.20
1 13.20 21.80 2.00

LLaVA-NeXT-Video-7B (CoT) 32 21.80 26.20 6.80
LLaVA-NeXT-Video-7B 32 21.80 25.60 6.20

16 22.20 25.60 6.40
8 21.80 25.60 6.40
4 21.80 25.60 6.40
2 21.20 25.40 6.00
1 22.40 25.60 6.40

Phi-3.5-Vision 32 22.00 21.20 4.80
16 24.00 22.40 6.20
8 21.80 21.20 5.00
4 21.20 22.80 5.60
2 20.40 21.60 3.80
1 22.60 22.80 3.80

MA-LMM-Vicuna-7B 32 22.40 25.60 6.80
16 22.00 26.00 6.00
8 23.00 26.00 6.40
4 23.80 25.60 6.80
2 23.80 25.60 6.80

Table 6: The full evaluation results based on model type, frames sampled, and the metrics afore-
mentioned. Only the model settings that are not mentioned in the main paper are listed here. Perfor-
mances significantly better than random chance are bolded.
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I VIDEO LENGTHS AND THE USE OF BLACK FRAMES

We report the video length distribution of our benchmark in Figure 10. We also report that out of
the 1000 videos in Vinoground, there are a total of 992 videos with length ≤ 20 seconds, and 930 of
them are ≤ 10 seconds.

Figure 10: Video length distribution of Vinoground.

Some may argue that there is potential data loss due to concatenation. Here we include here another
histogram regarding, in all 500 concatenated videos, how much of each video is composed of black
frames in Figure 11.

Figure 11: The portion of black frames in each concatenated video for video score questions.

Here we can see that the majority of the videos have only less than one-tenth of the portion contain-
ing black frames.
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