
Learning Deformable Body Interactions With
Adaptive Spatial Tokenization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Simulating interactions between deformable bodies is vital in fields like material1

science, mechanical design, and robotics. While learning-based methods with2

Graph Neural Networks (GNNs) are effective at solving complex physical systems,3

they encounter scalability issues when modeling deformable body interactions.4

To model interactions between objects, pairwise global edges have to be created5

dynamically, which is computationally intensive and impractical for large-scale6

meshes. To overcome these challenges, drawing on insights from geometric repre-7

sentations, we propose an Adaptive Spatial Tokenization (AST) method for efficient8

representation of physical states. By dividing the simulation space into a grid of9

cells and mapping unstructured meshes onto this structured grid, our approach10

naturally groups adjacent mesh nodes. We then apply a cross-attention module to11

map the sparse cells into a compact, fixed-length embedding, serving as tokens for12

the entire physical state. Self-attention modules are employed to predict the next13

state over these tokens in latent space. This framework leverages the efficiency of14

tokenization and the expressive power of attention mechanisms to achieve accurate15

and scalable simulation results. Extensive experiments demonstrate that our method16

significantly outperforms state-of-the-art approaches in modeling deformable body17

interactions. Notably, it remains effective on large-scale simulations with meshes18

exceeding 100,000 nodes, where existing methods are hindered by computational19

limitations. Additionally, we contribute a novel large-scale dataset encompassing a20

wide range of deformable body interactions to support future research in this area.21

1 Introduction22

Solving interactions between deformable bodies plays a vital role in a wide range of applications,23

including material science [6, 2], mechanical design [26, 35], and robotics [4]. The finite element24

method (FEM) is a widely used numerical approach for addressing such problems [5]. However,25

FEM typically incurs high computational costs and requires significant manual effort from engineers26

to ensure solver stability and convergence [7]. Recently, there has been growing interest in leveraging27

learning-based methods to address deformable body simulation. MeshGraphNet (MGN) and related28

approaches [20, 24, 9] represent unstructured meshes as graphs and employ stacked message-passing29

blocks to propagate physical information across the mesh. Subsequent variants have introduced30

various graph pooling operations and U-Net-like architectures [17, 7, 3] to solve the multi-scale chal-31

lenges in different simulation tasks. To model interactions between distinct deformable bodies, these32

methods typically construct dynamic edges based on the proximity of mesh nodes [20, 32]. However,33

maintaining global pairwise edges across all mesh nodes becomes a significant computational bottle-34

neck, limiting the scalability of such models to larger or more complex scenes. Rubanova et al. [23]35

proposed to use 3D implicit representations like Signed Distance Function (SDF) for more efficient36

collision detection, but it has to be built on the solid body prior. Methods such as GraphCast [14]37

Submitted to the AI for Science workshop (NeurIPS 2025). Do not distribute.



Figure 1: Spatial Cells for interactions.

propose creating a background grid to which the mesh is attached, enabling more efficient message38

passing. However, this effectively converts an unstructured mesh into a structured one, which can39

work well for simple, regular geometries such as spheres. When applied to complex shapes, however,40

this approach may suffer from reduced accuracy and efficiency. Transformer-based models such as41

HCMT [32] propose using two sets of attention blocks to model contacts and collisions between42

deformable objects. However, the attention matrices are constructed over mesh nodes and global43

edges, resulting in high memory consumption. This makes the approach computationally prohibitive44

when scaling to larger meshes.45

Recent advances in computer vision [8, 22, 15] and computer geometry [33, 16] have shown that46

applying learnable tokenization to raw input signals is critical for downstream understanding and47

generation tasks. In computer vision [8, 22], input images are typically divided into patches, which are48

then mapped via linear layers to patch embeddings. These embeddings, along with added positional49

information, are processed further using token-wise operations. Similarly, in geometric tasks, 3D50

shapes—represented as meshes, point clouds, or signed distance functions (SDFs)—are typically51

embedded into compact latent representations before being passed to downstream components [34,52

16]. These approaches inspired us to design an effective tokenization strategy for physical states in53

simulation, where the state can be viewed as a set of vector fields defined over a given 3D geometry.54

In this work, we introduce Adaptive Spatial Tokenization (AST), a novel method for encoding55

diverse physical states into fixed-length embeddings. We begin by quantizing the spatial domain into a56

grid of cells, effectively mapping the unstructured mesh onto a structured spatial partition. To manage57

this representation efficiently, we also provide the option to use an octree-like hierarchical indexing58

system for scalable storage and fast lookup. As showed in Figure 1, in our proposed representation,59

adjacent mesh nodes are naturally grouped into shared cells, enabling structured local interactions.60

We then apply sparse convolution to propagate information between cells, allowing inter-object61

interactions to emerge naturally. This approach eliminates the need for explicitly constructing costly62

pairwise global edges, which is a common bottleneck in prior graph-based methods. Inspired by the63

use of cross-attention in Transformer architectures and its success in 3D shape representation[33, 16],64

we design a cross-attention module that queries features from the quantized sparse cells using compact,65

fixed-length vectors—our adaptive spatial tokens. These tokens are then processed in latent space66

using a Transformer-style network composed of a series of self-attention layers , enabling next-step67

prediction of the physical state. We conduct extensive experiments across various scenarios involv-68

ing deformable body interactions. Our method consistently outperforms state-of-the-art baselines,69

particularly in modeling inter-object interactions. Furthermore, in large-scale simulations involving70

meshes with over 100,000 nodes—where most existing methods fail due to memory constraints—our71

approach continues to produce accurate and stable predictions.72

Our primary contributions can be summarized as follows:73

1. We propose Adaptive Spatial Tokenization (AST) to efficiently represent physical states in74

simulation.75

2. We develop an attention-based model that operates on spatial tokens in latent space to76

simulate interactions between deformable bodies.77

3. Our method achieves significant improvements over state-of-the-art baselines, particularly78

in modeling complex object interactions.79

4. We introduce ABCD-XL, a novel large-scale dataset featuring diverse deformable body80

interactions for benchmarking.81

2



2 Related Work82

Solving physics simulation with learning based methods have been an active research area. One83

of the most representative work is MGN [20], in which mesh data with physical states is treated84

as graph. It adopts Encode-Process-Decode architecture [24], stacking multiple message passing85

layers as the core processing module to propagate the physics information through the graph. Several86

variants, such as BSMS [3], MAgNET [7], and GNN-U-Net [10], introduce enhancements including87

virtual edges, graph pooling, and U-Net structures to improve computational efficiency and handle88

long-range interactions. To simulate interactions between objects, these methods typically construct89

dynamic world edges by connecting spatially close mesh nodes across objects at each time step.90

FIGNet [1] extends this idea by defining multiple edge types to better capture rigid body dynamics.91

More recently, SDF-Sim [23] introduces implicit representations such as signed distance functions92

(SDFs) for efficient collision detection between rigid bodies. However, both methods focus on rigid93

body interactions and do not offer scalable solutions for deformable body simulations. HCMT [32]94

explores the use of Transformer-style attention blocks to model the dynamics between deformable95

bodies. While promising, it still relies on constructing world edges and requires computing dense96

node-wise attention matrices, which limits its scalability to large meshes.97

Recently, learnable tokenizers have been widely adopted in both computer vision [19, 8, 22] and98

computer geometry [28, 33, 16] to improve efficiency and scalability, leading to state-of-the-art99

performance in downstream tasks such as understanding and generation. In vision tasks, methods like100

ViT [8] split the input image into fixed-size patches, which are then combined with positional embed-101

dings and mapped to form patch-level image tokens. VQ-VAE [19] uses a variational autoencoder to102

learn reconstructable tokens for image patches and applies vector quantization to map them into a103

discrete codebook. In computer geometry, hierarchical structures like the Octree [18] are designed for104

efficient storage of 3D shapes and their properties [29]. In Octformer [28], following the approach of105

ViT, sparse convolutions are applied to structured point clouds to tokenize the input and map it into106

latent space for downstream tasks. Shape2VecSet [34] and Tripos [16] use cross-attention modules107

to map 3D shapes to fixed-length vectors, treating them as latent tokens. Diffusion models are then108

trained over these learned tokens for generation tasks.109

Building on insights from previous works, we treat the physical state in simulations as vector fields110

defined over a given 3D shape, and propose Adaptive Spatial Tokenization to push the boundaries.111

Inspired by approaches in graphics and vision tasks, our pipeline divide vectors in the space to cell112

patches, encode cells to compact, fixed-length tokens, and apply attention-based modules to complete113

next-step prediction in the simulation.114

3 Preliminaries115

In this section, we briefly introduce the preliminary techniques used in our method and refer interested116

readers to the original sources for further details.117

3.1 Graph Operations118

Graphs offer a flexible structure for representing complex data. We leverage message-passing119

operations to aggregate features on input graphs before transforming them into discrete tokens.120

Message-Passing Message passing refers to feature aggregation operations over graphs. While121

numerous variants exist in the literature, we adopt the formulation from [20] and extend it to122

heterogeneous graphs. Given an edge set Et, edge attributes {eij} defined on each edge, and the123

corresponding sender and receiver node features {vs
i } and {vr

j}, the message passing operation124

vr ← Message-Passing(e,vs,vr) proceeds in two steps:125

e′ij = fe(eij ,v
s
i ,v

r
j ),

v′
j
r = fv(vr

j ,
∑
i

e′ij),
(1)

where fe is the edge update function and fv is the node update function, typically implemented as126

multilayer perceptrons (MLPs), detailed in Section A.5.127

3



3.2 Spatial Operations128

Although graph operations are flexible and generalizable to various data structures, they can be129

inefficient and memory-intensive due to explicit edge representations. To address this, we introduce130

spatial techniques from the 3D vision literature—originally designed for large-scale point clouds—to131

enable more efficient computation.132

Sparse Convolution Sparse convolution is a powerful technique widely used in 3D shape analysis133

and synthesis [11, 31, 29], and leverages octree structures to compress spatial information without134

loss. In the context of mesh-based physical simulation, we briefly outline how sparse convolution is135

applied, and refer readers to [29] for more comprehensive details.136

Starting from a unit cell that encompasses the entire 3D object, an octree is constructed by recursively137

subdividing each cell into eight child cells whenever the parent cell contains at least one mesh node.138

This process continues until a maximum predefined level-L is reached, and the cells at level-L have139

side length 21−L. A sparse convolution from level-(l + s) to level-l is applied at each non-empty140

level-l cell cli using the following rule:141

cli =

K∑
k=1

wl
k · cl+s

N (l+s,i,k) + bl, i ∈ [1, N l], (2)

where cli denotes the feature at cli, N
l is the number of non-empty cells at level-l and v′c

t =142

[cL1 , ..., c
L
NL ]. K is the number of neighbors involved in the convolution, wk and b are learnable143

convolution weights and bias, and N (l + s, i, k) returns the k-th neighboring cell relative to cli at144

level-(l + s).145

Farthest Point Sampling The Farthest Point Sampling (FPS, [21]) algorithm selects a representa-146

tive subset of points (or cells, in our context) based on spatial distribution. It is defined as147

h = FPS(c,pc), (3)

where c is the input feature set with corresponding spatial positions pc, and h ⊂ c is the sampled148

subset.149

4 Method150

4.1 Problem Setup151

We consider the evolution of the physics-based system discretized on a mesh, which could be152

directly represented by a heterogeneous graph Gt = ({Vm
t ,Ve

t }, {Em2m
t , Em2e

t , Ee2mt }). Vm
t and Ve

t153

represent the node sets associated with physical properties (e.g., material properties, strain, stress)154

defined on mesh nodes and element nodes, respectively. The edge sets Em2m
t , Em2e

t , and Ee2mt155

capture physical relationships between mesh-to-mesh, mesh-to-element, and element-to-mesh pairs,156

respectively.157

We choose to include the element nodes besides the mesh nodes to form a heterograph, as we158

found that explicitly modeling elements is critical for realistic physical simulations. Many physical159

quantities—such as strain and stress—are defined via integration over entire elements rather than at160

individual nodes. Thus, representing such properties at the element level aligns more naturally with161

formulations found in classical PDE solvers.162

At each time step t, certain node positions or physical properties may be externally specified. These163

are collectively referred to as the boundary condition Bt. For example, in a quasi-static scenario164

where a deformable object is being compressed by a rigid body, the movement of the rigid body must165

be provided; otherwise, the resulting deformation cannot be inferred solely from the current state.166

The objective is to model the evolution of the vector field by learning a transformation F :167

Ĝt+1 = F(Bt, Gt, Gt−1, Gt−2, . . . , Gt−h+1), (4)

where h is the number of historical steps considered.168

4



Figure 2: Model structure overview. Graph-based physical states are encoded into latent tokens via
Adaptive Spatial Tokenization (AST), processed with attention-based mechanism, and decoded back
for next-step prediction.

Mesh Aggregation (Section 4.2.3) Cell Tokenization (Section 4.2.4)

4.2 Adaptive Spatial Tokenization169

4.2.1 Overall Architecture170

Existing methods typically employ message-passing or graph pooling operations to retain the ex-171

pressive power of graph representations. However, graph-based structures do not scale well to172

large-scale meshes, and their information aggregation is inherently slow due to the localized nature173

of propagation. To overcome these limitations, our novel approach—Adaptive Spatial Tokenization174

(AST)—aggregates features defined on graphs into compact latent tokens through the following steps:175

1. Encode the raw features on Gt into an embedded feature graph Ḡt (Section 4.2.2).176

2. Aggregate the mesh node features v̄m
t from Ḡt into cell features v̄c

t defined on spatial cells177

CL,t (Section 4.2.3).178

3. Project the cell features v̄c
t into a fixed-length set of latent tokens ht (Section 4.2.4).179

4. After transformer-based processing on ht, decode the tokens back to spatial cells CL,t, and180

then reconstruct the output graph Ĝt+1 (Section 4.2.5).181

Notably, the spatial cells are constructed on a per-frame basis to capture instantaneous spatial182

interactions at each time step. The overall model architecture is illustrated in Figure 2.183

4.2.2 Graph Embedding Encoder184

The input heterograph Gt will first be transformed to Ḡt = ({V̄m
t , V̄e

t }, {Ēm2m
t , Ēe2mt , Ēm2e

t }) via185

the graph embedding encoders. Specifically, node features vm
t , ve

t and edge features em2m
t , em2e

t ,186

ee2mt are projected into latent space using MLPs, resulting in v̄m
t , v̄e

t , ēm2m
t , ēm2e

t , and ēe2mt . An187

E2M (element-to-mesh) message-passing operation is then applied to aggregate features from element188

nodes to mesh nodes:189

v̄m
t ← Message-Passing(ēe2mt , v̄e

t , v̄
m
t ). (5)

Optionally, or when no element-level features are available, an M2M (mesh-to-mesh) message-passing190

operation can be performed to encode positional and structural information via Em2m
t :191

v̄m
t ← Message-Passing(ēm2m

t , v̄m
t , v̄m

t ). (6)

These message-passing operations encode the input graph structure and features into the mesh node192

representation v̄m
t .193

5



4.2.3 Mesh To Cell Aggregation194

Although graphs offer high flexibility and generalization across diverse data structures, message-195

passing operations typically require explicitly materializing vs and vr along graph edges, which196

leads to significant memory overhead on large-scale graphs. Our method overcomes this limitation197

by partitioning space into a regular grid and mapping mesh nodes onto it.198

We construct an octree of depth L based on the mesh node positions pm
t , and refer the non-empty199

leaf cells as CL,t, visualized in Figure 1. We then establish edge sets between mesh nodes and spatial200

cells—denoted Em2c
t and Ec2m

t —based on spatial inclusion, i.e., whether a mesh node falls within a201

given cell. The positions of the cells pc
t are defined as their center coordinates, and the cell features202

v̄c
t are obtained by an average of the connected mesh nodes.203

The number of cells—equivalently, the octree level L—is a design parameter akin to the world edge204

radius: mesh nodes falling within the same cell are considered to interact. For large-scale graphs or205

dense meshes, we split the space with finer resolution cells CL+LOCNN , stored in a (L+ LOCNN)-level206

octree, and then apply sparse convolutions to downscale the features to the L level. Impact of spatial207

cells resolution is detailed in section A.5.208

It’s worth noticing that although we do not explicitly model interactions between separate graphs,209

by aggregating the mesh nodes into spatial cells, it can capture such interactions through cells that210

encompass nodes from different graphs. Experiments in section 5.2 demonstrates such capability.211

M2C (mesh-to-cell) message passing is performed to aggregate mesh node features to the correspond-212

ing cell features:213

v̄c
t ← Message-Passing(v̄c

t , v̄
m
t ). (7)

Later, to reconstruct features back onto the original graph from the cell representations, a C2M214

(cell-to-mesh) message-passing operation can be performed:215

v̄m
t ← Message-Passing(v̄m

t , v̄c
t ). (8)

4.2.4 Cell Tokenization216

Spatial cells capture the structure and information efficiently and effectively. While OCNN or217

message-passing operations can be applied to further aggregate the features within each interaction218

cell, these methods are inherently local—propagating information incrementally through neighbor-219

hood connections. This introduces an inductive locality bias into the learned representations. In220

contrast, attention mechanisms [27] are designed to overcome such limitations by enabling global fea-221

ture aggregation in a single step, without relying on local connectivity. This makes them particularly222

well-suited for capturing long-range dependencies and holistic patterns in complex graphs.223

FPS

v

CrossAttn

query context

h

h

CrossAttn

v

contextquery

PosEmb

Figure 3: The encoder (left) and decoder (right)
cross-attention blocks. We use v to denote fea-
ture vectors on the sparse grid (i.e., the previ-
ously defined sparse cells), and h to denote the
compact latent tokens. PosEmb and FPS are in-
troduced in Section A.4.

We apply cross-attention mechanisms to transform224

features embedded in spatial cells CL into com-225

pact latent tokens ht with a selected dimension226

dtoken, as illustrated in Figure 3. Details of our227

attention module design are at Section A.4.228

ṽc
t = PosEmb(v̄c

t ,p
c
t),

ht = CrossAttn(FPS(ṽc
t ,p

c
t), ṽ

c
t ),

(9)

4.2.5 Processor and Decoder229

The latent tokens ht are further processed through230

LSA layers of self-attention modules to condense231

and integrate global information. During decod-232

ing, to reconstruct features on the spatial cells233

CL,t from the processed latent tokens, we use the234

positionally embedded features as queries and the235

latent tokens as context for an cross-attention op-236

eration, namely:237

v̄c
t ← CrossAttn(ṽc

t ,ht). (10)

6



The output mesh graph features are first obtained via Equation (8), and the predicted mesh features238

v̂m
t+1 are then produced by applying an MLP. Similarly, the output element features v̂e

t+1 are computed239

through an M2E (mesh-to-element) message-passing followed by an MLP.240

5 Experiments241

5.1 Experiment Setup242

Datasets We adopt two representative public datasets from GraphMeshNets [20] that involve object243

interactions: 1) DEFORMINGPLATE: A deformable object is compressed by a rigid body, with244

~1.3k mesh/4k element nodes per mesh; 2) SPHERESIMPLE: A piece of cloth interacts with a245

kinematic sphere, with ~2k mesh/4k element nodes per mesh. To further validate our method on246

large-scale physical simulation tasks—an area where existing literature is limited—we introduce two247

new datasets: 3)ABCD: ABCD stands for A Big CAD Deformation, where two deformable objects248

squish each other, with ~4k mesh/12k element nodes per mesh; 4) ABCD-XL: follows the same setup249

as the ABCD dataset, except it uses significantly denser meshes, with ~100k mesh/300k element250

nodes per mesh.251

Baselines We compare our method against several strong baselines across all datasets. 1) MESH-252

GRAPHNETS(MGN): A state-of-the-art message-passing-based graph neural network; 2) BI-253

STRIDE MULTI-SCALE GNN(BSMS): Extends MeshGraphNets with bi-stride pooling to con-254

struct a U-Net structure for improved scalability; 3) HIERARCHICAL CONTACT MESH TRANS-255

FORMER(HCMT): A Transformer-based architecture specifically designed to model interaction256

problems using contact-aware mesh transformer blocks. The details of our training settings can be257

found in Section A.2.258

5.2 Results259

We evaluate all methods on the benchmark datasets by selecting the checkpoints with the lowest260

validation loss and report their rollout inference accuracy on the test set in Table 5.2. All experiments261

on DEFORMINGPLATE, SPHERESIMPLE, and ABCD are conducted on a single machine equipped262

with 4 V100 GPUs. For the large-scale ABCD-XL dataset, experiments are run on a machine with263

8 V100 GPUs. Other training details can be found in Section A.1 and Section A.2. Our method264

demonstrates superior performance compared to prior methods, achieving a substantial improvement.265

More discussions can be found in Section A.3.266

Dataset MGN BSMS HCMT Ours

DEFORMINGPLATE
u 5.5± 0.2 5.4± 0.5 2.9± 0.2 1.1± 0.1
σ 6891± 89 10719± 544 7272± 45 4842± 174

SPHERESIMPLE u 19.0± 4.9 15.0± 0.8 Diverge 14.4± 0.8

ABCD u 0.641± 0.007 0.736± 0.017 0.541± 0.006 0.505± 0.002

ABCD-XL u OOM OOM OOM 0.480± 0.002
σ 2.11± 0.82

Table 1: RMSE (rollout-all, ×10−3 for displacement) evaluation results. u = xt − x0 denotes
displacement and σ denotes stress. OOM stands for out-of-memory.

Spatial Cell for Interactions Existing graph-based methods typically rely on world edges to model267

interactions. However, computing world edges requires evaluating pairwise distances between mesh268

nodes, leading to an O(n2) complexity that limits scalability on large-scale meshes. In contrast,269

our method leverages spatial quantization to reduce this complexity to O(n) by aggregating nodes270

into structured cells. We visualize these cells in Figure 4, demonstrating their ability to effectively271

capture interactions. While it is possible to compute world edges using similar spatial quantization272

techniques, our approach goes further—by encoding graphs into compact latent tokens, our model273

combines the expressive power of graph representations with the computational efficiency and global274

context aggregation capabilities of token-based processing.275

7



Figure 4: We visualize the spatial cells on the ABCD dataset (left) and DEFORMINGPLATE dataset
(right). The figure displays one representative feature channel across the cells. Warmer colors indicate
higher feature norms.

We present a prediction result on the ABCD dataset in Figure 5. Additional visualizations and further276

experiments supporting the effectiveness of our method are provided in Section B.277

GT MGN BSMS

HCMT Ours

Figure 5: Visualization results on the ABCD dataset. Displacement is visualized using color warmth,
with warmer tones indicating greater displacement magnitude.

6 Conclusion278

In this paper, we proposed a new method that encodes graphs into compact tokens by leveraging279

sparse 3D operations, followed by transformer-based processing for expressive learning. This strategy280

combines the structural richness of graphs with the scalability and efficiency of 3D computation,281

enabling our model to scale to large inputs without compromising accuracy. In the future, we plan282

to extend this approach toward unsupervised representation learning, aiming to further enhance its283

generalization capability.284

8



References285

[1] Kelsey R. Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-286

Gonzalez, Peter W. Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction287

graph networks. In International Conference on Learning Representations (ICLR), 2023.288

[2] Ever J Barbero. Finite element analysis of composite materials using Abaqus®. CRC press,289

2023.290

[3] Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based291

physical simulation with bi-stride multi-scale graph neural network. In International conference292

on machine learning, pages 3541–3558. PMLR, 2023.293

[4] Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard. A review of physics294

simulators for robotic applications. IEEE Access, 9:51416–51431, 2021.295

[5] Richard Courant et al. Variational methods for the solution of problems of equilibrium and296

vibrations. Lecture notes in pure and applied mathematics, pages 1–1, 1994.297

[6] Sarah David Müzel, Eduardo Pires Bonhin, Nara Miranda Guimarães, and Erick Siqueira Guidi.298

Application of the finite element method in the analysis of composite materials: A review.299

Polymers, 12(4):818, 2020.300

[7] Saurabh Deshpande, Stéphane P.A. Bordas, and Jakub Lengiewicz. Magnet: A graph u-net301

architecture for mesh-based simulations. Engineering Applications of Artificial Intelligence,302

133:108055, 2024.303

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,304

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.305

An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint306

arXiv:2010.11929, 2020.307

[9] Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia.308

Multiscale MeshGraphNets. In ICML 2022 2nd AI for Science Workshop, 2022.309

[10] Rini Jasmine Gladstone, Helia Rahmani, Vishvas Suryakumar, Hadi Meidani, Marta D’Elia,310

and Ahmad Zareei. Gnn-based physics solver for time-independent pdes. arXiv preprint311

arXiv:2303.15681, 2023.312

[11] Ben Graham. Sparse 3d convolutional neural networks, 2015.313

[12] Omar M Hafez and Mark M Rashid. A robust workflow for b-rep generation from image masks.314

Graphical Models, 128:101174, 2023.315

[13] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny316

Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for317

geometric deep learning. In Proceedings of the IEEE/CVF conference on computer vision and318

pattern recognition, pages 9601–9611, 2019.319

[14] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,320

Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning321

skillful medium-range global weather forecasting. Science, 382(6677):1416–1421, 2023.322

[15] Tianhong Li, Huiwen Chang, Shlok Kumar Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan.323

Mage: Masked Generative Encoder to Unify Representation Learning and Image Synthesis. In324

Computer Vision and Pattern Recognition (CVPR), pages 2142–2152, 2023.325

[16] Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,326

Yuan-Chen Guo, Ding Liang, Wanli Ouyang, and Yan-Pei Cao. Triposg: High-Fidelity 3d327

Shape Synthesis using Large-Scale Rectified Flow Models. arXiv.org, abs/2502.06608, 2025.328

[17] Mario Lino, Chris Cantwell, Anil A Bharath, and Stathi Fotiadis. Simulating continuum329

mechanics with multi-scale graph neural networks. arXiv preprint arXiv:2106.04900, 2021.330

9



[18] Donald Meagher. Geometric modeling using octree encoding. Computer graphics and image331

processing, 19(2):129–147, 1982.332

[19] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural Discrete Representation333

Learning. In Conference on Neural Information Processing Systems (NeurIPS), pages 6306–334

6315, 2017.335

[20] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-336

based simulation with graph networks. In International conference on learning representations,337

2020.338

[21] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical339

feature learning on point sets in a metric space. Advances in neural information processing340

systems, 30, 2017.341

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal,342

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and I. Sutskever.343

Learning Transferable Visual Models From Natural Language Supervision. In International344

Conference on Machine Learning, pages 8748–8763, 2021.345

[23] Yulia Rubanova, Tatiana Lopez-Guevara, Kelsey Allen, Will Whitney, Kimberly L Stachenfeld,346

and Tobias Pfaff. Learning rigid-body simulators over implicit shapes for large-scale scenes347

and vision. Advances in Neural Information Processing Systems, 37:125809–125838, 2024.348

[24] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Pe-349

ter W. Battaglia. Learning to Simulate Complex Physics with Graph Networks. In International350

Conference on Machine Learning (ICML), pages 8459–8468, 2020.351

[25] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.352

[26] BS Thompson and CK Sung. A survey of finite element techniques for mechanism design.353

Mechanism and Machine Theory, 21(4):351–359, 1986.354

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,355

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information356

processing systems, 30, 2017.357

[28] Peng-Shuai Wang. Octformer: Octree-based Transformers for 3d Point Clouds. ACM Transac-358

tions on Graphics, 42(4):1–11, 2023.359

[29] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-cnn: Octree-based360

convolutional neural networks for 3d shape analysis. ACM Transactions On Graphics (TOG),361

36(4):1–11, 2017.362

[30] Sifan Wang, Hanwen Wang, Jacob H Seidman, and Paris Perdikaris. Random weight363

factorization improves the training of continuous neural representations. arXiv preprint364

arXiv:2210.01274, 2022.365

[31] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,366

18(10), 2018.367

[32] Youn-Yeol Yu, Jeongwhan Choi, Woojin Cho, Kookjin Lee, Nayong Kim, Kiseok Chang,368

ChangSeung Woo, Ilho Kim, SeokWoo Lee, Joon-Young Yang, Sooyoung Yoon, and Noseong369

Park. Learning Flexible Body Collision Dynamics with Hierarchical Contact Mesh Transformer.370

In International Conference on Learning Representations (ICLR), 2024.371

[33] Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter Wonka. 3dshape2vecset: A 3d Shape372

Representation for Neural Fields and Generative Diffusion Models. ACM Transactions on373

Graphics (TOG), 42(4):92:1–92:16, 2023.374

[34] Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape375

representation for neural fields and generative diffusion models. ACM Transactions On Graphics376

(TOG), 42(4):1–16, 2023.377

[35] Olgierd Cecil Zienkiewicz and Robert Leroy Taylor. The finite element method for solid and378

structural mechanics. Elsevier, 2005.379

10



A Technical Appendices and Supplementary Material380

A.1 Dataset Details381

The ABCD Dataset We constructed a larger and more generalized dataset. The goal of this dataset382

was to have a wide variety of geometric shapes that are deformed after coming into contact with383

each other. We used the ABC dataset [13], which is a CAD model dataset used for geometric deep384

learning, to get a wide sample of parts and shapes to deform. To generate a simulation, we first385

randomly select two CAD geometries, then auto-mesh them with the meshing tool Shabaka [12]. We386

then align the two meshed parts in 3D space and apply compressive boundary conditions to simulate387

the parts coming into contact. Figure 6 illustrates the workflow of the dataset construction process.388

Figure 7 shows several example simulations and the modes of deformation achieved through contact.389

Figure 6: Randomized FEA simulation dataset using geometry from ABC dataset.

Figure 7: The FEA simulation results using ABC CAD dataset highlight various deformation modes,
including compression with associated tension around a hole, as well as plate and beam bending.

Dataset Settings In Table 2 we list details of all the dataset used in the experiments.390

Our method uses slightly different input features with [20], as we do not explicitly compute world391

edges. The input and output features used in our method are summarized in Table 3. Specifically,392

vm
i and ve

i represent the input features on mesh and element nodes, respectively, while vm
o and ve

o393

denote the corresponding output features. em2m
i and ee2mi are input edge features for mesh-to-mesh394

(m2m) and element-to-mesh (e2m) edges.395

We use n and m to denote node type and material type, respectively. The node type indicates whether396

a mesh node is a boundary node—such nodes have predefined next-frame values and therefore do not397

require updates. σ denotes stress.398

For MGN, BSMS, and HCMT, the input and output features follow the exact definitions from399

[20] on SPHERESIMPLE and DEFORMINGPLATE. We note that in the BSMS paper, the authors400

included velocity as an input feature for DEFORMINGPLATE. In contrast, we follow the original401

Dataset System Solver Mesh type steps ∆t rW

SPHERESIMPLE cloth ArcSim triangle 3D 500 0.01 0.05
DEFORMINGPLATE hyper-el. COMSOL textrahedral 3D 400 - 0.03
ABCD/ABCD-XL hyper-el. Abaqus textrahedral 3D 21 - 0.003

Table 2: Dataset details. rW denotes the world edge radius, meaning that nodes within a distance of
rW are considered connected by world edges. Note that world edges are only computed for MGN,
BSMS, and HCMT.

11



MeshGraphNets (MGN) implementation, which uses node type and (relative) positions as input. On402

ABCD, the definitions of vm
i , em2m

i , and vm
o are consistent with that in Table 3, and the world edges403

are associated with edge features pij
t

∣∣∥pij
t ∥.404

Dataset vm
i ve

i em2m
i , ee2mi vm

o ve
o history

SPHERESIMPLE n, ṗt ṗt pij
0

∣∣∥pij
0 ∥

∣∣pij
t

∣∣∥pij
t ∥ p̈t - 1

DEFORMPLATE n,ut ut pij
0

∣∣∥pij
0 ∥

∣∣pij
t

∣∣∥pij
t ∥ ṗt, σt+1 - 0

ABCD n, m, ut ut pij
0

∣∣∥pij
0 ∥

∣∣pij
t

∣∣∥pij
t ∥ ṗt - 0

ABCD-XL n,ut m, σt, ut pij
0

∣∣∥pij
0 ∥

∣∣pij
t

∣∣∥pij
t ∥ ṗt σt+1 0

Table 3: Input and output features for our method.

World Edge Calculation We adopt the world-edge construction method proposed in the MGN405

paper, with modifications to accommodate the dense meshes in the ABCD dataset. Compared to406

DEFORMINGPLATE and SPHERESIMPLE, the meshes in ABCD are significantly denser, which causes407

the original world-edge computation to sometimes produce world edges even larger than mesh edges.408

To address this, we retain only the 1000 world edges with the smallest pairwise distances.409

RMSE Calculation The Root Mean Square Error (RMSE) is computed in a per-sequence manner:410

we first calculate the mean squared error for each sequence, then take the square root, and finally411

average the RMSE across all sequences in the dataset.412

A.2 Training Settings413

For all datasets, we adopt a pairwise training strategy where a graph is randomly selected from a414

sequence as the input, and its subsequent graph is used as the target. We follow the same training415

noise strategy as proposed in [20]. The noise scale is set to 0.003 for both the ABCD and ABCD-XL416

datasets. All experiments are conducted on a machine equipped with four V100-32GB GPUs, unless417

otherwise specified.418

We did some modifications to the training process for a improved performance:419

Batch Size We increased the training batch size from 1 or 2 to 48 (12 per GPU on a 4-GPU node) for420

MGN and BSMS which showed a much faster training procedure. HCMT inherently not applicable421

on batched graphs, so we kept a batch size with 1 per GPU.422

Learning Rate We adopt square root scaling for the learning rate with respect to batch size. Starting423

with a base learning rate of 0.0001 for a batch size of 2, the final learning rate LR for a batch size424

of 48 is computed as 0.0001 ×
√
48/2 ≈ 0.00049. The learning rate is linearly warmed up from425

0.0001LR to LR over the first 2000 steps, followed by cosine decay to zero at the 101st epoch426

(training stops at the 100th epoch).427

For purely graph-based methods—namely MGN, HCMT, and BSMS—we found that the learning428

rate scheduling strategy facilitates faster convergence, while the square root scaling strategy had a429

negative effect. Therefore, we retain the scheduling strategy and use a fixed learning rate of 0.0001430

across all datasets.431

Training Iterations We extend the training iterations from 5M steps (approximately 25 epochs) to432

100 epochs.433

Loss We use mean squared error (MSE) loss across all experiments. For the DEFORMINGPLATE434

and ABCD-XL datasets, we adopt multi-head outputs to jointly predict displacement and stress,435

assigning loss weights of 1 and 0.01, respectively.436

12



A.3 Further Discussion437

MGN MeshGraphNets (MGN) is a strong baseline for mesh-based physical simulations due to438

the expressiveness of its graph-based representation. However, this expressiveness also introduces439

several challenges:440

• Edge overhead: The computational burden in graph models often arises from the edge set,441

which can be several times larger than the node set. This issue is exacerbated on large-scale442

meshes, where edge-based feature aggregation results in significant computational and443

memory overhead.444

• Limited global context: Message-passing operations in graphs are inherently local, re-445

quiring many iterations to propagate information across distant nodes. For meshes with446

over 100K nodes, hundreds of message-passing steps may be needed to fully capture global447

interactions.448

• Scalability of world edges: On dense meshes, the number of world edges can grow449

prohibitively large. This not only increases computation but also makes it difficult to450

distinguish meaningful interactions from spurious ones.451

BSMS BSMS introduces the bi-stride pooling mechanism to address some of the limitations of452

MGN. By recursively down-scaling the graph—halving the mesh size at each stage—the method453

reduces both the number of nodes and edges, allowing for faster propagation of global information.454

While this strategy proves effective for small to medium-scale meshes, it still inherits the struc-455

tural limitations of graph-based methods when applied to large-scale problems. In industrial FEA456

simulations where mesh sizes can exceed 100K elements, the graph structure remains a bottleneck.457

Moreover, as discussed in Section B.2, the bi-stride pooling algorithm fails to generalize effectively458

to volume meshes, limiting its applicability to 3D deformable body problems. Furthermore, although459

pooling edges can be precomputed—thereby accelerating training—the precomputation process460

involves matrix multiplications whose complexity scales with the number of mesh nodes. This be-461

comes prohibitively expensive for large meshes, limiting the applicability of BSMS in high-resolution462

simulation settings.463

HCMT HCMT incorporates attention mechanisms to address one of the key limitations of464

MGN—its inefficiency in aggregating global information. However, the attention computations465

in HCMT are performed directly on each mesh node. While they modify the original attention466

formulation to avoid the O(n2) complexity associated with standard attention matrices, this comes at467

the cost of reduced theoretical soundness. Moreover, despite these modifications, the method still468

scales poorly to large-scale meshes, limiting its practicality in high-resolution simulation tasks.469

On the SPHERESIMPLE dataset, HCMT performs well during the initial 50 frames but gradually di-470

verges thereafter. This suggests that, while HCMT is effective on the quasi-static DEFORMINGPLATE471

dataset, it may face difficulty generalizing to dynamic problems like SPHERESIMPLE.472

A.4 Transformer Operations473

Following the design in [34], originally developed for point clouds, we extend this framework to474

handle vector fields.475

Positional Embedding Given a feature set c with associated positions pc, we first inject spatial476

information into the features via positional embedding:477

c′ = c+ PosEmb(pc), (11)

where PosEmb : Rd → Rdc is a column-wise embedding function that maps input positions pc (with478

d ∈ {2, 3}) to the feature space of dimension dc, matching the dimensionality of c.479

Attention An attention operation is defined to aggregate three feature vectors q ∈ RNq×dq ,480

k ∈ RNk×dk , v ∈ RNv×dv , where Nk, Nq, Nv ∈ R are sequence lengths and dq, dk, dv ∈ R are481

feature dimensions,482

Attention(q,k,v) = softmax(
qkT

√
dk

)v. (12)

13



MHA

LayerNorm

FFN

LayerNorm

q k,v

LayerNorm

Outputs

Query Context

CrossAttn

MHA

LayerNorm

FFN

q,k,v

LayerNorm

Outputs

Inputs

SelfAttn

Figure 8: Transformer blocks. The CrossAttn is displayed on the left, while the SelfAttn is displayed
on the right.

A Multi-head Attention (MHA) operation is defined as483

MHA(q,k,v) = Concat(head1, ..., headh)W o,

headi = Attention(qW q
i ,kW

k
i ,vW

v
i ).

(13)

Transformer Blocks Building on the multi-head attention mechanism and adopting a pre-norm484

structure, we construct two types of Transformer blocks, as illustrated in Figure 8.485

• CrossAttn: Given a set of query features cquery and context features ccontext, the Cross-486

Attention operation487

h = CrossAttn(cquery, ccontext) (14)
aggregates information from ccontext into cquery. The output h maintains the same length488

as the query, making this block particularly useful for compressing or decompressing489

representations of the context features.490

• SelfAttn: This is the standard self-attention mechanism where the query and context features491

are identical, i.e.,492

h = SelfAttn(c). (15)

FFN stands for Feed-Forward Network. In all our CrossAttn and SelfAttn blocks, we use an FFN493

module with GEGLU activation as described in [25].494

A.5 Model Details495

MLP The MLPs used in input, message-passing and output layers are two-layer MLPs with ReLU496

activations with output size of 128. The hidden layer size of message-passing and input MLPs are497

128, while the output MLPs are 32. The outputs of the message-passing MLPs are further normalized498

using LayerNorm. To enhance their effectiveness, we adopt Random Weight Factorization (RWF,499

[30]).500

Transformer We use attention layers with 8 heads, each with a feature dimension of 64. The query,501

key, and value projections are implemented using bias-free linear layers, while the output projection502

includes a bias term. We adopt a pre-norm setup, applying LayerNorm before both the attention503

and FFN layers. The FFN follows the GEGLU formulation as described in [25], and has a hidden504

dimension of 512. Dropout with a rate of 0.1 is applied within both the attention and FFN modules.505

14



Model Architecture The input and output features on graph nodes and edges are normalized using506

statistics computed from 400 randomly selected graph pairs from the dataset. Our model begins with507

an input encoding MLP that maps node and edge features into a hidden space of size 128. This is508

followed by a one-step message-passing operation—either m2m or e2m—to aggregate information509

onto the mesh nodes.510

Mesh node positions are then quantized using an Lcell-layer octree, where Lcell is a hyperparameter.511

A one-step message-passing is used to aggregate mesh node features into each cell. Optionally,512

an OCNN module with locnn layers (also a hyperparameter) is applied to downscale the features513

from the Lcell-th octree layer to the (Lcell − locnn)-th layer. Each OCNN layer consists of a sparse514

convolution with a 3× 3× 3 kernel and a stride of 2, which effectively moves features up one level515

in the octree hierarchy.516

To obtain a compact latent representation, a cross-attention layer is applied to map features on the517

sparse cells to a fixed set of tokens of dimension dtoken. These tokens are then processed using LSA518

self-attention transformer blocks.519

The decoding process mirrors the encoder. We first apply a cross-attention mechanism to decode the520

latent tokens back to the octree features. These features are then upscaled to the original Lcell-layer521

resolution using a transposed sparse convolution-based OCNN with the same number of layers as in522

the encoder. A one-step message-passing operation is performed to decode the cell features back to523

the mesh nodes. The resulting features are concatenated with the original mesh node features from524

the input encoding MLP to produce v′m
t , which is then passed through an output MLP to generate525

the final predictions. If output features are also required on element nodes, an additional one-step526

message-passing—without edge features—is performed from mesh to element nodes, followed by a527

separate output MLP.528

The fore-mentioned hyperparameter for each dataset are listed in Table 4.529

Dataset Lcell locnn dtoken LSA

SPHERESIMPLE 5 0 256 12
DEFORMINGPLATE 5 0 256 12

ABCD 8 0 512 12
ABCD-XL 12 4 512 12

Table 4: Model hyperparameter.

15



B Additional Experiments530

B.1 Quantization Cell Length531

We run our model on the DEFORMINGPLATE dataset with different Lcell values and report the532

validation loss in Figure 9. When Lcell = 7, all mesh nodes are assigned to a single cell at the initial533

frame. These results verify that grouping a reasonable number of mesh nodes into interaction cells534

plays a vital role in effectively learning deformable body interactions.535

Figure 9: Validation results with different Lcell settings on the DEFORMINGPLATE dataset. The
nodes/cells ratio refers to the average number of mesh nodes contained within a single cell at the
initial frame.

B.2 Computational Efficiency and Scaling Capability536

The training and inference times are reported in Table 5. All experiments are conducted on a537

machine equipped with 4 V100 GPUs. While increasing the batch size significantly improves training538

efficiency (e.g., 2.8× for MGN, 4.8× for BSMS, and 3.1× for ours when using a batch size of 48 on539

SPHERESIMPLE), we ensure a fair comparison by fixing the batch size to 4 (i.e., 1 per GPU) across all540

methods. Our method demonstrates comparable training and inference efficiency to state-of-the-art541

graph-based approaches on small-scale mesh size.542

Table 5: Training and inference epoch time (seconds) evaluation. The reported epoch time refers to
the total time taken for a single pass over the entire dataset during training or inference. For a fair
comparison, all models are evaluated on a 4-GPU node with a total batch size of 4.

Model DEFORMINGPLATE SPHERESIMPLE ABCD ABCD-XL

Train Val Train Val Train Val Train Val

MGN 9393 316 8744 361 3425 215 - -
BSMS 17700 410 12754 508 5442 332 - -
HCMT 16450 470 12913 510 5862 328 - -
Ours 9333 392 7282 394 2742 188 16435 8123

To further evaluate scalability, we conducted experiments on the ABCD-XL dataset by generating543

subgraphs with varying mesh sizes. We compared the training and inference time of different methods544

on a machine equipped with 4 V100 GPUs, and we used the training set to evaluate both training545

and inference efficiency. As shown in Figure 10-11, all methods exhibit similar performance in the546

small-scale regime. However, our method demonstrates significantly better scalability as the element547

size exceeds 20k.548

16



Figure 10: Training time per epoch across different mesh sizes. MGN, BSMS, and HCMT run out of
memory at mesh sizes beyond 40K, 8K, and 6K, respectively.

Figure 11: Inference time per epoch across different mesh sizes.

Although the BSMS method demonstrated good scalability on surface meshes in its original paper,549

we observed that it scales poorly on volume meshes due to the increased number of bi-stride edges550

introduced during pooling. On surface meshes, bi-stride edges consistently downsample upper-layer551

edges. However, in the case of volume meshes, the edge count can grow significantly. For example,552

in a volume mesh graph with 21k mesh nodes, the number of nodes and edges across a 6-layer BSMS553

model are: 21k/210k, 11k/276k, 5.7k/534k, 3.2k/1.8M, 1.8k/1.6M, 0.9k/483k.554

17



B.3 Rollout Visualization555

Figure 12-15 are visualizations on the benchmark datasets.556

GT MGN BSMS

HCMT Ours

Figure 12: Visualization results on the DEFORMINGPLATE dataset. Stress is visualized using color
warmth, with warmer tones indicating greater stress magnitude.

18



Frame 250 Frame 360 Frame 390

G
T

M
G

N
B

SM
S

H
C

M
T

O
ur

s

Figure 13: Rollout visualization results on the DEFORMINGPLATE dataset.

19



Frame 88 Frame 172 Frame 500

G
T

M
G

N
B

SM
S

O
ur

s

Figure 14: Rollout visualization results on the SPHERESIMPLE dataset.

20



Frame 5 Frame 10 Frame 20
G

T
M

G
N

B
SM

S
H

C
M

T
O

ur
s

Figure 15: Rollout visualization results on the ABCD dataset.

21


	Introduction
	Related Work
	Preliminaries
	Graph Operations
	Spatial Operations

	Method
	Problem Setup
	Adaptive Spatial Tokenization
	Overall Architecture
	Graph Embedding Encoder
	Mesh To Cell Aggregation
	Cell Tokenization
	Processor and Decoder


	Experiments
	Experiment Setup
	Results

	Conclusion
	Technical Appendices and Supplementary Material
	Dataset Details
	Training Settings
	Further Discussion
	Transformer Operations
	Model Details

	Additional Experiments
	Quantization Cell Length
	Computational Efficiency and Scaling Capability
	Rollout Visualization


