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Abstract

Simulating interactions between deformable bodies is vital in fields like material
science, mechanical design, and robotics. While learning-based methods with
Graph Neural Networks (GNN5s) are effective at solving complex physical systems,
they encounter scalability issues when modeling deformable body interactions.
To model interactions between objects, pairwise global edges have to be created
dynamically, which is computationally intensive and impractical for large-scale
meshes. To overcome these challenges, drawing on insights from geometric repre-
sentations, we propose an Adaptive Spatial Tokenization (AST) method for efficient
representation of physical states. By dividing the simulation space into a grid of
cells and mapping unstructured meshes onto this structured grid, our approach
naturally groups adjacent mesh nodes. We then apply a cross-attention module to
map the sparse cells into a compact, fixed-length embedding, serving as tokens for
the entire physical state. Self-attention modules are employed to predict the next
state over these tokens in latent space. This framework leverages the efficiency of
tokenization and the expressive power of attention mechanisms to achieve accurate
and scalable simulation results. Extensive experiments demonstrate that our method
significantly outperforms state-of-the-art approaches in modeling deformable body
interactions. Notably, it remains effective on large-scale simulations with meshes
exceeding /00,000 nodes, where existing methods are hindered by computational
limitations. Additionally, we contribute a novel large-scale dataset encompassing a
wide range of deformable body interactions to support future research in this area.

1 Introduction

Solving interactions between deformable bodies plays a vital role in a wide range of applications,
including material science [6, 2], mechanical design [26,35]], and robotics [4]. The finite element
method (FEM) is a widely used numerical approach for addressing such problems [5]. However,
FEM typically incurs high computational costs and requires significant manual effort from engineers
to ensure solver stability and convergence [7]]. Recently, there has been growing interest in leveraging
learning-based methods to address deformable body simulation. MeshGraphNet (MGN) and related
approaches [20, 24| 9] represent unstructured meshes as graphs and employ stacked message-passing
blocks to propagate physical information across the mesh. Subsequent variants have introduced
various graph pooling operations and U-Net-like architectures [[17} 7} 3] to solve the multi-scale chal-
lenges in different simulation tasks. To model interactions between distinct deformable bodies, these
methods typically construct dynamic edges based on the proximity of mesh nodes [20}32]. However,
maintaining global pairwise edges across all mesh nodes becomes a significant computational bottle-
neck, limiting the scalability of such models to larger or more complex scenes. Rubanova et al. [23]]
proposed to use 3D implicit representations like Signed Distance Function (SDF) for more efficient
collision detection, but it has to be built on the solid body prior. Methods such as GraphCast [[14]
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Figure 1: Spatial Cells for interactions.

propose creating a background grid to which the mesh is attached, enabling more efficient message
passing. However, this effectively converts an unstructured mesh into a structured one, which can
work well for simple, regular geometries such as spheres. When applied to complex shapes, however,
this approach may suffer from reduced accuracy and efficiency. Transformer-based models such as
HCMT [32] propose using two sets of attention blocks to model contacts and collisions between
deformable objects. However, the attention matrices are constructed over mesh nodes and global
edges, resulting in high memory consumption. This makes the approach computationally prohibitive
when scaling to larger meshes.

Recent advances in computer vision [8], and computer geometry (33}, [16] have shown that
applying learnable tokenization to raw input signals is critical for downstream understanding and
generation tasks. In computer vision [8]22]], input images are typically divided into patches, which are
then mapped via linear layers to patch embeddings. These embeddings, along with added positional
information, are processed further using token-wise operations. Similarly, in geometric tasks, 3D
shapes—represented as meshes, point clouds, or signed distance functions (SDFs)—are typically
embedded into compact latent representations before being passed to downstream components
[T6]]. These approaches inspired us to design an effective tokenization strategy for physical states in
simulation, where the state can be viewed as a set of vector fields defined over a given 3D geometry.

In this work, we introduce Adaptive Spatial Tokenization (AST), a novel method for encoding
diverse physical states into fixed-length embeddings. We begin by quantizing the spatial domain into a
grid of cells, effectively mapping the unstructured mesh onto a structured spatial partition. To manage
this representation efficiently, we also provide the option to use an octree-like hierarchical indexing
system for scalable storage and fast lookup. As showed in Figure[I] in our proposed representation,
adjacent mesh nodes are naturally grouped into shared cells, enabling structured local interactions.
We then apply sparse convolution to propagate information between cells, allowing inter-object
interactions to emerge naturally. This approach eliminates the need for explicitly constructing costly
pairwise global edges, which is a common bottleneck in prior graph-based methods. Inspired by the
use of cross-attention in Transformer architectures and its success in 3D shape representation(33} [16]],
we design a cross-attention module that queries features from the quantized sparse cells using compact,
fixed-length vectors—our adaptive spatial tokens. These tokens are then processed in latent space
using a Transformer-style network composed of a series of self-attention layers , enabling next-step
prediction of the physical state. We conduct extensive experiments across various scenarios involv-
ing deformable body interactions. Our method consistently outperforms state-of-the-art baselines,
particularly in modeling inter-object interactions. Furthermore, in large-scale simulations involving
meshes with over 100,000 nodes—where most existing methods fail due to memory constraints—our
approach continues to produce accurate and stable predictions.

Our primary contributions can be summarized as follows:

1. We propose Adaptive Spatial Tokenization (AST) to efficiently represent physical states in
simulation.

2. We develop an attention-based model that operates on spatial tokens in latent space to
simulate interactions between deformable bodies.

3. Our method achieves significant improvements over state-of-the-art baselines, particularly
in modeling complex object interactions.

4. We introduce ABCD-XL, a novel large-scale dataset featuring diverse deformable body
interactions for benchmarking.
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2 Related Work

Solving physics simulation with learning based methods have been an active research area. One
of the most representative work is MGN [20], in which mesh data with physical states is treated
as graph. It adopts Encode-Process-Decode architecture [24]], stacking multiple message passing
layers as the core processing module to propagate the physics information through the graph. Several
variants, such as BSMS [3]], MAgNET [7]], and GNN-U-Net [10], introduce enhancements including
virtual edges, graph pooling, and U-Net structures to improve computational efficiency and handle
long-range interactions. To simulate interactions between objects, these methods typically construct
dynamic world edges by connecting spatially close mesh nodes across objects at each time step.
FIGNet [1] extends this idea by defining multiple edge types to better capture rigid body dynamics.
More recently, SDF-Sim [23]] introduces implicit representations such as signed distance functions
(SDFs) for efficient collision detection between rigid bodies. However, both methods focus on rigid
body interactions and do not offer scalable solutions for deformable body simulations. HCMT [32]
explores the use of Transformer-style attention blocks to model the dynamics between deformable
bodies. While promising, it still relies on constructing world edges and requires computing dense
node-wise attention matrices, which limits its scalability to large meshes.

Recently, learnable tokenizers have been widely adopted in both computer vision [19, |8, 22]] and
computer geometry [28} 133, [16] to improve efficiency and scalability, leading to state-of-the-art
performance in downstream tasks such as understanding and generation. In vision tasks, methods like
ViT [8] split the input image into fixed-size patches, which are then combined with positional embed-
dings and mapped to form patch-level image tokens. VQ-VAE [19]] uses a variational autoencoder to
learn reconstructable tokens for image patches and applies vector quantization to map them into a
discrete codebook. In computer geometry, hierarchical structures like the Octree [18]] are designed for
efficient storage of 3D shapes and their properties [29]]. In Octformer [28]], following the approach of
ViT, sparse convolutions are applied to structured point clouds to tokenize the input and map it into
latent space for downstream tasks. Shape2VecSet [34] and Tripos [[L6] use cross-attention modules
to map 3D shapes to fixed-length vectors, treating them as latent tokens. Diffusion models are then
trained over these learned tokens for generation tasks.

Building on insights from previous works, we treat the physical state in simulations as vector fields
defined over a given 3D shape, and propose Adaptive Spatial Tokenization to push the boundaries.
Inspired by approaches in graphics and vision tasks, our pipeline divide vectors in the space to cell
patches, encode cells to compact, fixed-length tokens, and apply attention-based modules to complete
next-step prediction in the simulation.

3 Preliminaries

In this section, we briefly introduce the preliminary techniques used in our method and refer interested
readers to the original sources for further details.

3.1 Graph Operations

Graphs offer a flexible structure for representing complex data. We leverage message-passing
operations to aggregate features on input graphs before transforming them into discrete tokens.

Message-Passing Message passing refers to feature aggregation operations over graphs. While
numerous variants exist in the literature, we adopt the formulation from [20] and extend it to
heterogeneous graphs. Given an edge set £, edge attributes {e;; } defined on each edge, and the
corresponding sender and receiver node features {v;} and {'v;}, the message passing operation
v" < Message-Passing(e, v*, v") proceeds in two steps:

e:J = fe(eijavfa 'U;),

o = £ Yl ®

where f¢ is the edge update function and f? is the node update function, typically implemented as
multilayer perceptrons (MLPs), detailed in Section[A.5]
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3.2 Spatial Operations

Although graph operations are flexible and generalizable to various data structures, they can be
inefficient and memory-intensive due to explicit edge representations. To address this, we introduce
spatial techniques from the 3D vision literature—originally designed for large-scale point clouds—to
enable more efficient computation.

Sparse Convolution Sparse convolution is a powerful technique widely used in 3D shape analysis
and synthesis [[L1, 31} 29]], and leverages octree structures to compress spatial information without
loss. In the context of mesh-based physical simulation, we briefly outline how sparse convolution is
applied, and refer readers to [29] for more comprehensive details.

Starting from a unit cell that encompasses the entire 3D object, an octree is constructed by recursively
subdividing each cell into eight child cells whenever the parent cell contains at least one mesh node.
This process continues until a maximum predefined level-L is reached, and the cells at level-L have
side length 21 =% A sparse convolution from level-(I + s) to level- is applied at each non-empty
level-l cell ¢! using the following rule:

K
= w0, e [N, 2)
k=1

where c! denotes the feature at ¢!, N is the number of non-empty cells at level-/ and v’} =
el ..., ckL]. K is the number of neighbors involved in the convolution, wy, and b are learnable
convolution weights and bias, and (I + s, i, k) returns the k-th neighboring cell relative to ¢! at

level-(I + s).

Farthest Point Sampling The Farthest Point Sampling (FPS, [21]) algorithm selects a representa-
tive subset of points (or cells, in our context) based on spatial distribution. It is defined as

h =FPS(c, p°), 3)

where c is the input feature set with corresponding spatial positions p¢, and h C c is the sampled
subset.

4 Method

4.1 Problem Setup

We consider the evolution of the physics-based system discretized on a mesh, which could be
directly represented by a heterogeneous graph G, = ({V/™, V£ }, {Em2™, Em2e EF2™Y). V™ and Vf
represent the node sets associated with physical properties (e.g., material properties, strain, stress)
defined on mesh nodes and element nodes, respectively. The edge sets 5{”2’”, 53”26, and €f2m
capture physical relationships between mesh-to-mesh, mesh-to-element, and element-to-mesh pairs,
respectively.

We choose to include the element nodes besides the mesh nodes to form a heterograph, as we
found that explicitly modeling elements is critical for realistic physical simulations. Many physical
quantities—such as strain and stress—are defined via integration over entire elements rather than at
individual nodes. Thus, representing such properties at the element level aligns more naturally with
formulations found in classical PDE solvers.

At each time step ¢, certain node positions or physical properties may be externally specified. These
are collectively referred to as the boundary condition ;. For example, in a quasi-static scenario
where a deformable object is being compressed by a rigid body, the movement of the rigid body must
be provided; otherwise, the resulting deformation cannot be inferred solely from the current state.

The objective is to model the evolution of the vector field by learning a transformation F:
Cryt = F(Br, Gt Gior, Gioay o, Goopn), “

where h is the number of historical steps considered.
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Figure 2: Model structure overview. Graph-based physical states are encoded into latent tokens via
Adaptive Spatial Tokenization (AST), processed with attention-based mechanism, and decoded back
for next-step prediction.
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4.2 Adaptive Spatial Tokenization

4.2.1 Overall Architecture

Existing methods typically employ message-passing or graph pooling operations to retain the ex-
pressive power of graph representations. However, graph-based structures do not scale well to
large-scale meshes, and their information aggregation is inherently slow due to the localized nature
of propagation. To overcome these limitations, our novel approach—Adaptive Spatial Tokenization
(AST)—aggregates features defined on graphs into compact latent tokens through the following steps:

1. Encode the raw features on G into an embedded feature graph G4 (Section[4.2.2)).

2. Aggregate the mesh node features v/ from G into cell features v¢ defined on spatial cells

C'r.+ (Section @)

3. Project the cell features v§ into a fixed-length set of latent tokens hy (Section[#.2.4).

4. After transformer-based processing on hy, decode the tokens back to spatial cells C7, ;, and
then reconstruct the output graph G’Hl (Section .

Notably, the spatial cells are constructed on a per-frame basis to capture instantaneous spatial
interactions at each time step. The overall model architecture is illustrated in Figure 2]

4.2.2 Graph Embedding Encoder

The input heterograph G will first be transformed to Gy = ({V/™, V¢ }, {EM2™, EL2™, EM2¢}) via
the graph embedding encoders. Specifically, node features v, v¢ and edge features e*?™, e/*2¢,
e¢2™ are projected into latent space using MLPs, resulting in v/, v¢, €7*2™, &"2¢, and &5™. An
E2M (element-to-mesh) message-passing operation is then applied to aggregate features from element
nodes to mesh nodes:

vi" < Message-Passing(e{*", v¢, vi"). ®)

Optionally, or when no element-level features are available, an M2M (mesh-to-mesh) message-passing
operation can be performed to encode positional and structural information via E/"2™:

v/ < Message-Passing(e]"*™, v}", v}"). (6)

These message-passing operations encode the input graph structure and features into the mesh node
representation v;*.
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4.2.3 Mesh To Cell Aggregation

Although graphs offer high flexibility and generalization across diverse data structures, message-
passing operations typically require explicitly materializing v® and v" along graph edges, which
leads to significant memory overhead on large-scale graphs. Our method overcomes this limitation
by partitioning space into a regular grid and mapping mesh nodes onto it.

We construct an octree of depth L based on the mesh node positions p;*, and refer the non-empty
leaf cells as C'r, 4, visualized in Figure[I] We then establish edge sets between mesh nodes and spatial
cells—denoted 5;“2° and 5§2m—based on spatial inclusion, i.e., whether a mesh node falls within a
given cell. The positions of the cells p; are defined as their center coordinates, and the cell features
v{ are obtained by an average of the connected mesh nodes.

The number of cells—equivalently, the octree level L—is a design parameter akin to the world edge
radius: mesh nodes falling within the same cell are considered to interact. For large-scale graphs or
dense meshes, we split the space with finer resolution cells C, 4 1o Stored in a (L + Locenn )-level
octree, and then apply sparse convolutions to downscale the features to the L level. Impact of spatial
cells resolution is detailed in section [A.3]

It’s worth noticing that although we do not explicitly model interactions between separate graphs,
by aggregating the mesh nodes into spatial cells, it can capture such interactions through cells that
encompass nodes from different graphs. Experiments in section [5.2] demonstrates such capability.

M2C (mesh-to-cell) message passing is performed to aggregate mesh node features to the correspond-
ing cell features:
Vi < Message-Passing(vy, vi"). @)

Later, to reconstruct features back onto the original graph from the cell representations, a C2M
(cell-to-mesh) message-passing operation can be performed:

v{" < Message-Passing(v}", vy). 8)

4.2.4 Cell Tokenization

Spatial cells capture the structure and information efficiently and effectively. While OCNN or
message-passing operations can be applied to further aggregate the features within each interaction
cell, these methods are inherently local—propagating information incrementally through neighbor-
hood connections. This introduces an inductive locality bias into the learned representations. In
contrast, attention mechanisms [27] are designed to overcome such limitations by enabling global fea-
ture aggregation in a single step, without relying on local connectivity. This makes them particularly
well-suited for capturing long-range dependencies and holistic patterns in complex graphs.

We apply cross-attention mechanisms to transform
features embedded in spatial cells C'7, into com-

pact latent tokens h; with a selected dimension v h
dtoken, as illustrated in Figure [3] Details of our PosEmb
attention module design are at Section :
A4 o 1

v{ = PosEmb(V{, p§

Vi (Vt > Pt ): e s (9) EPS |

h; = CrossAttn(FPS(V{, pf), Vi), [

query l Jcontext query ¥,y context

4.2.5 Processor and Decoder CrossAttn CrossAttn
The latent tokens h; are further processed through v v
Lg 4 layers of self-attention modules to condense h v

and integrate global information. During decod-

ing, to reconstruct features on the spatial cells  Fjgyre 3: The encoder (left) and decoder (right)
C'L,; from the processed latent tokens, we use the  .og5_attention blocks. We use v to denote fea-
positionally embedded features as queries and the e vectors on the sparse grid (i.e., the previ-
latent tokens as context for an cross-attention op- ously defined sparse cells), and h to denote the
eration, namely: compact latent tokens. PosEmb and FPS are in-

troduced in Secti
vy < CrossAttn(vy, hy). (10) roduced in Section[A.4l
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The output mesh graph features are first obtained via Equation (8), and the predicted mesh features

V{1 are then produced by applying an MLP. Similarly, the output element features V¢, ; are computed
through an M2E (mesh-to-element) message-passing followed by an MLP.

5 Experiments

5.1 Experiment Setup

Datasets We adopt two representative public datasets from GraphMeshNets [20] that involve object
interactions: 1) DEFORMINGPLATE: A deformable object is compressed by a rigid body, with
~1.3k mesh/4k element nodes per mesh; 2) SPHERESIMPLE: A piece of cloth interacts with a
kinematic sphere, with ~2k mesh/4k element nodes per mesh. To further validate our method on
large-scale physical simulation tasks—an area where existing literature is limited—we introduce two
new datasets: 3)ABCD: ABCD stands for A Big CAD Deformation, where two deformable objects
squish each other, with ~4k mesh/12k element nodes per mesh; 4) ABCD-XL: follows the same setup
as the ABCD dataset, except it uses significantly denser meshes, with ~100k mesh/300k element
nodes per mesh.

Baselines We compare our method against several strong baselines across all datasets. 1) MESH-
GRAPHNETS(MGN): A state-of-the-art message-passing-based graph neural network; 2) BI-
STRIDE MULTI-SCALE GNN(BSMS): Extends MeshGraphNets with bi-stride pooling to con-
struct a U-Net structure for improved scalability; 3) HIERARCHICAL CONTACT MESH TRANS-
FORMER(HCMT): A Transformer-based architecture specifically designed to model interaction
problems using contact-aware mesh transformer blocks. The details of our training settings can be
found in Section[A2]

5.2 Results

We evaluate all methods on the benchmark datasets by selecting the checkpoints with the lowest
validation loss and report their rollout inference accuracy on the test set in Table[5.2} All experiments
on DEFORMINGPLATE, SPHERESIMPLE, and ABCD are conducted on a single machine equipped
with 4 V100 GPUs. For the large-scale ABCD-XL dataset, experiments are run on a machine with
8 V100 GPUs. Other training details can be found in Section[A.T|and Section[A.2] Our method
demonstrates superior performance compared to prior methods, achieving a substantial improvement.
More discussions can be found in Section

Dataset MGN BSMS HCMT Ours
u 5.5+ 0.2 5.44+0.5 2.94+0.2 1.1+0.1
DEFORMINGPLATE | ‘ 6801489 107194544 7272445 4842+ 174
SPHERESIMPLE | u | 19.0£4.9 15.04+0.8 Diverge 14.4+0.8
ABCD ‘ u ‘ 0.641 £0.007 0.736 £0.017 0.541 +£0.006 0.505 4 0.002
u 0.480 + 0.002
ABCD-XL ‘ o ‘ OOM OOM OOM 2.11 + 0.82

Table 1: RMSE (rollout-all, x10~2 for displacement) evaluation results. u = x; — xg denotes
displacement and o denotes stress. OOM stands for out-of-memory.

Spatial Cell for Interactions Existing graph-based methods typically rely on world edges to model
interactions. However, computing world edges requires evaluating pairwise distances between mesh
nodes, leading to an O(n?) complexity that limits scalability on large-scale meshes. In contrast,
our method leverages spatial quantization to reduce this complexity to O(n) by aggregating nodes
into structured cells. We visualize these cells in Figure |4} demonstrating their ability to effectively
capture interactions. While it is possible to compute world edges using similar spatial quantization
techniques, our approach goes further—by encoding graphs into compact latent tokens, our model
combines the expressive power of graph representations with the computational efficiency and global
context aggregation capabilities of token-based processing.
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Figure 4: We visualize the spatial cells on the ABCD dataset (left) and DEFORMINGPLATE dataset
(right). The figure displays one representative feature channel across the cells. Warmer colors indicate
higher feature norms.

We present a prediction result on the ABCD dataset in Figure[5] Additional visualizations and further
experiments supporting the effectiveness of our method are provided in Section[B]

GT MGN

HCMT Ours

Figure 5: Visualization results on the ABCD dataset. Displacement is visualized using color warmth,
with warmer tones indicating greater displacement magnitude.

6 Conclusion

In this paper, we proposed a new method that encodes graphs into compact tokens by leveraging
sparse 3D operations, followed by transformer-based processing for expressive learning. This strategy
combines the structural richness of graphs with the scalability and efficiency of 3D computation,
enabling our model to scale to large inputs without compromising accuracy. In the future, we plan
to extend this approach toward unsupervised representation learning, aiming to further enhance its
generalization capability.
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A Technical Appendices and Supplementary Material

A.1 Dataset Details

The ABCD Dataset We constructed a larger and more generalized dataset. The goal of this dataset
was to have a wide variety of geometric shapes that are deformed after coming into contact with
each other. We used the ABC dataset [13]], which is a CAD model dataset used for geometric deep
learning, to get a wide sample of parts and shapes to deform. To generate a simulation, we first
randomly select two CAD geometries, then auto-mesh them with the meshing tool Shabaka [12]. We
then align the two meshed parts in 3D space and apply compressive boundary conditions to simulate
the parts coming into contact. Figure [f]illustrates the workflow of the dataset construction process.
Figure[7]shows several example simulations and the modes of deformation achieved through contact.

Randomized solid body selection Auto-meshed parts

Automated assembly and
—_— applied boundary conditions

ABC Dataset

Figure 7: The FEA simulation results using ABC CAD dataset highlight various deformation modes,
including compression with associated tension around a hole, as well as plate and beam bending.

Dataset Settings In Table[2] we list details of all the dataset used in the experiments.

Our method uses slightly different input features with [20], as we do not explicitly compute world
edges. The input and output features used in our method are summarized in Table[3] Specifically,
v;" and v{ represent the input features on mesh and element nodes, respectively, while v* and v§
denote the corresponding output features. 2™ and e¢>™ are input edge features for mesh-to-mesh
(m2m) and element-to-mesh (e2m) edges.

We use n and m to denote node type and material type, respectively. The node type indicates whether
a mesh node is a boundary node—such nodes have predefined next-frame values and therefore do not
require updates. o denotes stress.

For MGN, BSMS, and HCMT, the input and output features follow the exact definitions from
[20] on SPHERESIMPLE and DEFORMINGPLATE. We note that in the BSMS paper, the authors
included velocity as an input feature for DEFORMINGPLATE. In contrast, we follow the original

Dataset System Solver Mesh type steps At rw
SPHERESIMPLE cloth ArcSim triangle 3D 500 0.01 0.05
DEFORMINGPLATE hyper-el. COMSOL textrahedral 3D 400 - 0.03
ABCD/ABCD-XL  hyper-el.  Abaqus  textrahedral 3D 21 - 0.003

Table 2: Dataset details. 7y denotes the world edge radius, meaning that nodes within a distance of
rw are considered connected by world edges. Note that world edges are only computed for MGN,
BSMS, and HCMT.
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MeshGraphNets (MGN) implementation, which uses node type and (relative) positions as input. On
ABCD, the definitions of vI™, e?™, and v”" are consistent with that in Table [3| and the world edges

T .. ..
are associated with edge features p’ ||| p;’||.

Dataset v V¢ er2m  eg?m v v¢  history
SPHERESIMPLE  n,p; P ¢ [Ilpg ey |Ilpy jof - 1
DEFORMPLATE  n,u w pq |Ipg l|lp [Ipe |l B osr - 0

ABCD n, m, u uy g |1p6 [l[p¢ [[lp¢ P: - 0

ABCD-XL nu,  m,onu pgllleg |y [IlpY |l Pt Ott1 0

Table 3: Input and output features for our method.

World Edge Calculation We adopt the world-edge construction method proposed in the MGN
paper, with modifications to accommodate the dense meshes in the ABCD dataset. Compared to
DEFORMINGPLATE and SPHERESIMPLE, the meshes in ABCD are significantly denser, which causes
the original world-edge computation to sometimes produce world edges even larger than mesh edges.
To address this, we retain only the 1000 world edges with the smallest pairwise distances.

RMSE Calculation The Root Mean Square Error (RMSE) is computed in a per-sequence manner:
we first calculate the mean squared error for each sequence, then take the square root, and finally
average the RMSE across all sequences in the dataset.

A.2 Training Settings

For all datasets, we adopt a pairwise training strategy where a graph is randomly selected from a
sequence as the input, and its subsequent graph is used as the target. We follow the same training
noise strategy as proposed in [20]. The noise scale is set to 0.003 for both the ABCD and ABCD-XL
datasets. All experiments are conducted on a machine equipped with four V100-32GB GPUs, unless
otherwise specified.

We did some modifications to the training process for a improved performance:

Batch Size We increased the training batch size from 1 or 2 to 48 (12 per GPU on a 4-GPU node) for
MGN and BSMS which showed a much faster training procedure. HCMT inherently not applicable
on batched graphs, so we kept a batch size with 1 per GPU.

Learning Rate We adopt square root scaling for the learning rate with respect to batch size. Starting
with a base learning rate of 0.0001 for a batch size of 2, the final learning rate LR for a batch size
of 48 is computed as 0.0001 x 1/48/2 ~ 0.00049. The learning rate is linearly warmed up from
0.0001LR to LR over the first 2000 steps, followed by cosine decay to zero at the 101st epoch
(training stops at the 100th epoch).

For purely graph-based methods—namely MGN, HCMT, and BSMS—we found that the learning
rate scheduling strategy facilitates faster convergence, while the square root scaling strategy had a
negative effect. Therefore, we retain the scheduling strategy and use a fixed learning rate of 0.0001
across all datasets.

Training Iterations We extend the training iterations from 5M steps (approximately 25 epochs) to
100 epochs.

Loss We use mean squared error (MSE) loss across all experiments. For the DEFORMINGPLATE
and ABCD-XL datasets, we adopt multi-head outputs to jointly predict displacement and stress,
assigning loss weights of 1 and 0.01, respectively.

12



437

438

440

441
442
443
444

445
446
447
448

449
450
451

452
453
454
455
456
457
458
459
460
461
462

464
465
466
467
468
469

470
471
472

473

474
475

476
477

478
479

480
481
482

A.3 Further Discussion

MGN MeshGraphNets (MGN) is a strong baseline for mesh-based physical simulations due to
the expressiveness of its graph-based representation. However, this expressiveness also introduces
several challenges:

* Edge overhead: The computational burden in graph models often arises from the edge set,
which can be several times larger than the node set. This issue is exacerbated on large-scale
meshes, where edge-based feature aggregation results in significant computational and
memory overhead.

* Limited global context: Message-passing operations in graphs are inherently local, re-
quiring many iterations to propagate information across distant nodes. For meshes with
over 100K nodes, hundreds of message-passing steps may be needed to fully capture global
interactions.

* Scalability of world edges: On dense meshes, the number of world edges can grow
prohibitively large. This not only increases computation but also makes it difficult to
distinguish meaningful interactions from spurious ones.

BSMS BSMS introduces the bi-stride pooling mechanism to address some of the limitations of
MGN. By recursively down-scaling the graph—halving the mesh size at each stage—the method
reduces both the number of nodes and edges, allowing for faster propagation of global information.
While this strategy proves effective for small to medium-scale meshes, it still inherits the struc-
tural limitations of graph-based methods when applied to large-scale problems. In industrial FEA
simulations where mesh sizes can exceed 100K elements, the graph structure remains a bottleneck.
Moreover, as discussed in Section[B.2] the bi-stride pooling algorithm fails to generalize effectively
to volume meshes, limiting its applicability to 3D deformable body problems. Furthermore, although
pooling edges can be precomputed—thereby accelerating training—the precomputation process
involves matrix multiplications whose complexity scales with the number of mesh nodes. This be-
comes prohibitively expensive for large meshes, limiting the applicability of BSMS in high-resolution
simulation settings.

HCMT HCMT incorporates attention mechanisms to address one of the key limitations of
MGN—its inefficiency in aggregating global information. However, the attention computations
in HCMT are performed directly on each mesh node. While they modify the original attention
formulation to avoid the O(n?) complexity associated with standard attention matrices, this comes at
the cost of reduced theoretical soundness. Moreover, despite these modifications, the method still
scales poorly to large-scale meshes, limiting its practicality in high-resolution simulation tasks.

On the SPHERESIMPLE dataset, HCMT performs well during the initial 50 frames but gradually di-
verges thereafter. This suggests that, while HCMT is effective on the quasi-static DEFORMINGPLATE
dataset, it may face difficulty generalizing to dynamic problems like SPHERESIMPLE.

A.4 Transformer Operations

Following the design in [34], originally developed for point clouds, we extend this framework to
handle vector fields.

Positional Embedding Given a feature set ¢ with associated positions p©, we first inject spatial
information into the features via positional embedding:

c’ = ¢ + PosEmb(p°), (11)

where PosEmb : R? — R is a column-wise embedding function that maps input positions p¢ (with
d € {2, 3}) to the feature space of dimension d., matching the dimensionality of c.

Attention An attention operation is defined to aggregate three feature vectors g € RNeXda,
k € RNexde o ¢ RNoXdv where Ny, N,, N, € R are sequence lengths and d,, di,d, € R are
feature dimensions,

Attention(q, k, v) = softmax ( Jv. (12)

ak’
Vi
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Figure 8: Transformer blocks. The CrossAttn is displayed on the left, while the SelfAttn is displayed
on the right.

A Multi-head Attention (MHA) operation is defined as
MHA(q, k,v) = Concat(head,, ..., head, )IW°,

. ) (13)

head; = Attention(gW /!, kW;", vW}).
Transformer Blocks Building on the multi-head attention mechanism and adopting a pre-norm
structure, we construct two types of Transformer blocks, as illustrated in Figure[8]

* CrossAttn: Given a set of query features cquery and context features ccontext, the Cross-
Attention operation
h = CrossAttn(cquery, Coontext) (14)

aggregates information from ccontext into Cquery. The output h maintains the same length
as the query, making this block particularly useful for compressing or decompressing
representations of the context features.

* SelfAttn: This is the standard self-attention mechanism where the query and context features
are identical, i.e.,
h = SelfAttn(c). (15)

FEN stands for Feed-Forward Network. In all our CrossAttn and SelfAttn blocks, we use an FFN
module with GEGLU activation as described in [25]].

A.5 Model Details

MLP The MLPs used in input, message-passing and output layers are two-layer MLPs with ReLU
activations with output size of 128. The hidden layer size of message-passing and input MLPs are
128, while the output MLPs are 32. The outputs of the message-passing MLPs are further normalized
using LayerNorm. To enhance their effectiveness, we adopt Random Weight Factorization (RWF,
130D.

Transformer We use attention layers with 8 heads, each with a feature dimension of 64. The query,
key, and value projections are implemented using bias-free linear layers, while the output projection
includes a bias term. We adopt a pre-norm setup, applying LayerNorm before both the attention
and FFN layers. The FFN follows the GEGLU formulation as described in [25]], and has a hidden
dimension of 512. Dropout with a rate of 0.1 is applied within both the attention and FFN modules.
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Model Architecture The input and output features on graph nodes and edges are normalized using
statistics computed from 400 randomly selected graph pairs from the dataset. Our model begins with
an input encoding MLP that maps node and edge features into a hidden space of size 128. This is
followed by a one-step message-passing operation—either m2m or e2m—to aggregate information
onto the mesh nodes.

Mesh node positions are then quantized using an L¢;;-layer octree, where L..;; is a hyperparameter.
A one-step message-passing is used to aggregate mesh node features into each cell. Optionally,
an OCNN module with [, layers (also a hyperparameter) is applied to downscale the features
from the L¢;;-th octree layer to the (Leeyi — loenn )-th layer. Each OCNN layer consists of a sparse
convolution with a 3 x 3 x 3 kernel and a stride of 2, which effectively moves features up one level
in the octree hierarchy.

To obtain a compact latent representation, a cross-attention layer is applied to map features on the
sparse cells to a fixed set of tokens of dimension d;,k.,,. These tokens are then processed using Lg 4
self-attention transformer blocks.

The decoding process mirrors the encoder. We first apply a cross-attention mechanism to decode the
latent tokens back to the octree features. These features are then upscaled to the original L..;;-layer
resolution using a transposed sparse convolution-based OCNN with the same number of layers as in
the encoder. A one-step message-passing operation is performed to decode the cell features back to
the mesh nodes. The resulting features are concatenated with the original mesh node features from
the input encoding MLP to produce v’}", which is then passed through an output MLP to generate
the final predictions. If output features are also required on element nodes, an additional one-step
message-passing—without edge features—is performed from mesh to element nodes, followed by a
separate output MLP.

The fore-mentioned hyperparameter for each dataset are listed in Table {]

Dataset Lcell Zocnn dtoken LSA
SPHERESIMPLE 5 0 256 12
DEFORMINGPLATE 5 0 256 12
ABCD 8 0 512 12
ABCD-XL 12 4 512 12

Table 4: Model hyperparameter.
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B Additional Experiments

B.1 Quantization Cell Length

We run our model on the DEFORMINGPLATE dataset with different L..;; values and report the
validation loss in Figure@} When L..;; = 7, all mesh nodes are assigned to a single cell at the initial
frame. These results verify that grouping a reasonable number of mesh nodes into interaction cells
plays a vital role in effectively learning deformable body interactions.

Choices of the quantization level
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Figure 9: Validation results with different L..;; settings on the DEFORMINGPLATE dataset. The
nodes/cells ratio refers to the average number of mesh nodes contained within a single cell at the
initial frame.

B.2 Computational Efficiency and Scaling Capability

The training and inference times are reported in Table 5] All experiments are conducted on a
machine equipped with 4 V100 GPUs. While increasing the batch size significantly improves training
efficiency (e.g., 2.8x for MGN, 4.8x for BSMS, and 3.1x for ours when using a batch size of 48 on
SPHERESIMPLE), we ensure a fair comparison by fixing the batch size to 4 (i.e., 1 per GPU) across all
methods. Our method demonstrates comparable training and inference efficiency to state-of-the-art
graph-based approaches on small-scale mesh size.

Table 5: Training and inference epoch time (seconds) evaluation. The reported epoch time refers to
the total time taken for a single pass over the entire dataset during training or inference. For a fair
comparison, all models are evaluated on a 4-GPU node with a total batch size of 4.

Model DEFORMINGPLATE SPHERESIMPLE ABCD ABCD-XL
Train Val Train Val Train Val Train Val
MGN 9393 316 8744 361 3425 215 - -

BSMS 17700 410 12754 508 5442 332 - -
HCMT 16450 470 12913 510 5862 328 - -
Ours 9333 392 7282 394 2742 188 16435 8123

To further evaluate scalability, we conducted experiments on the ABCD-XL dataset by generating
subgraphs with varying mesh sizes. We compared the training and inference time of different methods
on a machine equipped with 4 V100 GPUs, and we used the training set to evaluate both training
and inference efficiency. As shown in Figure[IOHI1] all methods exhibit similar performance in the
small-scale regime. However, our method demonstrates significantly better scalability as the element
size exceeds 20k.
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Figure 10: Training time per epoch across different mesh sizes. MGN, BSMS, and HCMT run out of
memory at mesh sizes beyond 40K, 8K, and 6K, respectively.
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Figure 11: Inference time per epoch across different mesh sizes.

Although the BSMS method demonstrated good scalability on surface meshes in its original paper,
we observed that it scales poorly on volume meshes due to the increased number of bi-stride edges
introduced during pooling. On surface meshes, bi-stride edges consistently downsample upper-layer
edges. However, in the case of volume meshes, the edge count can grow significantly. For example,
in a volume mesh graph with 21k mesh nodes, the number of nodes and edges across a 6-layer BSMS
model are: 21k/210k, 11k/276k, 5.7k/534k, 3.2k/1.8M, 1.8k/1.6M, 0.9k/483k.
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555 B.3  Rollout Visualization

ss6  Figure[I2}{T5]are visualizations on the benchmark datasets.

GT MGN BSMS

HCMT Ours

Figure 12: Visualization results on the DEFORMINGPLATE dataset. Stress is visualized using color
warmth, with warmer tones indicating greater stress magnitude.
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Figure 13: Rollout visualization results on the DEFORMINGPLATE dataset.
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Rollout visualization results on the SPHERESIMPLE dataset.

20



IARRN

BSMS

HCMT

Ours

Frame 5 Frame 10 Frame 20

Figure 15: Rollout visualization results on the ABCD dataset.
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