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ABSTRACT

Text-centric visual question answering (VQA) has made great strides with the devel-
opment of Multimodal Large Language Models (MLLMs), yet open-source models
still fall short of leading models like GPT4V and Gemini. A key contributing
factor to this disparity is the absence of extensive, high-quality instruction tuning
data. To this end, we introduce a new approach for creating a massive, high-quality
instruction-tuning dataset, Square-10M, generated by leveraging the versatile mul-
timodal capabilities of closed-source MLLMs. The data construction process,
termed Square, consists of four steps: Self-Questioning, Answering, Reasoning,
and Evaluation. Our experiments with Square-10M led to three key findings: 1)
Our model, TextSquare, considerably surpasses open-source previous state-of-the-
art text-centric MLLMs and sets a new standard on OCRBench (62.2%). It even
outperforms top-tier models like GPT4V and Gemini on six out of ten text-centric
benchmarks. 2) We demonstrate the importance of VQA reasoning data in offering
comprehensive contextual insights for specific questions, improving accuracy and
substantially mitigating hallucinations. Specifically, TextSquare scores an average
of 75.1% across four general VQA and hallucination evaluation datasets, outper-
forming previous state-of-the-art models. 3) Notably, the phenomenon observed in
scaling text-centric VQA datasets reveals a vivid pattern: an exponential increase
of instruction tuning data volume is directly proportional to the improvement in
model performance, thereby validating the necessity of the dataset scale and the
high quality of Square-10M.

1 INTRODUCTION

Recent research on multimodal large language models (MLLMs) (Ye et al., 2023a; Feng et al., 2023b;
Liu et al., 2024d; Feng et al., 2023a) has yielded significant advancements in text-centric visual
question-answering(VQA), with several closed-source state-of-the-art (SOTA) models (OpenAI,
2023; DeepMind, 2023) leading the way. Two representative examples are GPT4V (OpenAI, 2023)
and Gemini (DeepMind, 2023), which have shown exceptional performance and even surpassed
human capabilities in some aspects. Nevertheless, as illustrated in Figure 1, open-source models
still significantly trail behind their closed-source counterparts. This gap can be attributed to various
factors, including model architecture, the scale of model parameters, image resolution, the volume of
pretraining and instruction tuning data, and training strategies.

Recent studies (Chen et al., 2024; Nayak et al., 2024; Chen et al., 2023; Zhang et al., 2023) have
delved into the challenges of insufficient instruction tuning data. For instance, Monkey (Li et al.,
2023c) employed expert models to generate image descriptions, which GPT-4 then summarized to
create high-quality, detailed image captions. LLaVAR (Zhang et al., 2023) and TG-Doc (Wang et al.,
2023) used GPT-4 to generate conversations for text-rich images by integrating OCR results into
the instructions. ShareGPT4V (Chen et al., 2023) constructs a high-quality image caption dataset
through GPT4V to improve the image caption ability for MLLMs. While these efforts have achieved
remarkable success, they also left some challenges unresolved. Image caption data and VQA data
belong to different domains, with inconsistencies in the granularity and scope of image content
presentation. Furthermore, the scale of synthetic data remains relatively small, preventing MLLMs
from fully realizing their potential. The exploration of methods that leverage large-scale text-centric
VQA data for instruction tuning remains limited.
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(b) Comparison with open-source models
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Figure 1: The performance of TextSquare in various VQA tasks compared to existing models. (a)
shows the comparison with state-of-the-art closed-source models (Gemini (DeepMind, 2023) and
GPT4V (OpenAI, 2023)), and (b) shows the comparison with the leading open-source models. The
numbers in parentheses after model names in the legend indicate the average performance ranking
across 10 text-centric benchmarks. TextSquare is marginally superior to GPT4V. Best viewed on
screen.

To bridge the gap, this paper proposes a strategy termed Square to acquire extensive, high-quality
text-centric VQA data from advanced closed-source MLLMs, constructing a dataset (Square-10M)
comprising tens of millions of instances for instruction tuning. The Square strategy consists of
four steps: Self-Questioning, Answering, Reasoning, and Evaluation. The self-questioning step
involves utilizing the MLLM’s capabilities in text-image analysis and understanding to generate
textual-related questions. The answering step involves answering these questions, leveraging various
prompting techniques such as Chain-of-Thought and few-shot prompting. The reasoning step entails
probing the model for the reasoning behind its answers, leveraging the powerful reasoning abilities of
MLLMs. The evaluation step involves evaluating the question-answer pairs, assessing the validity of
the questions, the relevance to the textual content of images, and the correctness of answers, thereby
improving data quality and mitigating hallucinations. Overall, Square comprehensively leverages the
various capabilities of MLLMs, significantly enhancing data quality.

Besides, enriching the diversity of images is also crucial. We collect a diverse set of text-rich images
from various public sources, including natural scenes, charts, tables, receipts, books, slides, PDFs,
documents, products, and web images. Subsequently, deduplication is performed on this collection.
By applying the Square strategy to these images, Square-10M is constructed.

Based on Square-10M, our model (TextSquare) achieves remarkable results. First, as shown in
Figure 1, TextSquare performs comparably or even better than advanced closed-source models and
substantially surpasses recent open-source models on various benchmarks. Notably, the image
resolution of TextSquare is 700, and the parameters are 8.6B. Second, our experiments validate
the beneficial impact of reasoning data on VQA tasks, demonstrating its ability to enhance model
performance while mitigating hallucinations. With reasoning data for instruction tuning, TextSquare
has a strong reasoning capability to provide elaborate explanations in VQA scenarios. Additionally,
our scaling experiments reveal the relationships between instruction tuning data scale, training
convergence loss, and model performance. Whereas a few instruction tuning data can effectively
engage MLLMs, it is insufficient. Large amounts of high-quality data can further significantly reduce
convergence loss and improve performance. The performance of TextSquare grows and the loss
of convergence decreases while continuously scaling up the instruction tuning data, which also
demonstrates the effectiveness of Square-10M.

In summary, the main contributions of this paper can be categorized into four points:
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• A high-quality dataset (Square-10M) comprising tens of millions of instances for text-centric VQA
instruction tuning is constructed by collecting diverse text-rich images and employing the Square
(Self-Questioning, Answering, Reasoning, and Evaluation) strategy on closed-source MLLMs.

• Leveraging Square-10M, TextSquare achieves a significant outperformance of existing open-source
models and even comparable or superior performance to SOTA closed-source models on various
benchmarks, e.g., +0.9% on ChartQA, +2.1% on WTQ, +4.3% on SROIE. TextSquare outperforms
GPT4V in overall rankings across ten text-centric benchmarks (ranking 2.2 v.s. 2.4).

• Reasoning data is demonstrated to be beneficial in improving model performance and mitigating
hallucinations in VQA scenarios, as it can deliver rich question-specific contextual information.

• Through extensive experiments, we reveal the relationships between data scale, convergence loss,
and model performance for text-centric VQA instruction tuning, demonstrating the effectiveness
and necessity of Square-10M.

2 RELATED WORK

Related work is detailed in Section A.2 of the Supplementary Material.
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Figure 2: Overview of Square-10M: the distribution of images, the average tokens of the QAs, etc.

3 SQUARE-10M: A MASSIVE AND HIGH-QUALITY TEXT-CENTRIC VQA
INSTRUCTION TUNING DATASET

Square-10M is synthesized by our proposed Square pipeline, i.e., Self-Questioning, Answering,
Reasoning, and Evaluation.

3.1 OVERVIEW OF THE SQUARE STRATEGY

Figure 3 presents an overview of our proposed Square. Square generally consists of three stages for
synthesizing high-quality instruction tuning data for text-centric VQA: (1) Data Collection: we gather
a vast collection of text-rich images. (2) Data Generation: it involves self-questioning, answering, and
reasoning, utilizing the images procured. In this phase, the MLLM generates VQA pairs predicated
on the images, accompanied by the rationale behind the answers. (3) Data Filtering: we focus on
eliminating nonsensical questions and erroneous answers by leveraging the evaluation capabilities of
MLLMs.

3
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self-evaluation
E1: Yes. The answer (A1) correctly addresses the 
question (Q1).
E2 & E3:                    ...

multi-prompt & multi-context consistency
1. Answer: DR. BRIAN WILMOVSKY.

2. Answer: BRIAN WILMOVSKY.

3. Answer: DR. BRIAN WILMOVSKY is the author.

E1: Yes. The answers express consistent meanings.

self-evaluation
Play the role of a visual question answering expert. Judge the correctness of 
answers to questions based on image content and world knowledge.  "Question": ...  
"Answer": ...

multi-prompt & multi-context consistency
Question: (Q1) Who wrote this book ?
Based on varied context, answer the Question respectively.
1. The text in the bottom of this image tells the author of this book.  (Reasoning)

2. Based on the example presented below ... (In-Context)

3. Respond to the subsequent question utilizing the image ... (Varied-Instructions)
Judge whether the answers express consistent meanings.

Play an image content analysis expert. First, analyze all the image contents in a 
comprehensive manner. Then, generate several meaningful and distinct questions  
about the textual content of the image.

Q1: Who wrote this book ?
Q2: Tell me the main idea of the book based on the 
textual content.
Q3: What is the title of this book ?
A1: DR. BRIAN WILMOVSKY.
A2: The main idea of the book is how to live a 
healthy, balanced life in an unbalanced world.
A3: DREAM HEALTH.

Questioning

Answer the following question based on all the contents in the image. The 
answer should be few words or phrases. 

Answer ing

Based on the image and question-answer pair, think step by step and provide a 
detailed explanation for the answer.

Reasoning

Evaluation

R1: The text in the bottom of this image tells the 
author of this book.
R2 & R3:                    ...

Charts Document Slides Table Screenshot ReceiptStreetView e-commerceWeb Image

Gemini

Figure 3: Pipeline of the proposed Square strategy. Gemini’s versatile multi-modal capabilities are
utilized with prompt engineering to synthesize Square-10M, which consists of four stages: self-
questioning, answering, reasoning, and evaluation.

These procedures culminate with the Square-10M dataset, distinguished by its extensive array of high-
quality text-centric VQA pairs and associated reasoning context. Specifically, we amass 3.8 million
images with varied textual elements from multiple sources. This yields 20 million question-answer
pairs during the Data Generation phase. After rigorous filtering, we distill 9.8 million QA pairs along
with their reasoning context, employing our Square strategy. The samples filtered out by each strategy
are listed below: 4.9 million by Self-Evaluation of MLLMs, 2.1 million by Multi-Prompt Consistency,
and 3.2 million by Multi-Context Consistency. The Square-10M dataset is further analyzed in Figure
2.

3.2 DATA COLLECTION

The data collection process aims to cover a variety of text-rich scenarios in the real world. We
collect 3.8 million unlabeled text-rich images (Figure 2), showcasing diverse properties. For instance,
images categorized as Chart and Table focus on textual elements with intense statistical information;
Slide, Screenshot, and WebImage are tailored for the interaction between text and prominent visual
messages; Document, PDF, Receipt, and e-commerce images are characterized by fine, dense text;
Street-View images are derived from natural scenes. This comprehensive image collection provides a
representative cross-section of text-rich images in real-world scenarios, forming the foundation of
our research on text-centric VQA.

3.3 DATA GENERATION: SELF-QUESTIONING, ANSWERING, AND REASONING

To construct the Square-10M dataset, we harness the multi-modal understanding capabilities of
Gemini, one of the most advanced LLMs. For each selected image, Gemini generates VQA pairs and
the reasoning context through three stages:

Stage 1: Self-Questioning. Gemini is prompted to formulate profound, meaningful questions about
each image. We prompt Gemini to first comprehensively analyze the image and generate questions
based on its interpretation, as shown in Figure 3. To bolster understanding of visual text, we also
incorporate text extracted via OCR expert models into the prompts.
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Stage 2: Answering. Gemini is then directed to answer the generated questions. We leverage various
prompting techniques to enrich contextual information and improve the reliability of the responses,
such as Chain-of-Thought and few-shot prompting, exemplified in Figure 3.

Stage 3: Reasoning. We require Gemini to elucidate the reasoning behind its answers. This process
fosters a deeper connection between the questions and visual elements, mitigating hallucinations
and ensuring accurate responses. The reasoning also provides additional context for individual
questions, potentially aiding research into in-context learning mechanisms. An illustrative prompt for
self-reasoning is presented in Figure 3.

3.4 DATA FILTERING: SELF-EVALUATION AND ANSWERING CONSISTENCY

Despite the efficacy of self-questioning, answering, and reasoning, some generated content may be
hallucinatory or contain meaningless questions and erroneous answers. We establish filtering rules
based on the evaluative capabilities of LLMs to select high-quality VQA pairs. This comprehensive
filtering system encompasses three aspects:

Self-Evaluation of MLLMs. Advanced MLLMs, including Gemini, are utilized to assess the
meaningfulness of questions and the adequacy of answers. An example of self-evaluation prompting
is illustrated in Figure 3.

Multi-Prompt Consistency. We augment the prompt and context space during Data Generation,
ensuring that a valid VQA pair remains semantically consistent under diverse prompts. If answers
vary significantly in meaning, the VQA pair is discarded, as shown in Figure 3.

Multi-Context Consistency. Similar to Multi-Prompt Consistency, VQA pairs are further verified
by appending varied contexts to the question. Given the generated question, three types of answers
are produced by Gemini with different contexts: (1) Answering with reasoning. Gemini answers the
question with a detailed explanation prepended (i.e., content generated in the stage of Reasoning).
(2) In-Context answering. Gemini answers the question with chain-of-thought or few-shot prompts
prepended. (3) Naive answering. Gemini answers the question with no extra context. VQA pairs will
be removed if the generated answers are not semantically consistent.

3.5 MLLM SELECTION

Since a comprehensive comparison of all available VLMs to find the optimal VLM is not possible
considering the scale of the dataset, we apply the Square strategy to different VLMs (including
Gemini-pro, GPT-4V, Qwen-VL-Plus, and Claude 3) and perform a manual comparison on the
sampled data. We collect 1,000 QA pairs from each VLM, and perform human evaluation on the
generated data. Specifically, for each VLM, the questionnaire consists of 1,000 cases, each of which
includes a ”Yes or No” question: Is the ”Question” meaningful to the image and can the ”Answer”
correctly respond to the ”Question” ? Overall, we have collected 10 questionnaires, and the results are
Gemini-pro (94.9%), GPT-4V(95.2%), Qwen-VL-Plus(92.8%),and Claude 3(92.1%). Considering
the time cost, price and quality of the data generated, Gemini-pro is our best choice for a full-scale
attempt at the Square strategy.

3.6 DATA QUALITY EVALUATION: HUMAN VERIFICATION

Harmful information. In order to minimize the proportion of harmful information, we have set the
Gemini’s security level to the maximum. Besides, our dataset is about visual text and with quality
assessment and adequate filtering, there is little harmful content in the dataset. Considering the
large size of the dataset, we did not have enough resources to conduct a full human assessment. We
sampled the dataset (100,000 samples) and did not find harmful information.

Faulty information. Faulty information is almost unavoidable for very large generated datasets(e.g.,
ShareGPT4V[1], Monkey[2]), and there is no guarantee that even manually labelled data is completely
correct. To verify the effectiveness of the Square strategy in eliminating factual errors, we performed
a manual evaluation on 1,000 samples. Our proposed Square strategy improves the accuracy of the
generated data from 82.6% to 94.9%, significantly reducing the probability of faulty information.
What’s more, TextSquare greatly mitigates the model hallucinations, which is beneficial to the
development of MLLMs.

5
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4 TEXTSQUARE: A TEXT-CENTRIC MULTIMODAL LARGE LANGUAGE
MODEL

4.1 MODEL ARCHITECTURE

TextSquare’s architecture follows the framework of InternLM-Xcomposer2 (Dong et al., 2024),
comprising three integral components: (1) A vision encoder modified from OpenAI CLIP ViT-L
(Radford et al., 2021), with an increased resolution of 700 to better capture fine-grained features. (2)
A LLM based on InternLM2 (Cai et al., 2024), utilizing InternLM2-7B-Chat as the practical variant.
(3) A projector that semantically aligns vision and text.

4.2 SUPERVISED FINE-TUNING WITH SQUARE-10M

TextSquare is achieved by performing Supervised Fine-Tuning (SFT) with Square-10M. The SFT
process entails three stages: initially, all components are unfrozen and trained at a resolution of
490. Subsequently, we increase the input resolution to 700 and focus on training the Vision Encoder
to adapt to the higher resolution. In the final stage, full-parameter fine-tuning is performed at a
resolution of 700. TextSquare demonstrates that with our Square-10M dataset, a model with 8B
parameters and normal-size image resolution can perform exceptionally on text-centric VQA tasks,
outperforming most available MLLMs and even closed-source SOTA models.

5 EXPERIMENT

5.1 IMPLEMENTATION DETAILS

The training data contains Square-10M and in-domain datasets (consistent with Monkey’s SFT data).
The training process is divided into three phases, using the same data and the AdamW (Loshchilov
& Hutter, 2017) optimizer with 64 A100-80G GPUs. In the first phase, we fine-tune InternLM-
Xcomposer2 with full parameters, and the learning rate decreases from 1e-5 to 1e-6, taking about
9520 GPU hours. In the second phase, we scale up the image resolution to 700 and train only VIT,
with the learning rate decreasing from 1e-4 to 1e-5, taking about 7280 GPU hours. In the third stage,
we perform full-parameter fine-tuning at 700 image resolution, and the learning rate drops from 1e-5
to 1e-6, spending about 12350 GPU hours.

5.2 BENCHMARK EVALUATION

We report the results on Scene Text-centric VQA, Document-oriented VQA, Table VQA, Text-centric
KIE, OCRBench, and General VQA for a comprehensive comparison of the performance of our
model with existing models. The metrics of each benchmark are listed in Table 8 in the Supplementary
Material.

Table 1: Quantitative comparison of TextSquare with existing MLLMs on various text-centric
benchmarks. “Res.” denotes image resolution. “*” denotes the results obtained through the open-
source checkpoint or API of the closed-source model. The best results of each benchmark are bolded.
The best results except for closed-source models (GPT4V and Gemini Pro) are underlined.

Method Res. OCRBench Document-Oriented Scene Text-Centric Table VQA KIE
DocVQA ChartQA InfoVQA AI2D TextVQA WTQ TabFact SROIE POIE

UReader (Ye et al., 2023b) 896 - 65.4 59.3 42.2 - - - - - -
Qwen-VL (Bai et al., 2023) 448 506 65.1 65.7 - - 63.8 - - - -
TextMonkey (Liu et al., 2024d) 896 558 73.0 67.1 - 44.7 65.6 37.9 53.6 46.2 32.0
Monkey (Li et al., 2023c) 896 514 66.5 65.1 36.1 57.9∗ 67.6 25.3∗ 49.8 41.9 19.9
Cogagent (Hong et al., 2023) 1120 578∗ 81.6 68.4 44.5 49.6∗ 76.1 30.2∗ 51.7∗ - -
DocOwl 1.5 (Hu et al., 2024a) 1344 597 81.6 70.5 50.4 49.3 68.8 39.8 80.4 48.3 51.8
Llava Next 34B (Liu et al., 2024b) 672 573∗ 78.2 67.3 45.1∗ 70.3 69.5 47.5∗ 68.9∗ 43.2∗ 46.5∗

GPT4V (OpenAI, 2023) - 645 88.4 78.5 75.1 78.2 78.0 45.5∗ 69.3∗ 48.9∗ 41.2∗

Gemini Pro (DeepMind, 2023) - 659 88.1 74.1 75.2 73.9 74.6 32.3∗ 67.9∗ 38.7∗ 34.6∗

Xcomposer2 (Dong et al., 2024) 490 511 59.6 72.7 32.9 78.7 66.1 28.7 62.3 34.2 49.3
TextSquare (ours) 700 622 84.3 79.4 51.5 79.0 66.8 49.7 84.2 53.2 71.8

Document-Oriented Benchmark. While the documents have a clean background, dense text
and complex typography pose distinct challenges. To effectively evaluate our model, we select

6
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Table 2: Quantitative comparison of our model with existing MLLMs on representative General
VQA and hallucination evaluation benchmarks. VizWiz and POPE are relevant to both VQA and
hallucination. Following Cogagent, we evaluate the adversarial part of POPE.

Method General VQA and Hallucination Evaluation
VizWiz VQAv2 GQA POPEadv Average

Qwen-VL (Bai et al., 2023) 35.2 79.5 59.3 - -
Monkey (Li et al., 2023c) 61.2 80.3 60.7 80.3∗ 70.6
Cogagent (Hong et al., 2023) 36.7∗ 83.7 62.3∗ 85.9 67.2
DocOwl 1.5 (Hu et al., 2024a) 43.5∗ 68.0∗ 48.5∗ 79.7∗ 59.9
Llava Next 34B (Liu et al., 2024b) 63.8 83.7 67.1 83.4 74.5
GPT4V (OpenAI, 2023) 64.9∗ 77.2 48.4∗ 79.6∗ 67.5
Gemini Pro (DeepMind, 2023) 42.8∗ 71.2 52.2∗ 84.5∗ 62.7
Xcomposer2 (Dong et al., 2024) 58.9∗ 81.8 64.5 78.5 70.9
TextSquare (ours) 71.4 78.0 64.5 86.6 75.1

representative benchmarks, including DocVQA (Mathew et al., 2021), ChartQA (Masry et al., 2022),
and InfographicVQA (Mathew et al., 2022). The results, detailed in Table 1, show that TextSquare
outperforms all the open-source models in these three document-oriented VQA tasks with an average
improvement of 3.5%, specifically, DocVQA 84.3% vs. 81.6% (Cogagent and mPLUG-DocOwl
1.5), ChartQA 79.4% vs. 72.7% (Intern-Xcomposer2), InfographicVQA 51.5% vs. 50.4% (mPLUG-
DocOwl 1.5). On the ChartQA dataset, TextSquare outperforms GPT4V and Gemini Pro by a slight
margin. Note that TextSquare employs an image resolution of 700, which is smaller than most
document-oriented MLLMs. Our model relies on comprehensively high-quality VQA information
specific to the text in the document, improving its ability to recognize and understand various
document elements such as text, diagrams, infographics, and so on. If the image resolution is further
increased, it is believed that the model performance will be further improved, as demonstrated by
Monkey et al.

Scene Text-centric Benchmark. The ability to answer text-based questions in images becomes an
important aspect of the answering task, as textual information is usually present in real-world scenes.
In the evaluation, we utilize two datasets: TextVQA (Singh et al., 2019) and AI2D (Kembhavi et al.,
2016). As shown in Table 1, in this scenario, although TextSquare achieves SOTA performance on
the AI2D dataset, there is no major improvement over our baseline Intern-Xcomposer2, which might
be since Intern-Xcomposer2 has been adequately optimized with high-quality in-domain data.

Table VQA Benchmark. Due to the complex structure of tables and the dense text, understanding
the content of tables remains a challenging issue. To evaluate the performance of the comprehension
of table content and structure, we choose two widely utilized datasets, Wiki Table Questions (WTQ)
(Pasupat & Liang, 2015) and Table Fact (TabFact) (Chen et al., 2019), as shown in Table 1. On the
Table VQA benchmarks, TextSquare achieves optimal performance among the leading models with
an average 3.0% improvement. This demonstrates that our model has reached a new level of table
understanding, where high-quality generated table VQA and reasoning data play a key role.

Text-centric KIE Benchmark. Text-centric key information extraction tasks are frequently encoun-
tered in the information processing of various types of products, certificates, and receipts. We select
a receipt information extraction dataset (SROIE) (Huang et al., 2019) and a product information
extraction dataset (POIE) (Kuang et al., 2023), and the KIE task is converted to the VQA task.
TextSquare achieves optimal performance in both datasets, with a major average lift of 14.8% (shown
in Table 1). It is worth noting that no training set of POIE is added to the training set, and there is not
much data in the domain of product scenarios. This illustrates the extensive textual comprehension
capabilities of our model.

OCRBench. OCRBench (Liu et al., 2023) is a comprehensive benchmark consisting of 29
OCR-related assessments, with text recognition, formula recognition, text-centric VQA, KIE, etc.
TextSquare achieves optimal performance in OCRBench except for the closed-source models and
becomes the first MLLM that exceeds 620 points with about 10B parameters. It indicates that the
model performs well in both text-centric perception and comprehension tasks, especially in text
recognition, where little in-domain data is included in the training set.
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General VQA and Hallucination Evaluation Benchmark. General VQA requires learning visual
and textual information and a deep understanding of their inter-relationships. For general VQA,
we validate on four benchmarks: VizWiz (Gurari et al., 2018), VQAv2 (Goyal et al., 2017), GQA
(Hudson & Manning, 2019), and POPE (Li et al., 2023b). The VizWiz and POPE benchmarks are
also relevant for hallucination evaluation. The results are shown in Table 2. On VQAv2 and GQA,
TextSquare does not have a significant degradation compared to InternLM-Xcomposer2 and still
maintains comparable performance. TextSquare exhibits superior capabilities in VizWiz and POPE,
outperforming the closest competing method by an average of 3.6%. These results highlight our
approach’s effectiveness, which can also mitigate model hallucinations, particularly with large-scale
instruction tuning. We observe that it is partly attributed to the high-quality reasoning data that
provides detailed explanations for VQA.

5.3 QUALITATIVE ANALYSIS

As illustrated in Figure 4, TextSquare has a formidable capability to provide plausible explanations
of the answers to questions in various text-centric VQA scenarios. Figure 4(a) shows that TextSquare
can understand and process numerical data within the text, enabling it to answer questions that require
basic mathematical reasoning. Figure 4(b) shows the ability to understand textual content and provide
approximate location in dense text. Figure 4(c) shows the comprehension of table structure and the
ability to extract contextual information relevant to the question.

Answer : 2.13. Reason: To find the ratio 
of the people who approve and those who 
dont about Putin's handling of Corruption, 
we need to divide the number of people 
who approve by the number of people 
who dont. In this case, the number of 
people who approve is 62 and the number 
of people who don't is 29. Therefore, the 
ratio is 62:29, which simplifies to 2.13.

What is the ratio of the people who 
approve and those who don't about 
Putin's handling of Corruption? First 
answer the question and then give the 
reason. Answer: XV. Reason: It is the 

page number shown at the bottom 
of the image.

What is the page number? 
First answer the question and 
then give the reason.

Answer: 1,146,000. Reason: From the 
image, we can see that the total number 
of deaths in prisons and camps is 69,000 
+ 210,000 + 220,000 + 266,000 + 
381,000 = 1,146,000.

what are the total number of deaths 
in prisons and camps? First answer 
the question and then give the reason.

(a) (b)

(c)

Figure 4: Qualitative results of VQA and reasoning for various text-centric scenarios.

Table 3: Ablation study on Incorporating Square-10M for Instruction Tuning.

Model OCRBench DocVQA ChartQA InfoVQA WTQ SROIE Average
Xcomposer2∗ 571 74.8 73.2 41.6 40.3 44.7 54.9
TextSquare 622 84.3 79.4 46.2 49.7 53.2 62.6

5.4 ABLATION STUDY

The Effect of Incorporating Square-10M for Instruction Tuning. To verify the effectiveness of
Square-10M, we fine-tune the baseline model InternLM-Xcomposer2 on the public text-centric VQA
instruction tuning dataset (consistent with Monkey’s training data). As shown in Table, TextSquare
substantially outperforms Xcomposer2∗ (fine-tuned) on various text-centric VQA benchmarks by
7.7%, which corroborates that Square-10M can fully exploit MLLM’s ability in text-centric VQA sce-
narios and that a massive, high-quality instruction tuning data has a major performance improvement.
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Table 4: Ablation study on the evaluation
step in the Square strategy.

Evaluation DocVQA ChartQA WTQ
w/ 84.3 79.4 49.7

w/o 81.7 77.2 46.9

Table 5: Ablation study on the VQA Reasoning data of
Square-10M.

Reasoning Data DocVQA ChartQA POPEadv WizViz
w/ 84.3 79.4 86.5 71.4
w/o 82.9 78.1 83.8 68.2

Table 6: Ablation study of the image categories of Square-10M.

DocVQA InfoVQA TabFact WTQ
With all data 84.3 51.5 84.2 49.7

Without Tables 84.1 50.9 68.7 35.9
Only with Tables 61.2 38.5 85.4 51.7

Without Documents 64.7 42.2 82.0 46.4
Only with Documents 83.9 52.6 63.3 33.5

The Effect of Evaluation Step of the Square Strategy. As shown in Table 4, there is a distinct
improvement in model performance after incorporating the evaluation of the generated VQA data,
which verifies that the evaluation step of the Square strategy improves the quality of VQA instruction
tuning data.

The Effect of VQA Reasoning Data on Model Performance and Hallucination Evaluation. From
Table 5, we can find that VQA Reasoning data is helpful in both improving VQA performance and
mitigating hallucinations. Specifically, regarding enhancing VQA performance, there is a 1.4% and
1.3% gain on DocVQA and ChartQA. In terms of mitigating hallucinations, there is a 2.7% and 3.2%
gain on POPE and WizViz.

The Effect of Different image categories of Square-10M. We conduct ablation studies about the
categories of images (Tables and Documents) in Square-10M. As shown in Table 6, category-specific
data significantly enhances the performance of the corresponding benchmark, as well as offering a
slight boost to other benchmarks.

(a) (b)

(c) (d)

Figure 5: The relationship between instruction tuning dataset scale, convergence loss, and model
performance in text-centric VQA scenarios. Figure (a) and Figure (b) show the relationship between
data scale and convergence loss, distinguished by a scaling of the horizontal coordinate of Figure (b)
with log10. Figure (c) and Figure (d) show the relationship between data scale and model performance,
distinguished by a scaling of the horizontal coordinate of figure (e) with log10.
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5.5 RELATIONSHIPS BETWEEN INSTRUCTION TUNING DATA SCALE, CONVERGENCE LOSS,
AND MODEL PERFORMANCE

To explore the relationship between instruction tuning data scale, convergence loss, and model
performance, we conduct a series of 10 experimental sets with different volumes. These experiments
utilize Square-10M and specialized in-domain instruction tuning datasets. The average performance
of the models is evaluated on DocVQA, ChartQA, InfoVQA, WTQ, and SROIE. As shown in
Figure 5(a)(b), we observe a consistent decline in convergence loss with increasing data scale, albeit
at a decelerating rate. The relationship between the convergence loss and the instruction tuning
data scale approximately conforms to a logarithmic function. Similarly, Figure 5(c)(d) illustrates
that model performance is enhanced with the expansion of instruction tuning data, yet the rate of
improvement diminishes. This relationship also aligns with a logarithmic function. Holistically, there
is a corresponding scaling law in the instruction tuning phase in text-centric VQA scenarios: model
performance is directly proportional to the logarithm of the data scale. This insight is instrumental in
guiding the development of larger datasets and in forecasting model performance.

6 LIMITATION

While yielding notable outcomes across diverse scenarios, our approach encounters certain limitations.
Primarily, the processing of large-scale datasets necessitates an extensive array of GPUs for prolonged
training periods. This requirement significantly escalates the overall training costs. Furthermore,
despite the advancements introduced by the Square strategy in enhancing the quality of synthetic data,
it falls short of achieving the nuanced accuracy and complexity characteristic of human-generated
data.

7 CONCLUSION

This paper presents the Square strategy for constructing a high-quality text-centric instruction tuning
dataset(Square-10M). Leveraging this dataset, TextSquare significantly surpasses recent open-source
models and achieves performance comparable to GPT4V across various benchmarks. Furthermore,
we derive the relationship between the scale of instruction tuning datasets, convergence loss, and
model performance, offering insights into developing even larger datasets. Our data-centric approach
reevaluates the significance of instruction-tuning data in text-centric VQA, underscoring that both
the quantity and quality of data are pivotal for optimal model performance. We maintain a steadfast
belief in the potential for advancing the quantity and quality of data as a means to bridge the divide
between open-source models and their industry-leading counterparts.
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Table 7: Detailed data sources of the images in Square-10M

Chart Chart2Text, PlotQA, FigureQA, DQA, AutoChart,
DeepRuleDataset, CHART-Info

Table FinTabNet, PubTables, WTW, TRUL, TabRecSet
Document DocEdit, DUDE, FUNSD, PubLayNet, PDFVQA, CCPDF
Slide PPTC, ISI-PPT, UniDoc
Screenshot LightShot13k, Screen Annotation dataset, WebScreenshots, ScreenQA
Receipt CORD, SROIE, WildReceipt

StreetView ICDAR2013, ICDAR2015, ICDAR2017-MLT, MSRA-TD500, COCOText v2,
TextOCR, Total-Text

WebImages LAION-OCR, OpenImages V6
E-Commerce Amazon Product, Shopee Product

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 DATA CONSTRUCTION

Table 7 presents the detailed data sources of the images in Square-10M.

A.2 RELATED WORK

A.2.1 MULTI-MODAL LARGE LANGUAGE MODELS

Recent work has increasingly focused on introducing visual knowledge into LLMs (Zhu et al.,
2023; Bai et al., 2023; Dai et al., 2024). General attempts connect a visual encoder and an LLM
with intermediate modules like Projector (Liu et al., 2024c), Q-Former (Li et al., 2023a), Perceiver
Resampler (Alayrac et al., 2022), etc, and go through pre-training alignment and instruction fine-
tuning for vision-language understanding.

Several researches (Ye et al., 2023a; Feng et al., 2023b;a; Yu et al., 2023; Wei et al., 2023; Wan et al.,
2024; Luo et al., 2024; Liu et al., 2024a) propose to enhance MLLMs’ capabilities in understanding
textual elements (OCR, text-centric VQA, etc). Among them, mPLUG-DocOwl (Ye et al., 2023a)
creates novel instruction tuning datasets to enhance the tuning process. TextMonkey (Liu et al., 2024d)
adopts shifted window attention and filters out significant tokens. DocPedia (Feng et al., 2023a), and
HRVDA (Liu et al., 2024a) enlarges input resolution to bridge the gap between MLLMs and visual
document understanding. Despite the extraordinary progress of existing open-source MLLMs, they
still suffer from the huge gap against SOTA closed-source models like GPT4V (OpenAI, 2023) and
Gemini Pro (DeepMind, 2023).

A.2.2 TEXT-CENTRIC VISUAL QUESTION ANSWERING

Text-centric Visual Question Answering aims to understand the interactions between the image’s
textual and visual elements. Donut (Kim et al., 2022) first proposes an end-to-end training method
based on a Transformer without OCR. Pix2Struct (Lee et al., 2023) introduces a variable-resolution
input representation to adapt to document images. DoCo (Li et al., 2024) enhances the visual
representation of the image encoder in MLLMs by aligning the document object of multi-modal
inputs. BLIVA (Hu et al., 2024b) enlarges the input token space by concatenating learned query
embeddings and encoded patch embeddings. Several studies (Feng et al., 2023b; Wang et al., 2023;
Zhang et al., 2023) have performed data-centric attempts in this regard. UniDoc (Feng et al., 2023b)
construct 600k document-oriented image-text pairs from PowerPoint presentations. LLaVAR (Zhang
et al., 2023) and TG-Doc (Wang et al., 2023) prompt text-only GPT-4 to generate conversations for
text-rich images by integrating OCR results into the instructions. These researches are restricted to
small-scale annotations or generation based on uni-modal inputs.

A.2.3 GENERATING INSTRUCTION-TUNING DATA VIA LLMS

The success of LLMs has inspired recent work to employ them as training data generators (Chen
et al., 2023; 2024; Wang et al., 2022; Shao et al., 2023). In this regard, we anchor on generating
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instruction-tuning data. Self-Instruct (Wang et al., 2022) took the initial step towards synthesizing
instructions via language models and improving the instruction-following capabilities. Llama-GPT4
(Peng et al., 2023) uses GPT-4 to generate instruction-tuning data for LLM fine-tuning. Synthetic
Prompting (Shao et al., 2023) leverages a few handcrafted examples to prompt LLMs to generate
more examples. Bonito (Nayak et al., 2024) converts unannotated text into task-specific training
datasets for instruction tuning. Recently, ALLAVA (Chen et al., 2024) employs GPT4V to generate
reasoning instructions and detailed answers from unlabeled images. All of the above attempts suffer
from the low quality of the generated data and are typically performed on a small scale. In contrast,
we collect millions of text-rich images and devise comprehensive generating methods and filtering
rules to ensure the quality of the instruction tuning dataset.

A.3 EXPERIMENTS

A.3.1 SUMMARY OF THE EVALUATION BENCHMARKS

We summarize the evaluation benchmarks used in this paper in Table 8.

Table 8: Summary of the evaluation benchmarks.

Benchmark Description Split Metric
DocVQA VQA on document images test ANLS
ChartQA VQA on charts with visual and logical reasoning test Relaxed Accuracy
InfoVQA VQA on infographic images test ANLS
AI2D Multiple choice VQA on science diagrams test Accuracy
TextVQA VQA involving reading and reasoning about text val VQA Score
WTQ VQA on semi-structured HTML tables sourced from Wikipedia test Accuracy
TabFact ’Yes’ or ’No’ choice VQA about tables test Accuracy
SROIE Key information extraction from receipts test Accuracy
POIE Key information extraction on product images test Accuracy
VizWiz Answering visual questions from blind people val VQA Score
VQAV2 Open-ended VQA about natural images val VQA Score
GQA Real-world visual reasoning and compositional question answering test-dev Accuracy
POPE Yes-or-No VQA to assess the object hallucination problem test(adversarial) F1 Score
MTVQA Multilingual text VQA includes 9 languages and diverse scenarios test Accuracy

A.3.2 ZERO-SHOT PERFORMANCE ON MULTILINGUAL TEXT-CENTRIC VQA

To ascertain the impact of the Square-10M dataset on the generalizability of TextSquare, we un-
dertake a zero-shot test in multilingual text-centric VQA scenarios. MTVQA (Tang et al., 2024)
is a comprehensive benchmark to evaluate the model performance on multilingual visual text un-
derstanding, including nine languages and diverse text-rich scenarios. As illustrated in Table 10,
TextSquare’s performance across nine languages outperforms the state-of-the-art open-source models.
This outcome affirms our model’s robustness and our approach’s efficacy.

A.3.3 PERFORMANCE ON GENERAL MULTI-MODAL UNDERSTANDING BENCHMARKS

We evaluate TextSquare on general multi-modal understanding benchmarks. As shown in Table 9,
there is a slight performance drop and TextSquare still outperforms Gemini-Pro, which is acceptable.

Table 9: Performance on general multi-modal understanding benchmarks.

MMB MME
Xcomposer2 79.6 2242.7
Gemini-Pro 73.6 1933.3
TextSquare 76.8 2068.5
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Table 10: Zero-shot performance of open-source MLLMs on the MTVQA (Tang et al., 2024)
benchmark. The best results of each language are bolded.

AR DE FR IT JA KO RU TH VI Average
Open-Source MLLMs
DeepSeek-VL (Lu et al., 2024) 0.6 14.2 15.3 15.2 2.9 3.8 1.6 0.9 5.2 6.6
YI-VL-34B (AI et al., 2024) 1.7 13.5 15.7 12.1 4.8 5.2 0.8 3.5 4.1 6.8
Llava-Next-34B (Liu et al., 2024c) 3.3 24.0 28.0 22.3 3.6 6.1 2.6 0.4 9.8 11.1
TextMonkey (Liu et al., 2024d) 2.0 18.1 19.9 22.1 4.6 7.2 3.2 0.9 11.1 9.9
mPLUG-DocOwl 1.5 (Ye et al., 2023a) 1.0 13.9 14.9 18.2 2.9 5.0 2.0 0.9 6.4 7.2
TextSquare 3.7 27.0 30.8 26.7 3.2 7.2 6.7 5.2 12.4 13.6

The total number of deaths in prisons 
and camps is 1,146,000.This is found by 
looking at the row labeled "Deaths In 
Prisons & Camps" and reading the 
number in the last column, "Total".

The ratio of Russians who approve to 
those who disapprove of Putin's 
handling of corruption is 62:29.
This is determined by looking at the 
rightmost bars on the chart for the 
category "Corruption." The green bar, 
representing approval, shows 62%, 
while the yellow bar, representing 
disapproval, shows 29%. 

(A) Visualizations of TextSquare and Gemini Pro.Figure 6: Visualisation of model performance comparison between TextSquare and Gemini
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