
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALING PROBABILISTIC CIRCUITS VIA DATA
PARTITIONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Probabilistic circuits (PCs) enable us to learn joint distributions over a set of random
variables and to perform various probabilistic queries in a tractable fashion. Though
the tractability property allows PCs to scale beyond non-tractable models such
as Bayesian Networks, scaling training and inference of PCs to larger, real-world
datasets remains challenging. To remedy the situation, we show how PCs can be
learned across multiple machines by recursively partitioning a distributed dataset,
thereby unveiling a deep connection between PCs and federated learning (FL).
This leads to federated circuits (FCs)—a novel and flexible federated learning (FL)
framework that (1) allows one to scale PCs on distributed learning environments
(2) train PCs faster and (3) unifies for the first time horizontal, vertical, and hybrid
FL in one framework by re-framing FL as a density estimation problem over
distributed datasets. We demonstrate FC’s capability to scale PCs on various large-
scale datasets. Also, we show FC’s versatility in handling horizontal, vertical, and
hybrid FL within a unified framework on multiple classification tasks.

1 INTRODUCTION

Probabilistic Circuits (PCs) are a family of models that provide tractable inference for various
probabilistic queries (Poon & Domingos, 2011; Choi et al., 2020). This is achieved by representing a
joint distribution by a computation graph on which certain structural properties are imposed. While
PCs offer significant computational advantages over traditional probabilistic models such as Bayesian
networks (Pearl, 1985), further performance gains can be realized by optimizing the compactness of
PC representations and tailoring them to specific hardware architectures (Peharz et al., 2020a; Liu
et al., 2024). However, another natural way to scale up PCs by distributing the model over multiple
machines is so far underexplored. While models like neural networks can be partitioned over multiple
machines with relatively low efforts, partitioning PCs is more challenging as they come with certain
structural constraints to ensure the validity of the represented joint distribution. Interestingly, we find
an inherent connection between the structure of PCs and the paradigm of federated learning (FL). In
PCs, sum nodes combine probability distributions over the same set of variables via a mixture. This
resembles the horizontal FL (Konečnỳ et al., 2016; Li et al., 2020) setting, where all clients hold the
same features but different samples. In contrast, the case of vertical FL (Yang et al., 2019; Wu et al.,
2020) in which the same samples are shared, but features are split across clients, can be linked to the
product nodes used in PCs, which combine distributions of a disjoint set of variables. Consequently,
the hybrid FL (Zhang et al., 2020) setting, where both samples and features are separated across
clients, can be represented by a combination of sum and product nodes. Thus, PCs are well positioned
to connect all three FL settings in a unified way – an endeavor considered hard to achieve in the FL
community (Li et al., 2023a; Wen et al., 2023).

As a result of this connection, we introduce federated circuits (FCs), a novel FL framework that
re-frames FL as a density estimation problem over a set of datasets distributed over multiple machines
(subsequently called clients). FCs naturally handle all three FL settings and, therefore, provide a
flexible way of scaling up PCs by learning a joint distribution over a dataset arbitrarily partitioned
across a set of clients (see Fig. 1 for an illustration). Imposing the same structural properties
as for PCs, FCs achieve tractable computation of probabilistic queries like marginalization and
conditioning across multiple machines. To this end, we propose a highly communication-efficient
learning algorithm that leverages the semi-ring structure within the design of FCs. Our experimental

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

+

+

Figure 1: Scaling PCs via Federated Circuits. We scale PCs by splitting a dataset D into a set of n
partitions {Pi}ni=1 s.t. D =

⋃n
i=1 Pi. Each partition is assigned to a client (i.e., machine) cj , and the

resulting federated circuit (FC) is learned jointly by a set of clients. FCs represent a novel framework
for federated learning (FL), capable of performing horizontal FL (samples are split across clients),
vertical FL (features are split across clients), and hybrid FL (mix of horizontal and vertical).

evaluation1 shows that FCs outperform EiNets (Peharz et al., 2020a) on large-scale density estimation
tasks, demonstrating the benefits of scaling up PCs. Additionally, FCs outperform or achieve
competing results on various classification tasks in all federated settings compared to state-of-the-art
neural network-based and tree-based methods, demonstrating its effectiveness in FL. Overall, we
make the following contributions:

(1) We introduce FCs, a communication-efficient and scalable FL framework unifying horizontal,
vertical, and hybrid FL by mapping the semantics of PCs to FL.

(2) We practically instantiate FCs to FedPCs and demonstrate how the FC framework can be
leveraged to scale up PCs to large real-world datasets.

(3) We propose a novel one-pass training scheme for FedPCs that is compatible with a broad set
of learning algorithms.

(4) We provide extensive experiments demonstrating the effectiveness of our approach for
learning large-scale PCs and performing FL. We consider multiple domains (tabular data,
image data) and tasks (classification, density estimation).

We proceed as follows: After touching upon related work, we provide the probabilistic view on FL
and introduce FCs. Before concluding, we present our extensive experimental evaluation of FedPCs.

2 PRELIMINARIES AND RELATED WORK

In the following, we briefly introduce PCs and FL and give an overview of relevant related work.

2.1 PROBABILISTIC CIRCUITS

PCs encode a probability distribution as a computation graph that allows for tractable inference of a
wide range of queries such as conditional (partial evidence) and marginalization. Peharz et al. (2015b)
define a PC over random variables X as a tuple (G, ϕ) where G = (V,E) is a rooted, Directed
Acyclic Graph (DAG) and ϕ : V → 2X is the scope function assigning a subset of random variables
to each node in G. For each internal node N of G the scope is defined as the union of scopes of its
children ch(N). Each leaf node L computes a distribution/density over its scope. All internal nodes of
G are either a sum node S or a product node P where each sum node computes a convex combination
of its children, i.e. S =

∑
N∈ch(S) wS,NN, and each product node computes a product of its children,

i.e. P =
∏

N∈ch(P) N. To ensure tractability of probabilistic queries such as marginalization, a PC
must be decomposable. Decomposability requires that for all P ∈ V it holds that ϕ(N) ∩ ϕ(N′) = ∅
where N,N′ ∈ ch(P). To further ensure that a PC represents a valid distribution, smoothness must
hold, i.e., for each sum S ∈ V it holds that ϕ(N) = ϕ(N′) where N,N′ ∈ ch(S) (Peharz et al., 2015b).

1Code available at https://anonymous.4open.science/r/federated-spn-5FDC.

2

https://anonymous.4open.science/r/federated-spn-5FDC

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Decomposable and smooth PCs are often referred to as Sum-Product Networks (SPNs) (Poon &
Domingos, 2011; Peharz et al., 2015a; Sánchez-Cauce et al., 2021).

Several works have tackled the goal of scaling PCs. On the architecture side, it was shown that large,
random structures can be used to scale to larger problems more easily (Peharz et al., 2020b). Changes
in the model layout, such as parallelizable layers and the einsum-operation (Peharz et al., 2020a) and
a reduction in IO operations (Liu et al., 2024), were also shown to drastically reduce the speed of
computation. Liu et al. (2022) improved the performance of PCs by latent variable distillation, where
deep generative models give additional supervision during the learning process.

2.2 FEDERATED LEARNING

In federated learning (FL), a set of data owners (or clients) aim to collaboratively learn an ML model
without sharing their data. One distinguishes between horizontal, vertical, and hybrid FL depending
on how data is partitioned. In horizontal FL, a dataset D ∈ Rn×d is partitioned s.t. each client holds
the same d features but different, non-overlapping sets of samples. In vertical FL, D is partitioned s.t.
each client holds the same n samples but different, non-overlapping subsets of the d features. Hybrid
FL describes a combination of horizontal and vertical FL where clients can hold both different (but
possibly overlapping) sets of samples and features (Wen et al., 2023; Li et al., 2023a).

For all three FL settings, specifically tailored methods have been proposed to enable collaborative
learning of models. The most common scheme in horizontal FL is to average the models of all clients
regularly during training (McMahan et al., 2016; Karimireddy et al., 2020a;b; Sahu et al., 2018).
However, model averaging requires each client to share the same model structure. In vertical FL,
clients hold different feature sets; thus, there is no guarantee that the model structure can be shared
among clients. In these cases, tree-based and neural models are the predominant choice and are
typically learned by sharing data statistics or feature representations among clients (Kourtellis et al.,
2016; Cheng et al., 2021; Vepakomma et al., 2018; Ceballos et al., 2020; Chen et al., 2020; Liu
et al., 2019). Similar to tree-based vertical FL, tree-based hybrid FL approaches share data statistics
(such as histograms) or model properties (such as split rules) among clients (Li et al., 2023b; 2024).
However, tree-based approaches often require complex training procedures.

3 FEDERATED CIRCUITS

This work aims to scale up PCs by splitting data and the model across multiple machines, thus
harnessing the availability of compute clusters to train PCs in a federated fashion. In the following,
we present an elegant and effective way to achieve that using our novel federated learning framework
called federated circuits (FCs). FCs unify horizontal, vertical, and hybrid FL by hierarchically
learning mixtures (horizontal part) and fusing marginals (vertical part).

3.1 PROBLEM STATEMENT & MODELING ASSUMPTIONS

Given a dataset D and a set of clients C where each c ∈ C holds a partition Dc of D; we aim to learn
the joint distribution p(X) over random variables X (i.e., the features of D). The partitioning of D
is not further specified. Hence, each client might only hold a subset of random variables Xc ⊆ X
with support Xc. This can be interpreted as each c ∈ C holding a dataset Dc ∼ pc where pc is a joint
distribution over Xc which is related to p(X).

We introduce two critical modeling assumptions relevant for learning a joint distribution p(X) from a
dataset D partitioned across a set of machines.
Assumption 1 (Mixture Marginals). There exists a joint distribution p such that the relation∫
X\XS

p(x) =
∑

l∈L q(L = l) · pS(x|L = l) holds. Here, XS ⊆ X is a subset of the union
of client random variables X = ∪c∈CXc with support X =×c∈C Xc, each pS is defined over
XS ⊆ X and q is a prior over a latent L.

To illustrate, consider a subset of variables XS ⊆ X shared among all clients and its complement
XS− = X \XS . Assumption 1 ensures that the marginal

∫
XS−

p(X) is representable as a mixture
of all client distributions pc(XS) over XS . If Assumption 1 would not hold, the information stored
on the clients’ data partitions would not be sufficient to learn p(X).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

A key assumption in FL is that data cannot be exchanged among clients. However, dependencies
among variables residing on different clients might still exist. To enable learning these “hidden”
dependencies while keeping data private, we make the following assumption:
Assumption 2 (Cluster Independence). Given disjoint sets of random variables X1, · · · ,Xn and
a joint distribution p(X1, · · · ,Xn), assume that a latent L can be introduced s.t. the joint can be
represented as p(X1, · · · ,Xn) =

∑
l pθ(L = l)

∏n
i=1 p(Xi|L = l) where pθ is a prior distribution

over the latent L.

Note that independence is only assumed within clusters in the data. Thus, the latent variable (which
can be thought of as ”cluster selectors“) allows capturing dependencies among variables residing on
different clients. Distributions of the form in Assumption 2 are strictly more expressive distribution
than the product distribution and thus allow for more complex modeling:
Fact 1. A joint distribution p over disjoint sets of random variables X1, · · · ,Xn of the form
p(X1, · · · ,Xn) =

∑
l pθ(L = l)

∏n
i=1 p(Xi|L = l) is strictly more expressive than a distribution

of the form p(X1, · · · ,Xn) =
∏n

i=1 p(Xi). We provide proof in the App. B.

3.2 BRIDGING PROBABILISTIC CIRCUITS AND FEDERATED LEARNING

We now illustrate an inherent connection between PC semantics and FL. This will allow us to train
PCs on data partitioned over a set of clients and thus greatly increase the scaling potential of PCs.

Sum Nodes and Horizontal FL. In horizontal FL, each client is assumed to hold the same set
of features, i.e., Xc = Xc′ for all c, c′ ∈ C. However, each client holds a different subset of the
data. Prominent horizontal FL methods solve this task by aggregating the model parameters of
locally learned models regularly. However, the horizontal FL setting also precisely corresponds to
the interpretation of sum nodes in PCs: A sum node splits a dataset into multiple disjoint clusters.
The distribution over the entire data is then represented as a mixture of the distributions learned from
the disjoint clusters. Thus, instead of aggregating model parameters, we aggregate the distributions
learned by each client on its data partition.
Definition 1 (Horizontal FL). Assume a set of samples Dc ∼ pc on each client c ∈ C, a joint
distribution p adhering to Assumption 1 and that Xc = Xc′ for all c, c′ ∈ C s.t. c ̸= c′. We define
horizontal FL as fitting a mixture distribution p̂ =

∑
c∈C q(c) · p̂c such that d(p̂, p) and d(pc, p̂c) are

minimal for all c ∈ C where d is a distance metric and p̂c local distribution estimates.

This view on horizontal FL has an appealing positive side effect: Aggregating model parameters can
lead to divergence during training if the client’s data distributions significantly differ. We circumvent
the burden of aggregating model parameters by forming a mixture of local models that can be learned
independently. Thus, we do not require further assumptions on the client’s distributions. Also, since
clients can train models independently, the communication cost of the training is minimized.

Product Nodes & Vertical FL. In vertical FL, each client is assumed to hold a disjoint set of
features, i.e., Xc ∩Xc′ = ∅ for all c, c′ ∈ C. In contrast to horizontal FL, all clients hold different
features belonging to the same sample instances. As in horizontal FL, there is a semantic connection
between vertical FL and PCs. Product nodes in PCs compute a product distribution defined on a
disjoint set of random variables. Thus, a product node separates the data along the feature dimension,
corresponding to the vertical FL setting. However, a product node assumes the random variables of
the child distributions to be independent of each other. Obviously, this is an unrealistic assumption
for vertical FL, where features held by different clients might be statistically dependent. To capture
such dependencies, Assumption 2 can be exploited, and a mixture over multiple product distributions
can be formed. We will discuss this in detail in Sec. 3.3.
Definition 2 (Vertical FL). Assume a set of samples Dc ∼ pc on each data owner c ∈ C, the
existence of a joint distribution p adhering to Assumptions 1 and 2 and that Xc ∩Xc′ = ∅ holds
for all c, c′ ∈ C s.t. c ̸= c′. We define vertical FL as estimating a joint distribution p̂ s.t. d(p, p̂) is
minimal and

∫
X\Xc

p̂(x) = p̂c(x) for all x ∈ X where d is a distance metric and p̂c are estimates of
client distributions.

PCs & Hybrid FL. Given Defs. 1 and 2, hybrid FL is a combination of both. In terms of PC
semantics, this amounts to building a hierarchy of fusing marginals and learning mixtures. Provided
with these probabilistic semantics, we can now formally bridge PCs and FL. In the following, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

distinguish between clients C and servers S and define the set of machines participating in training as
N = C ∪ S. Bringing everything together and abstracting from the probabilistic interpretation, we
define federated circuits (FCs) as follows.

Definition 3 (Federated Circuits). A federated circuit (FC) is a tuple (G, ψG , ω) where G = (V,E)
is a rooted, Directed Acyclic Graph (DAG), ψG : V → N assigns each N ∈ V to a compute node
n ∈ N based on the structure of G and ω : V → O assigns an operation o ∈ O to each node N ∈ V
where o : dom(ch(N))→ dom(N) computes the value of N given the values of the children of N.

FCs extend the definition of PCs in the sense that FCs represent a computational graph G = (V,E)
distributed over multiple machines where arbitrary operations can be performed in each node N ∈ V .
Depending on the parameterization of leaves and nodes N, FCs are not restricted to the probabilistic
interpretation presented above. For example, parameterizing leaves by decision trees and introducing
a node N that performs averaging yields a bagging model.

3.3 FEDERATED PROBABILISTIC CIRCUITS

Let us now dive deeper into the probabilistic interpretation of FCs. To that end, we present a concrete
instantiation of FCs leveraging Probabilistic Circuits (PCs) as leaf models, resulting in federated PCs
(FedPCs). Following the probabilistic interpretation from Sec. 3.2, we align the PC structure with the
communication network structure to form a federated PC.

Definition 4 (Federated PC). A Federated PC (FedPC) is a FC where each leaf node C is a density
estimator and each node N s.t. ch(N) ̸= ∅ is either a sum node (S) or a product node (P).

Note that only the client nodes C hold a dataset and we only demand the clients to be parameterized
by a density estimator. In order for FedPCs to be computationally efficient, these density estimators
should be tractable. In the following, we parameterize the leaf nodes C as PCs.

The operation assignment ω is omitted in FedPCs as the operations performed by each node are
implicitly defined (sum or product). The assignment function ϕ transforms the PC’s computation
graph into a distributed computation graph aligned to the communication network. This establishes a
direct correspondence between PC semantics (computation graph) and the communication network
structure in FedPCs. Inference is performed as usual in PCs by propagating likelihood values from
the leaf nodes to the root node. The only difference is that the result of a node N has to be sent to its
parent(s) pa(N) over the communication network if ψ(N) ̸= ψ(N′) holds for N′ ∈ pa(N).

Training FedPCs requires adapting the regular training procedure for PCs. This is mainly because
not all clients can access the same samples if data is partitioned horizontally or hybrid. Since a
forward pass through a PC requires the same sample to be available on each leaf, prominent learning
algorithms such as Expectation Maximization (EM) are not directly applicable in horizontal and
hybrid FL settings. In the following, we propose a one-pass training procedure of FedPCs that does
not require a full forward or backward pass over the model.

One-Pass Training.

Our one-pass learning algorithm learns the structure and parameters of FedPCs so that local models
can be trained independently (Algo. 1, Fig. 2). Before training, all clients c ∈ C share their set of
uniquely identifiable features/random variables Xc with a server, resulting in the feature set indicator
matrix M|C|×|X| (Lines 1-2). Feature identifiers can be names of features such as “account balance”
and have to correspond to the same random variable on all clients (thus uniquely identifiable). Then,
the server divides the joint feature space X into disjoint subspaces by considering all unique columns
(u) in M. Non-unique columns indicate sets of features with cardinality > 1 held by multiple clients
and, thus, can be modeled as a mixture in the FedPC. Hence, the subspaces {S(1), . . . ,S(l)} represent
sets of features shared by a set of clients {OS(1) , . . . , OS(l)} such that the number of subspaces l is
minimized (Lines 3-7). For example, in Fig. 1, the features of partitions 1 and 2 define one subspace
as the largest subspace covering all clients holding these features (2 clients).

Afterward, the FedPC structure is constructed (bottom part of Fig. 2): First, we build a mixture (sum
node) for each subspace S(j) where |OS(j) | > 1, i.e., more than one client holds S(j) (Lines 9-12).
This enables each client to learn a PC over S(j) independently. After that,|OS(j) | = 1 holds for all
remaining S(j). Also, the scope of the sums nodes introduced in the FedPC share no features with any

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

++ +

+
+

+

+

Figure 2: One-Pass Training Visualized. (Top) First, the matrix M is initialized, representing which
features lie on which clusters. The unique descriptor vector u groups clients with the same feature
subset. This forms a mapping indicating which features are available on each client. (Bottom) This
mapping is utilized by first combining features that lie on different clients with sum nodes. Other
features will be clustered into K clusters (here K = 2). The final FedPC is constructed by creating
product nodes containing all the sum nodes from the previous steps and at least one of the K clusters.
Lastly, the root node (sum node) is inserted.

of the remaining S(j) since the server divided the feature space into disjoint subspaces. Therefore,
we can use Prop. 1 and introduce P product nodes to construct the remaining part of the FedPC.

Algorithm 1: One-Pass Training
Data: Clients C, features X, cluster size K,

FedPC fedPC
Result: Trained fedPC

1 M = 0|C|×|X|;
2 Mi,j = 1 if X(j) on client i;
3 map = [];
4 for j,u in enum(unique cols(M)) do
5 S(j) = {i : i ∈ {1, . . . , |X| ∧ all(u ==

M:,i)}};
6 OS(j) = argwhere(u == 1);
7 map.append(S(j), OS(j));
8 sums = [];
9 for S(j), OS(j) in map do

10 if |OS(j) | > 1 then
11 s = fedPC.add sum(S(j), OS(j));
12 sums.add(s)
13 else
14 client clusters =

cluster local data(OS(j) , K);
15 products = fedPC.add products(P);
16 for prod in products do
17 prod.children.add(sums);
18 for client, clusters in client clusters do
19 prod.children.add rand subset(clusters);

20 fedPC.add mixture over products(products);
21 fedPC.train clients();
22 fedPC.infer weights();
23 return fedPC

To this end, we divide the data of all subspaces
S(j) where |OS(j) | = 1 holds into K clusters
(Line 14). Each client learns a dedicated PC for
each cluster. To ensure that the FedPC spans the

entire feature space of the clients, the children of
product nodes are set as follows: Each sum node
introduced in the FedPC becomes a child of each
product node. Additionally, for each S(j) where
|OS(j) | = 1 holds, we randomly select a PC
learned over one of the K clusters s.t. the scope
of each product node spans S, and each PC rep-
resenting a cluster is the child of at least one
product node. Then, we build a mixture over all
product nodes using a sum node (Lines 15-20).
Once the FedPC is constructed, all client-sided
PCs are learned. Since clients learn their PCs
independently, each client can use an arbitrary
learning algorithm (even different ones). As
a last step, the network-sided parameters, i.e.,
the weights of network-sided sum nodes, of the
FedPC are inferred (Line 21-22). For each sum
node S, the weight w(i)

S associated with the i-th
child (i.e., distribution) of S is set to ρ(Ni)∑

i ρ(Ni)
.

Here, ρ(Ni) =
∑

C∈ch(Ni)
|DC| where DC is

the dataset used to train the leaf C. Hence, the
network-sided weights can be inferred without
any forward or backward pass. Note that this
approach reduces horizontal FL to learning a
mixture of the client’s data distributions and ver-
tical FL to learning a mixture over P product
nodes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Log-Likelihood Relative Runtime
cent horizontal vertical hybrid cent horizontal vertical hybrid

MNIST 3352±3.5 3350±3.2 3351±3.8 3349±3.7 1.0 0.07±0.01 0.13±0.01 0.13±0.02

Income −11.5±0.1 −11.4±3.5 −11.9±3.3 −12.0±1.5 1.0 0.17±0.02 0.236±0.01 0.21±0.02

Cancer −38.9±0.3 −38.5±1.1 −38.6±0.5 −38.7±1.5 1.0 0.21±0.07 0.35±0.05 0.35±0.1

Credit −12.8±1.0 −13.1±0.5 −12.5±2.3 −12.5±1.3 1.0 0.42±0.05 0.31±0.09 0.40±0.13

Table 1: FedPCs speed up training while retaining model performance. We trained PCs in a
centralized setting (cent.) and in all FL settings (using FedPCs) on different datasets and the same
structure learning algorithm. We find that FedPCs tremendously speed up training (reported as
relative runtime w.r.t. centralized training where relative centralized runtime is 1.0 while there is no
reduction in log-likelihood. This demonstrates that PCs can be learned in federated settings (positive
log-likelihoods due to Gaussian leaves).

Next, we analyze the communication efficiency of our proposed learning algorithm.

3.4 ANALYSIS OF COMMUNICATION EFFICIENCY

Communication efficiency is a key requirement for efficient training when learning models on scale
on partitioned data, such as in FL. We now analyze the communication efficiency of FedPCs.

Horizontal FL. Assume a client set C where each client holds a model with M parameters. Further,
assume models are aggregated K times during training (K communication rounds). Then, model
aggregation-based algorithms like FedAvg commonly used in horizontal FL send O(M · |C| ·K)
messages over the network as each client sends M model parameters to a server in each communi-
cation round. Training FedPCs with one-pass training, in contrast, only requires O(|C| · (M + 1))
messages over the network as models are learned locally and independently of each other, followed
by setting the parameters (O(|C|) messages) of the sum nodes and aggregating the model on the
server (O(M |C|) messages).

Vertical FL. In vertical settings, SplitNN-like architectures are commonly used. Assume training a
SplitNN architecture for E epochs that output a feature vector of size F for each sample of a dataset
with S samples, vertically distributed over clients C. The training requires sending O(E · |C| · F · S)
messages over the network. In contrast, with one-pass training of FedPCs, each client learns a
dedicated PC with M parameters for each of the K clusters that are learned. The last layer of the
FedPC is a mixture of P products of clusters. The mixture parameters are set after training each
client’s model. Aggregating the learned models and setting the network-sided mixture parameters
requires O(K ·M · |C| + P) messages to be sent. If (K ·M + P

|C|) < (E · F · S) holds, training
FedPCs is more communication efficient than training SplitNN-like architectures. In practice, this
is likely to hold: The number of clusters is usually smaller than 100 while feature vectors can have
hundreds of dimensions (i.e., F > 100). Further, models should have fewer parameters than samples
in the dataset to ensure generalization (i.e., M < S). P can be set to an arbitrary value, depending on
|C| and the data. App. E provides more details and an intuition on communication costs.

Hybrid FL. In hybrid FL, FedPCs are trained on several subspaces: There are subspaces present on
all or a subset of clients (denoted as Rs) and there are subspaces only available on one client (denoted
as Rd). Further denote communication costs of FedPCs in horizontal FL and vertical FL as Ch and
Cv , respectively. Since the training procedure in hybrid cases essentially performs horizontal FL on
shared feature spaces and vertical FL on disjoint feature spaces, O(|Rs| · Ch + |Rv| · Cv) messages
are sent over the network during training.

Remark 1. When scaling PCs using FedPCs, we do not aggregate the models after training. This
distributes computation load across multiple machines also during inference and further decreases
communication costs during training.

4 EXPERIMENTS

In our empirical evaluation, we corroborate that FedPCs can be leveraged to effectively scale up PCs
via data and model

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

EiNet FC 2 cl. FC 4 cl. FC 8 cl. FC 16 cl.
Setup

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 R
el

at
iv

e
R

un
tim

e
 w

.r.
t.

E
iN

et

CelebA
Imagenet
Imagenet32

Figure 3: FedPCs speed up training. Due to par-
allel training on multiple, separate data partitions,
FedPCs tremendously speed up training compared
to EiNet (shown in relative speed-up).

partitioning. By performing horizontal, vertical
and hybrid FL in one unified framework, we ob-
tain high-performing models with the same or
improved performance compared to prominent
FL baselines. We aim to answer the following
questions: (Q1) Can FedPCs decrease the re-
quired training time and successfully learn a
joint distribution over distributed data? (Q2) Do
FedPCs effectively scale up PCs, thus yield-
ing more expressive models? (Q3) How do
FCs with different parameterizations perform
on classification tasks compared to existing FL
methods? (Q4) How does our one-pass learn-
ing algorithm compare to training with the EM
algorithm?

Experimental Setup. To see if FedPCs, an in-
stantiation of FCs, successfully scale up PCs,
we follow Liu et al. (2024) and perform density estimation on three large-scale, high-resolution image
datasets: Imagenet, Imagenet32 (both 1.2M samples), and CelebA (200K samples). The datasets
were partitioned over 2-16 clients horizontally. We compare FedPCs to EiNets and Pyjuice.

To evaluate FCs in FL scenarios, we selected three tabular datasets that cover various application
domains and data regimes present in the real world: one credit fraud dataset (∼ 300K samples), a
medical dataset (breast cancer detection; < 1000 samples), and the popular Income dataset (> 1M
samples). The selected datasets for FL cover low-data, medium-data, and large-data regimes2. Both
balanced (breast cancer) and imbalanced (income, credit) datasets are included in our evaluation. We
selected tabular datasets as they are well suited to investigate FCs in horizontal, vertical, and hybrid
settings and represent various real-world applications. We compare FCs to FedAvg (horizontal)
and SplitNN (vertical), both using TabNet (Arik & Pfister, 2020) as neural network architecture
parameterization. Additionally, we compare FCs to FedTree (Li et al., 2023b). For more details on
the experimental protocol, see App. F.

(Q1) FedPCs learn joint distributions over partitioned data in less time. First, we validate
that FedPCs correctly and efficiently perform density estimation on partitioned datasets distributed
over multiple clients. To this end, multiple tabular datasets were distributed over a set of clients
corresponding to horizontal (5 clients), vertical (2 clients), and hybrid FL (2 clients). To demonstrate
that FedPCs are also robust against label shifts, a common regime in FL, each client received data
from only a subset of classes in the horizontal case, and local PCs were learned over the client samples.
In the vertical case, we split data s.t. feature spaces of clients are disjoint, but each client holds the
same samples. In hybrid settings, data was distributed s.t. both feature- and sample-spaces among
clients have overlaps (but no full overlap). For all tabular datasets, the leaves of the FedPC were
parameterized with MSPNs (Molina et al., 2018), a member of the PC model family that is capable
of performing density estimation on mixed data domains (i.e., continuous as well as discrete random
variables). We chose MSPNs as the centralized models, which were learned using LEARNSPN,
a recursive greedy structure learning algorithm for SPNs Gens & Domingos (2013). For MNIST,
EiNets with Gaussian densities were used as PC instantiations in all settings.

Tab. 1 compares log-likelihood scores and relative runtime of centralized training of a PC on the
full datasets with log-likelihood scores and relative runtimes achieved by FedPC in different FL
settings. FedPCs successfully reproduce the results of centralized PCs on tabular datasets while being
tremendously faster in training. This validates our approach and we answer (Q1) affirmatively.

(Q2) FedPCs effectively scale up PCs. To examine whether FedPCs can be leveraged to scale up
PCs effectively, we trained an EiNet, PyJuice, and FedPC on CelebA, Imagenet32, and Imagenet. All
models used the Poon-Domingos (PD) architecture. FedPCs were parameterized with EiNets, and
data was distributed among 2, 4, 8, and 16 clients. The FedPC model and baseline models (EiNets
and PyJuice) were selected to ensure that each fits within a single GPU (see App. F for system
details). All models were parameterized with Gaussian leaves. Before training, data was clustered

2see App. F for more details

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

CelebA Imagenet32 Imagenet
EiNet (Peharz et al., 2020a) 5842.62 ± 94.9 682.82 ± 3.50 -5893.59 ± 84.79
PyJuice (Liu et al., 2024) 4228.14 ± 25.5 664.54 ± 6.41 -5732.21 ± 71.25
FedPC (2 clients) 6337.50 ± 98.3 1044.38 ± 8.02 -4971.36 ± 120.83
FedPC (4 clients) 6279.98 ± 86.9 1196.39 ± 1.50 -2330.87 ± 162.17
FedPC (8 clients) 6019.53 ± 96.3 1205.05 ± 2.72 -1818.17 ± 81.12
FedPC (16 clients) 5387.62 ± 82.9 1197.69 ± 10.79 -1157.23 ± 74.29

Table 3: FedPCs outperform EiNets and PyJuice on density estimation tasks. FedPCs achieve
better results on density estimation tasks on three challenging image datasets (CelebA, Imagenet32
and Imagenet). This is because FedPCs can learn far larger models distributed across multiple
machines. Results are reported as log-likelihood values (higher is better). Note that we used Gaussian
densities as PC leaves; thus, log-likelihood can get positive. Best value in bold, 2nd best underlined.

EM one-pass
Synth. Data −53.6± 1.3 −53.2± 1.2

Income −18.5± 0.1 −18.0± 0.5
Breast-Cancer −52.3± 0.2 −55.7± 0.2

Credit −26.7± 1.2 −28.3± 0.4

Table 2: One-pass training retains performance.
We trained the same FedPC architecture on vari-
ous datasets using EM and one-pass training in a
vertical setting. The average log-likelihood value
of the hold-out test set across 10 runs is reported.

on encodings of a pre-trained Vision Trans-
former (Dosovitskiy et al., 2021), and the im-
ages were distributed horizontally, s.t. each
client holds approximately equally large clus-
ters. To ensure a fair comparison, EiNets and
PyJuice were trained using the same clusters.
The leafs and all baselines were trained with
EM. In Tab. 3, we show the log-likelihood val-
ues achieved by EiNets, PyJuice, and FedPC
computed over the same test set. For Imagenet
and Imagenet32, log-likelihood improves with
an increasing number of participating clients.
On CelebA, log-likelihood increases when we scale up to two participating clients. For 8 and 16
clients, the log-likelihood decreases again. We posit that this is because CelebA consists of a low
number of relatively homogeneous clusters. Thus, increasing the cluster and model size to 8/16
could lead to overfitting and thus decreasing log-likelihoods. Since Imagenet consists of much more
heterogeneous images, larger models and a larger number of clusters are beneficial for learning
(see App. D for more details). Additionally using a larger number of clients reduces training time
significantly (see Fig. 3). FedPCs thus efficiently scale tractable probabilistic models to large datasets.

(Q3) FCs achieve state of the art classification results in FL. FCs can be parameterized with
different models in the leaves. We examine two parameterizations to solve a federated classification
task on three tabular datasets. First, we use the FedPC (FC [PC]) from (Q1), which can be used to
solve discriminative tasks leveraging tractable computation of conditionals in PCs. The second FC
parameterization we examine is decision trees (FC [DT]), representing an instantiation of a bagging
model. To see how FCs perform in federated classification tasks, we compare FCs to well-known
methods for horizontal FL and vertical FL. The experiments were conducted on tabular datasets
covering various real-world application domains and distribution properties. We employ TabNet
and FedTree as strong baselines. In the horizontal FL setting, TabNet was trained using FedAvg; in
the vertical FL setting, it was trained in a SplitNN fashion (Ceballos et al., 2020). The results were
compared against our one-pass training. FCs yield comparable or even better results than the selected
baselines on all datasets (see Fig 4; App. D) while being significantly more flexible since FCs can
be trained with the same unified procedure in all FL settings. In contrast, training neural networks
requires substantial changes to the training procedure once the FL setting switches. Hence, FCs are
more flexible while still competitive or better than prominent FL baselines.

(Q4) One-pass training retains performance. To see how the proposed one-pass training compares
to training PCs with standard optimization algorithms such as EM, we define an FL setup where
data exchange is allowed. This is necessary as we have to train the PC and FedPC architecture
with EM to compare to our one-pass procedure. We used RAT-SPNs (Peharz et al., 2020b) as leaf
parameterizations of the FedPC. Then, we trained a FedPC using standard EM (i.e., data exchange
was allowed) and another FedPC with the same FedPC architecture on a vertically split dataset using
our one-pass procedure. We report the final average log-likelihood of the test dataset, both for EM
training and one-pass training (see Tab. 2). It can be seen that there is no significant decrease in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: FCs are competitive to prominent FL methods in all settings. FCs achieve competitive
performance on various classification tasks compared to prominent horizontal/vertical FL baselines.
FCs also handle the more challenging setting of hybrid FL without performance drops. We reported
the F1 score as we consider binary classification tasks with imbalanced datasets.

log-likelihood in any case. Hence, our results indicate that one-pass training is preferable since it is
communication efficient.

5 CONCLUSION

In this work, we introduced federated circuits that hinge on an inherent connection between PCs
and FL. We demonstrated that both the training speed and expressivity of PCs can be increased
by learning PCs on scale across partitioned data. Since our framework allows for the integration
of various types of density estimators, other models and advances of PCs and other fields can be
integrated seamlessly, maintaining the relevance of the federated approach for scaling.

Limitations and Future Work. While our experiments showed that scaling PCs can considerably
improve training speed and performance, scaling to such large-scale models requires sufficient
computational resources. For future work, investigating other parametrizations for FCs beyond PCs
is promising. Additionally, it is interesting how the probabilistic framework for hybrid FL could also
benefit more traditional FL applications, apart from scaling PCs.

REFERENCES

Sercan O. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning, 2020.

Iker Ceballos, Vivek Sharma, Eduardo Mugica, Abhishek Singh, Alberto Roman, Praneeth
Vepakomma, and Ramesh Raskar. Splitnn-driven vertical partitioning. CoRR, abs/2008.04137,
2020.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. VAFL: a method of vertical asynchronous
federated learning. CoRR, abs/2007.06081, 2020.

K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and Q. Yang. Secureboost: A lossless
federated learning framework. IEEE Intelligent Systems, 36:87–98, 2021.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021.

Robert Gens and Pedro Domingos. Learning the structure of sum-product networks. In Proceedings
of the 30th International Conference on Machine Learning, volume 28, pp. 873–880. PMLR, 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. arXiv preprint arXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 5132–5143. PMLR, 2020b.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Nicolas Kourtellis, Gianmarco De Francisci Morales, Albert Bifet, and Arinto Murdopo. Vht: Vertical
hoeffding tree. In 2016 IEEE International Conference on Big Data (Big Data), 2016.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He. A
survey on federated learning systems: Vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 35:3347–3366, 2023a.

Qinbin Li, Zhaomin Wu, Yanzheng Cai, Ching Man Yung, Tianyuan Fu, Bingsheng He, et al. Fedtree:
A federated learning system for trees. Proceedings of Machine Learning and Systems, 5, 2023b.

Qinbin Li, Chulin Xie, Xiaojun Xu, Xiaoyuan Liu, Ce Zhang, Bo Li, Bingsheng He, and Dawn
Song. Effective and efficient federated tree learning on hybrid data. In The Twelfth International
Conference on Learning Representations, 2024.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

Anji Liu, Honghua Zhang, and Guy Van den Broeck. Scaling up probabilistic circuits by latent
variable distillation. In The Eleventh International Conference on Learning Representations, 2022.

Anji Liu, Kareem Ahmed, and Guy Van den Broeck. Scaling tractable probabilistic circuits: A
systems perspective, 2024.

Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, and Qiang
Yang. A communication efficient vertical federated learning framework. CoRR, abs/1912.11187,
2019.

H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning
of deep networks using model averaging. CoRR, abs/1602.05629, 2016.

Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Esposito, and Kris-
tian Kersting. Mixed sum-product networks: A deep architecture for hybrid domains. Proceedings
of the AAAI Conference on Artificial Intelligence, 32(1), 2018.

Judea Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning. In
Proceedings of the 7th conference of the Cognitive Science Society, University of California, Irvine,
CA, USA, pp. 15–17, 1985.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On theoretical
properties of sum-product networks. In Artificial Intelligence and Statistics, pp. 744–752. PMLR,
2015a.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos. On Theoretical Prop-
erties of Sum-Product Networks. In Guy Lebanon and S. V. N. Vishwanathan (eds.), Proceedings
of the Eighteenth International Conference on Artificial Intelligence and Statistics, volume 38, pp.
744–752. PMLR, 2015b.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy
Van Den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In Proceedings of the 37th International Conference on
Machine Learning, volume 119, pp. 7563–7574. PMLR, 2020a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,
Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and effective
approach to probabilistic deep learning. In Uncertainty in Artificial Intelligence, pp. 334–344.
PMLR, 2020b.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. pp. 337–346.
AUAI Press, 2011.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia Smith. On
the convergence of federated optimization in heterogeneous networks. CoRR, abs/1812.06127,
2018.

Raquel Sánchez-Cauce, Iago Parı́s, and Francisco Javier Dı́ez. Sum-product networks: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3821–3839, 2021.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui Cai, and Wensheng Zhang. A survey on
federated learning: challenges and applications. Int. J. Mach. Learn. & Cyber., pp. 513—-535,
2023.

Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi. Privacy preserving
vertical federated learning for tree-based models. arXiv preprint arXiv:2008.06170, 2020.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

Xinwei Zhang, Wotao Yin, Mingyi Hong, and Tianyi Chen. Hybrid federated learning: Algorithms
and implementation. CoRR, abs/2012.12420, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A NOTATION

The following table provides an overview of all symbols used throughout the paper, each with a brief
description.

Symbol Meaning
X Set of random variables
Xc Set of random variables on client c
D Dataset
Dc Dataset on client c
C set of clients
p joint distribution
pc marginal distribution over all random variables held by client c
p̂ distribution from data
N node in PC/FC
C client node in FC
S, P Sum/Product node in PC/FC
ψ scope function in PC/FC

ω
function assigning compute nodes to nodes of FC.
Defines alignment between FC structure and communication network.

B PROOFS

In this section we give full proofs for our propositions in the paper.

B.1 FACT 1

A joint distribution p over disjoint sets of random variables X1, · · · ,Xc of the form
p(X1, · · · ,Xc) =

∑
l pθ(L = l)

∏c
k p(Xk|L = l) is strictly more expressive than a distribution of

the form p(X1, · · · ,Xc) =
∏c

k p(Xk).

Proof. We have to prove two things here: (1) A mixture consisting of one component equals the
product distribution for the distribution family assumed in Proposition 1 and (2) a latent variable
model is strictly more expressive than the product distribution.

(1): For a latent L with |supp{L}| = 1 (hence p(L) is a point mass),
∑

l pθ(L = l)
∏c

k=1 p(Xk|L =
l) =

∏c
k=1 p(Xk) holds as for pθ(L = l) = 1 for the only l ∈ supp{L}. Also, if there is only one

mixture component, conditioning on the only component has no effect, i.e. p(Xk|L = l) = p(Xk).

(2): Assume an n-dimensional space Xk = Xk1 × · · · × Xkn for each set of variables Xk and a
c × n × m tensor X of random variables where each Xk corresponds to a matrix/set of random
variables Xk = (X11, . . . , Xnm), i.e. there exist m random variables per dimension of Xk. Further
assume a distribution pθkij

for each Xkij parameterized by θkij and that Xkij ⊥⊥ Xk′lj holds for
all k ̸= k′ and l ̸= i. Note that this does not forbid dependencies among variables within each
matrix Xk. Due to our independence assumption we can define distributions pθj =

∏c
k=1 p(Xk:j)

for each j. Since each of these distributions is defined over X , we can introduce a latent L with
support {1, . . . ,m} and associated prior pθ(L), yielding a mixture of c components over vectorized
random variables. Hence we can write p(X) =

∑C
l=1 pθ(L = l) · p(X|L = l). This can be rewritten

as p(X) =
∑c

l=1 pθ(L = l) · p(Xl). As each p(Xl) is a product distribution over random variables
corresponding to some mixture component j, rewriting yields p(X) =

∑c
l=1 pθ(L = l)·

∏c
j=1 p(Xl:j).

Using (1), setting |supp{L}| = 1 and setting the number of mixtures also to 1 yields a special case,
namely the product distribution over the only defined mixture component j, i.e.

∏
j p(Xl:j). Hence a

mixture as we have defined it is strictly more expressive as a single product distribution.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B.2 PROPOSITION 2

Assumption 2 aligns with the principle of maximum entropy: we aim to find the joint distribution with
maximum entropy within clusters while allowing for dependencies among clients’ random variables
and ensuring the marginals for each client are preserved. Although multiple joint distributions can
preserve the marginals, non-maximal entropy solutions introduce additional assumptions or prior
knowledge, limiting flexibility. By assuming independence of all variables within a cluster, we
efficiently construct the maximum entropy distribution via a mixture of product distributions. For
independent variables, the product distribution maximizes entropy, as can be shown by leveraging the
joint and conditional differential entropy. Given random variables X = X1, . . . , Xn and a density p
defined over support X = X1 × · · · × Xn, the joint differential entropy is defined as:

h(X) =

∫
X
p(x1, . . . , xn) logp(x1, . . . , xn) (1)

The conditional differential entropy for two sets of random variables X and Y and a joint distribution
p(X,Y) defined over support X × Y is defined analogously:

h(X|Y) =

∫
X ,Y

p(x,y) logp(x|y) (2)

Given two sets of random variables X, Y with densities p(X) and p(Y) and support X , Y respec-
tively, the joint p(X,Y) = p(X) ·p(Y) is the maximum entropy distribution if X and Y are mutually
independent.

Proof. We consider the two cases that X and Y are mutually independent and that they are not
mutually independent. The joint entropy can be written as h(X,Y) = h(X|Y) + h(Y). In the case
of mutual independence, this reduces to h(X,Y) = h(X) + h(Y). Hence it has to be shown that
h(X|Y) < h(X) holds if X and Y are not mutually independent:

h(X|Y) < h(X)

≡−
∫
X ,Y

p(x,y)logp(x|y) < −
∫
X ,Y

p(x,y)logp(x)

≡−
(∫

X ,Y
p(x,y)logp(x|y)−

∫
X ,Y

p(x,y)logp(x)
)
< 0

≡−
(∫

X ,Y
p(x,y)log

p(x|y)
p(x)

)
< 0

Since X ⊥⊥ Y holds where ⊥⊥ means mutual independence, p(x|y)
p(x) ̸= 1 at least for some x,y. Since

the mutual independence I(X,Y) =
∫
X ,Y p(x,y)log p(x,y)

p(x)·p(y) can be represented as I(X,Y) =

h(X)−h(X|Y), I(X,Y) ≥ 0 holds and−
(∫

X ,Y p(x,y)logp(x|y)
p(x)

)
= h(X|Y)−h(X) it follows

that h(X) > h(X|Y).

C ALGORITHMS

In this section we provide pseudo-code for the end-to-end training algorithm, the two-step training
algorithm and the FedSPN structure construction in hybrid FL scenarios.

C.1 EM TRAINING

In vertical FL settings, a full forward and backward pass can be computed in FedPCs. Thus, we
provide a distributed EM training algorithm here.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 2: EM Training
Data: FedPC-parameter tuple ⟨s, p⟩
Data: Distributed Dataset D
Result: Trained FedPC s

1 g ← 0
2 for random batch x from D do
3 ℓ← log(s(x))
4 ∇ps(x)← distributed backward(ℓ,x, s, p)
5 em step(p,∇ps(x))

Algorithm 3: Distributed Backward
Data: FedPC-parameter tuple ⟨s, p⟩
Data: Batch x
Data: Log-likelihood ℓ
Result: Trained FedPC s

1 g ← 0
2 gradients← []
3 for sum node S ∈ s do
4 gpa(S) ← []
5 for N ∈ pa(S) do
6 if N ̸∈ ϕ(S) then
7 obtain∇N (x)ℓ from ϕ(S)
8 else
9 compute ∇N (x)ℓ

10 add ∇N (x)ℓ to gpa(S)
11 compute gp(S) ←

∑
g∈gpa(S)

∇p(S)

∑
c∈ch(S) pc(S)c(x)

12 add ⟨p(S), gp(S)⟩ to gradients
13 return gradients

D FURTHER RESULTS

Here, we provide further experimental details on FCs.

Model Parameter Ablation. To validate our results, we provide an additional ablation study on the
effect the model size (measured in the number of parameters) has on the final model performance.
To this end, we trained models of different sizes (1.2M, 34M, and 99M parameters) on CelebA. We
used equally clustered data (2, 4, 8, or 16 clusters) and trained a mixture of EiNets in each run to
ensure that no other effects affect the result. We find that the model parameters have a significant
effect on the final model performance (reported as log-likelihood) and larger models achieve better
log-likelihood values. Thus, our ablation confirms that scaling PCs is crucial to obtaining high-quality
density estimates on complex data. For detailed results, see Tab. 4.

2 clusters 4 clusters 8 clusters 16 clusters
1.2M param. -3692.40 ± 67.07 -3263.54 ± 102.60 -3668.98 ± 87.66 -5145.27 ± 64.28
34M param. 1659.57 ± 65.02 1154.19 ± 55.31 481.02 ± 103.37 -1104.55 ± 109.69
99M param. 5011.55 ± 95.57 4388.37 ± 67.94 3727.43 ± 71.29 2208.78 ± 38.82

Table 4: Model size significantly influences log-likelihood. We trained mixtures of EiNets of
various sizes on the same clustering of CelebA to validate our results from the main paper. The
model size has a crucial influence on the final model performance and larger models achieve better
log-likelihoods.

FL Classification Results. We compare FCs to several baselines in horizontal, vertical, and hybrid FL.
In horizontal FL, we compare against FedAvg (using TabNet (Arik & Pfister, 2020)) and FedTree (Li
et al., 2023b); in vertical FL, we compare against SplitNN (also using TabNet) and FedTree. In hybrid

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

FL, we compare different parameterizations of FCs (FedPCs and FCs parameterized with decision
trees). We find that FCs are competitive or outperforming the selected baselines in all FL settings
(see Tab. 5). This makes them a very flexible FL framework that still yields high-performing models.

Cancer Credit Income
Acc. F1 Acc. F1 Acc. F1

H
or

iz
on

ta
lF

L

FedAvg [TabNet] (5 cl.) 0.92± 0.03 0.92± 0.03 0.71± 0.11 0.48± 0.04 0.68± 0.06 0.51± 0.03
FedAvg [TabNet] (10 cl.) 0.92± 0.04 0.91± 0.05 0.56± 0.12 0.47± 0.06 0.64± 0.06 0.52± 0.03

FedTree (5 cl.) 0.93± 0.01 0.92± 0.01 0.91± 0.01 0.63± 0.01 0.88± 0.01 0.82± 0.02
FedTree (10 cl.) 0.94± 0.01 0.93± 0.01 0.92± 0.01 0.69± 0.01 0.87± 0.01 0.80± 0.01
FC [PC] (5 cl.) 0.98± 0.01 0.98± 0.01 0.93± 0.02 0.68± 0.02 0.87± 0.02 0.80± 0.01

FC [PC] (10 cl.) 0.95± 0.02 0.95± 0.02 0.93± 0.01 0.66± 0.02 0.87± 0.01 0.80± 0.02
FC [DT] (5 cl.) 0.95± 0.03 0.93± 0.02 0.92± 0.01 0.67± 0.01 0.89± 0.01 0.83± 0.01

FC [DT] (10 cl.) 0.95± 0.02 0.93± 0.03 0.92± 0.01 0.97± 0.02 0.89± 0.01 0.83± 0.02
SplitNN [TabNet] - - - - - -

V
er

tic
al

FL

SplitNN [TabNet] (2 cl.) 0.98± 0.01 0.98± 0.01 0.93± 0.01 0.48± 0.01 0.56± 0.25 0.42± 0.17
SplitNN [TabNet] (3 cl.) 0.98± 0.01 0.98± 0.01 0.93± 0.01 0.48± 0.01 0.62± 0.20 0.56± 0.16

FedTree (2 cl.) 0.94± 0.01 0.93± 0.01 0.92± 0.01 0.69± 0.02 0.87± 0.01 0.80± 0.01
FedTree (3 cl.) 0.93± 0.01 0.92± 0.01 0.92± 0.01 0.69± 0.01 0.87± 0.01 0.80± 0.01
FC [PC] (2 cl.) 0.96± 0.01 0.96± 0.01 0.92± 0.01 0.67± 0.01 0.84± 0.02 0.74± 0.01
FC [PC] (3 cl.) 0.95± 0.01 0.95± 0.01 0.92± 0.01 0.66± 0.02 0.84± 0.01 0.74± 0.01
FC [DT] (2 cl.) 0.96± 0.01 0.96± 0.02 0.93± 0.01 0.60± 0.02 0.83± 0.02 0.67± 0.02
FC [DT] (3 cl.) 0.95± 0.01 0.95± 0.03 0.93± 0.01 0.60± 0.02 0.82± 0.02 0.67± 0.02

FedAvg [TabNet] - - - - - -

H
yb

ri
d

FL

FC [PC] (2 cl.) 0.94± 0.01 0.94± 0.01 0.92± 0.01 0.67± 0.01 0.82± 0.02 0.71± 0.01
FC [PC] (3 cl.) 0.94± 0.01 0.94± 0.01 0.92± 0.01 0.67± 0.02 0.80± 0.01 0.70± 0.01
FC [DT] (2 cl.) 0.96± 0.01 0.96± 0.02 0.93± 0.01 0.60± 0.02 0.82± 0.02 0.66± 0.02
FC [DT] (3 cl.) 0.96± 0.01 0.96± 0.01 0.93± 0.01 0.54± 0.02 0.82± 0.02 0.66± 0.02

FedAvg [TabNet] - - - - - -
SplitNN [TabNet] - - - - - -

FedTree - - - - - -

Table 5: All Classification results of FL experiments. Here, we show the detailed performances of
FC, FedAvg, and SplitNN in all three FL settings. It can be seen that FCs, while being much more
flexible than our baselines, still achieve competitive or better results on various classification tasks.

CelebA Imagenet32 Imagenet
EiNet (Peharz et al., 2020a) 5.37 5.74 6.28
PyJuice (Liu et al., 2024) 5.56 5.75 6.27
FedPC (2 clients) 5.31 5.57 6.24
FedPC (4 clients) 5.32 5.51 6.15
FedPC (8 clients) 5.35 5.49 6.13
FedPC (16 clients) 5.42 5.51 6.10

Table 6: FedPCs outperform EiNets and PyJuice on density estimation tasks. FedPCs achieve
better results on density estimation tasks on three challenging image datasets (CelebA, Imagenet32
and Imagenet). This is because FedPCs can learn far larger models distributed across multiple
machines. Results are reported as bits per dimension (bpd) averaged over 5 runs (lower is better).
Note that we used Gaussian densities as PC leaves. Best value in bold, 2nd best underlined.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E COMMUNICATION EFFICIENCY

Communication efficiency is a critical property when it comes to learning models across multiple
machines, as it is done in FL. Here, in addition to our theoretical results, we more intuitively provide
further details on the communication efficiency of FCs. For that, we plot the communication cost in
Megabytes (MB) required to train a FedPC vs. FedAvg/SplitNN in horizontal/vertical FL settings
with datasets of different sizes (1M and 100M samples). Regardless of the number of samples in the
dataset, FedPCs are more communication efficient compared to our baselines in both horizontal and
vertical settings (see Fig. 5).

0 2000 4000 6000 8000 10000
Number Clients

5

0

5

10

15

20

25

Co
mm
un
ic
at
io
n
Lo
ad
 (
MB
)
(l
og
-s
ca
le
)

Communication Cost w.r.t. Number of Clients

100M samples; 50M param.
1M samples; 0.5M param.
FedPC vertical
FedPC horizontal
FedAvg horizontal
SplitNN vertical

Figure 5: FedPCs are communication-efficient. We compare communication cost in Megabytes
(MB) sent over the network during one full training of a model (0.5M/50M parameters) on a dataset
(1M/100M samples) using results from Section 3.4. Results are shown on log-scale. It can be seen
that FedPCs significantly reduce communication cost of training.

F EXPERIMENTAL DETAILS

F.1 DATASETS

The following describes the datasets used in our experiments. If not stated differently, the datasets
were distributed across clients as follows:

In horizontal cases, we either split samples randomly across clients (done for all binary classification
tasks) or we distribute a subset of the dataset corresponding to a certain label (e.g. the 0 in MNIST)
to one client.

In vertical cases, we split tabular datasets randomly along the feature-dimension, i.e. each client
gets all samples but a random subset of features assigned. For image data, we split the images into
non-overlapping patches which were then distributed to the clients.

In hybrid cases, we split tabular datasets along both, the feature and the sample-dimension. We do
this s.t. at least two clients have at least one randomly chosen feature in commeon (but hold different
samples thereof). For image data, we split images into overlapping patches, sample a subset of the
dataset and assign the resulting subsets to clients.

Income Dataset. We used the Income dataset from https://www.kaggle.com/datasets/
wenruliu/adult-income-dataset. This dataset represents a binary classification problem
with 14 features and approximate 450K samples in the train and 900 samples in the test set. We
encoded discrete variables to numerical values using TargetEncoder from sklearn. Additionally,
missing values were imputed using the median of the corresponding feature. Further we standardized
all features.

17

https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
https://www.kaggle.com/datasets/wenruliu/adult-income-dataset

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Breast Cancer Dataset. We used the Breast Cancer dataset from https://www.kaggle.com/
datasets/uciml/breast-cancer-wisconsin-data. It represents a binary classifica-
tion problem with 31 features and 570 samples. We split the dataset into 450 training samples and
120 test samples. We standardized all features for training.

Credit Dataset. We used the Give Me Some Credit dataset from https://www.kaggle.com/
c/GiveMeSomeCredit. The dataset represents a binary classification task with 10 features, 1.5M
training samples and 100K test samples. We encoded discrete variables to numerical values using
TargetEncoder from sklearn. Additionally, missing values were imputed using the median of the
corresponding feature. Further we standardized all features.

MNIST. We used the MNIST dataset provided by pytorch. It contains 70K hand-written digits
between 0 and 9 as 28x28 images (60K train, 10K test). We standardized all features as preprocessing.

Imagenet/Imagenet32. We used the Imagenet dataset provided by pytorch. It consists of about
1.2M images showing objects of 1000 classes. The images come in different resolutions; we
resized each image to 112x112 (Imagenet) and 32x32 (Imagenet32) pixels, applied center cropping,
and standardized all features as preprocessing. In our experiments, we used a pre-trained Vision
Transformer (ViT) (Dosovitskiy et al., 2021) to obtain encodings of each image. Then, we applied
KMeans to cluster the dataset into n clusters (depending on the number of clients participating).
Images of each cluster were then distributed to the clients, defining the client’s datasets.

F.2 HYPERPARAMETERS

The following tables show the setting of all relevant hyperparameters for each dataset and FL setting.

FL-Setting Dataset Structure Threshold min num instances glueing

horizontal
Income learned 0.3 200 -
Credit learned 0.5 200 -
Cancer learned 0.4 300 -

vertical
Income learned 0.4 100 combinatorial
Credit learned 0.5 50 combinatorial
Cancer learned 0.4 300 combinatorial

hybrid
Income learned 0.4 100 combinatorial
Credit learned 0.5 50 combinatorial
Cancer learned 0.4 300 combinatorial

Table 7: Hyperparameters used in our experiments for all tabular datasets.

MNIST Imagenet(32) CelebA
num epochs 5 25 10
batch size 64 64 64

online em frequency 5 10 10
online em stepsize 0.1 0.25 0.25

Structure poon-domingos poon-domingos poon-domingos
pd num pieces 4 4 4

K 10 120 120
Leaf Distribution Gaussian Gaussian Gaussian

min var 1 · 10−3 1 · 10−3 1 · 10−3

max var 1 · 10−7 1 · 10−7 1 · 10−7

Table 8: Hyperparameters used in our experiments for image datasets.

F.3 HARDWARE

All experiments were conducted on Nvidia DGX machines with Nvidia A100 (40GB) GPUs, AMD
EPYC 7742 64-Core Processor and 2TiB of RAM.

18

https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/c/GiveMeSomeCredit
https://www.kaggle.com/c/GiveMeSomeCredit

	Introduction
	Preliminaries and Related Work
	Probabilistic Circuits
	Federated Learning

	Federated Circuits
	Problem Statement & Modeling Assumptions
	Bridging Probabilistic Circuits and Federated Learning
	Federated Probabilistic Circuits
	Analysis of Communication Efficiency

	Experiments
	Conclusion
	Notation
	Proofs
	Fact 1
	Proposition 2

	Algorithms
	EM Training

	Further Results
	Communication Efficiency
	Experimental Details
	Datasets
	Hyperparameters
	Hardware

