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Abstract
We present NEBULA, the first latent 3D genera-
tive model for scalable generation of large molec-
ular libraries around a seed compound of interest.
Such libraries are crucial for scientific discov-
ery, but it remains challenging to generate large
numbers of high quality samples efficiently. 3D-
voxel-based methods have recently shown great
promise for generating high quality samples de
novo from random noise (Pinheiro et al., 2023).
However, sampling in 3D-voxel space is com-
putationally expensive and use in library genera-
tion is prohibitively slow. Here, we instead per-
form neural empirical Bayes sampling (Saremi &
Hyvärinen, 2019) in the learned latent space of a
vector-quantized variational autoencoder. NEB-
ULA generates large molecular libraries nearly
an order of magnitude faster than existing meth-
ods without sacrificing sample quality. Moreover,
NEBULA generalizes better to unseen drug-like
molecules, as demonstrated on two public datasets
and multiple recently released drugs. We ex-
pect the approach herein to be highly enabling
for machine learning-based drug discovery. The
code is available at https://github.com/prescient-
design/nebula.

1. Introduction
Computational generation of new molecules with desired
properties is a key element of chemical research, especially
in drug discovery (DD). While search-based methods have
achieved some success (Ghorbani et al., 2023; Kowalski
et al., 2023; Janda, 1994), they can only explore small por-
tions of chemical space, which is often insufficient for mod-
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ern DD. Machine learning (ML) generative models can
potentially accelerate search by rapidly generating large
molecular libraries closely resembling a seed molecule of
interest (Bilodeau et al., 2022). However, doing so while
maintaining high sample quality remains an open challenge.

Chemical space exploration for the optimization of molec-
ular properties remains at the forefront of DD. Traditional
experimental approaches can be slow and unsatisfactory in
results, in part due to the economic infeasibility of exam-
ining large enough chemical spaces in the wet lab (Wang
et al., 2024). Methods for the prediction of molecules’ bi-
ological properties have enabled more experimentation to
occur in silico and have increased the rate of discovery
and triage (Konze et al., 2019; Khalak et al., 2022; Thomp-
son et al., 2022; Maser et al., 2023a). However, these are
still largely dependent on ad hoc, combinatorial, and/or
commercially available definitions of search space, which
are unlikely to yield precise compounds with globally opti-
mal properties. Therefore, combined with property predic-
tors, expanding virtual libraries (VLs) beyond such defini-
tions with generative models could be highly enabling for
MLDD (Wang et al., 2024).

Molecules exist in 3D space, and 3D representations, such as
volumes (voxels), capture rich information about their struc-
ture, shape, and properties. 3D generative models (3DGMs)
trained with such inputs (Hoogeboom et al., 2022; Pinheiro
et al., 2023) have the potential to learn more complete rep-
resentations of molecules compared to models trained with
1D sequences (Segler et al., 2018; Blaschke et al., 2018;
Guimaraes et al., 2018) or 2D graphs (Jin et al., 2018; Li
et al., 2018; You et al., 2018; Mahmood et al., 2021). How-
ever, generative sampling in discrete 3D-input space is very
computationally intensive (Pinheiro et al., 2023), making it
impractical for creating VLs around lead chemical matter in
which to perform optimization.

We herein present an approach to overcome such challenges
by training denoising autoencoders (DAEs) on the contin-
uous, low-dimensional latent representations of 3DGMs,
which we call NEBULA. We demonstrate that neural em-
pirical Bayes (NEB) sampling (Saremi & Hyvärinen, 2019)
around noisy latent vectors substantially reduces the cost
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and increases control of sample generation in the neigh-
borhood surrounding input seed molecules, which we find
highly desirable. Further, we show that training under
our approach improves generalizability to chemical spaces
well outside of training distributions, including for building-
block and fragment generation. Finally, we provide real-
world examples of candidate VLs generated around recently
disclosed small-molecule drugs.

The main contributions of this work are the following:

1. Our latent approach, NEBULA, generates new
molecules up to an order of magnitude faster than the
state-of-the-art (SOTA) 3DGMs (Pinheiro et al., 2023;
Xu et al., 2023) while maintaining high sample quality;

2. NEBULA scales to generation of very large molec-
ular libraries with stable, unique, and valid (SUV)
molecules similar to a seed compound;

3. Finally, NEBULA generalizes better than SOTA to gen-
eration around molecules from new chemical spaces,
including multiple examples of real drugs that were
just released in March 2024.

2. Related Work
2.1. Molecular Library Generation

The majority of modern methods for large molecular-
library generation are based on non-ML approaches involv-
ing cheminformatics or combinatorial enumeration (Janda,
1994; Konze et al., 2019; Ghorbani et al., 2023; Kowalski
et al., 2023). These methods are very often restricted to
molecules within a commercially available chemical space.
This is a significant limitation as most advanced DD pro-
grams require exploring new molecules outside of the com-
mercially available space, which ML generative methods
excel at as they able to produce completely novel samples.

2.2. Generation of Molecules in 3D Space

Generation of molecules represented in 3D space has been
successful in creating high quality molecules. Wang et al.
(2022) used a generative adversarial network (Goodfellow
et al., 2014) on voxelized electron densities for pocket-based
generation of molecules resembling known ligands. Skalic
et al. (2019) and Ragoza et al. (2020) generated 3D vox-
elized molecules with CNNs and variational autoencoders
(VAEs) (Kingma & Welling, 2014). VoxMol (Pinheiro et al.,
2023) similarly generates molecules as 3D voxels with a
walk-jump sampling (WJS) generative approach (Saremi
& Hyvärinen, 2019), which currently holds SOTA perfor-
mance in terms of sample quality and efficiency of gener-
ation. GSchNet (Gebauer et al., 2019) used autoregressive
models to iteratively sample atoms and bonds in 3D space.

Hoogeboom et al. (2022) proposed E(3) Equivariant Dif-
fusion Model (EDM) that learns to generate molecules by
iteratively applying a denoising network to a noise initializa-
tion. Finally, Vignac et al. (2023) improved EDM by jointly
generating the 3D conformation and the 2D connectivity
graph of molecules.

2.3. Latent-based Generation

Latent diffusion models (LDMs) (Rombach et al., 2022)
have enabled efficient generation of 2D images by com-
pressing input data to a learned latent space where denoising
and sampling is less computationally intensive. Xu et al.
(2023) applied EDM in the latent space instead of the in-
put atomic coordinates to generate molecular geometries,
dubbed GeoLDM. Finally, Mahajan et al. (2023) demon-
strated the effectiveness of NEB sampling in the latent space
of pre-trained language models for generation of novel 1D
protein sequences.

It is worth noting that EDM and other geometric methods
require node matrices of a predetermined size for generation;
i.e., the number of atoms N in a generated sample must be
given. This is a significant limitation for our setting of
seeded generation, where N may take on a large array of
values around an input molecule with N0, especially when,
e.g., adding a new fragment or functional group. We avoid
this limitation by leveraging 3D voxel representations, while
still retaining the advantages of latent-based generation and
NEB. Our work is the first latent-based 3DGM of voxelized
molecular denisties, and the first 3DGM suitable for library
generation relative to lead chemical matter.

3. Proposed Approach
We present, NEBULA, Neural Empirical Bayes Under
LAtent Representations. NEBULA is an efficient latent
score-based generative model which compresses voxelized
molecules to a lower dimensional latent space and generates
new molecules by sampling around noised latent embed-
dings using NEB (Saremi & Hyvärinen, 2019). See Figure 1
for an overview of our proposed framework.

3.1. Compressing Voxels to a Latent Representation

We obtain 3D voxel representations of molecules by treating
each atom as a continuous Gaussian density in 3D space
centered around its atomic coordinates on a voxel grid by
following Pinheiro et al. (2023). Each molecule is repre-
sented as a 4D tensor of [c× l× l× l], where c is the number
of atom types and l is the length of the voxel grid edge. The
values of each voxel range between 0 and 1.

Following common practice (Rombach et al., 2022; Dai &
Wipf, 2019; Esser et al., 2021; Ramesh et al., 2021; Razavi
et al., 2019; Van Den Oord et al., 2017), we separate the
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Figure 1. Overview of the proposed latent generative model, NEBULA. A 3D molecular graph is represented as a voxel grid and is passed
through a VQ-VAE encoder to obtain latent embeddings. Noise is added and denoised by a latent U-Net, which is used to generative
sampling. Denoised latents are passed through a VQ-VAE decoder to reconstruct the voxel grid, and the molecular graph is obtained via
peak finding and sanitization.

training of a compression model to learn a latent represen-
tation and the training of a latent denoising model used
for generation in two independent stages. As in Stable (la-
tent) Diffusion (LDMs), we train a vector-quantized VAE
(VQ-VAE) (Van Den Oord et al., 2017) to compress vox-
els to a latent space and then decode back to the original
input. VQ-VAEs have been shown to aid in producing sta-
ble and valid samples for images (Rombach et al., 2022)
and molecules (Wang et al., 2022). The input voxelized
molecules x are encoded with a network fe(x) parameter-
ized by θe to continuous latent embeddings ze (Eq. 1). Each
latent dimension is quantized to discrete vector zq by match-
ing it with one of k vectors in a learned “codebook” of
embeddings e via nearest neighbor look-up (Eq. 2). The
quantized latent embeddings zq are then passed through the
decoder fd (θd) to reconstruct the input voxels x̂ (Eq. 3).

fe(x) : x→ ze (1)

zq ← ek,where k = argminj ||ze − ej ||2 (2)

fd(zq) : zq → x̂ (3)

The VQ-VAE is trained with a loss (Eq. 4) comprised of 1) a
mean-squared error (MSE) reconstruction term between the
input x and reconstructed voxels x̂, 2) loss to learn the code-
book of the embeddings e by moving the learned quantized
embedding vectors ei towards the continuous latent embed-
dings ze, 3) and a “commitment cost” term which ensures
the outputs of the encoder do not grow arbitrarily, where β
is a hyperparameter and “sg” denotes a stopgradient
operation.

LV = ||x̂− x||22 + ||sg[ze]− e||22 + β||ze − sg[e]||22 (4)

3.2. Denoising Latent Embeddings

For generation, we train a DAE on the learned VQ-VAE
latents by adding isotropic Gaussian noise to the quantized
embeddings zq → z′q with identity covariance matrix scaled
by a fixed large noise level σ (Eq. 5). We normalize the
latent embeddings before adding noise by subtracting the
mean µc and dividing by the standard deviation σc computed
across the [c ∗ l ∗ l ∗ l] channels over the training set (the
empirical latent posterior). We train the latent model ζϕ to
denoise z′q with a MSE loss computed between the input and
predicted embeddings zq and ẑq, respectively (Eq. 6). The
denoised latents are then unnormalized with µc, σc before
passing them to the decoder fd for voxel reconstruction.

z′q = zq + ϵ, ϵ ∼ N (0, σ2Id) (5)

LD = ||zq − ẑq||22 ; ẑq = ζϕ(z
′
q) (6)

3.3. Generation with Walk Jump Sampling

We generate new molecules with a neural empirical Bayes
sampling scheme (Saremi & Hyvärinen, 2019) performed
in the latent space in a two step process, referred to as walk-
jump sampling (WJS). The WJS generative approach is a
score-based method similar to diffusion models but it is
more efficient as it only requires a single denoising step
and noise scale compared to iterative denoising and com-
plex noise schedules required in DMs. WJS is well suited
for structured and textureless data, such as molecules and
amino acid sequences (Frey et al., 2023), but it has also
been successfully used for generation of images (Saremi
& Srivastava, 2022; Saremi et al., 2023). First, we sample
new noisy latent embeddings from the smooth (noisy) la-
tent distribution using Langevin Markov chain Monte Carlo
(MCMC) sampling (Cheng et al., 2018) with multiple k walk
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steps along the initialized manifold, where Bt is standard
Brownian motion, γ and u are hyperparameters (referred
to as friction and inverse mass, respectively), and gζ is the
learned latent denoising score function.

dυt = −γυtdt− ugζ(z
′
qt)dt+ (

√
2γu)dBt

dz′qt = υtdt
(7)

Second, we denoise the latent embeddings in a jump step
with a forward pass of the denoising model for an arbitrary
step k.

zqk = ζϕ(z
′
qk) (8)

We obtain the generated molecules by reconstructing the
3D voxels from the newly generated latent embeddings by
passing them through the decoder of the frozen compression
VQ-VAE model. Finally, we obtain the molecular graphs
from the voxels by using the approach in Pinheiro et al.
(2023), which is an optimization-based peak finding used to
locate the atomic coordinates as the center of each voxel.

4. Data and Methods
Datasets. We train NEBULA on GEOM-drugs
(GEOM) (Axelrod & Gomez-Bombarelli, 2022), which is
a standard dataset used for molecule generation. We fol-
low Vignac et al. (2023) to split it into the train, validation,
and test sets with 1.1M/146K/146K molecules each. We
use soft random subsampling (Cui et al., 2023) and train
on 10% of the training set in each epoch. We test the cross-
dataset generalizability of NEBULA and VoxMol trained on
GEOM to a different large public dataset called PubChem
Quantum (PCQM) (Nakata & Maeda, 2023; Nakata et al.,
2020; Nakata & Shimazaki, 2017) and only use its test set
containing 10,000 molecules. We additionally test the gen-
eralizability of NEBULA to several real drug molecules
disclosed earlier this year (ACS). We use voxel grids of
dimension 64, 8 atom channels ([C, H, O, N, F, S, Cl, Br]),
and atomic radii of 0.25 Å resolution for all experiments.

Training Details. We use a VQ-VAE 3D autoencoder with
no skip connections as the compression model architecture
and a 3D U-Net with skip connections for the latent de-
noiser. Both models use a 3D convolutional architecture
similar to (Pinheiro et al., 2023), with 4 levels of resolution
and self-attention on the lowest two resolutions. We found
that a latent dimension of 1024 worked best with higher
noise levels. We train the compression and latent denois-
ing models for about 150 epochs. We augment all models
during training by randomly rotating and translating every
training sample. We use a noise level of σ = 1.8 for all
generations. See Appendix for details of the architecture,
architecture ablations, training and sampling.

Baselines. The majority of existing ML generative models
for molecules were only evaluated on de novo generation
from random noise (Gebauer et al., 2019; Hoogeboom et al.,
2022; Pinheiro et al., 2023). Therefore, to compare our
method to existing approaches, we implemented and evalu-
ated VoxMol (Pinheiro et al., 2023) for generation around
a seed molecule, as it is the SOTA molecule generation
method. Similar to NEBULA, VoxMol is a voxel-based 3D
CNN approach, however, it generates molecules in the large
input voxel space.

Evaluation Metrics. We evaluate the quality of the gener-
ated molecules with multiple metrics used by Vignac et al.
(2023) and Pinheiro et al. (2023), such as molecular stability
and validity (details in the Appendix). We also quantify how
similar the generated molecules are to the seed molecule
with the Tanimoto similarity computed between the seed
and the generated molecular graphs (Bender & Glen, 2004).
Following (Vignac et al., 2023) we report the results by only
keeping the largest generated molecule in cases where mul-
tiple molecule fragments are generated for each generation.

5. Results and Discussion
5.1. Molecular Library Generation

We show within-dataset results on seeded generation where
we aim to generate new molecules similar to a provided
seed for hypothesis generation. We pass the seed molecule
through the VQ-VAE encoder to construct latent embed-
dings and add noise in the latent space. We generate new
molecules by taking different numbers of WJS steps in the
noisy latent space and denoising the newly sampled em-
beddings after the last step. We generate molecules around
1,000 randomly selected seeds from the test set of GEOM
(see Table 1 and Figure 2 for quantitative results and Fig-
ure 3 for examples of generations).

Both NEBULA and VoxMol generate stable and valid
molecules that are similar to the seed, especially with few
WJS steps. We experimentally determined the number of
WJS steps for NEBULA and VoxMol that yielded compara-
ble Tanimoto similarity and molecular stability on GEOM.
As can be seen, NEBULA maintains significantly higher
similarity to seed for much of the duration of WJS trajecto-
ries. Though similarity and stability ultimately decay at later
steps, it is straightforward to filter unwanted compounds
and the efficiency of generation yields overall gains for our
task (see Sec 5.2).

Molecule Sanitization. Generating molecules via latent
WJS requires the removal of skip connections in NEBULA’s
compression model. We find this makes it more difficult
to train the VQ-VAE, in particular to reconstruct the 3D
geometries of input molecules, as activations are not trans-
ferred from encoder to decoder. As a result, while NEBULA
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generates valid molecules, some heavy atoms are found to
be missing attached hydrogens, which leads to an overall
low molecular stability metric despite high validity and
high atomic stability. Adding missing hydrogens can be
solved trivially with fast cheminformatics toolkits such as
RDKit (Landrum et al., 2016) via a process known as “sani-
tization”. In practice, generating molecules with hydrogens
is not crucial for discovering new molecules and many mod-
els are in fact trained with implicit (removed) hydrogens for
efficiency (Vignac et al., 2023).

5.2. Scalability

Sampling in NEBULA’s latent space is on average 6 times
faster than the baselines (see the last column of Table 1 and
in Figure 2) allowing us to quickly generate large molecular
libraries with hundreds of thousands of molecules. Drug-
like molecules require a voxel grid size of at least [8× 64×
64×64], where 8 is the number of atom types, requiring∼ 2
million points to represent each molecule and to sample new
molecules in the input voxel space as is done in VoxMol. In
contrast, NEBULA compresses the voxel space to a much
smaller latent representation of [1024× 8× 8× 8], where
1024 is the latent dimension, requiring only ∼ 500 k points
per molecule which is 4 times smaller than the input voxel
space representation. As can be seen in Figure 2, NEBULA
trajectories require very minimal compute time, even at
higher WJS steps.

5.3. Cross-Dataset Generalizability

We compare the cross-dataset generalizability of NEBULA
and VoxMol trained on GEOM by generating libraries
around 1,000 randomly selected seeds from the PCQM test
set (see Table 2 and Figure 2 for quantitative results and
Figure 4 for example generations). NEBULA generates
molecules that are much closer to the seed at all WJS steps
as demonstrated by tan. sim. %. VoxMol tends to generate
molecules which are quite different from PCQM, even at
few WJS steps. Figure 4 shows that NEBULA makes incre-
mental changes to seeds at early steps and maintains their
overall scaffolds through entire trajectories, while VoxMol
tends to generate very different molecule not resembling the
seed. NEBULA also generates molecules with atom TV and
bond TV that are very close to the raw PCQM metrics (step
0), while VoxMol seems to be reverting back to molecules
that are more similar to its training distribution, GEOM.

We hypothesize that NEBULA achieves robustness to new
chemical spaces due to the removal of skip connections in
the VQ-VAE (see Sec 4). While this makes MSE loss slower
to converge, it may also prevent “shortcuts” such as fitting
geometric features that are specific to a certain structure-
computation method but that do not generalize (Maser et al.,
2023b). A similar behavior was observed for U-Net archi-

Figure 2. Molecular stability and Tanimoto similarity over WJS
steps for molecules generated with NEBULA and VoxMol on
GEOM (top) and PCQM (middle). (bottom) Scalability of each
method plotted as the amount of time needed to generate one
molecule at different WJS steps.

tectures used in image segmentation (Wilm et al., 2024;
Kamath et al., 2023). This is visible in bond ang W1, which
shows the distribution of bond angles diverges from the
training set at long WJS steps for NEBULA but not for
VoxMol. Future work will seek to identify training and data
strategies that maximize chemical-space robustness (Maser
et al., 2023a) while also producing faithful geometries.
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WJS Steps tan. stable stable valid valency atom bond bond bond avg. t
sim. %↑ sanit. %↑ atom %↑ %↑ W1↓ TV↓ TV↓ len W1↓ ang W1↓ [s/mol.]↓

0 (data) 100. 99.90 99.90 99.80 0.001 0.001 0.025 0.00 0.05 -
5 VoxMol 80.84

(±0.96)
85.54
(±0.15)

99.43
(±0.04)

90.12
(±0.36)

0.26
(±0)

0.02
(±0)

0.03
(±0)

0.00
(±0)

0.67
(±0.02)

0.38

10 71.44
(±1.82)

85.71
(±0.36)

99.36
(±0.04)

89.86
(±0.28)

0.25
(±0)

0.02
(±0)

0.03
(±0)

0.00
(±0)

0.67
(±0.03)

0.66

50 44.99
(±1.03)

86.42
(±0.94)

99.35
(±0.02)

90.15
(±0.76)

0.25
(±0)

0.03
(±0)

0.03
(±0)

0.00
(±0)

0.54
(±0.02)

0.90

100 35.18
(±0.34)

87.44
(±1.06)

99.37
(±0.04)

90.52
(±0.81)

0.25
(±0)

0.03
(±0)

0.03
(±0)

0.00
(±0)

0.50
(±0.00)

1.64

200 27.37
(±0.38)

88.40
(±0.80)

99.35
(±0.03)

90.86
(±0.51)

0.25
(±0)

0.04
(±0)

0.03
(±0)

0.00
(±0)

0.54
(±0.02)

3.17

10 NEBULA 88.47
(±0.18)

85.73
(±0.12)

99.46
(±0.01)

90.29
(±0.11)

0.26
(±0)

0.03
(±0)

0.03
(±0)

0.00
(±0)

0.77
(±0)

0.21

20 84.3
(±0.46)

85.46
(±0.31)

99.42
(±0.01)

89.82
(±0.31)

0.26
(±0)

0.03
(±0)

0.03
(±0)

0.00
(±0)

0.85
(±0.01)

0.23

50 63.85
(±0.46)

83.11
(±0.31)

99.16
(±0.01)

86.61
(±0.31)

0.25
(±0)

0.03
(±0)

0.03
(±0)

0.00
(±0)

1.15
(±0.02)

0.28

100 38.33
(±0.8)

79.52
(±0.85)

98.45
(±0.04)

81.42
(±0.75)

0.23
(±0)

0.04
(±0)

0.03
(±0)

0.00
(±0)

1.80
(±0.01)

0.36

200 20.18
(±0.29)

77.08
(±0.64)

96.74
(±0.02)

77.96
(±0.52)

0.20
(±0)

0.07
(±0)

0.04
(±0)

0.00
(±0)

3.56
(±0.06)

0.52

Table 1. Seeded generation results on GEOM. All results are averaged over 5 repeats of each experiment.

WJS Steps tan. stable stable valid valency atom bond bond len bond ang
sim. %↑ sanit. %↑ atom %↑ %↑ W1↓∆ TV↓∆ TV↓∆ W1↓∆ W1↓∆

0 (data) 100.00 95.51 99.62 99.40 2.98 0.90 0.24 0.01 3.40
5 VoxMol 10.95

(±1.85)
92.45
(±0.29)

95.60
(±0.07)

97.11
(±0.17)

0.21
(±0)

0.43
(±0.01)

0.14
(±0)

0.00
(±0)

4.04
(±0.07)

10 9.74
(±0.62)

92.08
(±0.83)

96.89
(±0.11)

96.49
(±0.63)

0.22
(±0)

0.35
(±0.00)

0.14
(±0)

0.00
(±0)

3.49
(±0.05)

50 9.75
(±0.38)

90.73
(±0.54)

98.44
(±0.07)

95.17
(±0.30)

0.24
(±0)

0.15
(±0.01)

0.13
(±0)

0.00
(±0)

2.36
(±0.04)

100 9.81
(±0.21)

89.93
(±0.47)

98.62
(±0.04)

94.81
(±0.43)

0.25
(±0)

0.10
(±0.01)

0.12
(±0)

0.00
(±0)

1.98
(±0.07)

200 9.86
(±0.22)

90.44
(±0.85)

98.77
(±0.07)

94.68
(±0.56)

0.25
(±0)

0.06
(±0)

0.12
(±0)

0.00
(±0)

1.62
(±0.05)

10 NEBULA 35.1
(±0.57)

95.18
(±0.26)

75.64
(±0.13)

98.86
(±0.23)

0.23
(±0)

0.84
(±0)

0.24
(±0)

0.01
(±0)

4.59
(±0.03)

20 32.19
(±0.38)

95.44
(±0.27)

76.43
(±0.24)

98.80
(±0.13)

0.22
(±0)

0.83
(±0)

0.23
(±0)

0.01
(±0)

4.72
(±0.05)

50 25.62
(±0.26)

95.64
(±0.26)

78.35
(±0.18)

98.36
(±0.12)

0.20
(±0)

0.79
(±0)

0.23
(±0)

0.01
(±0)

5.19
(±0.06)

100 18.38
(±0.27)

96.16
(±0.19)

80.04
(±0.20)

97.88
(±0.35)

0.18
(±0)

0.74
(±0)

0.23
(±0)

0.01
(±0)

6.39
(±0.04)

200 12.58
(±0.09)

95.72
(±0.49)

79.77
(±0.51)

96.72
(±0.26)

0.19
(±0.01)

0.68
(±0)

0.23
(±0)

0.00
(±0)

9.30
(±0.09)

Table 2. Cross-dataset generalizability: seeded generation results on PCQM. NEBULA is able to generate molecules with atom and bond
distributions closer to the new dataset (step 0). Bolded distribution metrics are those closest to the seed (↓ ∆). All results are averaged
over 5 repeats of each experiment.

Real-world Application. We additionally demonstrate that
NEBULA can generalize to unseen real drug molecules that
were recently publicly released (March 2024) (ACS). These
molecules represent significant leaps in complexity from
GEOM and PCQM and have real biological relevance; all
are currently in clinical trials as advanced cancer therapeu-
tics. While similarity and stability measures are lower than

for other datasets (Table 3), NEBULA is able to generate
molecules that remain very faithful to the seed scaffold and
introduce functional-group changes that typify a medicinal
chemistry process (Figure 5).

See the Appendix for more examples of qualitative genera-
tion results on GEOM, PCQM, and drug molecules (ACS).
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Figure 3. Seeded generation on GEOM with NEBULA and VoxMol at different WJS steps with the corresponding voxels. Both methods
can generate molecules close to the seed in within-dataset generation.

6. Conclusions
We present the first latent generative model based on 3D-
voxel representations of molecules, called NEBULA. NEB-
ULA produces high quality, stable, and valid molecules
around a seed molecule and is scalable to generation of
very large molecular libraries needed for drug discovery
via efficient walk-jump sampling in latent space. Moreover,
NEBULA generalizes well to new chemical spaces, includ-
ing fragments and real drug molecules. We expect to see
great utility of our approach for accelerating ML-based drug
discovery.

WJS tan. stable stable valid
Steps sim. %↑ sanit. %↑ atom %↑ %↑

10 30.62 42.22 42.20 42.22
20 31.13 40.00 42.44 40.00
50 23.37 43.33 42.93 43.33
100 22.95 42.22 43.48 42.22
200 19.17 43.33 43.26 43.33

Table 3. Seeded generation results averaged over 10 experiments
for 5 real recently released drugs (ACS) (for a total of 50 genera-
tions).

7
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Figure 4. Seeded generation on PCQM with NEBULA and VoxMol at different WJS steps with the corresponding voxels. NEBULA is
able to generate molecules that maintain the seed scaffold in all cases in cross-dataset generation, while VoxMol tends to diverge from the
seed compound.

Figure 5. Seeded Generation on real drugs just released in March 2024 (ACS) with NEBULA at different WJS steps.
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A. Additional Implementation Details
A.1. Training and Architecture Details

We use a VQ-VAE 3D autoencoder with no skip connections as the compression model architecture and a 3D U-Net with
skip connections for the latent denoiser. Both models use a 3D convolutional architecture similar to (Pinheiro et al., 2023),
with 4 levels of resolution and self-attention on the lowest two resolutions. We found that a latent dimension of 1024 worked
best with higher noise levels. We reduce the 1024 latent embedding to 32 in the first layer of the latent denoiser and gradually
increase it with subsequent layers. We use a commitment cost of 0.25 and 256 latent codebook embeddings of 256 for the
compression VQ-VAE. We train the compression and latent denoising models for about 150 epochs on GEOM-Drugs (until
the mean intersection over union between the input and reconstructed voxels is above 0.90). We train the models with a
batch size 32, AdamW optimizer (Loshchilov & Hutter, 2017) with β1=0.9, β2=0.999, learning rate 10−5, weight decay
10−2, dropout 0.1, SiLU activation function, and we update the weights with exponential moving average (EMA) with decay
of 0.999. We augment all models during training by randomly rotating and translating every training sample. We use a noise
level of σ = 1.8 for all generations, friction of 1.0, lipschitz of 1.0 and step size of 0.25 (VoxMol uses step size of 0.5 in the
voxel space) for the MCMC sampling to generate new molecules with the trained latent denoising model.

A.2. Evaluation Metrics

We evaluate the models using the metrics following (Vignac et al., 2023). stable mol and stable atom are molecular and
atomic stability; an atom is stable when the number of bonds with other atoms matches their valence and a molecule is
stable only if 100 % of its atoms are stable (Hoogeboom et al., 2022) (see Sec 5.1). validity is measured as the percent
of molecules passing the RDKit’s (Landrum et al., 2016) sanitization. valency W1 is the Wasserstein distances between
valences in the distributions of the generated molecules and the molecules in the dataset. atoms TV and bonds TV are the
total variation between the atom and bond types distributions. bond length W1 and bond angle W1 are the Wasserstein
distances between the distributions of bond lengths and angles of the generated molecules and the molecules in the dataset.
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B. Additional Generation Results (Within-Dataset)

Figure 6. Additional examples of seeded generation on GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022).
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Figure 7. Additional examples of seeded generation on GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022).

14



NEBULA

Figure 8. Additional examples of seeded generation on GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022).
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Figure 9. Additional examples of seeded generation on GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022).
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C. Additional Generation Results (Cross-Dataset)

Figure 10. Additional examples of seeded generation on PubChem (Nakata & Maeda, 2023).
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Figure 11. Additional examples of seeded generation on PubChem (Nakata & Maeda, 2023).
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Figure 12. Additional examples of seeded generation on PubChem (Nakata & Maeda, 2023).
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Figure 13. Additional examples of seeded generation on PubChem (Nakata & Maeda, 2023).
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Figure 14. Additional examples of seeded generation on recently released drugs (ACS) with additional WJS steps.
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Figure 15. Additional examples of seeded generation on recently released drugs (ACS) with additional WJS steps.

22


