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Abstract

While deep learning through empirical risk minimization (ERM) has succeeded at achieving
human-level performance at a variety of complex tasks, ERM is not robust to distribution
shifts or adversarial attacks. Synthetic data augmentation followed by empirical risk mini-
mization (DA-ERM) is a simple and widely used solution to improve robustness in ERM.
In addition, consistency regularization can be applied to further improve the robustness
of the model by forcing the representation of the original sample and the augmented one
to be similar. However, existing consistency regularization methods are not applicable to
covariant data augmentation, where the label in the augmented sample is dependent on
the augmentation function. For example, dialog state covaries with named entity when we
augment data with a new named entity. In this paper, we propose data augmented loss
invariant regularization (DAIR), a simple form of consistency regularization that is applied
directly at the loss level rather than intermediate features, making it widely applicable to
both invariant and covariant data augmentation regardless of network architecture, problem
setup, and task. We apply DAIR to real-world learning problems involving covariant data
augmentation: robust neural task-oriented dialog state tracking and robust visual question
answering. We also apply DAIR to tasks involving invariant data augmentation: robust
regression, robust classification against adversarial attacks, and robust ImageNet classification
under distribution shift. Our experiments show that DAIR consistently outperforms ERM
and DA-ERM with little marginal computational cost and sets new state-of-the-art results
in several benchmarks involving covariant data augmentation. Our code of all experiments
are available at: https://github.com/optimization-for-data-driven-science/DAIR.
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1 Introduction

Deep neural networks are widely used in various applications ranging from computer vision to language
processing. While deep learning has surpassed human-level performance in numerous tasks, neural networks
fail under small adversarial perturbations of the test samples (Goodfellow et al., 2015) or natural shifts
of distribution at deployment time (Arjovsky et al., 2019). These issues have motivated the research
community to invest in a variety of methods for evaluation and mitigation of robustness in deep learning.
This includes introduction of new robustness benchmarks, e.g., Rotated/Colored MNIST (Arjovsky et al.,
2019), DomainNet (Peng et al., 2019), ImageNet-R (Hendrycks et al., 2021), ImageNet-9 (Xiao et al., 2020)
for robustness to natural distribution shift; and Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014)
and Projected Gradient Descent (PGD) (Madry et al., 2018) for adversarial robustness.

Researchers have also proposed numerous algorithmic solutions to improve robustness to distribution
shift (Ganin et al., 2016; Ghifary et al., 2015; Sagawa et al., 2019; Li et al., 2018a; Sun & Saenko, 2016; Li
et al., 2018b;c; Krueger et al., 2021; Zhang et al., 2021; Robey et al., 2022) and adversarial attacks (Madry
et al., 2018; Li et al., 2020; Zheng et al., 2020; Zhang et al., 2019; Tack et al., 2021). These approaches
are usually more complex than conventional empirical risk minimization (ERM) and hence they cannot be
readily applied to involved tasks with non-trivial model architectures. For example, in generative language
modeling imposing a constraint on the intermediate data representations is non-trivial, which is required
by CORAL (Sun & Saenko, 2016). In addition, recently Gulrajani & Lopez-Paz (2020) demonstrated that
vanilla ERM, if tuned properly, remains competitive with (or may even outperform) many such complex
methods in real-world scenarios involving robust inference.

Data augmentation can be employed to improve the robustness of ERM by curating synthetic examples
that exhibit a desired invariance/covariance. In this paper, invariant data augmentation refers to the case
where the features are perturbed to obtain a synthetic augmented example that preserves the original label.
For example, in an image classification task where the aim is to classify the foreground of an image, we can
create augmented data points by keeping the foreground and changing the background. Under this data
augmentation process, the label of data (i.e., the image class) does not change and hence we call it invariant
data augmentation. On the other hand, covariant data augmentation refers to the case where perturbation
of the features results in the label to covary with the features. For example, in a dialog state tracking task
where data augmentation is performed by varying named entities in the input data, the model output (label)
of the augmented data also needs to covary to contain the new named entity.

Data augmentation techniques abound in the literature: Tensmeyer & Martinez (2016) and Cutout (DeVries
& Taylor, 2017) curate invariant image transformations to improve image representations. Mixup (Zhang
et al., 2017) and CutMix (Yun et al., 2019) curate covariant data augmentations via linear combination of
features between different classes to learn more robust representations. Volpi et al. (2018); Zhou et al. (2020)
perform data augmentation with adversarial images to improve robustness. Finally, Cubuk et al. (2018); Lim
et al. (2019) introduce a procedure which automatically searches for improved data augmentation policies.
While simple, data augmentation remains an effective and universal solution to improve model robustness.

Consistency regularization can be further applied on top of data augmentation to enhance robustness
by enforcing the desired invariances on the model. Engstrom et al. (2018); Kannan et al. (2018); Zhang
et al. (2019); Tack et al. (2021) utilize consistency regularization at an embedding layer to train robust
neural networks against adversarial attacks. Various forms of consistency regularization have been applied
to unsupervised learning (Sinha & Dieng, 2021), self-supervised learning (Chen et al., 2020; von Kügelgen
et al., 2021), and semi-supervised learning to exploit unlabeled data (Bachman et al., 2014; Laine & Aila,
2016; Miyato et al., 2018; Sohn et al., 2020; Xie et al., 2020). Standard consistency regularization forces
intermediate features to be similar among all inputs variations and hence is only applicable to invariant data
augmentation, where data augmentation keeps the label of the augmented sample intact. Such consistency
regularization may even hurt performance in the face of covariant data augmentation, where the label for
the augmented sample may change. For example, in dialog state tracking where the dialog state covaries
with named entities in dialog context, standard consistency regularization hurts overall performance as it
forces the model to not depend on the named entity for its prediction. See Section 2.1 for a more detailed
explanation and Section 3 for experiments that confirm this.
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In this paper, we propose a simple form of consistency regularization, called data augmented loss invariant
regularization (DAIR), that is directly applied at the loss level. While existing consistency regularization
methods can only be applied to invariant data augmentation, DAIR is applicable to both invariant/covariant
data augmentation when a pair of data samples expecting consistent performance. This is vastly in contrast
to existing feature consistency regularizers that apply on an intermediate embedding space or the very last
layer of the model (logits). As a result, DAIR only requires marginal computational cost on top of data
augmentation, and is broadly applicable to a wide host of learning tasks, including generative models with
covariant data augmentation. We theoretically prove some of the properties of DAIR in Section 2 and
empirically evaluate DAIR on a variety of problems ranging from defense against adversarial attacks to
domain generalization in the presence of environment shift in Sections 3 and 4. Our experimental results
show that DAIR is competitive with state-of-the-art algorithms specifically designed for these problems.

2 DAIR: Data Augmented Loss Invariant Regularization

For a data sample z = (x, y), let `(z; θ) be its parametric loss function, where θ is the set of model parameters
(e.g., network weights). The popular Empirical Risk Minimization (ERM) framework trains the model by
minimizing the expected value of the following loss over the training data:

fERM(z; θ) = `(z; θ). (ERM)

We assume that we have access to a (potentially randomized) data augmenter function A(·). Examples for A
include (random) rotation, change of background, or change of entity names. Such augmenters capture the
transformations against which we wish to be invariant. Given a sample z, let z̃ = (x̃, ỹ) = A(z) denote an
augmented sample. Previous work has used both original and augmented examples during training, which
leads to the following standard objective function, called Data Augmented Empirical Risk Minimization
(DA-ERM):

fDA-ERM(z, z̃; θ) = 1
2`(z; θ) + 1

2`(z̃; θ). (DA-ERM)

While DA-ERM has been successful in many applications, one natural question is whether we can further
improve upon it using the knowledge that the performance on augmented samples should be consistent
with the original ones. Consistency regularization further penalizes DA-ERM for any such inconsistency
at the feature/loss level: fConsistency,D,λ(z, z̃; θ) = fDA-ERM(z, z̃; θ) + λD(z, z̃; θ), where D(z, z̃; θ) is a proper
divergence between the original sample representation and the augmented sample representation, and where
the goal of the regularizer applied at some intermediate feature space is to maintain the performance of the
model on z and z̃ consistent. In this paper, we focus on a specific type of such regularization, called data
augmented loss invariant regularization (DAIR):∗

fDAIR,R,λ(z, z̃; θ) = fDA-ERM(z, z̃; θ) + λR(`(z; θ), `(z̃; θ))

= 1
2`(z; θ) + 1

2`(z̃; θ) + λR(`(z; θ), `(z̃; θ)), (DAIR)

where the regularization is directly applied to the loss. This “loss-level” regularization approach is different
from existing “feature-level” consistency regularization approaches discussed in section 1. For example,
consider a classification task with a neural network F(·, θ) : Rd 7→ Rk where θ denotes the weights of the
network. This network takes a d-dimensional input data point and outputs a k-dimensional logit/softmax
output. A popular training approach is to consider `(z; θ) = C(F(x, θ), y) where C(·, ·) is the cross-entropy
loss and z = (x, y). Existing regularization mechanisms, such as Engstrom et al. (2018); Kannan et al. (2018);
Zhang et al. (2019); Tack et al. (2021); Sinha & Dieng (2021); von Kügelgen et al. (2021); Miyato et al. (2018),
to name just a few, operate at the feature level, i.e., they are of the form Rf (F(x, θ),F(x̃, θ)). However,
DAIR operates at the loss level as demonstrated in eq. (DAIR). The idea behind DAIR is to simply promote
`(z; θ) ≈ `(z̃; θ), and ignore the features or even the rest of the possible outcomes of y and simply focus on the

∗We performed our initial experiments by weighting the original and augmented examples differently, and empirically
observed that the weight had no significant effect on the performance. Hence, we fixed equal weight on both original and
augmented samples for ease of tuning.
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current sample’s loss. While DAIR is a relatively weaker form of consistency regularization, it is suitable for
problems where feature consistency may not be conceptually meaningful (See Section 2.1 for a more detailed
discussion). For instance, in language modeling when a pair of sentences differ in their corresponding named
entities, it is not clear why we should enforce their embeddings to be similar unless the label is desired not to
depend on such named entity. However, loss consistency is still meaningful promoting the probability of label
given input to be the same on the original and the augmented samples.

We remark that DAIR requires pairing information between original and augmented samples, which may not
always be available (e.g., DomainBed (Gulrajani & Lopez-Paz, 2020)). However, we show that this simple
approach is still broadly applicable to various real-world problems regardless of model architecture, and is
indeed competitive with state-of-the-art methods for imposing invariance. As it turns out, we are particularly
interested in a particular form of the DAIR regularizer:

Rsq(z, z̃; θ) :=
(√

`(z; θ)−
√
`(z̃; θ)

)2
, (DAIR-SQ)

and we call this variant DAIR-SQ. Note that Rsq has the same scale as the loss function `, making it easier
to tune λ. Empirically we observe that the optimal λ for all the experiments mentioned later in the paper
falls in [0.2, 100], across various tasks (from regression to sequence-to-sequence generative modeling). Further
justification on DAIR-SQ will be provided through the rest of this section.

Finally, in most (real-world) applications performance is measured through 0-1 metrics other than the loss
function. For example, we are usually concerned with accuracy in image classification while we optimize
cross-entropy loss. Let H(z; θ) ∈ {0, 1} denote a 0-1 evaluation performance metric of interest, e.g., accuracy.
Given the sample z (or z̃), the model performance is captured by H(z; θ) (or H(z̃; θ)). For any z such that
H(z; θ) = 1, we define the corresponding consistency metric as:

CM(z, z̃; θ) = I{H(z̃; θ) = 1 | H(z; θ) = 1}. (Consistency Metric)

Notice that similarly to the original performance metric, which is only used for model evaluation, we use the
consistency metric at evaluation time only.

2.1 Why DAIR at the loss level?

As we mentioned in Section 1, consistency regularization has been extensively studied in the literature.
However, regularization at loss level has been relatively unexplored. We propose DAIR at the loss level,
making it broadly applicable when pairing information is available between original and augmented samples
even under the cases where the respective labels are different. Consider the following two examples: visual
question answering (Section 3.2) and dialog state tracking (Section 3.1) in which the labels of the augmented
examples covary with the augmented features. In these setups, feature consistency regularization is not
conceptually meaningful as the embedding of the image with zebra removed should not be the same as the
original image (Figure 1), or the embedding of the dialog state with named entity changed from airport to
bus station should not remain unchanged (Figure 2). In fact, forcing the embeddings to be exactly the same
will remove vital information needed for performing the task and will incorrectly force the model to provide
the same output for the original and augmented samples. On the other hand, we can enforce the loss value at
the augmented sample and the original sample to be the same, which implies p(ỹ|x̃; θ) ≈ p(y|x; θ) when loss
is viewed as a log-likelihood function.

To contextualize DAIR, consider a classification task using a function approximator (e.g., a deep neural
network) followed by a softmax layer. Let F(x, θ) be the output of the model right before the softmax
layer. Hence, F(x, θ) ∝ e−`(x,·;θ) for all possible outcomes In addition to two DAIR variants, we consider
the regularizer to be any proper divergence between the output distributions F(x, θ) and F(x̃, θ), such as
KL divergence, which will promote F(x, θ) ≈ F(x̃, θ). In addition to DAIR-SQ, we define the following
regularizers that we use throughout the paper:
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Q: Is this a kitchen?
A: no toilet removed; A: no

Baseline Ours Baseline Ours
CL no no yes no
SAAA no no no no
SNMN no no yes no

Q: What color is the balloon?
A: red umbrellas removed; A: red

Baseline Ours Baseline Ours
CL pink red red red
SAAA pink red red red
SNMN pink red red red

Q: How many zebras are there in the picture?
A: 2 zebra removed A: 1

Baseline Ours Baseline Ours
CL 2 2 2 1
SAAA 2 2 2 1
SNMN 2 2 2 1

Figure 1: VQA models change their predictions as they ex-
ploit spurious correlations rather than causal relations based
on the evidence. Shown above are predictions of 3 VQA
models on original and synthetic images from our proposed
IV-VQA and CV-VQA datasets. ‘Ours’ denote the models
robustified with our proposed data augmentation strategy.

generated ‘complementary’ data (otherwise not available in
the dataset). While data augmentation and cyclic consist-
ency are making the VQA models more robust [18, 28, 29]
towards the natural language part, we take a step forward
to make the models consistent to semantic variations in the
images. We summarize our main contributions as follows:
• We propose a novel approach to analyze and quantify

issues of VQA models due to spurious correlation and
biases of data and models. We use synthetic data to
quantify these problems with a new metric that measures
erroneous inconsistent predictions of the model.

• We contribute methodology and a synthetic dataset 1 that
1https://rakshithshetty.github.io/CausalVQA/

complements VQA datasets by systematic variations that
are generated by our semantic manipulations. We com-
plement this dataset by a human study that validates our
approach and provides additional human annotations.

• We show how the above-mentioned issues can be reduced
by a data augmentation strategy - similar to adversarial
training. We present consistent results across a range of
questions and three state of the art VQA methods and
show improvements on synthetic as well as real data.

• While we investigate diverse question types, we pay par-
ticular attention to counting by creating an covariant ed-
ited set and show that our data augmentation technique
can also improve counting robustness in this setting.

2. Related Work

Visual Question Answering. There has been growing in-
terest in VQA [17, 31] recently, which can be attributed
to the availability of large-scale datasets [8, 16, 3, 25, 5]
and deep learning driven advances in both vision and NLP.
There has been immense progress in building VQA models
[22, 26, 24, 7] using LSTMs [11] and convolutional net-
works [20, 9] to models that span different paradigms such
as attention networks [23, 19, 32] and compositional mod-
ule networks [2, 14, 13, 15]. In our work, we pick a repres-
entative model from each of these three design philosophies
and study their robustness to semantic visual variations.
Robustness in VQA. Existing VQA models often exploit
language and contextual priors to predict the answers [33,
27, 8, 1]. To understand how much do these models actually
see and understand, various works have been proposed to
study the robustness of models under different variations in
the input modalities. [1] shows that changing the prior dis-
tributions for the answers across training and test sets signi-
ficantly degrades models’ performance. [28, 29] study the
robustness of the VQA models towards linguistic variations
in the questions. They show how different re-phrasings of
the questions can cause the model to switch their answer
predictions. In contrast, we study the robustness of VQA
models to semantic manipulations in the image and propose
a data augmentation technique to make the models robust.
Data Augmentation for VQA. Data Augmentation has
been used in VQA to improve model’s performance either
in the context of accuracy [18] or robustness against lin-
guistic variations in questions [28, 29]. [18] generated new
questions by using existing semantic annotations and a gen-
erative approach via recurrent neural network. They showed
that augmenting these questions gave a boost of around
1.5% points in accuracy. [29] propose a cyclic-consistent
training scheme where they generate different rephrasings
of question (based on answer predicted by the model) and
train the model such that answer predictions across the gen-
erated and the original question remain consistent. [28] pro-

2

Figure 1: VQA: Answer changes after augmentation.
Image taken from Agarwal et al. (2020).

Parameter
Learning Rate 0.005 0.0005
Epochs 20 20
Batch-size 64

Table 17: Training parameter

: book me a taxi to the air-
port?

: how many people?

: it’s just for me.

DS: taxi-dest: airport
taxi-bookpeople: 1

: book me a taxi to the bus
station?

: how many people?

: it’s just for me.

DS: taxi-dest: bus station
taxi-bookpeople: 1

Table 18: Left: sample from the original MultiWOZ dataset. Right: synthetic
sample with name entities from SGD. Compare name entities in red.

14

Figure 2: DST: dialog state changes after augmenta-
tion.

Figure 3: Test accuracy for θ = 45◦ rotated im-
ages as a function of λ (strength of the regularizer).
Best validation λ is marked with solid circles.

Figure 4: Test accuracy as a function of test-time
rotation θ ∈ [0◦, 60◦]. We report the performance
of each method with their best validation λ.

• RL1(z, z̃; θ) := |`(z; θ)− `(z̃; θ)|;† (DAIR-L1)
• RFKL(z, z̃; θ) := KL(F(x, θ)‖F(x̃, θ)). (KL Feature Consistency)

Notice that the KL feature consistency regularizer is oblivious to ỹ, and remains the same even for covariant
data augmentation where ỹ 6= y.

Toy Experiment: Rotated 6 & 9. Consider a binary classification problem which is derived from MNIST
with only digits 6 and 9. The goal is to explore test-time distribution shifts in the form of rotation. We
consider the augmentation function to be 180◦ rotations. Since the digits 6 and 9 are similar to each
other respectively after such rotation, we naturally flip the augmented label, making this a covariant data
augmentation. The rotation schemes for training, augmentation and testing are detailed in Table 1.

In Figure 3, we benchmark the performance of KL feature consistency, DAIR-L1, and DAIR-SQ against
ERM and DA-ERM, when the test rotation is θ = 45◦, as a function of regularizer strength. As can be seen,
DAIR-SQ (blue) is the only approach that outperforms the ERM baseline (green). This is not a coincidence.
Our 180◦ rotation augmentation is covariant and it can be seen that vanilla DA-ERM does not help but even
hurts the performance, which may be attributed to the fact that the test rotations are novel and unseen. KL
feature consistency (yellow) slightly outperforms DA-ERM for small λ but struggles to outperform ERM.
This is a covariant data augmentation case, and hence feature consistency was expected to fail. We see the
performance of KL degrades as λ gets larger. It is noteworthy that DAIR-L1 (red) starts to degenerate to a
random classifier baseline for large values of λ and fails to produce a model that outperforms ERM. We will
investigate this issue more deeply in the next section.

To further explore how the performance of these baselines are affected by the degree of test-time distribution
shift, we consider a variety of test sets with the degree of rotation θ swept in [0◦, 60◦]. In Figure 4, we report

†A similar L1 regularization idea has been explored in (Garg et al., 2019), however, our proposed DAIR regularizer differs
substantially by imposing consistency at the loss level.
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Split Rotation Example Input Example Label

Train 0◦ 6
Augmentation 180◦ 9

Test θ ∈ [0◦, 60◦] 6

Table 1: The rotation scheme used in the Rotated 6 & 9 experiment.

the performance of each algorithm for different values of θ. We see that DA-ERM hurts in-distribution
accuracy (0◦ rotation), and generally hurts test accuracy for various degrees of rotation. For relatively large
θ (representing relatively large distribution shift), only DAIR-SQ consistently outperforms the ERM baseline.
Further, since the data augmentation scheme was weak and did not match the test-time distribution, it was
expected that vanilla data augmentation is not sufficient to help the model to generalize to the test-time shift.
It is noteworthy that perhaps surprising DAIR-SQ outperforms ERM (by a large margin for big distribution
shifts) even though DA-ERM is underperforming ERM.

Through this toy experiment, we motivated the significance of loss-level regularization through DAIR-SQ. To
theoretically analyze why/how DAIR-SQ works, we also conduct a simple toy linear regression experiment
in Appendix A followed by a multi-dimensional extension in Appendix B, where we provide formal proofs to
show that DAIR-SQ is guaranteed to outperform DA-ERM, even in the regime of infinite data or when using
weight decay regularization.

2.2 Practical considerations for DAIR

Next, we discuss a more detailed comparison of DAIR-SQ with DAIR-L1, and its dependency on λ, where we
explain the rationale for settling on DAIR-SQ for the experiments in Section 3.

2.2.1 Why does DAIR-SQ significantly outperform DAIR-L1?

While we have already compared DAIR-SQ with several consistency regularization alternatives, we want
to specifically focus on a closely related DAIR variant called DAIR-L1, which has already appeared in the
literature for invariant data augmentation (Garg et al., 2019). As we observed in Section 2.1, DAIR-L1 either
outright failed or was unstable on the toy example. The following lemma further investigates the discrepancy
between DAIR-SQ and DAIR-L1:
Lemma 1. For any non-negative loss function `,

RL1(z, z̃; θ)−Rsq(z, z̃; θ) ≥ 0,

with equality iff min{`(z̃; θ), `(z; θ), `(z̃; θ)− `(z; θ)} = 0.

Figure 5: The plot of RL1(z, z̃; θ)−
Rsq(z, z̃; θ).

The proof of Lemma 1 appears in Appendix C.1. The difference is depicted
in Figure 5. This suggests that Rsq(z, z̃; θ) incurs a much smaller penalty
when `(z; θ) is large. On the other hand, when `(z; θ) ≈ 0 the regularizer
is much stronger and almost equivalent to RL1. Why does this matter?
At the beginning of training when the network is not yet trained, the
loss values on the original samples are large, and Rsq regularizer is
weak letting the training to proceed towards a good solution for the
original samples. As the network is being trained on original samples
and their loss is vanishing, the regulairzer starts to force the network to
become invariant on the augmented samples. The above hypothesis is also
empirically verified on Colored MNIST with Adversarial Augmentation
(see Appendix F.3).

We also explore the impact of partial augmentation, where we only
augment a certain fraction of the training samples. DAIR shows stable performance compared with DA-ERM
when the number of augmented examples are limited. The results are presented in Figure 18 (Appendix G).
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2.2.2 Dependence of DAIR-SQ on the regularization strength λ

While we have already seen that practically the optimal λ lies in the range [0.2, 100], in this section we relate
λ to the quality of the solution.

Definition 2 (Empirical Expectation). We use Ê to denote the empirical expectation over a set of examples
S.

Êz L(z) = 1
|S|
∑
i∈S
L(zi).

Proposition 3. Let θ?λ ∈ arg minθ fDAIR,Rsq,λ(z, z̃; θ) and θ̃ denote any perfectly invariant solution, i.e.,
R(`(z; θ̃), `(z̃; θ̃)) = 0. We have:

Êz

{
Rsq(`(z; θ?λ), `(z̃; θ?λ))

}
≤ Êz

{
`(z; θ̃) + `(z̃; θ̃)

2λ

}
.

Proposition 3 bounds the value of equation DAIR-SQ inversely proportional to λ. Consider the example of a
classification task with K classes where the number of samples in different classes are the same. When the
weights are zero, i.e., θ̃ = 0, we have a perfectly invariant solution. Moreover, for this choice, we have `(z; θ̃) =
log(K) for all z if cross entropy loss is used. The above lemma implies that Êz{Rsq(`(z; θ?λ), `(z̃; θ?λ))} ≤ logK

λ .
In other words, we can impose invariance by increasing λ but we don’t need a very large λ, reconfirming that
λ ≤ 100 sufficed in all of our experiments.

Although we have shown above that λ needs not to be very large, a natural question is that could we choose
a large λ anyway since when λ→∞, the resulting model is perfectly invariant. In the following theorem, we
show DAIR-SQ leads to convergent algorithms when optimized by popular methods such as gradient descent
and the convergence rate is affected by λ. We remark that the proof of Proposition 3 can be extended to
cover the setup of DAIR-L1 as well.
Theorem 4. Consider a classification problem with logistic loss, where x, x̃ is the input, y is the output and
θ denotes model parameters. Assume ‖x‖, ‖x̃‖ ≤ Dx, and ‖θ‖ ≤ Dθ. After T iterations of gradient descent
algorithm (Algorithm 1 in Appendix C.3), we have

‖∇θfDAIR,Rsq,λ(·)‖2 = O
(

(1 + λ
√
DxDθ)D2

x√
T

)
.

Theorem 4 shows that DAIR-SQ penalizes the convergence rate for solving the problem to ε-gradient accuracy
by a λ

√
DxDθ factor as λ increases. The penalty grows linearly with λ, which is consistent with the observation

in Appendix F.2. However, we observe that the additional complexity is negligible in practice as we usually
do not solve the optimization problems to stationarity but rather stop after certain number of iterations.
For all experiments, we solve each task for a certain number of epochs, which is chosen the same as the
ERM baseline. While Theorem 4 is established for the gradient descent, it can be extended to the stochastic
settings (Lei et al., 2019, Theorem 2) based on the smoothness of the DAIR-SQ loss established in the proof
of Theorem 4.

3 Experiments on covariant tasks

Thus far, we observed that DAIR-SQ is a practically stable variant of DAIR with some theoretical motivations
and guarantees (such as convergence). In the rest of the paper, when we refer to DAIR without only postfix,
we mean DAIR-SQ. As we empirically evaluate the performance of DAIR, we emphasize that the only
hyperparameter that we tune for DAIR is λ (chosen via grid search on validation set). The rest of the
hyperparameters, such as step-size, batch-size, and number of training epochs, are only tuned for the ERM
baseline and chosen to be exactly the same for DAIR. In this section, we continue with covariant tasks where
feature-level regularization is expected to hurt the performance.
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3.1 Neural task-oriented dialog modeling

Virtual digital assistants that engage in conversations with human users are rapidly gaining popularity. These
devices require the modeling of task-oriented dialog systems that can communicate with users through natural
language to accomplish a wide range of tasks. One of the main objectives in task-oriented dialog systems is
the Dialog State Tracking (DST), which refers to keeping track of the user goals as the conversation progresses.
Among task-oriented dialog datasets, MultiWOZ (Budzianowski et al., 2018) has gained the most popularity
owing to the availability of 10k+ realistic dialogs across 8 different domains, and has been improved several
times (Wu et al., 2019; Eric et al., 2019; Zang et al., 2020; Han et al., 2021; Qian et al., 2021).

Recently, SimpleTOD (Hosseini-Asl et al., 2020) achieved state-of-the-art results on MultiWOZ using a neural
end-to-end modeling approach. However, Qian et al. (2021) observed that the performance of SimpleTOD
drops significantly when the test set named entities (which are places in the UK) are replaced with new ones
never observed during training (with new entities all based in the US), perhaps due to the memorization
of named entities during training. We leverage DAIR to promote invariance of the dialog policy to named
entities in the dialog flow. More importantly, we show that standard consistency regularization on feature
space simply does not work. Here, the data augmentation scheme is a simple one. We replace named
entities in the training set with their randomly scrambled version. For example, “cambridge” could be turned
into “bmcedrgia.” Details on training data, augmentation schemes and hyper-parameters can be found in
Appendix H.

MultiWOZ 2.2 Test JGA MultiWOZ 2.2 Test JGA CMw/ SGD entities
SimpleTOD (Hosseini-Asl et al., 2020) 0.5483 0.4844 0.8206
SimpleTOD + DA 0.5915 0.5311 0.8354
SimpleTOD + KL feature consistency 0.5124 0.4053 0.8298
SimpleTOD + DAIR 0.5998 0.5609 0.8902

Table 2: DAIR achieves state-of-the-art Joint Goal Accuracy (JGA) on both the original MultiWOZ 2.2 test set (Zang
et al., 2020) and well as the MultiWOZ 2.2 test set w/ named entities replaced with SGD (Qian et al., 2021).

The results are presented in Table 2, where performance is measured in Joint Goal Accuracy (JGA). JGA is a
binary metric, and is equal to 1 if the predictions of all dialog states in a turn are correct. As such it is a difficult
metric to get right too. As can be seen, both DA-ERM and DAIR outperform SimpleTOD (Hosseini-Asl
et al., 2020) on MultiWOZ 2.2 w/ SGD entities (Qian et al., 2021). More surprisingly, DAIR also outperforms
SimpleTOD on the original MultiWOZ 2.2 test set with no distribution shift, which we attribute to better
robustness to the named entity memorization problem observed by Qian et al. (2021); Cho et al. (2022).
We also observe that DAIR significantly improves the JGA consistency metric compared to the DA-ERM
baseline. It worth nothing but the simple regularizer provides non-trivial performance increase which takes
researchers several years of explore. Finally, we show that standard consistency regularization (KL) is not
well suited to this task and results in performance degradation (see Section 2.1 for more explanation on why).

3.2 Covariant Visual Question Answering

Visual Question Answering (VQA) has diverse applications ranging from visual chatbots to assistants for the
visually impaired. In such real-world settings, it is desirable for VQA models to be robust to variations in the
input modalities. In this spirit, recent works (Agarwal et al., 2020; Shah et al., 2019; Ray et al., 2019) have
studied the robustness and consistency of VQA models under linguistic and visual variations. In this paper,
we focus on the Invariant and Covariant VQA (IV/CV-VQA) dataset which contains semantically edited
images corresponding to a subset from VQA v2 (Goyal et al., 2017). CV-VQA contains images constructed
by removing an object which is relevant to answering the question and leads to a different answer. A robust
model should make predictions that are consistent to such edits.

We choose the attention based SAAA (Kazemi & Elqursh, 2017) model to match the original setup from
Agarwal et al. (2020). Using DAIR, we enforce consistency in predictions between the original and edited
samples. Wherever the edited image is not available, the DAIR formulation reduces to ERM. We use the
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standard VQA accuracy along with our consistency metric to compare our results against the ERM and
DA-ERM setups discussed in Agarwal et al. (2020). In addition we compare against a KL feature regularizer
to highlight the strengths of our approach.

Algorithm CV-VQA test ↑ CM ↑
ERM (Kazemi & Elqursh, 2017) 45.89 0.5792
DA-ERM (Agarwal et al., 2020) 48.32 0.5631
KL Feature Consistency 48.20 0.3479
DAIR 49.75 0.7161

Table 3: Accuracy and Consistency metrics on CV-VQA test set

The results for the CV-VQA are in Table 3. DAIR achieves a higher accuracy as compared to all baselines.
This improvement is significant given that the model needs to predict the answer correctly from 3000 candidate
answers. As against this, applying KL for feature consistency catastrophically fails on the CV-VQA task
achieving significantly lower CM scores than ERM. We describe the Invariant VQA experiment is Section 4.3.

4 Experiments on invariant tasks

Now that we have established the effectiveness of DAIR on covariant tasks, we also benchmark its performance
on invariant tasks where more baselines are available. As in the previouss section, we only tune for λ via grid
search and all other hyperparameters remain the same as the ERM baseline.

4.1 Colored MNIST

Figure 6: Test accuracy vs λ on Colored MNIST for
Adversarial Color aug. and Random Color aug.

Colored MNIST (Arjovsky et al., 2019) is a binary
classification task built on the MNSIT dataset. Digits
0-4 are labeled 1; whereas digits 5-9 are labeled 0.
Additionally, 25% label noise is added, i.e., the labels
are flipped with probability 0.25, both at train and
test time, capping the achievable test accuracy to
75%. In this dataset, each digit is RGB colored.
During training, label 1 is given the color green with
probability 0.9 and red with probability 0.1. On the
other hand, label 0 is given red color with probability
0.9 and green with probability 0.1. This introduces
a high degree of spurious correlation between color and the label. Thus, ERM is expected to significantly
overfit to color for predicting the label.

At test time, the correlation with color is reversed for digits. Hence, vanilla ERM is expected to perform
worse than 50% coin flip at test time. We explore two data augmentation schemes in this experiment. For the
Adversarial Augmentation (Adv. Aug.) setup, the augmented images will have their color flipped (from red to
green or vice versa) with probability 0.1. For the Random Augmentation (Rnd. Aug.) setup, the augmented
images are colored uniformly at random. Detailed description of the setup and additional experiments can be
found in Appendix D and Appendix E.1, respectively.

Figure 6 suggests that DAIR-SQ and KL consistency regularization achieve ∼72% test accuracy using both
augmentation schemes, outperforming the state-of-the-art 68% test accuracy reported by IRM (Arjovsky
et al., 2019), and almost reaching the 75% cap. We also compare to more recent baselines in Table 15
(Appendix E.1). We note however that this comparison may be unfair because IRM does not have access to
any pairing information between the original and the augmented samples. As we observe in the next section,
such information is readily available in several real-world benchmarks and DAIR-SQ can exploit it to achieve
new state-of-the-art results. We also notice that neither variant of DA-ERM achieves test performance better
than 50% coin flip in this experiment, while Adversarial Augmentation seems to fare better than Random
Augmentation.
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Figure 7: Test accuracy as a function of λ for different label noise levels for Weak Rotation augmentation.

Figure 8: Test accuracy as a function of λ for different label noise levels for Strong Rotation augmentation.

4.2 Rotated MNIST

Rotated MNIST (Ghifary et al., 2015) is a dataset where MNIST digits are rotated. We work with two
different sets of degrees of rotation for Rotated MNIST. The first one is Weak Rotation where the digits are
rotated uniformly at random [0, π6 ) radians. In Strong Rotation the digits are rotated uniformly at random
[0, 2π) radians. To evaluate the robustness of the methods, we further add label noise at training time where
the label is replaced with a digit chosen from {0,. . . ,9} uniformly at random with a certain probability. No
label noise is added at test time. Detailed setup is in Appendix D. Model architecture and training parameters
are detailed Appendix D.

In the first experiment, we use Weak Rotation for data augmentation while at test time we use Strong
Rotation. Thus, some test time rotations have not been observed at training time. Figure 7 shows the test
performance of all algorithms (averaged over three runs) as a function of λ. As can be seen, ERM (with no
data augmentation) does not generalize to rotated test images and performs poorly. DA-ERM offers significant
performance improvement over ERM. When λ is very small all variants of consistency regularization are
virtually the same as DA-ERM. DAIR-SQ and KL regularizer outperform other regularizers and are the only
two variants that offer improvement over DA-ERM as λ increases. As the label noise level becomes larger,
DAIR-SQ is more robust than KL regularizer and offers the best performance.

Besides DAIR-SQ and KL regularizer, it is noteworthy that the other consistency regularization variants
did not offer improvement over DA-ERM and they converged to poor local minima with 10% test accuracy
(random) for large λ. We were not able to remedy this by tuning of their step size. See Section 2.2.1 for further
justification of this phenomenon. We also observe that the performance of both DAIR-SQ and KL regularizer
achieves a sweet spot for some finite λ, i.e., the performance starts to drop for large values of λ. This is not
theoretically expected and can be attributed to the practical issues with solving the consistency regularization
problem. We further investigate this phenomenon in Appendix F and provide some explanations.

The setup for the second experiment is the same as the first one, except we also use Strong Rotation in
training for augmentation, so there is no test-time distribution shift for DA-ERM. As can be seen in Figure 8,
data augmentation achieves very good performance in this case and none of the DAIR regularizers offer any
improvement beyond data augmentation. We suspect this to be true in general; if the data augmentation is
well-devised and optimized the resulting model could become invariant to the desired transformations at test
time. Additional experiments on consistency metric can be found in Appendix E.1.
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4.3 Invariant Visual Question Answering

In this experiment, we focus on the IV-VQA dataset which contains one or more edited images constructed
from orignal images by removing an object which is irrelevant to answering the question. A robust model
should make consistently predict the same answer for the original and corresponding edited images.

Similar to the setup in CV-VQA, We use the SAAA (Kazemi & Elqursh, 2017) model and compare performance
against baselines using accuracy and consistency metrics.

Algorithm VQA v2 val ↑ CM ↑ Predictions Flipped ↓ pos → neg ↓ neg → pos ↓ neg → neg ↓
ERM (Kazemi & Elqursh, 2017) 64.18 0.9456 8.64 3.45 3.00 2.2
DA-ERM (Agarwal et al., 2020) 64.66 0.9543 7.47 2.92 2.73 2.73
KL Feature Consistency 64.57 0.9582 7.07 2.73 2.50 1.84
DAIR 64.75 0.9606 6.33 2.54 2.22 1.57

Table 4: Accuracy and Consistency metrics on VQA v2 val & IV-VQA test set.

The results are reported in Table 4. In addition to our CM score, we borrow the consistency metrics from
(Agarwal et al., 2020) that measure three types of flips namely, pos → neg, neg → pos and neg → neg. A
pos → neg flip indicates that the answer predicted with the original image was correct but was wrong with
the corresponding edited image. A neg → neg flip indicates that the answer changes from original to edited
image but is wrong for both. DAIR achieves a higher accuracy as compared to all baselines across both
datasets, while improving under CM score and the ‘Predictions flipped’ metric which is the sum of the three
types of flips. While applying DAIR to this task, we observe a trade-off between the VQA accuracy and the
consistency metrics controlled by the λ parameter. By increasing λ, the consistency score rises to as high as
98%, albeit sacrificing the VQA accuracy by 6-7%. For moderate values of λ, DAIR maintains classification
accuracy of the model while enforcing consistency across variations in the visual space. See Appendix I for
more details.

4.4 Training robust deep networks against adversarial attacks

Figure 9: PGD20/Clean Acc. trade-off
by sweeping λ.

Neural networks have been widely used in various applications, espe-
cially in computer vision. However, neural networks are vulner-
able to adversarial attacks, such as Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014) and Projected Gradient Descent
(PGD) (Madry et al., 2018), where small adversarial perturbations
in the input are designed to significantly alter the output prediction.

In this section, we consider training robust neural networks against
adversarial attacks and compare with state-of-the-art baseline models
which are specifically designed for this task. We evaluate the perfor-
mance of each algorithm against PGD attacks as well as the clean
(no attack-free) accuracy. In our approach, the augmented examples
z̃ can be generated by a certain strong attack, such as Projected Gradient Descent (PGD) or CW (Carlini &
Wagner, 2017).We conduct our experiments on CIFAR-10 dataset and compare our approach with several
other state-of-the-art baselines.

The performance of our algorithm against the Fast Gradient Sign Method (FGSM) and variants of PGD,
is summarized in Table 5, which shows that our results are competitive with the baselines. We report the
performance of DAIR in Table 5 based on the configurations that give the best Clean accuracy followed by
the best Robust accuracy against PGD20 in parenthesis afterward. The trade-off curve shown in Figure 9
suggests that by sweeping the value of λ, DAIR can achieve a better clean accuracy but a slightly lower
PGD20 accuracy, and dominates most of the baseline, while it achieves a similar performance with TRADES.
Note that the formulation in TRADES is equivalent to consistency regularization with KL divergence between
the logits of the original and adversarial images. As opposed to our setup, the regularizer term in TRADES
is also used in solving the maximization problem to generate adversarial images, whereas we only use the
original loss for generating the adversarial examples.
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# Algorithm Clean (%) FGSM (%) PGD20 (%) CM (%)
1 PGD Training (Madry et al., 2018) 82.89 55.38 48.40 –
2 APART (Li et al., 2020) 82.45 55.33 48.95 60.05
3 DAIR (λ = 6) 83.04 57.57 50.68 62.66
4 TRADES + ATTA (Zheng et al., 2020) 78.98 55.58 52.30 60.56
5 TRADES (Zhang et al., 2019) 81.67 57.78 52.90 63.14
6 DAIR (λ = 16.7) 81.29 58.58 53.37 67.51

Table 5: CIFAR-10 test accuracies under no attack (clean), FGSM, and PGD20 attacks, and accuracy consistency
metric between original and PGD20 attack.

We also report the accuracy consistency metric (CM) in this experiment in Table 5. CM captures the
consistency of accuracy on PGD20 attack compared to clean examples. We observe that DAIR outperforms
all baselines, which is in line with its best generalization to different attacks.

Lastly, we compare DAIR with more recent baselines (namely Tack et al. (2021)) on a different robust
classification against adversarial attacks setup, where we observe that DAIR offers competitive performance
improvements compared to the state-of-the-art baselines (see Appendix K).

4.5 Robust regression: simultaneous domain shift and label noise

In this experiment, we consider a regression task to minimize the root mean square error (RMSE) of the
predicted values on samples from the Drug Discovery dataset. The task is to predict the bioactivities given a
set of chemical compounds (binary features). We follow the setup of Li et al. (2021) to introduce random
noise to corrupt the targets. Furthermore, similar to Colored MNIST, we add a spurious binary feature to
the original setup. At training time, the spurious feature is set to 1 if the target is above a threshold (the
median of all the targets in the training samples), and 0 otherwise. At test time, this condition is reversed
leading to poor generalization. We compare using ERM, DA-ERM and DAIR formulations under 0%, 20%
and 40% noise levels on three baselines: L2 loss, Huber loss, and negatively tilted loss (Li et al., 2021), which
is called tilted empirical risk minimization (TERM) and is designed for robust regression. For each of these
baselines, we perform data augmentation by randomly assigning the spurious feature as 0 or 1 with equal
probability. Finally, we apply the DAIR regularizer to each of these loss functions with λ = 10.

Algorithms Test RMSE (Drug Discovery dataset)
0% Noise 20% Noise 40% Noise Clean

ERM DA-ERM DAIR ERM DA-ERM DAIR ERM DA-ERM DAIR ERM
L2 loss 1.97 (0.00) 1.36 (0.00) 1.23 (0.00) 4.33 (0.04) 2.52 (0.05) 2.04 (0.06) 5.30 (0.04) 3.47 (0.07) 2.99 (0.09) 1.23 (0.00)

Huber (Huber, 1964) 1.84 (0.00) 1.27 (0.00) 1.24 (0.00) 2.93 (0.05) 1.50 (0.02) 1.39 (0.02) 4.40 (0.07) 2.18 (0.04) 1.70 (0.05) 1.16 (0.00)

TERM (Li et al., 2021) 1.74 (0.00) 1.26 (0.00) 1.25 (0.00) 1.87 (0.01) 1.27 (0.01) 1.27 (0.01) 2.01 (0.02) 1.33 (0.01) 1.31 (0.01) 1.23 (0.00)

Table 6: Test RMSE for varying degrees of label noise for ERM, DA-ERM, and DAIR using different losses.

The results of this experiment are reported in Table 6. In the last column of the table we report results
on the clean dataset without any spurious features for comparison purposes. As can be seen, without data
augmentation all methods fall prey to spurious features and perform poorly, especially as the noise level is
increased. It is noteworthy that while TERM is not designed for domain shift, it slightly outperforms the
other baselines in the presence of spurious features showing that TERM has some inherent robustness to the
domain shift. By adopting data augmentation, testing error decreases but is still quite large as compared to
the Clean ERM setup for high values of noise. Notably, DAIR is able to reduce the testing error across all
objectives and noise levels with the gap between DAIR and other approaches increasing with the degree of
noise. For the noiseless setup, DAIR is able to almost recover the Clean ERM accuracy for all three objectives.
The gains achieved with DAIR are prominent for L2 and Huber, but marginal for TERM. Finally, DAIR
combined with TERM can simultaneously handle domain shift and noisy labels as can be seen in this table.
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4.6 ImageNet-9 background challenge

Deep learning models have outperformed human-level performance in many applications of which the most
prominent is image classification. However, these models are extremely vulnerable to overfitting to spurious
correlations such as background features. ImageNet-9 Background Challenge (Xiao et al., 2020) was proposed
to test the background robustness of image classification models. In this challenge, seven variations of images
such as background/foreground removal, are provided to measure the extent to which models rely on the
background. For example, variations Only-BG-B and Only-BG-T remove the backgrounds and therefore
the test accuracy is expected to be low for a model which does not learn spurious background features.
See (Xiao et al., 2020, Figure 1) for example images of each variation. Xiao et al. (2020) choose to train
a model on Mixed-Rand variation, which is the most powerful and comprehensive augmentation scheme,
and demonstrated that the resulting model is more robust. We choose the Mixed-Rand variation as our
augmentation scheme and compare the test accuracy on all seven variations of the models trained by ERM,
(Xiao et al., 2020), DA-ERM, DAIR and KL.

Table 7 summarizes the results. We see that DAIR outperforms ERM and DA-ERM by a large margin and is
similarly competitive as KL feature consistency regularization (see the third column). In particular, DAIR
outperforms DA-ERM on all metrics for which a higher test accuracy is more desirable. DAIR improves
performance on the variations which include domain shift, such as Mixed-Same, Mixed-Next and Only-FG.
In particular, it also helps Original and the Mixed-Rand variations which are seen during training as well. In
this experiment, similar to Section 3.1, DAIR not only enhances out-of-domain generalizability/robustness
but also gives the best the in-distribution performance (original). The detailed training setup can be found
in Appendix L

Original ↑ Mixed-Rand ↑ Mixed-Same ↑ Mixed-Next ↑ Only-BG-B ↓ Only-BG-T ↓ No-FG Only-FG ↑
ERM (Original) 69.43 38.57 59.63 34.27 25.83 31.06 37.04 44.00
(Xiao et al., 2020) 49.41 51.98 51.85 50.48 13.41 13.80 20.05 52.22
DA-ERM 64.02 58.05 58.81 48.17 16.91 22.27 28.44 56.62
KL Feature Consistency 70.84 65.36 68.79 64.07 13.23 20.81 26.77 67.48
DAIR 72.91 63.48 69.16 62.02 17.19 24.02 31.88 66.15

Table 7: ImageNet-9 Backgrounds Challenge test accuracy on different shifted test sets. We use Mixed-Rand
as augmentation during training for DA-ERM, DAIR, and KL feature consistency. Arrows next to the heading
of each column indicate the desired direction of the metric. For example, the accuracy on Original images
should be as high as possible but the accuracy on Only-BG-B should be as low as possible.

5 Conclusion

In this paper, we proposed a simple yet effective consistency regularization technique, called data augmented
loss invariant regularization (DAIR). DAIR is applicable when data augmentation is used to promote
performance invariance across pairs of original and augmented samples, and it enforces the loss to be
similar on the original and the augmented samples. We provided motivation and justification for DAIR,
and particularly showed that it can recover the optimal solution in a certain regression task where data
augmentation alone is insufficient. We also compared DAIR with other consistency regularizers and showed
that existing consistency regularization techniques cannot handle covariant data augmentation. On the other
hand, DAIR is broadly applicable to tasks involving invariant/covariant data augmentation. We empirically
evaluated DAIR in five real-world machine learning tasks, namely task-oriented dialog modeling, visual
question answering, robust regression, robust classification against adversarial attacks, and ImageNet-9
background challenge. Our experiments confirmed a major benefit of DAIR as some other consistency
regularizers cannot be applied broadly. Empirically, DAIR set new state-of-the-art results in dialog state
tracking and VQA benchmarks which involved covariant data augmentation, and provided competitive results
in all other benchmarks. This demonstrated the effectiveness of DAIR despite its simplicity.

Several problems remain open for future research: An in-depth theoretical understanding of the properties of
DAIR that lead to its superior empirical performance on broad applications is an important open question.
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Further, automated hyperparameter tuning techniques for the strength of the regularizer is another avenue
for future research. Finally, a discussion on limitations and broader impact appears in Section 6.

6 Limitations & Broader Impact

Firstly, while we demonstrated the success of DAIR when the pairing information between original and
augmented training samples is known, the applicability of DAIR remains limited in only setups where such
pairing information is available. We also remark that DAIR incurs double the computational cost compared
with algorithms which only consider one sample for backpropagation (e.g., only an augmented examples)
rather than the pair.

Secondly, applying DAIR to arbitrary tasks requires domain knowledge about the nature of the desired
invariances to be promoted which is expressed by choosing appropriate augmented samples. In particular, we
did not address devising good data augmentation procedures, but rather we argued that if data augmentation
is already employed (i.e. DA-ERM is used), DAIR can lead to remarkable gains (almost) with marginally
added cost via further regularization of the losses. It remains to examine whether DAIR could be used as a
component for solving domain generalization for arbitrary domain shifts where data augmentation pairing
cannot be performed in a straightforward fashion.

Thirdly, we demonstrated the effectiveness of DAIR on a variety of supervised tasks involving multimodal,
generative and regression models. However, the applicability of DAIR to semi-supervised or self-supervised
learning remains to be seen.

Finally, while we showed that DAIR boosts existing performance metrics, such as accuracy, the interplay
of DAIR with other important socially consequential metrics, such as group fairness and privacy, was not
explored in this paper. It remains to be seen whether DAIR may have any positive or negative consequences
on these other Responsible AI metrics.
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Appendix

In this appendix, we provide additional linear regression example with theoretical analysis (Appendix A) and
its extension (Appendix B); include proofs of the analyses from Section 2 (Appendix C); details on MNIST
experiments (Appendices D to E); practical considerations when DAIR used in training (Appendix F); the im-
pact of partial augmentation (Appendix G); training details on experiments in Sections 3 and 4 (Appendices H
to L). We provide a table of contents below for easier navigation.
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A Additional linear regression example with theoretical analysis

Figure 10: The plot of the optimal,
ERM, DA-ERM and DAIR-SQ (λ =
100) regressors for the toy example
of Appendix A.

In this section, we answer the question “What does DAIR offer beyond
DA-ERM?” both theoretically and empirically through a simple toy
example. In this example, we demonstrate that DAIR can fundamentally
outperform DA-ERM, even in the limit of infinite training samples (no
overfitting due to finite samples). Consider a linear regression problem
where at the training time the input is xtrain = (x, s = y) and the label
y, i.e., ztrain = (xtrain, y). Here, x ∼ N (0, σ2

x), and y = x + ε, where
ε is independent of x and ε ∼ N (0, σ2

ε). In this example, the target is
explicitly provided as a spurious feature to the learner at the training
time. At test time, the spurious feature is absent, i.e., xtest = (x, s = 0).

Clearly, in this toy example, the optimal regressor is w? = (w?1 , w?2)> =
(1, 0)>. However, absent the knowledge of the spurious feature vanilla
ERM will learn wERM ≈ (0, 1)>, completely overfitting the spurious
feature. We assume that the learner has access to a data augmentation
module that generates z̃ = A(z; a, σ2

n) = (xaug, y), such that xaug = (x, s = ay + n) where n ∼ N (0, σ2
n). The

augmented data will encourage the learned model to become invariant to the spurious feature. In Figure 10,
we perform simulations with a = 0.5, σ2

x = 1, σ2
ε = 0.25, σ2

n = 0.1 and plot four linear regressors associated
with the slope of their respective w1. We ignore w2 as the second spurious feature is absent at test time and
hence w2 does not impact test performance. The optimal regressor is shown as the blue line, with a slope
of 1. ERM (red line) completely fails due to the overfitting to the spurious feature. DA-ERM (orange line)
significantly improves over ERM but still is far from optimal performance. DA-ERM? (purple line) which is
solely trained on augmented examples (ignoring the original examples) slightly outperforms DA-ERM but
still significantly overfits to the spurious feature. DAIR-SQ (green line) almost recovers the optimal solution.
This is not a coincidence. We prove that DAIR-SQ is optimal for a class of linear regression problems, while
DA-ERM does not approach optimal performance even in the limit of infinite samples. Here we state the
rigorous statement, followed by proof.
Proposition 5. Consider a linear regression problem with training point ztrain = (xtrain, y) where xtrain =
(x, s = y); y denotes label and s denotes the spurious feature. Here, x ∼ N (0, σ2

x), and y = x+ ε, where ε is
independent of x and ε ∼ N (0, σ2

ε). Assume the learner has access to a data augmentation module which
generates zaug = (xaug, y) where xaug = (x, s = ay + n). Here n ∼ N (0, σ2

n), and a ∈ R. At test time, the
spurious feature is absent, i.e., xtest = (x, s = 0). Both DAIR-SQ and DA-ERM are applied to solve this
problem: DAIR-SQ achieves optimal test error as number of samples grows and λ→∞. On the other hand,
DA-ERM cannot generally recover optimal performance even in the limit of infinite training data.

Proof. First let us present the DA-ERM solution:

fDA-ERM(w) =E
[
(w1x+ w2y − y)2 + (w1x+ w2(ay + n)− y)2] (1)

=E
[
w2

1x
2 + (w2 − 1)2y2 + 2w1(w2 − 1)xy

]
+ E

[
w2

1x
2 + (w2a− 1)2y2 + w2

2n
2]

+ E [2w1(w2a− 1)xy + 2w1w2xn+ 2w2(w2a− 1)yn] (2)
=w2

1σ
2
x + (w2 − 1)2(σ2

x + σ2
ε) + 2w1(w2 − 1)σ2

x

+ w2
1σ

2
x + (w2a− 1)2(σ2

x + σ2
ε) + w2

2σ
2
n

+ 2w1(w2a− 1)σ2
x (3)

=(w1 + w2 − 1)2σ2
x + (w2 − 1)2σ2

ε

+ (w1 + w2a− 1)2σ2
x + (w2a− 1)2σ2

ε + w2
2σ

2
n. (4)

Hence, the solution of w?DA-ERM = arg minw fDA-ERM(w) is given by
2w?

1 + (1 + a)w?
2 − 2 = 0,

(w?
1 + w?

2 − 1)σ2
x + (w?

2 − 1)σ2
ε + a(w?

1 + w?
2a− 1)σ2

x + a(w?
2a− 1)σ2

ε + w?
2σ

2
n = 0. (5)
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Subsequently,

w?DA-ERM =


a2(σ2

x+σ2
ε)−2a(σ2

x+σ2
ε)+σ2

x+σ2
ε+2σ2

n

a2(σ2
x+2σ2

ε)−2aσ2
x+σx+2(σ2

ε+σ2
n)

2(a+1)σ2
ε

a2(σ2
x+2σ2

ε)−2aσ2
x+σ2

x+2(σ2
ε+σ2

n)

 . (6)

w?DAIR = arg min
w
fDAIR(w)

= arg min
w

E
[
(w1x+ w2y − y)2 + (w1x+ w2(ay + n)− y)2]

+
[
λ(|w1x+ w2y − y| − |w1x+ w2(ay + n)− y|)2] .

When λ→∞, we have w?DAIR,2 = 0 and hence:

w?DAIR =

 1

0

 .

We then evaluate the testing loss assuming the spurious feature is absent, i.e., xtest = (x, s = 0).

`DAIR(xtest;w?DAIR) = E
[
(w?DAIR

>xtest − y)2
]

= E
[
(x− (x+ ε))2]

= σ2
ε .

`DA-ERM(xtest;w?DA-ERM) = E
[
(w?DA-ERM

>xtest − y)2
]

= E

[(
a2(σ2

x + σ2
ε)− 2a(σ2

x + σ2
ε) + σ2

x + σ2
ε + 2σ2

n

a2(σ2
x + 2σ2

ε)− 2aσ2
x + σx + 2(σ2

ε + σ2
n) x− (x+ ε)

)2]

= σ2
ε + (a+ 1)4σ4

εσ
2
x

(a2(σ2
x + 2σ2

ε)− 2aσ2
x + σx + 2(σ2

ε + σ2
n))2

≥ `DAIR,

completing the proof.

One can show that simple data independent regularization methods (e.g. weight decay) cannot help close the
gap between the performance of DA-ERM and DAIR (see Proposition 6). While the toy example presented
an extreme case with a spurious feature equal to the output, we prove theoretically that the same conclusion
holds as long as a subset of features have different correlation patterns with the output at training and test
time (see Proposition 7 for the general multi-variate linear regression setup). Note that in this toy example
when σn →∞, DA-ERM could also recover w?. One can interpret that as σn →∞, the augmenter becomes
stronger and forces w2 to vanish. On the other hand, DAIR recovers w? with a much weaker augmenter.
This is crucial since in real-world applications, designing strong augmentation schemes requires careful design.
See the example of Weak Rotation setup in Section 4.2 for details.
Proposition 6. Consider the case in which a weight decay regularizer γ

2 (w2
1 +w2

2) is added to the DA-ERM,
the resulting solution is the following:

w?DA-ERM-WD =


a2(σ2

ε+σ2
x)−2a(σ2

ε+σ2
x)+2γ+σ2

ε+2σ2
n+σ2

x

a2(γ(σ2
ε+σ2

x)+2σ2
ε+σ2

x)−2aσ2
x+γ2+γ(σ2

ε+σ2
n+σ2

x+2)+2σ2
ε+2σ2

n+σ2
x

(a+1)(γ(σ2
ε+σ2

x)+2σ2
ε)

a2(γ(σ2
ε+σ2

x)+2σ2
ε+σ2

x)−2aσ2
x+γ2+γ(σ2

ε+σ2
n+σ2

x+2)+2σ2
ε+2σ2

n+σ2
x

)

 .

21



Published in Transactions on Machine Learning Research (11/2022)

Proof of Proposition 6. The proof follows the same idea of Proposition 5 and therefore it is omitted here.

Proposition 6 shows that even using the weight decay regularizer would not close the gap between the
performance of DA-ERM and DAIR. In other words w?DA-ERM-WD 6= w? = (1, 0) unless σ2

n →∞ and γ = 0.

B Multi-dimensional extension of linear regression example (Appendix A)

Consider a multi-dimensional extension of the example in Appendix A. During training, the input is
xtrain = [x strain]> ∈ Rd+k and y = 1>x+ε, where x ∼ N (0, σ2

xI) ∈ Rd, ε ∼ N (0, σ2
ε), strain = yvtrain +ntrain,

vtrain ∈ Rk and ntrain ∼ N (0, σ2
ntrain

I) ∈ Rk. Similar to the toy example, we introduce spurious feature strain
to mislead the model. ERM based approach should overfit to use the information in strain if σ2

ntrain
is small.

Suppose the learner also has access to the augmented datapoints of the form xaug = [x saug]> ∈ Rd+k, where
saug = yuaug + naug, uaug ∈ Rk, and naug ∼ N (0, σ2

naug
I) ∈ Rk. The augmented data points will encourage

the model to be invariant to the spurious feature during training. The testing data is xtest = [x 0]> ∈ Rd+k.
Again, the optimal w is [1 0]> and we compare the performances of DA-ERM and DAIR. One can think of
this is a simplified setup that is aimed at emulating a case with some features, e.g., background, bearing no
impact on the labels, whereas they may be (highly) correlated with the label during the training. One may
guess the results of comparison as this is the extension of the toy example in the main body of the paper:
DAIR mostly works better than DA-ERM. We introduce the formal proposition below.

Proposition 7. Consider the linear least squares regression problem for predicting the target variable y in
the problem described above. Assume that the learner has access to a data augmentation module that perturbs
the spurious feature, as described above. Consider the population level loss (i.e. number of samples is infinity).
Then, for any value of σ2

ntrain
, σ2

naug
, vtrain and naug, DAIR-SQ achieves optimal test error as λ → ∞. On

the other hand, DA-ERM cannot obtain optimal performance (other than for only certain corner cases such
as σ2

naug
→∞ and/or σ2

ntrain
→∞).

Proof. Assuming the linear least squares regression fit, the objective function of DA-ERM can be written as

2E[fDA-ERM(w)] = E
[
(w>xtrain − y)2 + (w>xaug − y)2]

= E
[
(w>1 x+ w>2 strain − y)2 + (w>1 x+ w>2 saug − y)2]

= E
[
(w>1 x+ w>2 (vtrainy + ntrain)− y)2 + (w>1 x+ w>2 (uaugy + naug)− y)2]

= E
[
(w>1 x+ w>2 (vtrain(1>x+ ε) + ntrain)− 1>x− ε)2]

+ E
[
(w>1 x+ w>2 (uaug(1>x+ ε) + naug)− 1>x− ε)2]

= E
[
(x>(w1 + 1v>trainw2 − 1) + ε(w>2 vtrain − 1) + n>trainw2)2]

+ E
[
(x>(w1 + 1u>augw2 − 1) + ε(w>2 uaug − 1) + n>augw2)2]

= σ2
x‖w1 + 1v>trainw2 − 1‖2 + σ2

ε(w>2 vtrain − 1)2 + σ2
ntrain

‖w2‖2

+ σ2
x‖w1 + 1u>augw2 − 1‖2 + σ2

ε(w>2 uaug − 1)2 + σ2
naug
‖w2‖2,
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where w = [w>1 w>2 ]> with w1 ∈ Rd and w2 ∈ Rk. Expanding the norms will result in

2E[fDA-ERM(w)] = σ2
x[w>Îw + 2w>1̂ṽ>trainw − 21̂>w + w>ṽtrain1̃>1̃ṽ>trainw − 21̃>1̃ṽ>trainw + 1̂>1̂]

+ σ2
ε [w>ṽtrainṽ

>
trainw − 2w>ṽtrain + 1] + σ2

ntrain
w>Ĩw

+ σ2
x[w>Îw + 2w>1̂ũ>augw − 21̂>w + w>ũaug1̃>1̃ũ>augw − 21̃>1̃ũ>augw + 1̂>1̂]

+ σ2
ε [w>ũaugũ

>
augw − 2w>ũaug + 1] + σ2

naug
w>Ĩw

= w>[σ2
xÎ + σ2

xṽtrain1̂> + σ2
x1̂ṽ>train + σ2

xṽtrain1̃>1̃ṽ>train + σ2
ε ṽtrainṽ

>
train + σ2

ntrain
Ĩ]w

+ (−2σ2
x1̂− 2σ2

xṽtrain1̃>1̃− 2σ2
ε ṽtrain)>w

+ w>[σ2
xÎ + σ2

xũaug1̂> + σ2
x1̂ũ>aug + σ2

xũaug1̃>1̃ũ>aug + σ2
ε ũaugũ

>
aug + σ2

naug
Ĩ]w

+ (−2σ2
x1̂− 2σ2

xũaug1̃>1̃− 2σ2
ε ũaug)>w

+ 2(σ2
x1̂>1̂ + σ2

ε)

where ṽtrain = [0> v>train]>, ũaug = [0> u>aug]>, Ĩ =
[

0 0
0 I

]>
, Î =

[
I 0
0 0

]>
, 1̃ = [0> 1>]> and

1̂ = [1> 0>]>.

By optimality condition, we have:

Qw?DA-ERM = −b (7)

where

Q = σ2
x(ṽtrain1̂> + 1̂ṽ>train + ũaug1̂> + 1̂ũ>aug + ṽtrain1̃>1̃ṽ>train + ũaug1̃>1̃ũ>aug)

+ 2σ2
xÎ + (σ2

ntrain + σ2
naug )Ĩ + σ2

ε(ṽtrainṽ
>
train + ũaugũ

>
aug)

b = σ2
x(−21̂ + (−ṽtrain − ũaug)1̃>1̃) + σ2

ε(−ṽtrain − ũaug).

One can check that w?DA-ERM 6=
[

1
0

]
for generic choice of vtrain, uaug, σ

2
x, σ

2
naug

, σ2
ε , σ

2
ntrain

. This is because
we have more free variables than the number of equations in equation 7. Thus, w?DA-ERM cannot recover the
optimal regressor for the generic choice of parameters. More specifically, only in certain corner cases w?DA-ERM

would recover the optimal regressor
[

1
0

]
. For example, when σ2

ntrain
→ +∞, we have 1

σ2
ntrain

Q → Ĩ and
1

σ2
ntrain

b→ 0. Thus, in this corner case, the optimality condition equation 7 is asymptotically satisfied.

On the other hand, in the presence of DAIR regularizer, when λ→∞, the loss function in equation DAIR
remains finite if and only if R(`(z;w), `(z̃;w)) = 0, almost everywhere. Equivalently, the objective in equa-
tion DAIR remains finite (when λ→∞) if and only if

(y − x>w1 − s>trainw2)2 = (y − x>w1 − s>augw2)2,

for almost all realizations of data, which implies w2 = 0. Thus, when λ→∞, w?DAIR → [w?>1,DAIR, w
?>
2,DAIR]

with w?2,DAIR = 0. In other words, the coefficient of the spurious features vanishes as λ→∞ and hence the

regression will recover the groundtruth regressor
[

1
0

]
.
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C Proofs

C.1 Proof of relation between DAIR-SQ and DAIR-L1 (Lemma 1)

Proof of Lemma 1. We proceed as follows:

RL1(z, z̃; θ)−Rsq(z, z̃; θ) = 2
√

min{`(z; θ), `(z̃; θ)}
∣∣∣√`(z̃; θ)−√`(z; θ)∣∣∣ ,

We break it into two cases: if `(z̃; θ) > `(z; θ):

RL1(z, z̃; θ)−Rsq(z, z̃; θ) = `(z̃; θ)− `(z; θ)− (
√
`(z̃; θ)−

√
`(z; θ))2

= `(z̃; θ)− `(z; θ)− `(z̃; θ)− `(z; θ) + 2
√
`(z̃; θ)

√
`(z; θ)

= −2`(z; θ) + 2
√
`(z̃; θ)

√
`(z; θ)

= 2
√
`(z; θ)(

√
`(z̃; θ)−

√
`(z; θ)).

If `(z̃; θ) ≤ `(z; θ):

RL1(z, z̃; θ)−Rsq(z, z̃; θ) = `(z; θ)− `(z̃; θ)− (
√
`(z̃; θ)−

√
`(z; θ))2

= `(z; θ)− `(z̃; θ)− `(z̃; θ)− `(z; θ) + 2
√
`(z̃; θ)

√
`(z; θ)

= −2`(z̃; θ) + 2
√
`(z̃; θ)

√
`(z; θ)

= 2
√
`(z̃; θ)(

√
`(z; θ)−

√
`(z̃; θ)).

If we combine the two cases, we have:

RL1(z, z̃; θ)−Rsq(z, z̃; θ) = 2
√

min{`(z; θ), `(z̃; θ)}
∣∣∣√`(z̃; θ)−√`(z; θ)∣∣∣ .

C.2 Proof of dependence of DAIR-SQ on λ (Proposition 3)

Proof of Proposition 3. We start the proof with the objective value.

Êz
{
`(z; θ?λ) + `(z̃; θ?λ)

2 + λRsq(`(z; θ?λ), `(z̃; θ?λ))
}
≤ Êz

{
`(z; θ̃) + `(z̃; θ̃)

2 + λRsq(`(z; θ̃), `(z̃; θ̃))
}

(8)

Êz
{
`(z; θ?λ) + `(z̃; θ?λ)

2 + λRsq(`(z; θ?λ), `(z̃; θ?λ))
}
≤ Êz

{
`(z; θ̃) + `(z̃; θ̃)

2

}
(9)

Êz

{
λRsq(`(z; θ?λ), `(z̃; θ?λ))

}
≤ Êz

{
`(z; θ̃) + `(z̃; θ̃)

2 − `(z; θ?λ) + `(z̃; θ?λ)
2

}
(10)

Êz

{
λRsq(`(z; θ?λ), `(z̃; θ?λ))

}
≤ Êz

{
`(z; θ̃) + `(z̃; θ̃)

2

}
(11)

Êz

{
Rsq(`(z; θ?λ), `(z̃; θ?λ))

}
≤ Êz

{
`(z; θ̃) + `(z̃; θ̃)

2λ

}
. (12)

Note equation 8 holds since θ?λ is the minimizer of the fDAIR,Rsq,λ(z, z̃; θ). equation 9 and equation 11 hold
since R(·) and `(·) are non-negative respectively.
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C.3 Proof of convergence of DAIR-SQ (Theorem 4)

We first present DAIR applied to training neural networks with Gradient Descent (GD) and followed by proof
of Theorem 4.

Algorithm 1 Training Neural Networks with GD
1: Input: Number of steps T , Training set S, Learning Rate η, Initialized Parameter θ0

2: for t = 1, 2, . . . , T do
3: Compute ∇θ Ê fDAIR,R,λ(zi, z̃i; θt).
4: Set θt+1 = θt − η∇θ Ê fDAIR,R,λ(zi, z̃i; θt).
5: end for

Remark 8. Algorithm 1 shows DAIR applied to training neural networks with GD. Note Algorithm 1 can
also be extended to the stochastic setting, which is the variant we used in the experiments of Sections 3 and 4.

Proof of Theorem 4. The objective function of DAIR is the following:

fDAIR(x, x̃, y; θ) = fDA-ERM(x, x̃, y; θ) + λ
(√

`(x, y; θ)−
√
`(x̃, y; θ)

)2

= 1
2 (`(x, y; θ) + `(x̃, y; θ)) + λ

(√
`(x, y; θ)−

√
`(x̃, y; θ)

)2
.

Substituting logistic loss function, the above equation reduces to

fDAIR(x, x̃, y; θ) = 1
2 (log(1 + exp(ζ1(x, y, θ))) + log(1 + exp(ζ2(x̃, y, θ))))︸ ︷︷ ︸

L(θ)=h(ζ(θ))

+ λ
(√

log(1 + exp(ζ1(x, y, θ)))−
√

log(1 + exp(ζ2(x̃, y, θ)))
)2

︸ ︷︷ ︸
Rsq(θ)=g(ζ(θ))

,

where ζ = [ζ1(·) ζ2(·)]>, ζ1(x, y, θ) = −yθ>x and ζ2(x̃, y, θ) = −yθ>x̃. In order to obtain the convergence
rate of gradient descent, we need to compute the Lipschitz constant of the gradient of fDAIR. To this end, we
need to bound the Hessian of Rsq(θ). Applying chain rule to this function, we obtain:

∇2
θRsq(θ) = ∇θζ(θ)>∇2

ζg(ζ)∇θζ(θ) + ∂g

∂ζ1
∇2
θζ1(θ) + ∂g

∂ζ2
∇2
θζ2(θ) =

 −yx>

−yx̃>

>∇2
ζg(ζ)

 −yx>

−yx̃>,

 .

Where the last inequality is due to the fact that ∇2
θζ1(θ) = ∇2

θζ2(θ) = 0 since ζ1(·) and ζ2(·) are linear
functions in θ. Recall g(ζ) =

(√
log(1 + exp(ζ1))−

√
log(1 + exp(ζ2))

)2
, which implies:
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(
∇2

ζg(ζ)
)

11
=

exp ζ1

(
−2 log (exp ζ1 + 1)

√
log (exp ζ2 + 1) + exp ζ1

√
log (exp ζ2 + 1) + 2 log 3

2 (exp ζ1 + 1)
)

2 (exp ζ1 + 1)2 log 3
2 (exp ζ1 + 1)

,

(
∇2

ζg(ζ)
)

12
= exp (ζ1 + ζ2)

2 (exp ζ1 + 1) (exp ζ2 + 1)
√

log (exp ζ1 + 1)
√

log (exp ζ2 + 1)
,

(
∇2

ζg(ζ)
)

21
= exp (ζ1 + ζ2)

2 (exp ζ1 + 1) (exp ζ2 + 1)
√

log (exp ζ1 + 1)
√

log (exp ζ2 + 1)
,

(
∇2

ζg(ζ)
)

22
=

exp ζ2

(
−2 log (exp ζ2 + 1)

√
log (exp ζ1 + 1) + exp ζ2

√
log (exp ζ1 + 1) + 2 log 3

2 (exp ζ2 + 1)
)

2 (exp ζ2 + 1)2 log 3
2 (exp ζ2 + 1)

.

The Lipschitz constant of the gradient is equal to the spectral norm of the Hessian. To bound that, we
use the fact that the spectral norm is bounded by the Frobenius norm and hence we need to bound each
individual entry of ∇2

ζg(ζ). To this end, we will leverage the following inequality throughout our process:

1− 1
$
≤ log$ ≤ $ − 1, ∀$ > 0. (13)

We now bound (∇2
ζg(ζ))11. Notice that, using equation 13, we have:

0 ≤ (exp ζ1)2

(exp ζ1 + 1)2 log
3
2 (exp ζ1 + 1)

≤ (exp ζ1)2

(exp ζ1 + 1)2
(

1− 1
1 + exp ζ1

) 3
2

=
√
eζ1

√
eζ1 + 1

≤ 1,

0 ≤ exp ζ1 log (exp ζ1 + 1)
(exp ζ1 + 1)2 log

3
2 (exp ζ1 + 1)

≤ (exp ζ1)2

(exp ζ1 + 1)2
(

1− 1
1 + exp ζ1

) 3
2

=
√
eζ1

√
eζ1 + 1

≤ 1,

and 0 ≤ exp ζ1

(exp ζ1 + 1)2 ≤
1
4 . Putting these pieces together, we obtain −

√
log (exp ζ2 + 1) ≤ (∇2

ζg(ζ))11 ≤

1
2
√

log (exp ζ2 + 1) + 1
8 , which in term implies

(∇2
ζg(ζ))11 = O(

√
DxDθ).

Similarly, we can obtain (∇2
ζg(ζ))22 = O(

√
DxDθ).We now bound (∇2

ζg(ζ))12 and (∇2
ζg(ζ))21. By equation 13,

we have:

0 ≤ exp ζ1

(1 + exp ζ1)
√

log(1 + exp ζ1)
≤ exp ζ1

(1 + exp ζ1)
√

1− 1
1+exp ζ1

= exp ζ1√
(1 + exp ζ1)2 − (1 + exp ζ1)

= exp ζ1√
1 + exp ζ1

√
exp ζ1

≤ 1.

Therefore, we have (∇2
ζg(ζ))12 ≤ 1

2 and (∇2
ζg(ζ))21 ≤ 1

2 . Given the bounds of the four entries of ∇2
ζg(ζ)

above, we have
‖∇2

ζg(ζ)‖2 = O(
√
DxDθ).
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Recall ∇2
θRsq(θ) =

 −yx>

−yx̃>

>∇2
ζg(ζ)

 −yx>

−yx̃>

 and the boundedness assumption on x and x̃, finally we

have:

‖∇2
θRsq(θ)‖2 ≤

∥∥∥∥∥∥
−yx>

−yx̃>

∥∥∥∥∥∥
2

‖∇2
ζg(ζ)‖2

∥∥∥∥∥∥
−yx>

−yx̃>

∥∥∥∥∥∥
2

= O(D2
x

√
DxDθ).

We now find ‖∇2
θL(θ)‖2 using similar approach. Notice that

∇2
θL(θ) =

 −yx>

−yx̃>

>∇2
ζh(ζ)

 −yx>

−yx̃>

 and ∇2
ζh(ζ) =


exp ζ1

(exp ζ1 + 1)2 0

0 exp ζ2

(exp ζ2 + 1)2

 .
Thus, ‖∇2

ζh(ζ)‖2 = O(1) and therefore ‖∇2
θL(θ)‖2 = O(D2

x). Recall that

fDAIR(x, x̃, y; θ) = fDA-ERM(x, x̃, y; θ) + λ
(√

`(x, y; θ)−
√
`(x̃, y; θ)

)2
= 2L(θ) + λRsq(θ).

Thus, using the computed bounds ‖∇2
θRsq(θ)‖2 = O(D2

x

√
DxDθ) and ‖∇2

θL(θ)‖2 = O(D2
x), we have

‖∇2
θfDAIR(x, x̃, y; θ)‖2 = O((1 + λ

√
DxDθ)D2

x).

Now that we have shown that the Lipschitz constant of the gradient is bounded, by classic gradient
descent results (Nesterov, 2003, Theorem 1.2.4), we know that after T iterations of gradient descent with
stepsize O( 1

(1+λ
√
DxDθ)D2

x
), we have

‖∇θfDAIR,R,λ(·)‖2 = O
(

(1 + λ
√
DxDθ)D2

x√
T

)
,

which completes the proof.
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D Model architecture and training parameters for MNIST experiments

We use a Convolutional Neural Network (CNN) with three convolutional layers followed by two fully connected
layers. The last layer output size for Colored MNIST experiments is set to 1, and 10 for the Rotated MNIST
experiments. For training we follow a two stage schedule with a learning rate of 0.005 for the first 20
epochs and a learning rate of 0.0005 for the next 20. We choose a batch size of 64 for all experiments. The
architectural details and training parameters can be found in Table 8 and Table 9.

Layer Type Shape
Convolution + ReLU 4× 4× 6
Max Pooling 2× 2
Convolution + ReLU 4× 4× 16
Max Pooling 2× 2
Convolution + ReLU 4× 4× 96
Fully Connected + ReLU 64
Fully Connected C

Table 8: Model Architecture, C = 1 for Colored MNIST and C = 10 for Rotated MNIST.

Parameter Value
Learning Rate 0.005 0.0005
Epochs First 20 Second 20
Batch-size 64

Table 9: Training parameter of MNIST experiments.

We apply the proposed loss function (DAIR) on the following two datasets: Colored MNIST and Rotated
MNIST. We compare the performance of DAIR with plain data augmentation, and invariant risk minimization
(IRM) as a strong baseline. One crucial difference between our work and IRM is is the motivation. IRM is
designed to take two examples from two different environments and learn representations that are invariant
to the environment, e.g., in cases where we are aggregating multiple datasets. On the other hand, we are
interested in promoting invariance when we have a single dataset. As such, we artificially generate the second
environment in IRM using data augmentation. For a given example z, we design an augmenter A(·) and use
it to generate additional samples that adhere to the invariance we have in mind. Hence, IRM will be applied
in the same way that examples from different environments are augmenting pairs.

Our Colored MNIST is an extension of the original Colored MNIST Arjovsky et al. (2019). The label is
a noisy function of both digit and color. The digit has a correlation of 0.75 with the label and a certain
correlation with the label depending on the color scheme. Besides the two colors in the original dateset, we
introduce fully random colored scheme to the dateset, which is the best augmenter one can think of. The
three color schemes are detailed in Table 10.

Our Rotated MNIST is a variant of the original Rotated MNIST (Ghifary et al., 2015). The original dataset
contains images of digits rotated d degrees, where d ∈ D , {0, 15, 30, 45, 60, 75}. Similarly, we introduce the
random degree scheme here to serve as the best possible augmenter. To further exploit the potential of the
proposed algorithm, we make this dataset more difficult by introducing more challenging degree scheme; The
rotation schemes are summarized in Table 11.

Note all the augmented images are generated on the fly. Examples of images from some transformation
schemes are shown in Figures 11 to 16.
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Scheme z Color | y = 0

C1 with p = 0.8, z = y Red
with p = 0.2, z = 1− y Green

C2 with p = 0.9, z = y Red
with p = 0.1, z = 1− y Green

C3 with p = 0.1, z = y Red
with p = 0.9, z = 1− y Green

C4 z = 2 Random

Table 10: Color schemes in Colored MNIST. Random color means that the value of each channel of the image is
uniformly random chosen from 0 to 255.

Scheme Rotation
R1 0◦
R2 90◦
R3 0◦, 180◦
R4 90◦, 270◦
R5 [0◦, 360◦]
R6 [22.5◦, 67.5◦], [202.5◦, 247.5◦]

Table 11: Rotation schemes in Rotated MNIST. [a, b] means that degrees are unformly random chosen between a and
b.

Setup Name Train Aug Test λ

Adv. Aug. C1 C2 C3 1000
Rnd. Aug. C1 C4 C3 100

Table 12: Training procedure of Colored MNIST.

Setup Train Aug Test λ

Strong Aug. R1 R5 R2 1
Weak Aug. R4 R6 R3 10

Table 13: Training procedure of Rotated MNIST

Figure 11: C2 Figure 12: C3 Figure 13: C4 Figure 14: R4 Figure 15: R5 Figure 16: R6

Setup: We train a model consisted of three convolutional layers and two fully connected layers with 20,000
examples. For each dataset we are defining several different schemes on how the dataset could be modified:
Table 10 (Colored MNIST) and Table 11 (Rotated MNIST). Then, we define several setups. Each setup

29



Published in Transactions on Machine Learning Research (11/2022)

is consisted of one original dataset, one augmentation dataset, and one test dataset, each of which is
selected among the defined schemes. These setups are provided in Table 12 (Colored MNIST) and Table 13
(Rotated MNIST). For each setup, we train the model with the following four algorithms and compare their
performances: ERM, DA-ERM, DAIR and Invariant Risk Minimization (IRM). Each experiment is repeated
for 10 times; the mean and the standard derivation are reported. The value of λ are chosen base on the
validation results. Detailed architectures and training parameters can be found in Appendix D.

D.1 Colored MNIST

We conduct two sets of experiments for this dataset: Adversarial Augmentation Setup (Table 12) follows
the exact same color schemes from the original Colored MNIST Arjovsky et al. (2019). For Random
Augmentation Setup, we train the model with the strongest possible augmenter: uniformly random color.
The entire procedure is summarized in Table 12.

D.2 Rotated MNIST

We start with the strongest augmenter case. One may notice that there is a chance that the augmented
images bear the same rotation degrees as the testing set. To make the task more difficult, we will use R6
as the augmented test to test how the trained model generalize to entirely unseen domain. The training
procedure is summarized in Table 13.
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E Additional results on Colored MNIST & Rotated MNIST

E.1 Colored MNIST

We show additional results on Colored MNIST and Rotated MNIST in Tables 14 and 15. Note that each
algorithm has been tuned for best performance. As mentioned in Section 4.1, DAIR outperforms DA-ERM,
ERM and other baseline models on classification accuracy. For accuracy consistency, we use the training
scheme as the original scheme and the testing scheme as the augmentation scheme. We further compare
DAIR with IRM (Arjovsky et al., 2019), DRO (Sagawa et al., 2019), and REx (Krueger et al., 2021). In doing
so, we feed all original examples as one environment and all augmented examples as a second environment to
these baselines. While we can see that DAIR outperforms all baselines, we caution that the comparison may
not be fair in that DAIR exploits pairing information between original and augmented samples, which is not
used by the other baselines.

Algorithm Accuracy CM

ERM 32.70± 0.45 77.76± 1.01
DA-ERM 40.91± 0.45 84.60± 0.60
DAIR 72.58± 0.11 99.39± 0.11

IRM (Arjovsky et al., 2019) 66.90 –
DRO (Sagawa et al., 2019) 37.40 –
REx (Krueger et al., 2021) 68.70 –

Table 14: Accuracy and Accuracy Consistency Metric (CM) on Colored MNIST with Adversarial Augmentation.

Algorithm Accuracy CM

ERM 32.70± 0.45 63.50± 1.92
DA-ERM 29.61± 0.80 88.15± 0.18
DAIR 73.10± 0.12 99.88± 0.01

Table 15: Accuracy and Accuracy Consistency Metric (CM) on Colored MNIST with Random Augmentation.

E.2 Rotated MNIST

We report the accuracy consistency on Rotated MNIST (weak augmentation) in Table 16. The original
training scheme here is Scheme R4 (Table 11), i.e., 90◦ and 270◦ rotated images, and the augmentation
scheme for training is R6 (weak rotation). At test time, we test with R1 (no rotation) and we also use
the augmentation scheme of 180◦ rotation to test the accuracy consistency metric. Note that neither the
un-rotated or 180◦ rotated images have been observed at training time. Hence, the setup is difficult for
ERM which struggles to generalize. As can be seen, since the digit 0 is “almost” circularly symmetric, ERM
actually does a decent job at classifying 0, however it significantly struggles with all other digits. We see that
DAIR outperforms ERM and DA-ERM by a large margin. We observe that digits 6 and 9 are challenging
to get right (as one would expect for them to be difficult to tell apart). While we see 2− 3% drop on the
consistency for digits 6 and 9 (when rotating them by 180◦), the drop is smaller than expected perhaps due
to the fact that the neural network learns to classify these digits based on features that are harder to get for
humans.
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Digit ERM DA-ERM DAIR
Acc. CM Acc. CM Acc. CM

0 86.19± 01.48 94.95± 01.53 95.61± 00.66 98.43± 00.21 98.44± 00.07 99.31± 00.15
1 00.15± 00.08 11.11± 11.11 82.79± 03.38 98.54± 00.43 96.09± 00.71 97.59± 01.28
2 29.84± 00.51 57.91± 02.76 76.68± 03.54 82.70± 03.27 86.21± 00.82 93.21± 01.32
3 00.63± 00.53 76.47± 23.53 78.84± 02.60 89.24± 01.26 86.60± 02.24 94.26± 00.36
4 01.97± 00.90 23.38± 13.49 51.09± 03.30 78.15± 02.73 79.67± 01.26 92.42± 00.41
5 05.53± 00.32 39.91± 04.59 65.02± 02.42 84.68± 03.71 83.26± 02.51 95.11± 01.46
6 00.66± 00.37 51.79± 25.13 67.43± 03.82 83.41± 05.74 84.79± 01.17 92.78± 01.71
7 16.67± 02.75 18.28± 06.65 56.29± 07.26 81.67± 06.90 78.11± 02.10 95.03± 01.21
8 10.92± 05.47 22.54± 05.46 74.50± 01.10 89.12± 01.69 90.55± 01.13 95.35± 00.47
9 17.08± 07.70 11.56± 00.62 69.54± 04.18 86.78± 01.08 80.84± 01.18 93.21± 01.39

All 16.85± 1.08 64.14± 2.69 71.98± 1.70 88.28± 0.27 86.57± 0.55 94.98± 0.29

Table 16: Rotated MNIST with 90◦ or 270◦ rotated original images and Weak Augmentation during training. The
test scheme is un-rotated original images. Consistency metric (CM) is computed between un-roated images and ones
with 180◦ rotation. It can be seen that CM is relatively small for 6 and 9 but the drop is smaller than expected
suggesting that CNNs learn from features different from how humans perceive the digits.
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F Practical considerations when DAIR is used in training
F.1 Explanations for a practical sweet spot for the performance of DAIR-SQ as a function of λ

In this section, we investigate the reason why we see a sweet spot for the performance of DAIR-SQ as a
function of λ. As shown in Figure 7, we see a sweet spot for λ, where the performance takes its maximum
and starts to decrease for larger values of λ. There are a few explanations for this performance degradation.

1. It is observed that a large λ requires a relatively longer time for convergence. To show empirically
this is true, we added another example in Appendix F.2. Theoretically, this is in line with the
classical results in the optimization literature where larger Lipschitz constants (resulting from adding
a regularizer) slows down the convergence rate. Thus, as we are training all models for a certain
number of epochs, we will end up with underfitting.

2. A larger λ is more likely to guide the optimization trajectory towards a spurious poor local minimum
with poor generalization performance, when the optimization trajectory is non-convex. We have
experimentally verified this in Section 2.2.1 (Figure 17) as the reason for the poor performance of
DAIR-L1 in Figure 7.

3. With a finite number of samples our regularizer does not necessarily lead to the best possible
performance in the infinite sample setting (with weak domain shift). Hence, we might expect to
observe the classical approximation-estimation tradeoff. This is especially true in real-world scenarios
where one might expect that the difficulty of the example may not necessarily be preserved through
data augmentation, and hence forcing the loss to be equal on both samples might be detrimental to
the overall performance, which may lead to a practical sweet spot for λ.

We dig into the experiment in Figure 7 specifically and try to understand which case is the responsible for the
sweet spot in Figure 7. We extend the number of training epochs from 40 to 160, and report the accuracy for
λ ∈ {1.43, 8.85, 16.23, 100}.‡ Table 17 suggests that, when we increase the number of training epochs, the
sweet spot of λ moves from 8.85 to 16.23 and in fact we can achieve an even better performing model with
accuracy 89.22 as compared to the previously reported 85.89, while the performance does not change much
for the smaller values of λ. We also observe a big performance boost for larger values of λ. This suggests that
in this experiment the sweet spot for λ is caused by capping the training epochs to a finite value. Having
said that, we believe that we are practically interested in using DAIR with marginal computational overhead
over ERM and hence we would expect to observe such sweet spot in performance in practice as λ→∞.

λ Acc at Epoch 40 Acc at Epoch 160

1.43 79.09 80.19
8.85 85.89 86.60
16.23 82.66 89.22
100 46.95 69.37

Table 17: Testing accuracy of Rotated MNIST, Weak Augmentaion. We see the accuracy increases as we extend the
number of training epochs.

F.2 Additional evidence on growing cost of training with the regularization strength

We also provide further evidence for the growing cost of training with λ on a toy problem where we
can reliably measure the gradient norm and ensure convergence. We study the following simple binary
classification problem with logistic regression, which mirrors the MNIST experiments: at the training time
the input is xtrain = (x, s = 2y − 1 + t1) and the label y, i.e., ztrain = (xtrain, y). Here, x ∼ N (0, σ2

x), and
P (y = 1|x) = 1

1+e−x , where t1 is independent of x and t1 ∼ N (0, σ2
1). In this example, we intentionally

provide feature s which is highly correlated with the label during training. Again, clearly, w? = (1, 0)>, but
‡Note these values comes from log10 sweeping of λ.
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w?ERM will converge to (0, 1)> due to the overfitting to the spurious feature. We introduce an augmenter
which generates the augmented example such as xaug = (x, s = 2y− 1 + t1 + t2) where t2 ∼ N (0, σ2

2). We use
this data augmenter for DAIR training and test on xtest = (x, s = 1− 2y). We summarize the steps need for
convergences and the testing accuracy in Table 18 as well. We can find that the required number of iteration
to convergence increases as λ increase.

For this tiny toy example, there is a factor of 10x increase in the required number of iterations when λ is
chosen to be 10,000 as opposed to 0.5. Note that this is using ADAM and the gap is significantly larger if we
use vanilla gradient descent; as we were not able to even converge in 108 steps. This is provided as further
evidence for the practical sweet spot for DAIR as λ→∞.

λ Iterations to Converge

0.5 81.35± 6.07
1 91.05± 2.53
2 89.10± 2.41
5 101.65± 2.87
10 107.70± 5.77
100 151.75± 4.28
1,000 195.85± 4.54
10,000 802.60± 7.58

Table 18: Iteration needed for the logistic model to converge with different λ. The model is converged when the L2
norm of the gradient is less than 10−7.

F.3 Compare DAIR-SQ and DAIR-L1 on avoidance of spurious local min

We empirically verify this hypothesis on Colored MNIST with Adversarial Augmentation. Figure 17 depicts
the classification loss and regularization of the first 10 and last 140 iterations. One observes that at the
beginning of training, regularization term of DAIR-SQ impacts the training dynamics less while DAIR-L1
starts optimizing the regularizer right away, which dominates the entire training procedure and therefore
leads the model to a poor local minimum. The left panel of Figure 17 confirms that the classification loss of
DAIR-L1 remains large and unchanged (that of a random classifier).

Figure 17: Training DA-ERM loss and (DAIR-SQ) for first 10 and last 140 iterations on Colored MNIST with Adv
Aug for DAIR (λ = 100). The regularizer loss on DA-ERM grows large as it is uncontrolled. DAIR-L1 is optimizing
an L1 regularizer, but for unified illustration we evaluate it using (DAIR-SQ).

This same property of DAIR-SQ also weakens the regularizer on training samples with high losses at the
later stages of training. These samples are likely noisy, which makes DAIR-SQ more robust to noisy samples,
as we already observed in Section 4.2.

For the experiments in Sections 3 and 4, we tune λ in DAIR regularizer on top of the ERM baselines. In
other words, in all experiments we use the same set of hyper-parameters including step-size, batch-size, etc.,
from literature and only tune λ on the validation set.
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G The impact of partial augmentation

We explore the impact of partial augmentation, where we only augment a certain fraction of the training
samples. The experiment revisits noiseless Rotated MNIST with weak rotation data augmentation and
Colored MNIST with Adversarial augmentation. This experiment emulates situations where an augmentation
function is only applicable to certain examples or where augmentation is expensive and we would like to
decrease the augmentation cost.

In Figure 18, we report the experiment results for DA-ERM and DAIR-SQ by applying augmentation
only {10%, 20%, 30%, 50%, 100%} of the training samples, averaged on three runs. In Rotated MNIST
experiment, as can be seen, DAIR-SQ with augmentation on only 20-30% of the samples performs similar to
full augmentation. On the other hand, DA-ERM is more sensitive to partial augmentation and is subject to
a steeper performance drop. This could be viewed as further evidence that DAIR-SQ could reach its best
performance using weak augmenter functions. It is also noteworthy that in this example, DAIR-SQ with
only 10% partial augmentation still outperforms DA-ERM with 100% augmentation. One can draw similar
conclustion in the Colored MNIST experiment as only 10% augmentation gives comparable performance to
full augmentation.

Figure 18: Test accuracy vs fraction of augmented samples on Rotated MNIST.
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H Details on neural task-oriented dialog modeling

We provide details on the benchmark that we used in this experiment. Qian et al. (2021) proposed a new test
set for MultiWOZ 2.2, called MultiWOZ 2.2 with SGD entities, where named entities are replaced with those
from Schema Guided Dialog dataset (Rastogi et al., 2020) and showed that SimpleTOD (Hosseini-Asl et al.,
2020) endures more than 8% performance drop on the new test set. Examples from the dataset are shown in
Table 20. To address this problem, we define a new data augmentation scheme for DAIR and DA-ERM by
replacing the named entities from the MultiWOZ 2.2 training set with randomly scrambled versions of the
named entities. For example, “warkworth house” could be turned into “easrtokow hhrwu” (see Table 20). In
all of our experiments, we utilize the SimpleTOD model (Hosseini-Asl et al., 2020) and we apply DAIR to
enforce invariance between the named entities in the training examples and the scrambled entities from their
corresponding augmented samples. The model is trained with ParlAI (Miller et al., 2017) fine-tuned with the
pre-trained BART (Lewis et al., 2019). Training hyper-parameters can be found in Table 19. The optimal λ
was tuned by grid search in {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 1.0}.

Parameter Value
λ 0.5

Epochs 4
Batchsize 6
Optimizer AdamW

Learning rate 10−5

Table 19: Hyper-parameters used in training SimpleTOD.

User: can you help me book a
reservation at the warkworth
house hotel?

Agent: yes i could! how many people
are staying, and what days
would fyou like to stay?

User: it’s just for me, and i’ll be
staying for three nights start-
ing from tuesday.

DS:

hotel-bookday: tuesday
hotel-bookpeople: 1
hotel-bookstay: 3
hotel-name: warkworth
house

User: can you help me book a
reservation at the easrtokow
hhrwu hotel?

Agent: yes i could! how many people
are staying, and what days
would fyou like to stay?

User: it’s just for me, and i’ll be
staying for three nights start-
ing from tuesday.

DS:

hotel-bookday: tuesday
hotel-bookpeople: 1
hotel-bookstay: 3
hotel-name: easrtokow
hhrwu

User: can you help me book a reser-
vation at the clarion inn &
suites atlanta downtown ho-
tel?

Agent: yes i could! how many people
are staying, and what days
would fyou like to stay?

User: it’s just for me, and i’ll be
staying for three nights start-
ing from tuesday.

DS:

hotel-bookday: tuesday
hotel-bookpeople: 1
hotel-bookstay: 3
hotel-name: clarion inn &
suites atlanta downtown

Table 20: Left: sample from the original MultiWOZ dataset. Middle: augmented sample generated by scrambling.
Right: synthetic sample with name entities from SGD. Comparing left and the middle example, we are generating
new named entities (marked in red) by scrambling. Comparing left and the right example, the only difference is the
named entity from different dataset, which is marked in red. Note that the SGD named entities are not exposed to
the model during training. Only the original named entities and scrambled named entities from MultiWOZ are used
during training.
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I Setup and additional results for Visual Question Answering

All the approaches included in this paper use the original VQA v2 train split for training, along with the
IV-VQA and CV-VQA train splits for augmentation in the DAIR and DA-ERM(Agarwal et al., 2020) settings.
The ERM setup (Kazemi & Elqursh, 2017), represents a vanilla SAAA model trained on the VQA v2 train
split. For the data augmentation methods, if an image from VQA v2 contains multiple edited versions in
IV-VQA/CV-VQA, we randomly select one of them to serve as an augmented sample during training. We
modify the official code released by Agarwal et al. (2020) to suit our formulation. All the methods are trained
for 40 epochs with a learning rate of 0.001 and a batch size of 48. The baseline approaches that we compare
against are trained and evaluated by us, using the same training setup as DAIR.

λ VQA val (%) CM Predictions flipped (%) pos → neg (%) neg → pos (%) neg → neg (%)
0.72 64.89 95.89 6.67 2.64 2.38 1.65
1 64.75 96.06 6.33 2.54 2.22 1.57
1.68 63.90 96.19 5.78 2.20 1.95 1.64
2.68 62.51 96.63 5.23 1.88 1.86 1.49
5.18 60.03 97.22 4.45 1.63 1.59 1.22
10 57.70 97.67 3.91 1.33 1.37 1.21

Table 21: Accuracy-Consistency Tradeoff on VQA v2 val and IV-VQA test set controlled by λ

Table 21 indicates a tradeoff between the accuracy on the VQA v2 val set and the consistency metrics. The
optimal λ value is determined by grid search over a uniformly chosen set of size 8 in log space [10−1, 10]
with the corresponding performance on the validation set. As the λ value increases, the consistency between
the predictions increases, while the accuracy on original examples decreases. For instance, A λ value of 10
strongly boosts consistency thus lowering the ‘Predictions flipped’ percentage to only 3.91% but sacrifices the
classification accuracy causing it to drop to 57.7%.
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J Additional details on robust regression

For the robust regression task, we determine the optimal λ by performing a grid search over a uniformly
chosen set of size 5 in log space [1, 104] and the best performing λ on validation set is used for reporting the
results on the test set. We set the learning rate to 0.01 for all these experiments. Following the convention
from Li et al. (2021), we set the tilting factor ’t’ to -2 for all experiments that use the TERM objective.
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K Details on training robust neural networks

K.1 Setups for the main results in Section 4.4

For all algorithms reported in Table 5, we use Pre-Activation ResNet-18 (He et al., 2016), with a last-layer
output size of 10 as the classification model and their original hyper-parameters. For training the DAIR
model, the adversarial examples are generated by L∞ based PGD attack with 11 iterations, ε (attack strength)
set to 8/255 and attack step size to 2/255. We train the model for 120 epochs with initial step size 0.0001
and uses CosineAnnealing scheduler. We evaluate all the models against the standard FGSM attack and
PGD attack with 20 iterations of same perturbation sizes. The optimal λ by performing a grid search over a
uniformly chosen set in log space [10−1, 102] with 10 points.

K.2 Additional results with new baselines

We also compare DAIR with some recent new baselines such Tack et al. (2021), which utilizes Jensen-Shannon
consistency regularization on the features. To be detailed, a pair of images with attacks are fed into the
model and the Jensen-Shannon distance between the resulting output logits are computed afterward as the
regularizer. The regularizer then is added to existing algorithms such as (Madry et al., 2018), Zhang et al.
(2019) to boost their performances. The results are summarized in Table 22. It can be seen that DAIR is
also comparable with new baseline. It worth mentioning that the performance of DAIR is better in Table 22
than in Table 5. The reason is that the training and the tuning setups are different. We follow the exact
setup of Tack et al. (2021) and obtain the results in this subsection.

Method Clean PGD-20
ERM (Madry et al., 2018) 84.57 (83.43) 45.04 (52.82)
MART (Wang et al., 2019) 82.63 (77.00) 51.12 (54.83)

TRADES (Zhang et al., 2019) 82.87 (82.13) 50.95 (53.98)
JS Consistency (Tack et al., 2021) 86.45 (85.25) 56.51 (57.53)

DAIR-SQ 86.16 (85.24) 56.68 (57.22)

Table 22: DAIR vs Tack et al. (2021). Accuracies in the parenthesis are from models tuned for PGD-20 while
accuracies to the left of the parenthesis are from models tuned for clean images.
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L Details on training ImageNet-9

We use ResNet-50 provided by Torchvision but replace the last layer with 9 outputs. We train the model for
175 epochs with batchsize 128, initial learning rate of 0.1 and decay of 0.1 at 30, 70, 110, 150 epochs.
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