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Abstract

Disentangled representation learning (DRL) aims to identify and decompose under-
lying factors behind observations, thus facilitating data perception and generation.
However, current DRL approaches often rely on the unrealistic assumption that
semantic factors are statistically independent. In reality, these factors may exhibit
correlations, which off-the-shelf solutions have yet to properly address. To tackle
this challenge, we introduce a bidirectional weighted graph-based framework, to
learn factorized attributes and their interrelations within complex data. Specifically,
we propose a β-VAE based module to extract factors as the initial nodes of the
graph, and leverage the multimodal large language model (MLLM) to discover and
rank latent correlations, thereby updating the weighted edges. By integrating these
complementary modules, our model successfully achieves fine-grained, practical
and unsupervised disentanglement. Experiments demonstrate our method’s supe-
rior performance in disentanglement and reconstruction. Furthermore, the model
inherits enhanced interpretability and generalizability from MLLMs.

1 Introduction

Disentangled representation learning (DRL) is a major goal of artificial intelligence (AI), acclaimed
for its enhancement of model robustness, interpretability, and generalizability. Essentially, DRL
methods imitate the understanding processes of biological intelligence, wherein comprehension of
real-world is achieved by separating observations into distinct factors [1]. In this form, specific
attributes (e.g., object color, shape, and size) exhibit exclusive sensitivity to the changes of specific
factors. Learning of such disentangled representations is of great importance across various domains,
e.g., computer vision [2, 3, 4, 5], natural language processing [6, 7, 8], and AI generated content [9, 10,
11]. In the current phase, unsupervised DRL methods primarily utilize the Variational Autoencoder
(VAE) framework [12], a probabilistic model learning representations through a regularization term.
This term involves the Kullback-Leibler divergence between the posterior distribution of latent factors
and a standard multivariate Gaussian prior, thereby encouraging the factorized representations. To
strengthen disentanglement, co-current research [13, 14, 15, 16] focus on the optimization and
refinement of the original VAE regularizers, resulting in the family of VAE-based DRL approaches.

Despite the advanced results of the simple and synthetic datasets, VAE-based DRL methods still fall
short in interpretability and robustness that are required for effective disentanglement in complex
data [17]. This limitation mainly stems from the unrealistic assumption that underlying factors
are countable, independent, and can be fully disentangled in an unsupervised manner (refer to the
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Figure 1: The comparison of typical DRL frameworks with our GEM. The limitations of conventional
DRL methods are presented on the left. Conversely, the right-hand side illustrates the advantages of
our framework, which benefited from the integration of the β-VAE and MLLMs.

top-left of Figure 1). In contrast, the real-world variables are pervasively correlated: red apples are
more common than yellow ones; elderly people are more frequent with white hair and a receding
hairline. Accordingly, an increasing number of recent studies [18, 19, 17, 20] showcases that purely
unsupervised DRL is fundamentally impossible without extra priors and inductive biases.

The struggle of typical DRL methods on the complex data returns us back to the essential goal of
DRL, i.e., understanding the world as biological intelligence does. This cognitive process can be
naturally segmented into three phases: attribute extraction, interrelation perception, and knowledge
combination [21, 22], where the latter two stages should not be neglected. From this perspective,
several structured DRL approaches, typically known as Hierarchical DRL [23, 24, 11] and Causal
DRL [19, 25, 26, 27], have involved the correlations between attributes. However, these approaches
usually require extra supervision, and their relations are invariably represented by binary and unidi-
rectional fusion, thus limiting the model performance in practical scenarios (refer to the bottom-left
of Figure 1). Inspired by the analysis above, we argue that an effective and practical disentanglement
framework should meet the following criteria: (i) the framework should be fully unsupervised; (ii) the
framework should be able to disentangle factors while concurrently discovering logical interrelations
among them; (iii) the interrelations should be modeled as bidirectional, with corresponding impact
scores assigned to each, thereby improving model performance in complex scenarios. On this basis,
we propose a novel Graph-based disEntanglement framework with Multimodel large language mod-
els, dubbed GEM. Specifically, our model employs two complementary branches: a β-VAE based
disentanglement branch for the attribute extraction, and a multimodal large language model (MLLM)
based branch for the interrelation discovery. The relation-aware representations are further embedded
into a disentangled bidirectional weighted graph (DisGraph), which presents distinct factors as nodes,
interrelations as edges, and impact scores as weights. The parameters of the graph are dynamically
updated and refined via a graph learner. The experimental results show that GEM achieves superior
performance on fine-grained and relation-aware disentanglement, while preserving the reconstruction
quality. Furthermore, the model is endowed with superior interpretability and generalizability that
derived from MLLMs. All in all, our main contributions can be summarised as:

• To our best knowledge, we are the first to leverage the commonsense reasoning of MLLMs
to discover and rank the semantic interrelations from the perspective of DRL.

• We propose a novel and practical disentanglement framework built upon β-VAE and MLLMs
to learn the independent factors and their interrelations in an unsupervised way.

• We introduce a bidirectional and self-driven graph architecture to encode the relation-aware
representations, thus facilitating practical and controllable disentanglement.

2 Related Work

2.1 Standard Disentangled Representation Learning

The definition of DRL is intuitively given by Bengio et al. [1] as a technique to separate semantic
factors behind observational data. This approach assumes that individual data attributes are sensitive
to changes in single latent factors, while not being affected by other factors. The disentanglement of
attributes is believed helpful for downstream tasks, e.g., generative models [3, 28, 5, 29, 30], medical
imaging [31, 32, 33], image editing [34, 35, 36, 37], and 3D reconstruction [38, 39, 40].
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Traditional DRL methods primarily utilizes the VAE framework, achieving a measure of disentan-
glement on static datasets. This framework has been further enhanced by extensive models such
as β-VAE [13], β-TCVAE [14], DIP-VAE [4], FactorVAE [41], RF-VAE [42], and α-TCVAE [16]
through the optimizations of regularization terms. Despite the successes on simple and static datasets,
standard DRL approaches still encounter challenges in complex data. It is mainly due to the flat
and unrealistic assumption: data properties are independent and can be factorized into distinct
factors [1, 19, 43, 44]. Locatello et al. [18] have proven that unsupervised DRL is fundamentally im-
possible without extra priors. Thus, subsequent studies have demonstrated that a practical DRL model
with appropriate inductive biases can enhance the disentanglement in real scenes [45, 46, 47, 48].

2.2 Structured Disentangled Representation Learning

In contrast to the flat and VAE-based DRL methods, recent research gradually realize that latent factors
might naturally involve semantic interrelations, deriving to the branch of structured disentangled
representation learning [17]. Within this domain, Hierarchical DRL and Causal DRL are mostly
relevant to our work. Hierarchical DRL presumes that underlying factors have different levels of
semantic abstraction, either dependent [49] or independent [23] across levels. While straightforward,
Li et al. [23] propose a hierarchical VAE-based model to learn semantic representations. Furthermore,
Singh et al. [11] introduce FineGAN, a three-tier hierarchical framework for controllable object
generation. Li et al. [50] also propose a hierarchical DRL framework aimed at facilitating image-to-
image translation. Differently, our framework aims to achieve fine-grained disentanglement, where
the targeted attributes are always flat, e.g., the wrinkle, lipstick, and mustache of faces. Therefore, we
rely on the flat representations, but place a strong emphasis on the mutual relations between attributes.

Similarly, Causal DRL methods endeavor to capture the causal relations between disentangled factors.
As the first, Yang et al. [19] propose CausalVAE to discover relations from the perspective of causality.
Further, Shen et al. [27] propose a weakly supervised framework DEAR with the structured causal
model (SCM) as prior. However in our view, current Causal DRL methods have at least three
unpractical issues: (i) rely on various degrees of supervision; (ii) aim to model a specific event rather
than a common scenario; (iii) the causal relationship is often overly simplistic, being impractically
binary and unidirectional, i.e., paired variables A and B only have two possible causal relations: either
A→ B or A← B (otherwise unrelated). In practical, it is common for paired variables to exhibit
bidirectional influence, and the impact of such bidirectional relations should be properly ranked.

2.3 Multimodal Large Language Models

Recent years have witnessed the remarkable advancements in Multimodal Large Language Model
(MLLM) [51, 52, 53, 54]. Since the release of Generative Pre-trained Transformer (GPT) [55],
there has been a research trend over MLLMs regarding to its demonstrated potential in processing
multimodal data [56, 57, 58]. As the variants of GPT-4, GPT-4 with Vision (GPT-4V) [59] and
GPT-4 omni (GPT-4o) [60] enhance to process textual and visual data, enabling richer, context-aware
interactions across a range of multimodalities. Concurrently, following works such as Gemini [56],
Claude [61], NExT-GPTs [62] and GLM-4 [63] have strengthen the support to additional modalities.

The powerful capacities of MLLMs gradually make researchers aware of its latent perceptual knowl-
edge embedded within networks. Gandelsman et al. [57] investigate the way that CLIP encoder
understands visual data, by decomposing representations into individual components. In addition,
Basu et al. [64] propose a mechanistic localization approach to explore how the visual properties are
encoded in MLLMs. However, to our best knowledge, there is limited exploration into leveraging the
commonsense reasoning of MLLMs from the perspective of DRL. And we are the first to employ
MLLMs to discover and rank interrelations between semantic factors in the DRL framework.

3 Methodology

To achieve fine-grained and relation-aware disentanglement, we propose GEM, a novel and practical
framework that synergizes the strengths of DRL and MLLMs by a bidirectional weighted DisGraph.
As depicted in Figure 2, GEM is comprised of two complementary modules: a β-VAE based
branch dedicated to extract attributes (Section 3.1), and a MLLM-based branch to discover and rank
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Figure 2: Pipeline of our GEM. The model consists of two complementary branches, termed as a
β-VAE branch (blue) and a MLLM branch (brown). The former utilizes β-VAE based semantic
encoder Esem to disentangle underlying factors, while the latter employs prompt engineering to
discover and rank interrelations. The bidirectional weighted DisGragh G is further proposed to embed
relation-aware representations, with its parameters optimized constantly by a GNN network Egnn.

interrelations (Section 3.2). The relation-aware representations are then embedded into the DisGragh
(Section 3.3), which presents factors as nodes, interrelations as edges, and impact scores as weights.

3.1 β-VAE based Attribute Determining Branch

The fundamental objective of vanilla VAE is to approximate data distributions by employing a
maximum likelihood estimation framework as outlined in Eq. 1:

log pθ(x) = DKL (qϕ(z|x)∥pθ(z|x)) + L(θ, ϕ), (1)

where the variational posterior distribution qϕ(z|x) is utilized to represent the probability distribution
of the latent variable z given the observation x. The key of Eq. 1 is maximizing the approximation
log pθ(x) of the true posterior distribution pϕ(z|x) and qϕ(z|x).
Specifically, the first term of Eq. 2 corresponds to the Kullback-Leibler (KL) divergence measuring
the distance between distribution qϕ(z|x) and pθ(z|x). The second term is denoted as the variational
evidence lower bound (ELBO). Empirically, the maximization of ELBO is employed to provide a
stringent tight lower bound for the original log-likelihood log pθ(x). ELBO can be reformulated as:

L(θ, ϕ) = Eqϕ(z|x) [log pθ(x|z)]− βDKL (qϕ(z|x)∥pθ(z)) , (2)

where the initial term, i.e., conditional logarithmic likelihood Eqϕ(z|x) [log pθ(x|z)] is responsible
for the reconstruction. Typically, the latent variable z is assumed to follow a standard Gaussian
distribution N (0, 1) for pθ(z), so that the KL term actually imposes independent constraints on the
representations. Furthermore, subsequent studies [13, 15, 65] highlight that a extra penalty coefficient
prior to the KL term, denoted by β, can significantly strengthen disentanglement. When β is set
to 1, the β-VAE reverts to the standard VAE framework. And an increase in β encourages more
disentangled representations but harms the performance of reconstruction as a trade-off. As per the
Information Bottleneck (IB) theory [15], constraining the information input to DRL models (e.g., via
β penalty coefficient) inherently enables them to identify and learn the most representative factors
for successful reconstruction. For instance, when trained on the Shapes3D (a collection of synthetic
objects) with a merely three-dimensional latent variable, the attribute determining branch tends to
learn the most critical factors, observed to be "object color", "object shape", and "background shape".
These attributes are organized in the three dimensions, ordered by their reconstruction contribution.

Specifically, within the processes of this branch, the input image is firstly subjected to a pre-processing
step utilizing landmark detection functions as instructed by [66] and [67] (see Figure 2). It serves as a
regularization phase, to remain the key features through targeted cropping. Additional derivations of
this process are documented in the appendix. Then, the pre-processed I0 is fed into a β-VAE based
branch, designed to disentangle factors associated with each dimension in the latent variable z ∈ Z.
However, the input of decoder Drec is the relation-aware variable zrel = AT z from the DisGraph,
rather than the z ∈ Z . It means the prior assumption of pθ(z) ∈ N (0, 1) is no longer hold. To
address this issue, we reformulate the loss function in β-VAE as follows:

Lgem(ϕ, γ, θ) = DKL(qϕ(x, z), pγ,θ(x, z)) (3)

∇θLgem(ϕ, γ, θ)
x=Dθ(z)

= −Ez∼q(z)∇x

[
log

(
pθ,γ(x, z)

qϕ(x, z)

)]
∇θx (4)
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∇ϕLgem(ϕ, γ, θ)
z=Eϕ(x)

= Ex∼p(x)∇z

[
log

(
pθ,γ(x, z)

qϕ(x, z)

)]
∇ϕz (5)

∇γLgem(ϕ, γ, θ)
z=Gγ(z)

= Ex∼p(x)∇z

[
log

(
pθ,γ(x, z)

qϕ(x, z)

)]
∇γz (6)

where the ϕ, θ and γ are the learnable parameters of Esem, Drec and DisGraph G, respectively. Let’s
say D(x, y) = log

(
pθ(x,z)
βqϕ(x,z)

)
, and the the gradients with respect to x and z can be obtained during

backpropagation by the cross-entropy:

Ladv = LD(x,y) =
1

NbcNm

[
Nbc∑
i=0

softplus (−D (xi, zi)) +

Nbc∑
i=0

softplus (D (xi, zi))

]
(7)

where Nbc and Nm represent the number of samples and the posterior samples in a batch, respectively.
Obviously, this loss resembles the adversarial loss utilized in Generative Adversarial Networks
(GAN) [68]. Therefore, we employ the adversarial training strategy to optimize D(x, y). Combined
with the disentanglement term from the original β-VAE indicated as Ldis, the total loss for the
attribute determining branch can be expressed as:

Ltotal = λadvLadv + λdisLdis + λgemLgem (8)
where the λadv, λdis and λgem serve as hyperparameters to balance the disentanglement capability
and reconstruction quality, with default values set to 0.8, 0.6 and 0.6, respectively. The detailed
derivation process of the adversarial training strategy is provided in the supplementary material.

3.2 MLLM-based Interrelation Discovery Branch

Given a pre-processed image I0 with n targeted attributes A = {1, 2, 3, ..., n} initialized by the
β-VAE branch, our objective is to discover and rank the mutual relations for each pair within A.
As represented by the brown blocks in Figure 2, we employ MLLMs as a relation predictor Prel

to discover and rank interrelations. Initially, the MLLM is required to score from 0 to 5 for each
attribute, where 0 indicates the attribute’s absence, and 5 denotes its highest expression. As shown in
Figure 3, the queries can be formulated as a question in natural language with the input image I0.

Figure 3: A simplified example of the template for
prompting MLLMs to evaluate attributes. Specifi-
cally, <text> is the interactive token, while <BOS>
and <EOS> are tokens denoting the start and end
of the input to MLLMs, respectively.

Based on the attribute scores, we subsequently
employ Somers’ D algorithm [69] to rank the
bidirectional impact scores of interrelations. For
the attribute pair (Ai,Aj), we determine the num-
ber of concordant pairs NC and discordant pairs
ND, as delineated by Kendall’s Tau [70] algo-
rithm. Subsequently, the impact score Sij within
S = {1, 2, 3, ..., k} can be denoted as:

Sij =
Nc −Nd

Nc +Nd + Ti
(9)

For the reversed relation of (Ai, Aj), the impact
score can be denoted as Sji or S ′ij :

S ′ij = Sji =
Nc −Nd

Nc +Nd + Tj
(10)

where Ti and Tj is the number of ties only for
the independent variable Ai and Aj , respec-
tively. The calculated S and S ′ are used for
initialization and refinement of DisGraph (see
Section 3.3). As illustrated in Figure 4, it is im-
portant to clarify that the primary goal of the
MLLM branch in GEM is to discover interre-
lations, where the statistical relativity between
two attributes is of primary concern, rather than the absolute scores for the individual attribute. For
example, given a collection of facial images, it is acceptable if the scores of "age" and "bald" exhibit
a positive correlation, even if the specific score values are fluctuating. To ascertain the reliability of
MLLMs for interrelation discovery, extra experiments are performed as shown in Section 4.4.
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Figure 4: Our aim is using the commonsense knowledge behind MLLMs to equip GEM with ability
of interrelations discovery, where a certain degree of fluctuations on absolute scores are acceptable.

3.3 Bidirectional Weighted DisGraph

Based on the extracted factors and interrelations, we then propose the bidirectional weighted DisGraph
G = (A, E ,S) to integrate the semantic representations. Specifically, A is the set of n = |A| nodes,
embodying the disentangled attributes as factors. Besides, E is the set of k = |E| edges, and S stands
for the weights of these edges. An e ∈ E and its corresponding impact score s ∈ S are embedded.
Consequently, G can be presented as the learnable weighted adjacency matrix A ∈ [0, 1]n×n.

According to the definitions above, the model firstly constructs a sketched adjacency matrix A0 ∈
Rn×n upon the factors and relations initialized by the β-VAE branch and MLLM branch. Specifically,
we treat the averaged impact scores of the first 1,500 images processed by MLLMs, as initial
weights of relations. We further employ an unsupervised graph learner Egnn to dynamically refine
the parameters of DisGraph by the structure bootstrapping mechanism [71] and multi-view graph
contrastive learning [72]. The optimization function of Egnn can be formulated as:

T(l) = h(l)
w

(
T(l−1),A

)
= σ

(
D̃− 1

2 ÃD̃− 1
2T(l−1)Ω(l)

)
, (11)

It converts the sketched adjacency matrix A0 into node embedding T via the GNN-based multilayer
network, where h

(l)
w (·) is the embedding function with learnable parameters w of the l-th layer and

T(l) is the output matrix. The augmented adjacency matrix Ã = A+ I incorporates self-loops based
on the initial matrix A0, and D̃ is the degree matrix of A. Further, w(l) = Ω(l) ∈ Rn×n denotes the
parameter matrix of the l-th layer, with σ(·) as a non-linear function that enhances training stability.

Figure 5: Overall training algorithm of GEM.

Figure 5 illustrates the compre-
hensive training algorithm of
our model. The encoder pro-
cesses input images and outputs
the disentangled latent variable
z, which subsequently initializes
the embeddings of nodes in Dis-
Graph. The adjacency matrix
of DisGraph is calculated using
Somer’s D algorithm, which pro-
cesses the attribute scores out-
putted by the MLLM. Following
this initialization, a Graph Neu-
ral Network (GNN) refines the
structure of DisGraph. The aver-
age of the feature matrix within
DisGraph is then forwarded to
the decoder to reconstruct im-
ages. Concurrently, the discriminator is trained to approximate the gradient of the loss function.
Assuming that the model’s performance is upper bounded by the norm of its gradient, which satisfies
the Polyak-Lojasiewicz (PL) condition, this configuration ensures the suboptimality of the model.
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4 Experiments

Datasets. We evaluate the GEM on two datasets: 1) CelebA [73] contains over 200,000 high-quality
facial images. Each image is annotated with 40 binary attribute labels, making it a widely used
benchmark for supervised DRL methodologies. Operating in an unsupervised manner, we do not
utilize ground-truth labels from this dataset, yet we still conduct comparisons against the supervised
approaches; 2) LSUN [74] consists of about one million images across various object categories such
as cars, buildings, animals, etc. We select a typical subset from both scene categories and object
categories, as bedroom and horse, respectively. We believe these two datasets are diverse enough to
assess our method covering complex data of different object types.

Implementation details. We implement GEM with PyTorch [75]. The landmark pre-processing
settings follow the instructions of [66] and [67]. In addition, we employ the latest GPT-4o [60] as the
interrelation predictor. For every experiment, the latent dimension size is set to 6. Concentrating on
the disentanglement capacity of the framework, all experimental images are resized to a resolution
of 64×64 to minimize computational resources. For high-definition outcomes at 256×256, refer to
Appendix A.7. All the experiments are processed using the Adam optimizer with a learning rate of
1e-4, and conducted on the Nvidia Tesla A100 GPUs, with a batch size of 32.

Baselines for Comparison. We evaluate the GEM with state-of-the-art DRL methods on the
disentanglement capacity, reconstruction quality, and computational efficiency. The comparison
encompasses supervised and unsupervised models, including standard VAE [12], β-VAE [13], β-
TCVAE [14], FactorVAE [41] and DEAR [27]. All baselines are trained using the complete CelebA
dataset under the configurations previously specified.

4.1 Qualitative Results

To evaluate the GEM’s effectiveness of relation-aware and fine-grained disentanglement, we perform
qualitative analyses with FactorVAE [41] and DEAR [27]. The experiments are conducted on CelebA,
a standard benchmark that has been previously validated as compatible with these methods. We
select the six fine-grained facial attributes from the database including Bangs, Bald, Gender, Beard,
Blond, and Makeup. The disentanglement results are represented by traversals across various latent
dimensions, where each dimension corresponds to distinct attributes.

relatively independent

Semantic interrelations determined by MLLMs
Bangs

0.66

Blond

Bald

0.73

0.51

0.2

Bald
0.65

Blond

Gender

0.72

0.91
0.35

Gender
0.91

Bald
0.65

Beard
0.61

Gender
0.19

Blond

Makeup

Gender
0.40

0.47

Bangs

Bald

Gender

Beard

Blond

Makeup

FactorVAE DEAR

GEM(Ours)

Figure 6: Qualitative comparisons between GEM and typical DRL Methods. Each row in facial
images corresponds to the traversal results on a specific attribute, as indicated adjacent to the images
(i.e. Bangs, Bald, Gender, Beard, Blond, and Makeup). GEM exhibits superior ability in fine-grained
disentanglement with discovered practical and bidirectional relations (illustrated by the heatmap).
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As illustrated in Figure 6, GEM effectively achieves fine-grained and relation-aware disentanglement,
via the integration of DRL and MLLMs. The interrelations determined by MLLMs are depicted
as a heatmap in the bottom-right of Figure 6, where deeper colors reflect stronger relations. Since
DisGraph is bidirectional, the impact scores for bidirectional relations between a pair of attributes
may vary, resulting in an asymmetric matrix. Specifically, in the first row of GEM’s result, a person
with heavier Bangs is less likely to be Bald, and the hair tends to be Blond, which is considered
logical by MLLMs. Furthermore, as shown in the second and third rows, males (Gender) are more
likely to be Bald and less likely to have Blond hair. The attribute Makeup is considered as relatively
independent, with lower impacts scores among other attributes.

In comparison, DEAR demonstrates limitations in learning specific attributes such as Bald (second
row) and Gender (third row), while the relations between attributes appear to be tenuous. To our
knowledge, this underperformance may stem from the stringent nature of causal relations, which
are single-directional and heavily rely on the quality of prior. For FactorVAE, since it is a flat DRL
framework, we employ the same causal relations used in DEAR to make it relation-aware. As shown
in Figure 4, GEM surpasses FactorVAE in both attribute disentanglement and relation discovery,
which indicates the importance of specially-designed modules within our framework.

4.2 Quantitative Results

Table 1 reports the results of Frechet Inception Distance (FID) [68] and Kernal Inception Distance
(KID) [68] scores to verify the quality of reconstructed images. To ensure statistical significance,
each comparison model undergoes three rounds of evaluations in the same configuration. The results
indicate that GEM outperforms both typical unsupervised (VAE, β-VAE, β-TCVAE, FactorVAE)
and supervised approaches (DEAR) in terms of reconstruction quality. To our understanding, this
superior performance is attributed to the specialized training strategy implemented in the framework.

Table 1: Quantitative comparison results with typical DRL approaches in FID and KID.

Method CelebA LSUN-horse LSUN-bedroom

FID ↓ KID ×103 ↓ FID ↓ KID ×103 ↓ FID ↓ KID ×103 ↓
VAE [13] 53.3 ± 0.6 51.4 ± 0.4 172.8 ± 1.7 181.7 ± 2.1 195.8 ± 4.1 226.4 ± 5.4
β-VAE [13] 136.2 ± 1.6 107.0 ± 2.7 272.4 ± 3.2 294.2 ± 5.3 288.1 ± 5.7 225.7 ± 6.0

β-TCVAE [14] 139.1 ± 0.8 113.2 ± 4.1 173.0 ± 4.8 217.35 ± 9.2 191.0 ± 5.0 179.2 ± 7.4
FactorVAE [41] 134.5 ± 0.3 92.0 ± 0.5 248.5 ± 5.5 155.3 ± 3.7 235.7 ± 3.2 172.8 ± 3.9

DEAR [27] 70.7 ± 0.3 52.6 ± 0.1 136.4 ± 1.6 113.7 ± 0.9 177.6 ± 3.5 157.8 ± 2.3
GEM (Ours) 46.0 ± 0.1 48.3 ± 0.2 101.0 ± 1.1 65.5 ± 1.7 125.4 ± 1.2 76.1 ± 1.1

As shown in Table 1, GEM surpasses baseline models in reconstruction quality on the datasets of
CelebA, LSUN-horse, and LSUN-bedroom. However, the use of the disentanglement coefficient in
the β-VAE branch leads to an inevitable trade-off in reconstruction quality, making the model less
comparable to the models focused on generation quality (e.g., GAN and Diffusion [76]). Therefore,
the integration with leading generative models can be a direction for our future work. For additional
comparison results, please refer to Appendix A.1.

Table 2: Computational efficiency report in parameters size, FLOPs, memory cost and training time.

Models Params(M) GFLOPs(B) Mem(M) TT(s)

FactorVAE 55.9 3.8 200.5 63.9
DEAR 53.4 3.5 267.2 91.8

GEM (Single) 44.7 2.8 173.6 51.5
GEM (Full) 49.6 3.2 222.8 78.9

Furthermore, we evaluate four relation-aware models: FactorVAE, DEAR, GEM (Single), and
GEM (Full), on quantitative comparisons of computational resources. Notably, GEM (Single) is the
variant of GEM that incorporates single attribute determination branch (we only provide the initial
relations to make it relation-aware). Table 2 shows that GEM outperforms DEAR and is comparable
to FactorVAE on computational efficiency. This is mainly attributed to FactorVAE’s utilization
of a simple convolutional encoder, whereas GEM employs a β-VAE based encoder to strengthen
disentanglement. In addition, the efficiency of full GEM is slightly inferior to GEM (Single), due to
the extra modules for relation discovery and refinement.
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4.3 Evaluations of Interpretability and Generalizability

As a by-product, GEM inherits the interpretability and generalizability of MLLMs. Theoretically, ow-
ing to the commonsense reasoning faculties of MLLMs, our model can be generalized to discover any
attributes and interrelations across various real-world objects and scenes. To demonstrate the robust-
ness and generalizability of GEM, we perform extra experiments on more complex scenes in LSUN,
specifically targeting the typical object subset LSUN-horse and the scene subset LSUN-bedroom.
Furthermore, we test the attributes beyond the 40 specified in CelebA, collectively showcasing
the model’s superiority. To highlight the characteristics of bidirectional weighted DisGragh, we
intentionally select paired fine-grained attributes exhibiting inconsistent bidirectional relations.
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Figure 7: Relation-aware disentanglement results on LSUN and the attributes beyond CelebA. Paired
fine-grained attributes with inconsistent bidirectional relations are chosen to indicate effectiveness.

As depicted in Figure 7, GEM successfully achieve fine-grained disentanglement on complex scenes,
while identifying bidirectional and weighted relations among attributes. Furthermore, the artifacts
observed in the results of LSUN datasets are mainly due to the datasets’ clutter (evidenced by the
increase of FID and KID scores in Table 1). Nonetheless, despite the ambiguous and challenging
nature of the data, GEM still obtain commendable disentanglement outcomes, affirming its robustness.

4.4 Evaluations of MLLMs

Our model leverages the commonsense knowledge embedded in MLLMs to predict interrelations.
This is predicated on the assumption that MLLMs, including their future iterations, are powerful and
reliable enough to comprehend the physical rules of the real world (e.g., aging brings wrinkles, sunrise
brings light, etc.). Therefore, before utilizing the interrelation discovery branch, it is imperative to
evaluate the reliability of MLLMs. This evaluation guarantees that the identified interrelations and
their associated impact scores are dependable and can be effectively applied to downstream modules.
To this purpose, we evaluate three latest MLLMs including GPT-4o, GPT-4v and GLM-4—against
the ground truth attributes of the CelebA dataset. The horizontal axis presents the targeted attributes
selected from the CelebA, where the vertical axis presents the percentage of scoring accuracy.
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Figure 8: Evaluation experiments on the various MLLMs for attributes scoring.
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As reported in Figure 8, GPT-4o outperforms other models on individual attribute scoring, achieving
accuracy exceeding 90% for the majority of attributes. Specifically, it exhibits superior performance
on attributes like Beard, Young, and Eyebrows, where other models yield significantly lower scores.
In addition, GPT-4o achieves the highest average accuracy of 88.4% and the lowest zero-scoring rate
at 0.25%, indicating a minimal rate of the meaningless predictions where all attributes are scored as
zero. We conducted further evaluations on individual attributes, where GPT-4o also demonstrated
superior performance (see Appendix A.7). Based on the evaluations, we employ GPT-4o as the
interrelation predictor in the model.

4.5 Ablation Study

To analyze the effectiveness of individual components in GEM, we perform an ablation study focusing
on the importance of the β-VAE based branch, GNN-based graph learner Egnn, and adversarial
training strategy. The CelebA dataset served as the experimental platform for the investigations. It is
worth noting that the complete removal of β-VAE branch is infeasible, as it would prevent the model
from extracting attributes. Therefore to evaluate the importance of independent attribute extraction,
we replace the β-VAE with the vanilla VAE, which does not enforce the independence of factors.

Replace β-VAE with the vanilla VAEw/o GNN based graph learner

w/o Adversarial training strategy Full model

Bangs

Bald

Gender

Bangs

Bald

Gender

 decline in reconstruction quality (but factors are effectively disentangled)

unable to disentanglement (but the reconstruction quality has increased)interrelations are inaccurate without the self-updating of DisGraph

Figure 9: Ablation on replacing β-VAE with VAE, w/o graph learner, and w/o adversarial strategy.

As depicted in Figure 9, replacing β-VAE encoder results in a declined disentanglement capability,
albeit with an improvement in reconstruction quality. In addition, the removal of GNN-based graph
learner prevents the parameter updating of DisGraph, leading to the inaccurate determination of
relations (e.g., the relation between Bald and Gender weakens). It is worth noting that the removal
of both graph learner and initialization process within the framework precludes the learning of
interrelations. Furthermore, eliminating the adversarial training strategy in GEM and relying solely
on the standard VAE loss function results in a significant decline in reconstruction quality. The
aforementioned results highlight the effectiveness of each part of our framework.

5 Conclusion

In this paper, we aim to explore the logical interrelations between semantic attributes within complex
data, which is a critical challenge that existing DRL have yet to properly address. To this end,
we introduce GEM, a β-VAE and MLLMs-based framework, designed to achieve fine-grained
and relation-aware disentanglement. In this framework, DRL and MLLMs are integrated via a
bidirectional and self-driven graph. Both qualitative and quantitative experiments demonstrate GEM’s
superior disentanglement and reconstruction capacities over typical DRL models. In addition, the
model shows its enhanced interpretability and generalizability inherited from MLLMs.

References
[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new

perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

10



[2] Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled representation learning gan for pose-invariant face
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1415–1424, 2017.

[3] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent space.
arXiv preprint arXiv:2210.10960, 2022.

[4] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of disentangled
latent concepts from unlabeled observations. arXiv preprint arXiv:1711.00848, 2017.

[5] Andrey Voynov and Artem Babenko. Unsupervised discovery of interpretable directions in the gan latent
space. In International conference on machine learning, pages 9786–9796. PMLR, 2020.

[6] Pengyu Cheng, Martin Renqiang Min, Dinghan Shen, Christopher Malon, Yizhe Zhang, Yitong Li, and
Lawrence Carin. Improving disentangled text representation learning with information-theoretic guidance.
arXiv preprint arXiv:2006.00693, 2020.

[7] Zhenya Huang, Xin Lin, Hao Wang, Qi Liu, Enhong Chen, Jianhui Ma, Yu Su, and Wei Tong. Disenqnet:
Disentangled representation learning for educational questions. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 696–704, 2021.

[8] Giangiacomo Mercatali and André Freitas. Disentangling generative factors in natural language with
discrete variational autoencoders. arXiv preprint arXiv:2109.07169, 2021.

[9] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. Advances in
neural information processing systems, 29, 2016.

[10] Hong Chen, Yipeng Zhang, Xin Wang, Xuguang Duan, Yuwei Zhou, and Wenwu Zhu. Disenbooth:
Disentangled parameter-efficient tuning for subject-driven text-to-image generation. arXiv preprint
arXiv:2305.03374, 2023.

[11] Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee. Finegan: Unsupervised hierarchical disentangle-
ment for fine-grained object generation and discovery. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6490–6499, 2019.

[12] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[13] Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained
variational framework. ICLR (Poster), 3, 2017.

[14] Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentanglement
in variational autoencoders. Advances in neural information processing systems, 31, 2018.

[15] Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint arXiv:1804.03599, 2018.

[16] Cristian Meo, Louis Mahon, Anirudh Goyal, and Justin Dauwels. β-tc-vae: On the relationship between
disentanglement and diversity. In The Twelfth International Conference on Learning Representations,
2023.

[17] Xin Wang, Hong Chen, Si’ao Tang, Zihao Wu, and Wenwu Zhu. Disentangled representation learning.
arXiv preprint arXiv:2211.11695, 2022.

[18] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentangled
representations. In international conference on machine learning, pages 4114–4124. PMLR, 2019.

[19] Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae: Dis-
entangled representation learning via neural structural causal models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9593–9602, 2021.

[20] Xingyi Yang, Jingwen Ye, and Xinchao Wang. Factorizing knowledge in neural networks. In European
Conference on Computer Vision, pages 73–91. Springer, 2022.

[21] Saeed Amizadeh, Hamid Palangi, Alex Polozov, Yichen Huang, and Kazuhito Koishida. Neuro-symbolic
visual reasoning: Disentangling. In International Conference on Machine Learning, pages 279–290. Pmlr,
2020.

11



[22] Tameem Adel, Han Zhao, and Richard E Turner. Continual learning with adaptive weights (claw). arXiv
preprint arXiv:1911.09514, 2019.

[23] Zhiyuan Li, Jaideep Vitthal Murkute, Prashnna Kumar Gyawali, and Linwei Wang. Progressive learning
and disentanglement of hierarchical representations. arXiv preprint arXiv:2002.10549, 2020.

[24] Bin Tong, Chao Wang, Martin Klinkigt, Yoshiyuki Kobayashi, and Yuuichi Nonaka. Hierarchical dis-
entanglement of discriminative latent features for zero-shot learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11467–11476, 2019.

[25] Pengzhou Wu and Kenji Fukumizu. β-intact-vae: Identifying and estimating causal effects under limited
overlap. arXiv preprint arXiv:2110.05225, 2021.

[26] Di Fan, Yannian Kou, and Chuanhou Gao. Causal disentangled representation learning with vae and causal
flows.

[27] Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. Weakly supervised
disentangled generative causal representation learning. Journal of Machine Learning Research, 23(241):1–
55, 2022.

[28] Insu Jeon, Wonkwang Lee, Myeongjang Pyeon, and Gunhee Kim. Ib-gan: Disentangled representa-
tion learning with information bottleneck generative adversarial networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 7926–7934, 2021.

[29] Tao Yang, Yuwang Wang, Cuiling Lan, Yan Lu, and Nanning Zheng. Vector-based representation is the
key: A study on disentanglement and compositional generalization. arXiv preprint arXiv:2305.18063,
2023.

[30] Xin Jin, Bohan Li, Baao Xie, Wenyao Zhang, Jinming Liu, Ziqiang Li, Tao Yang, and Wenjun Zeng.
Closed-loop unsupervised representation disentanglement with β-vae distillation and diffusion probabilistic
feedback. arXiv preprint arXiv:2402.02346, 2024.

[31] Agisilaos Chartsias, Thomas Joyce, Giorgos Papanastasiou, Scott Semple, Michelle Williams, David E
Newby, Rohan Dharmakumar, and Sotirios A Tsaftaris. Disentangled representation learning in cardiac
image analysis. Medical image analysis, 58:101535, 2019.

[32] Cosmin I Bercea, Benedikt Wiestler, Daniel Rueckert, and Shadi Albarqouni. Federated disentangled
representation learning for unsupervised brain anomaly detection. Nature Machine Intelligence, 4(8):685–
695, 2022.

[33] Lianrui Zuo, Yihao Liu, Jerry L Prince, and Aaron Carass. An overview of disentangled representation
learning for mr image harmonization. Deep Learning for Medical Image Analysis, pages 135–152, 2024.

[34] Abel Gonzalez-Garcia, Joost Van De Weijer, and Yoshua Bengio. Image-to-image translation for cross-
domain disentanglement. Advances in neural information processing systems, 31, 2018.

[35] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Diverse image-
to-image translation via disentangled representations. In Proceedings of the European conference on
computer vision (ECCV), pages 35–51, 2018.

[36] Boqiang Zhang, Hongtao Xie, Zuan Gao, and Yuxin Wang. Choose what you need: Disentangled
representation learning for scene text recognition, removal and editing. arXiv preprint arXiv:2405.04377,
2024.

[37] Piaopiao Yu, Jie Guo, Fan Huang, Cheng Zhou, Hongwei Che, Xiao Ling, and Yanwen Guo. Hierarchical
disentangled representation learning for outdoor illumination estimation and editing. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 15313–15322, 2021.

[38] Baao Xie, Bohan Li, Zequn Zhang, Junting Dong, Xin Jin, Jingyu Yang, and Wenjun Zeng. Navinerf: Nerf-
based 3d representation disentanglement by latent semantic navigation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 17992–18002, 2023.

[39] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields for
3d-aware image synthesis. Advances in Neural Information Processing Systems, 33:20154–20166, 2020.

[40] Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional generative neural
feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11453–11464, 2021.

12



[41] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International conference on machine
learning, pages 2649–2658. PMLR, 2018.

[42] Minyoung Kim, Yuting Wang, Pritish Sahu, and Vladimir Pavlovic. Relevance factor vae: Learning and
identifying disentangled factors. arXiv preprint arXiv:1902.01568, 2019.

[43] Zihao Chen, Wenyong Wang, and Sai Zou. Break the spell of total correlation in betatcvae. arXiv preprint
arXiv:2210.08794, 2022.

[44] Karsten Roth, Mark Ibrahim, Zeynep Akata, Pascal Vincent, and Diane Bouchacourt. Disentanglement of
correlated factors via hausdorff factorized support. arXiv preprint arXiv:2210.07347, 2022.

[45] Yunhao Ge, Sami Abu-El-Haija, Gan Xin, and Laurent Itti. Zero-shot synthesis with group-supervised
learning. arXiv preprint arXiv:2009.06586, 2020.

[46] Matthew J Vowels, Necati Cihan Camgoz, and Richard Bowden. Gated variational autoencoders: Incorpo-
rating weak supervision to encourage disentanglement. In 2020 15th IEEE International Conference on
Automatic Face and Gesture Recognition (FG 2020), pages 125–132. IEEE, 2020.

[47] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational autoencoder: Learning
disentangled representations from grouped observations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[48] Attila Szabo, Qiyang Hu, Tiziano Portenier, Matthias Zwicker, and Paolo Favaro. Understanding degenera-
cies and ambiguities in attribute transfer. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 700–714, 2018.

[49] Andrew Ross and Finale Doshi-Velez. Benchmarks, algorithms, and metrics for hierarchical disentangle-
ment. In International Conference on Machine Learning, pages 9084–9094. PMLR, 2021.

[50] Xinyang Li, Shengchuan Zhang, Jie Hu, Liujuan Cao, Xiaopeng Hong, Xudong Mao, Feiyue Huang,
Yongjian Wu, and Rongrong Ji. Image-to-image translation via hierarchical style disentanglement. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 8639–8648,
2021.

[51] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023.

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021.

[53] Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Junwu Zhang, Munan Ning, and Li Yuan.
Moe-llava: Mixture of experts for large vision-language models. arXiv preprint arXiv:2401.15947, 2024.

[54] Yuliang Liu, Biao Yang, Qiang Liu, Zhang Li, Zhiyin Ma, Shuo Zhang, and Xiang Bai. Textmonkey: An
ocr-free large multimodal model for understanding document. arXiv preprint arXiv:2403.04473, 2024.

[55] R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

[56] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[57] Yossi Gandelsman, Alexei A Efros, and Jacob Steinhardt. Interpreting clip’s image representation via
text-based decomposition. arXiv preprint arXiv:2310.05916, 2023.

[58] Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan Wang.
The dawn of lmms: preliminary explorations with gpt-4v (ision). arxiv. arXiv preprint arXiv:2309.17421,
2023.

[59] Gpt-4v(ision) system card. 2023.

[60] Hello, gpt-4o. OpenAI, 2025.

[61] Maxim Enis and Mark Hopkins. From llm to nmt: Advancing low-resource machine translation with
claude. arXiv preprint arXiv:2404.13813, 2024.

13



[62] Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multimodal llm.
arXiv preprint arXiv:2309.05519, 2023.

[63] Angus Yang, Zehan Li, and Jie Li. Advancing genai assisted programming–a comparative study on prompt
efficiency and code quality between gpt-4 and glm-4. arXiv preprint arXiv:2402.12782, 2024.

[64] Samyadeep Basu, Keivan Rezaei, Ryan Rossi, Cherry Zhao, Vlad Morariu, Varun Manjunatha, and
Soheil Feizi. On mechanistic knowledge localization in text-to-image generative models. arXiv preprint
arXiv:2405.01008, 2024.

[65] Harshvardhan Sikka, Weishun Zhong, Jun Yin, and Cengiz Pehlevant. A closer look at disentangling in
β-vae. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pages 888–895. IEEE,
2019.

[66] Deokyun Kim, Minseon Kim, Gihyun Kwon, and Dae-Shik Kim. Progressive face super-resolution via
attention to facial landmark. arXiv preprint arXiv:1908.08239, 2019.

[67] Giuseppe Amato, Fabrizio Falchi, Claudio Gennaro, and Claudio Vairo. A comparison of face verification
with facial landmarks and deep features. In 10th International Conference on Advances in Multimedia
(MMEDIA), pages 1–6, 2018.

[68] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

[69] Robert H Somers. A new asymmetric measure of association for ordinal variables. American sociological
review, pages 799–811, 1962.

[70] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

[71] Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsupervised
deep graph structure learning. In Proceedings of the ACM Web Conference 2022, pages 1392–1403, 2022.

[72] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[73] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[74] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun: Con-
struction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

[75] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

[76] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[77] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

14



A Appendix

A.1 Discussion

Disentanglement Ability. As shown in Table 3, we evaluate the disentanglement ability of our model
(DRL branch only) against typical DRL models. Our model outperforms them across numerous
metrics. However, it is really meaningful and interesting to discuss "what is a better disentanglement".

Table 3: Disentanglement metrics among VAE, β-VAE and GEM.

Models MIG IRS MI Info

VAE 0.19 0.35 0.84 0.81
β-VAE 0.49 0.55 0.88 0.82
GEM 0.53 0.60 0.86 0.85

If it means the better performance on independently decomposing factors, then the inclusion of
interrelations might not seem beneficial; however, if it refers to a better performance/practicality
for real and complex scenarios, our disentanglement paradigm excels by statistically capturing the
logical rules of real world. Specifically, the inclusion of interrelations can be beneficial in model
generalizability, counterfactual reasoning and practical usages.

Trade-off between Quality and Interpretability. Even though our model achieved superior perfor-
mance among DRL approaches, an inevitable trade-off between reconstruction and disentanglement
remains, resulting in decreased reconstruction quality compared to the models focused on generation
quality such as GANs and Diffusions (see Table 4).

Table 4: Quantitative comparison results with leading image generation models in FID and KID.

Method CelebA (64×64) CelebA (256×256)

FID ↓ KID ×103 ↓ FID ↓ KID ×103 ↓
GEM (Ours) 46.05 48.32 50.93 51.01
Vanilla VAE 53.39 51.48 56.82 61.26

StyleGAN2 (40k steps) 12.94 9.20 18.02 19.55
DDPM (Diffusion, T = 1k) 8.56 6.56 15.93 10.01

DDIM (Implicit Diffusion, T = 1k) 10.04 8.15 16.24 13.62
Stable Diffusion (fine-tuning) 7.72 7.22 10.63 9.17

Since our model is oriented towards interpretability, we consider this trade-off acceptable. However,
it is insightful to leverage the advantages of both DRL and non-DRL models within a mutually
beneficial closed-loop architecture, and we will make efforts to improve our work in this direction.

Current Limitations. Compared to existing DRL approaches, GEM emphasizes discovering un-
derlying interrelations between attributes. This logical and effective framework can benefit a wide
range of downstream tasks and practical applications such as controllable generation, medical image
analysis, and automatic driving. However, there are still some limitations to this method. Firstly, the
trade-off between reconstruction quality and disentanglement capacity, as a common challenge in
the domain, is still not properly addressed in this work. To tackle it, we are currently investigating
the integration of powerful generative models, e.g., diffusion models [76] and visual auto-regressive
models [77], into our framework. Secondly, the current implementation of GEM is not designed to
work with 3D data, where 3D representations are much more complex. To understand our real world,
it would be necessary to enhance the model with specific improvements to handle 3D scenes.

A.2 Dataset details

CelebA. The Celebrity Faces Attributes (CelebA) dataset [73] is a widely-used large-scale face
attributes dataset that contains more than 200,000 celebrity images, each annotated with 40 attributes.
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These annotations cover a wide range of facial attributes such as ‘smiling’, ‘wearing Hat’, ‘young’,
‘wavy Hair’, ‘male’, and ’mustache’. These attributes are labeled as present or absent in each image.
This dataset is designed for various DRL and computer vision tasks, such as face recognition, face
attribute disentanglement, and face editing. Commonly, we use employ the entirety of the CelebA
dataset, which includes 162,770 images for training, 19,867 for validation, and 19,962 for testing.

LSUN. The Large-scale Scene Understanding (LSUN) dataset [74] is a comprehensive collection for
deep learning and computer vision, widely used in the domain of perceptual analysis and attribute
disentanglement. This dataset consists of around one million labeled images for each of 10 scene
categories and 20 object categories. The scene categories include diverse environments such as
bedrooms, conference rooms, dining rooms, kitchens, living rooms, and etc. The object categories in
LSUN include horse, car, church, etc. We select a typical subset, LSUN-horse, to demonstrate the
model’s generalizability. We believe these two datasets are diverse enough to verify our GEM.

A.3 Baseline details

A.3.1 β-VAE

The β-VAE [13] is an extension of the standard VAE [12], introducing an adjustable hyperparameter
β prior to the KL term in vanilla VAE:

L(θ, ϕ) = Eqϕ(z|x) [log pθ(x|z)]− βDKL (qϕ(z|x)∥pθ(z)) (12)
where the penalty coefficient β balances the disentanglement capacity and reconstruction quality.
When β > 1, this penalty increases the emphasis on learning disentangled representations in the latent
space. However, increasing β can cause a trade-off on the reconstruction quality.

A.3.2 β-TCVAE

The Total Correlation beta-VAE (β-TCVAE) [14] builds upon the β-VAE to further enhance the
disentanglement of latent representations. It achieves this by the reduction of the total correlation
(TC) term, extracted from the KL divergence term:

Ep(x)[KL(q(z | x)∥p(z))] = KL(q(z, x)∥q(z)p(x)) + βKL

q(z)∥
∏
j

q
(
zj

) +
∑
j

KL
(
q
(
zj

)
∥p

(
zj

))
(13)

where j represents the dimension of latent code z. The penalty coefficient β is selectively applied to
the second term, i.e. TC term, on the right side of the loss function. It aims to make latent variables
statistically independent of each other, therefore enhancing disentanglement. We include β-TCVAE
in the quantitative comparisons, following the official implementation.

A.3.3 FactorVAE

The FactorVAE [41] is a typical variant of VAE, which employs a discriminator network in an
adversarial manner to accurately estimate and minimize the total correlation term in the loss function.
This adversarial strategy further enforces the factorization of the latent space, leading to improved
disentanglement. We include β-VAE, β-TCVAE, FactorVAE in the quantitative comparisons follow-
ing their official implementation. We evaluate the reconstruction quality by employing the Fréchet
Inception Distance (FID) and Kernel Inception Distance (KID) metrics for comparative assessment.

A.3.4 DEAR

DEAR [27] is the weakly supervised structural disengagement framework. It facilitates causal
representation learning by adopting a structural causal model (SCM) as the prior distribution. This
SCM prior is supervised by the information on the ground-truth factors and their underlying causal
structure from the database. We integrate DEAR into the quantitative and qualitative comparisons,
training it with the annotations provided by the CelebA. All in all, we evaluate our unsupervised
framework against both unsupervised (β-VAE, β-TCVAE, FactorVAE) and supervised (DEAR) DRL
methods, thereby rigorously evaluating the capabilities in reconstruction and disentanglement.

A.4 Face landmark results

Landmark detection are algorithm and technique utilized to detect and track specific key points
in the image or video, encompassing a wide range of applications across various fields such as
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computer vision, robotics, and geospatial analysis. In this work, we employ landmark detection as a
pre-processing method to extract the key points of the main object, thus removing the redundant parts
in the image through cropping and resizing.

Figure 10: 68-points landmark pre-processing for data from the CelebA.

We introduce the pre-processing phase for CelebA, where 68 landmark points are identified and
extracted commonly. As shown in Figure 10, points 1 to 17 present the jawline, points 18 to 27 for
the eyebrows, points 28 to 36 for the nose, points 37-48 for the eyes, and points 49-68 identify the
lips.

Landmark Landmark Landmark

Figure 11: Image normalization based on the landmark detection.

Figure 11 illustrates some results of the pre-processing block. The normalized images benefit
subsequent factor disentanglement and interrelation discovery.

A.5 Details of adversarial training strategy

As described in Section 3.1, the prior assumption that pθ(z) ∼ N (0, 1) no longer holds, we reformu-
late the β-VAE loss as:

L(θ, ϕ) = Ex∼qϕ(x)(Ez∼qϕ(z|x) [log pθ(x|z)]− βDKL (qϕ(z|x)∥pθ(z)))

= Ex,z∼qϕ(z,x) [log pθ(x|z)]− βEx,z∼qϕ(z,x)log

(
qϕ(z|x)
pθ(z)

)
(14)

Subsequently, the gradient of L with respect to θ can be derived as:
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∇θL(θ, ϕ)
x=Dθ(z)

= Ez∼q(z)[∇xlog(pθ(x|z))∇θ x− β∇xlog (qϕ(z|x)/pθ(z))∇θ x]

= Ez∼q(z)∇x[log(pθ(x|z))− βlog(
qϕ(z|x)
pθ(z)

]∇θ x

= Ez∼q(z)∇x[log(pθ(x, z))− βlog(
qϕ(z, x)

qϕ(x)
)]∇θ x

= Ez∼q(z)∇x[log(pθ(x, z))− βlog(
qϕ(z, x)

qϕ(x)
)]∇θ x

= Ez∼q(z)∇x[log(
pθ(x, z)

βqϕ(x, z)
)]∇θ x+ βEz∼q(z)∇xqϕ(x)∇θ x

(15)

where the first term on the right side needs to be approximated by a neural network due to the altered
assumption. Therefore, we define:

p(x, z) = p((x, z) ∈ Eϕ)p(x, z|(x, z) ∈ Eϕ) + p((x, z) ∈ Dθ)p(x, z|(x, z) ∈ Dθ)

= p((x, z) ∈ Eϕ)qϕ(x, z) + p((x, z) ∈ Dθ)pθ(x, z)
(16)

then

p((x, z) ∈ Eϕ|x, z) =
p((x, z) ∈ Eϕ)p(x, z|(x, z) ∈ Eϕ)

p(x, z)

=
1

1 + α
qϕ(x,z)
pθ(x,z)

p((x, z) ∈ Dθ|x, z) =
p((x, z) ∈ Dθ)p(x, z|(x, z) ∈ Dθ)

p(x, z)

=
1

1 + 1
α

pθ(x,z)
qϕ(x,z)

α =
p((x, z) ∈ Dθ)

p((x, z) ∈ Eϕ)

(17)

Given the controllable proportion of the input images, denoted by α ∈ [0, 1], we define:

D(x, y) = log(
pθ(x, z)

βqϕ(x, z)
) (18)

then

pθ(x, z)

βqϕ(x, z)
= eD(x,z) (19)

where β ∈ (1,+∞) is proposed to enhance the disentanglement ability of β-VAE. We subsequently
define the variable k:

suppose k =
α

β

p((x, z) ∈ Eϕ|x, z) =
1

1 + ke−D(x,z)

p((x, z) ∈ Dθ|x, z) =
1

1 + 1
ke

D(x,z)

since : 1 = p((x, z) ∈ Eϕ|x, z) + p((x, z) ∈ Dθ|x, z)

(20)

Given that the solution for k is determined to be 1, under the condition that α = β = 1 (otherwise
∀(x, z) D(x, z) = 0 which is obviously impossible), it is logically imperative to require distribution
p(x, z|(x, z) ∈ Eϕ) and p(x, y|(x, z) ∈ Dθ to closely approximate p(x, z). On this basis, we found:
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p(x, z) = p(x, z|(x, z) ∈ Eϕ) ⇐⇒ p((x, z) ∈ Eϕ|x, z) = p((x, z) ∈ Eϕ)

p(x, z) = p(x, z|(x, z) ∈ Dθ) ⇐⇒ p((x, z) ∈ Dθ|x, z) = p((x, z) ∈ Dθ)
(21)

where if α = 1, we attain the optimization objective of p((x, y) ∈ Dθ) = p((x, y) ∈ Eϕ) =
1

Nm
. To

this end, we can finally use the cross-entropy algorithm to optimize D:

Ladv = L(D) = cross_entropy(pgt, pθ,ϕ)

= − 1

Nbc

Nbc∑
i=0

[p((xi, zi) ∈ Eϕ)logp((xi, zi) ∈ Eϕ|x, z) + p((xi, zi) ∈ Dθ)logp((xi, zi) ∈ Dθ|x, z)]

= − 1

NbcNm

Nbc∑
i=0

[−softplus(−D(xi, zi))− softplus(D(xi, zi))]

=
1

NbcNm

Nbc∑
i=0

[softplus(−D(xi, zi)) + softplus(D(xi, zi))]

=
1

NbcNm
[

Nbc∑
i=0;(xi,zi)∈Eϕ

softplus(−D(xi, zi)) +

Nbc∑
i=0;(xi,zi)∈Dθ

softplus(D(xi, zi))],

(22)

where softplus(x) = ln (1 + ex) is a smooth activation function. Nbc and Nm represent the number
of samples and posterior samples in a batch. The additional adversarial loss ensures the maintenance
of reconstruction quality, tending to diminish as the capacity for disentanglement increases.

A.6 Details of interrelation determining strategy

In the interrelation discovery branch, we propose the Somers’ Delta (Somers’ D) [69] algorithm to
determine and rank the bidirectional relations among the attributes extracted by the β-VAE branch.
Somers’ D is a statistical measure used to assess the strength and direction of the relation between
variables. It is a nonparametric measure that can be considered a measure of rank correlation, similar
to Kendall’s tau [70], but with a focus on asymmetric relations.

Specifically, the calculation of impact scores based on Somers’ D is upon the number of concordant
pairs (C) and discordant pairs (D). The formula of Somers’ D on variable Y and X can be given as:

DY X =
C −D

C +D + Tx
, DXY =

C −D

C +D + Ty
(23)

where Tx is the number of ties only for the independent variable X , and Ty is the number of ties only
for the independent variable Y . The obtained attribute scores and interrelations from MLLMs are
evaluated. For example, suppose we have the sample dataset S = (1,2), (3,1), (2,3):

Variable Pairs Value
Nc (1,2) vs (2,3) 1
Nd (1,2) vs (3,1) and (2,3) vs (3,1) 2
Ny None 0

Then the Somers’ D indicator can be calculated as follows:

D =
Nc −Nd

Nc +Nd + Ty
=

1− 2

1 + 2 + 0
= −1

3
(24)

This obtains a value of approximately -0.33, signifying a negative correlation between variables X
and Y . This calculation demonstrates that the Somers’ D metric is straightforward to calculate and
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is particularly applicable to ordinal variables. Furthermore, Somers’ D is asymmetric and capable
of distinguishing bidirectional relationships between variables. These characteristics make it highly
suitable for integration into our model.

A.7 Additional results

We perform additional evaluation results for individual attributes on different MLLMs with Ground
Truth (GT) labels in CelebA. As shown in Figure 12, the results demonstrate the reliability of the
GPT-4o employed in our work.
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Figure 12: Reconstruction results of the CelebA.

We also present additional results that demonstrate the capacity of GEM in fine-grained and relation-
aware disentanglement. Figure 13, Figure 14, Figure 15 demonstrates the reconstruction results on
the CelebA, LSUN-bedroom and LSUN-horse, respectively. It is obvious that following the landmark
pre-processing, GEM effectively identify the main part of facial images while mitigating noise. This
enhancement facilitates the downstream processes of the model. In addition, as depicted in Figure 16,
GEM is capable of processing high-definition images given sufficient computational resources.
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Figure 13: Reconstruction results of the CelebA.
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Figure 14: Reconstruction results of the LSUN-bedroom.
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Figure 15: Reconstruction results of the LSUN-horse.
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Figure 16: high-definition results at 256×256 on the CebebA.

23



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly claim the contribution and scope in the abstract and introduction,
substantiated by theroretical and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations and future work are discussed in Appendix A.1, which will be
included in the camera-ready version.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All the theoretical statements, theories and assumptions related to this work
are referenced. The proofs and derivations of formulas in the paper are clearly stated in
Section 3 and Appendix A.5.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We are committed to ensuring the reproducibility of this study. The project will
be open-sourced, and comprehensive details for reproducibility can be found in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codes will be released in the camera-ready version, with detailed instruc-
tions for user to reproduce.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, pre-processed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings for our model, baseline, datasets and MLLMs can
be found in Section 4 and Appendix A.2, A.4.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results of quantitative comparisons presented in this paper are accompanied
by errors bar to achieve statistical significance (see Section 4.2).
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational efficiency of our framework is reported and compared with
typical DRL models (see Section 4.2).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To our best knowledge, this study does not involve any ethical issues.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential positive societal impacts are discussed in the paper and Ap-
pendix A.1, which will be included in the camera-ready version. To our best knowledge,
this work does not cause any negative societal impacts.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our framework rely on the VAE model, MLLMs and GNN model, so our
safeguards are the same as theirs. To the best of our knowledge, these models poses no risks
on misuse or dual-use.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the public baselines and datasets used in this paper are properly credited
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets of this project, primarily the codes, are well documented and will
be released in the camera ready version.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research presented in the paper exclusively utilizes public datasets and
does not involve any crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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