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ABSTRACT

While many advances in time series models focus exclusively on numerical data,
research on multimodal time series, particularly those involving contextual textual
information, remains in its infancy. With recent progress in large language models
and time series learning, we revisit the integration of paired texts with time series
through the Platonic Representation Hypothesis (Huh et al., 2024), which posits that
representations of different modalities converge to shared spaces. In this context,
we identify that time-series-paired texts may naturally exhibit periodic properties
that closely mirror those of the original time series. Building on this insight, we
propose a novel framework, Texts as Time Series (TaTS), which considers the time-
series-paired texts to be auxiliary variables of the time series. TaTS can be plugged
into any existing numerical-only time series models and effectively enable them to
handle time series data with paired texts. Through extensive experiments on both
multimodal time series forecasting and imputation tasks across benchmark datasets
with various existing time series models, we demonstrate that TaTS can enhance
multimodal predictive performance without modifying model architectures.

1 INTRODUCTION

Figure 1: Mean Square Error of
modeling frameworks of time
series with paired texts. Full
results in Appendix E.2.

Time series modeling plays an important role in a wide range of real-
world applications, including finance (Sezer et al., 2020), healthcare
(Zhang et al., 2024b), climate (Fu et al., 2024), and energy systems
(Kotzur et al., 2017; Li et al., 2015). While extensive research has
focused on approaches that rely solely on the numerical values
of time series (Zhou et al., 2021; Liu et al., 2024c; Wu et al.,
2023b; Wang et al., 2024c), real-world scenarios often involve
additional modalities that co-occur with the time series and can
provide valuable complementary information (De Baets & Harvey,
2023; Rai et al., 2023; Kyei & Antwi, 2017; Wang et al., 2024d).

In scenarios like pandemic policymaking, economic planning, or
investment strategies, textual information can provide explanations,
updates, or external factors that influence the underlying numerical
patterns. However, research on effectively leveraging data from
other modalities paired with time series remains in its early stages.
In this work, we focus on time-series paired with texts at each
timestamp, a common data format where textual descriptions are associated with time series at each
timestamp in a parallel manner, as illustrated in Figure 3 (left). For instance, during a pandemic,
infection rates are often accompanied by government announcements and news reports in real-
time (Cinelli et al., 2020). On the one hand, numerical-only models overlook valuable contextual
information that may influence or explain the patterns in the time series. On the other hand, the
current state-of-the-art approach (Liu et al., 2024a) disregards the unique positional characteristics
that time-series-paired texts may inherently possess. Such limitations raise a pivotal question:

What unique attributes may characterize time-series-paired texts, and how can they be systematically
integrated to improve time series modeling and predictions?
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In this paper, motivated by the Platonic Representation Hypothesis (PRH) (Huh et al., 2024), we
pioneer the exploration of effectively leveraging paired texts to enrich time series analysis. We
identify an intriguing phenomenon, which we term “Chronological Textual Resonance” (CTR):
depending on data quality, time-series-paired texts may exhibit periodic patterns that closely reflect
the temporal dynamics of their corresponding numerical time series. More specifically, despite
variations in expressions, the hidden representations of two periodicity-lagged texts associated with
time series may demonstrate high similarities, revealing a deeper alignment between textual and
numerical modalities. We attribute this phenomenon to the fact that the paired texts inherently evolve
in response to the dynamics of the time series itself. Further, we introduce TT-Wasserstein, a new
metric designed to measure the level of CTR and quantify alignment quality.

Building on these insights, we propose Texts as Time Series (TaTS), a simple yet effective framework
for integrating paired texts to enhance multimodal time series modeling. Previous studies have shown
that different variables in one multivariate time series exhibit similar periodicity properties (Zhang
& Yan, 2023; Wang et al., 2024d; Yi et al., 2024), and CTR suggests that time-series-paired texts
follow a similar pattern. This observation implies that paired texts can be considered as special
auxiliary variables to augment the original time series. Motivated by this, TaTS first transforms
the paired textual information into a lower-dimensional representation, then combines the original
time series with the textual representations as new variables to form an augmented time series. This
augmented time series is subsequently fed into existing time series models, allowing them to capture
both numerical and textual dynamics. TaTS offers two key benefits: (i) it effectively captures the
evolving positional characteristics of texts paired with a time series; and (ii) it functions as a plug-in
module, maintaining compatibility with existing time series models. Empirically, the proposed TaTS
achieves state-of-the-art performance on both forecasting and imputation tasks. Notably, we observe
that a higher CTR level (i.e., a lower TT-Wasserstein) correlates with greater improvements compared
to numerical-only modeling. In summary, our contributions are:

• We revisit multimodal time series with the PRH and uncover a previously overlooked
phenomenon, termed Chronological Textual Resonance (CTR), that time-series-paired texts
may exhibit periodic patterns closely aligned with their corresponding numerical time series.
Further, we propose TT-Wasserstein to quantify the level of CTR and the alignment quality.

• Based on this phenomenon, we propose a plug-and-play multimodal time series forecasting
framework, Texts as Time Series (TaTS), which transforms text representations into auxiliary
variables, seamlessly integrating them into existing time series models.

• Experiments on diverse benchmark datasets and multiple time series models demonstrate
TaTS’s superior performance without requiring modifications to model architectures.

2 PRELIMINARY

We use calligraphic letters (e.g., A) for sets and bold capital letters for matrices (e.g., A). For matrix
indices, A[i, j] denotes the entry in the ith row and the jth column. For a vector v, v[i : j] represents
the sub-vector sliced from the ith to the jth position, inclusively. A[i, :] returns the ith row in A and
A[: i] returns the first i rows of A. In this paper, we focus on both forecasting and imputation.

Time Series Forecasting. A time series is denoted as X = {x1,x2, . . . ,xN} ∈ RT×N , where T
represents the number of time steps and N denotes the number of variables. xi is the time series
sequence of the ith variable. When N > 1, the time series is referred to as a multivariate time series.
Let Xa:b represent the time slice of the series from timestamp a to b, i.e., Xa:b = {x1[a : b],x2[a :
b], . . . ,xN [a : b]}. The task of time series forecasting is to predict the future H steps:

X̂T+1:T+H = F (X1:T ; θforecast) ∈ RH×N , (1)
where F denotes the mapping function, and θforecast denotes the learnable parameters of F .

Time Series Imputation. The goal of imputation is to estimate missing values in the time series X,
where the missing entries are denoted by a binary mask M ∈ {0, 1}T×N . Specifically, Mt,n = 1
indicates Xt,n being observed, Mt,n = 0 indicates Xt,n being missing. Formally,

X̂Imputed = G (X⊙M,M; θimpute) ∈ RT×N , (2)

where X̂Imputed represents the imputed time series, G denotes the imputation function, θimpute denotes
its learnable parameters, and ⊙ represents the element-wise multiplication. The imputation process
aims to recover the missing entries such that X̂Imputed ≈ X with respect to the actual X values.
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(a) Economy (b) Social Good (c) Traffic

Figure 2: By overlaying the top frequencies of paired texts (vertical dashed lines) onto the amplitude
spectrum of the time series, it is observed that the time-series-paired texts exhibit similar periodic
properties that closely mirror those of the original time series. We term this phenomenon Chronologi-
cal Textual Resonance. More Details are provided in Appendix A.

Extending Time Series with Paired Texts. In addition to the numerical time series X ∈ RT×N , the
dataset D = {X,S} includes textual information S = {s1, s2, . . . , sT }, where each st represents
the text at timestamp t. Each st is a string that can be tokenized into a sequence of tokens, i.e.,
Tokenize(st) = {wt,1, wt,2, . . . , wt,Lt

}, where Lt denotes the number of tokens in the text at time t.
The textual data can be transformed into numerical representations using a textual encoder Htext:

et = Htext(st; θtext) ∈ Rdtext , (3)

where et is the encoded text representation at time t, dtext is text embedding dimension, and θtext are
encoder parameters. In this work, we leverage pre-trained large language models to encode the texts.

3 CHRONOLOGICAL TEXTUAL RESONANCE (CTR)
The association of time series at each timestamp may imbue time-series-paired texts with unique
characteristics that can be effectively harnessed through an appropriate design.

The Platonic Representation Hypothesis. PRH (Huh et al., 2024) posits that different modalities
describing the same object converge towards a shared, latent representation. Extending this hypothesis,
if time series and paired text both describe the same changing event, their representations are dynamic
projections from a common underlying source, and should exhibit similar periodic properties.

To illustrate this hypothesis for time series with paired texts, we analyze three real-world datasets (Liu
et al., 2024a), including (i) Economy: The time series represents trade data of the U.S., while the texts
describe the general economic conditions of the country. (ii) Social Good: The time series captures
the unemployment rate in the U.S., and the texts include detailed unemployment reports. (iii) Traffic:
The time series reflects monthly travel volume trends from the U.S. Department of Transportation,
with corresponding texts derived from traffic volume reports issued by the same department.

For each dataset D = {X,S}, we employ Fourier Transform (Nussbaumer, 1982; Sneddon, 1995) to
analyze the frequency components of time series data and identify its dominant periodic components,
illustrated by the blue curves in Figure 2. To examine the periodicity of texts, we embed each st ∈ S
to obtain the text embedding et at timestamp t. Then, we compute their lag-similarity, defined as
dl =

∑
t cos(et, et+L) where L is the lag and cos(·, ·) represents the cosine similarity. If the text

embeddings exhibit a significant periodic pattern, the lag-similarity dl will also fluctuate periodically
as the lag l increases (proof in Proposition A.1). Finally, we identify major frequencies (with the
largest amplitudes) of the texts by applying FFT to text lag-similarity, and mark them with red dashed
lines, as shown in Figure 2. Detailed process is provided in Appendix A. We find that the major
frequencies of the paired texts closely match those of the time series. Specifically, the paired texts
also show periodicity of 12 (frequency 0.083) for monthly sampled time series, indicating that the
paired texts exhibit periodicity that is strongly aligned with the temporal dynamics of the time series.

Why may CTR happen? We present three key reasons for the observed alignment in periodicity
between time series and their paired texts: (i) Shared External Drivers: Both the time series
and their paired texts are often influenced by common external factors, such as seasonal changes,
recurring events, or societal and economic cycles. These shared drivers naturally induce periodicity

3
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Figure 3: Texts as Time Series (TaTS) framework. As paired texts may exhibit behaviors similar to
accompanying variables in a time series, TaTS transforms the paired texts into auxiliary variables.
These variables augment the numerical sequence, forming a unified multimodal sequence that can be
seamlessly integrated into any existing time series model.

in both modalities. (ii) Influence of Time Series on Texts: Paired texts often serve as contextual
reflections of the underlying time series, adapting and evolving in response to numerical trends. For
instance, news articles or government reports accompanying economic indicators are frequently
updated in response to the numerical trends. (iii) Texts Contain Additional Variables with Aligned
Periodicity: Paired texts often include additional variables that are closely related to the time series.
For example, if the time series represents economic GDP data, the accompanying texts may reference
related variables such as stock market indices or inflation rates. These related variables often exhibit
periodicity patterns aligned with the time series and affect the periodicity of the paired texts.

Table 1: TT-Wasserstein measure of Time-MMD (Liu et al., 2024a) datasets and their random shuffle.

Dataset Monthly Sampled Weekly Sampled Daily Sampled
Agriculture Climate Economy Security Social Good Traffic Energy Health Environment

Original 0.026 0.025 0.022 0.049 0.027 0.035 0.307 0.233 0.302
TS shuffled 0.088 0.032 0.098 0.054 0.069 0.102 0.320 0.268 0.358
Text shuffled 0.106 0.037 0.099 0.053 0.072 0.104 0.312 0.277 0.364

Quantifying CTR level. Of course we cannot expect every time series with paired texts at each
timestamp to exhibit periodicity similarity. In some cases, texts aligned with timestamps may not
provide meaningful or complementary information, for example, daily lottery winning numbers. To
this end, we propose a new metric for CTR, TT-Wasserstein, defined as the Wasserstein distance
between the normalized spectra of time series and texts. Formally, based on Wasserstein distance
W (P,Q) (Kantorovich, 1960), for time series with paired texts dataset D = {X,S}, after computing
normalized frequencies and amplitudes f̃texts, f̃ts, ãtexts, ãts,

TT-Wasserstein(D) = W (Ptexts, Pts) = inf
γ∈Π(Ptext,Pts)

n∑
i=1

m∑
j=1

γij ·
∣∣∣f̃ (i)

texts − f̃
(j)
ts

∣∣∣
Subject to γij ≥ 0,

m∑
j=1

γij = ã
(i)
texts,

n∑
i=1

γij = ã
(j)
ts

(4)

Intuitively, TT-Wasserstein(D) quantifies the discrepancy between the spectral distributions of paired
texts and time series data. By design, a lower value of TT-Wasserstein(D) should indicate a higher
alignment between the textual and numerical modalities. To validate this, we compute our TT-
Wasserstein measure of Time-MMD (Liu et al., 2024a) datasets, whose web-retrieved texts are
filtered, disentangled, and summarized for relevance and alignment. We also compute TT-Wasserstein
on time-series-shuffled or text-shuffled versions of the datasets to disrupt alignment. As shown
in Table 1, the corrupted Time-MMD datasets yield much larger Wasserstein distances compared
to the original datasets. This finding suggests that TT-Wasserstein can serve as an indicator for
the alignment between modalities and a gauge of dataset quality. In Section 5, we will show that
TT-Wasserstein can even predict the potential effectiveness of our proposed framework. Additionally,
because TT-Wasserstein is an empirical statistical metric, we further analyze its sensitivity and
estimation stability in Appendix A.1.
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4 TEXTS AS TIME SERIES

An overview of the proposed Texts as Time Series (TaTS) is illustrated in Figure 3.

Concurrent Texts are Secretly Auxiliary Variables. As we elucidated in Section 3, the properties of
concurrent texts closely align with those of variables in a multivariate time series: similar to numerical
variables, concurrent texts are influenced by shared external drivers and interact dynamically with the
time series. Furthermore, mapping concurrent texts to structured variables enables capturing hidden
variables embedded within the concurrent texts.

Given the dataset D = {X = {x1,x2, . . . ,xN},S = {s1, s2, . . . , sT }}, TaTS first embed the texts
using a text encoder Htext to obtain text embeddings E = {e1, e2, . . . , eT } ∈ Rdtext×T . Since the text
embedding dimension dtext is typically much larger than the number of variables in the time series,
we reduce the dimensionality of the text embeddings by applying a Multi-Layer Perceptron (MLP),
mapping them into a lower-dimensional space of reduced dimensionality dmapped.

zt = MLP(et; θMLP) ∈ Rdmapped (5)

Unifying by Plugging-in a Time Series Model. The resulting mapped embeddings Z =
{z1, z2, . . . , zT } ∈ Rdmapped×T are then treated as auxiliary variables in the time series. Specifi-
cally, Z is concatenated with X to form a unified multimodal sequence:

U = [X;Z⊺]dim=1 ∈ RT×(N+dmapped) (6)

The unified sequence U is then passed into an existing time series model for downstream tasks. Here,
we formulate the example of forecasting the next H steps of the time series

X̂T+1:T+H = F (U1:T ; θforecast) [: N ] ∈ RH×N (7)

where F(·; θforecast) denotes the time series forecasting model with parameters θforecast, and [: N ]
extracts the first N variables corresponding to the original time series.

Finally, we joint train the time series model θforecast as well as the mapping MLP θMLP using the Mean
Squared Error (MSE) loss.

Lforecast(X, X̂) =
1

H ·N

T+H∑
t=T+1

N∑
i=1

(
Xt,i − X̂t,i

)2

(8)

where Xt,i and X̂t,i represent the ground truth and predicted values of the ith variable at time step
t, respectively. TaTS for imputation follows a similar process and is omitted here due to space
constraints. Detailed algorithms for both forecasting and imputation are provided in Appendix C.

To conclude this section, we note that while some existing literatures make similar but limited
attempts to model covariates in multivariate time series or multiple time series. Our TaTS framework
differentiates from those approaches by unifying multi-modality using deep learning architectures. In
Section 5, we compare TaTS with these existing approaches.

5 EXPERIMENT

In this section, we empirically validate the effectiveness of the proposed TaTS framework. In
particular, we use GPT2 (Radford et al., 2019) encoder to embed the paired texts. We also validate the
performance of TaTS with other text encoders across different datasets in section 5.2 and Appendix
E.7. Implementation details are provided in Appendix D.4.

Datasets. We evaluate our framework on 18 real-world datasets from Time-MMD (Liu et al., 2024a),
FNSPID Dong et al. (2024), and FNF Wang et al. (2024b). The datasets span diverse domains with
sample frequencies ranging from daily to weekly and monthly. More details are in Appendix D.1.

Time Series Models and Baselines. To demonstrate the compatibility of TaTS with existing time
series models, we integrate TaTS with 9 widely used models across different categories, including (i)
Transformer-based models: iTransformer (Liu et al., 2024c), PatchTST (Nie et al., 2023), Crossformer
(Zhang & Yan, 2023), Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021) and Transformer
(Vaswani et al., 2017). (ii) Linear models: DLinear (Zeng et al., 2023). (iii) Frequency-based models:
FEDformer (Zhou et al., 2022b), FiLM (Zhou et al., 2022a).
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Table 2: Time-series forecasting performance. Compared to numerical-only unimodal modeling and
MM-TSFLib, TaTS consistently and significantly enhances existing time series models to effectively
handle paired texts. The results are averaged across all prediction lengths. Full results reported in
Appendix E.3. Promotion (positive or negative) denotes the percentage reduction (or increase) in
MSE or MAE achieved by TaTS compared to the best-performing baseline.

Models iTransformer PatchTST Crossformer DLinear FEDformer FiLM Autoformer Informer Transformer
(2024c) (2023) (2023) (2023) (2022b) (2022a) (2021) (2021) (2017)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Agriculture

Uni-modal 0.122 0.251 0.120 0.247 0.323 0.406 0.223 0.354 0.138 0.286 0.139 0.256 0.158 0.297 0.599 0.630 0.354 0.434
MM-TSFLib 0.112 0.230 0.114 0.233 0.218 0.313 0.218 0.355 0.131 0.275 0.140 0.258 0.158 0.288 0.313 0.414 0.249 0.352
TaTS (ours) 0.109 0.229 0.114 0.235 0.212 0.312 0.214 0.351 0.131 0.276 0.135 0.251 0.125 0.266 0.255 0.348 0.191 0.313

Promotion 2.7% 0.4% 0.0% -0.9% 2.8% 0.3% 1.8% 0.8% 0.0% -0.4% 2.9% 2.0% 20.9% 7.6% 18.5% 15.9% 23.3% 11.1%

Climate

Uni-modal 1.183 0.871 1.220 0.895 1.124 0.837 1.190 0.872 1.192 0.893 1.270 0.911 1.131 0.865 1.110 0.841 1.092 0.839
MM-TSFLib 1.044 0.810 1.030 0.806 1.002 0.772 1.104 0.837 1.011 0.797 1.179 0.871 1.053 0.827 1.001 0.792 0.998 0.783
TaTS (ours) 1.028 0.804 1.004 0.798 0.938 0.755 0.931 0.759 0.926 0.760 0.945 0.772 0.980 0.789 0.930 0.756 0.920 0.753

Promotion 1.5% 0.7% 2.5% 1.0% 6.4% 2.2% 15.7% 9.3% 8.4% 4.6% 19.8% 11.4% 6.9% 4.6% 7.1% 4.5% 7.8% 3.8%

Economy

Uni-modal 0.014 0.096 0.017 0.105 0.758 0.828 0.058 0.192 0.042 0.166 0.025 0.129 0.071 0.207 1.325 1.110 0.584 0.711
MM-TSFLib 0.011 0.086 0.014 0.096 0.250 0.458 0.058 0.192 0.035 0.153 0.026 0.129 0.058 0.192 0.432 0.618 0.213 0.416
TaTS (ours) 0.008 0.077 0.009 0.079 0.219 0.419 0.021 0.117 0.015 0.101 0.009 0.080 0.024 0.121 0.299 0.512 0.079 0.232

Promotion 27.3% 10.5% 35.7% 17.7% 12.4% 8.5% 63.8% 39.1% 57.1% 34.0% 64.0% 38.0% 58.6% 37.0% 30.8% 17.2% 62.9% 44.2%

Energy

Uni-modal 0.269 0.375 0.269 0.376 0.293 0.406 0.291 0.396 0.240 0.351 0.278 0.385 0.319 0.428 0.309 0.425 0.297 0.405
MM-TSFLib 0.267 0.378 0.272 0.379 0.291 0.407 0.289 0.395 0.238 0.354 0.279 0.385 0.320 0.428 0.301 0.413 0.293 0.405
TaTS (ours) 0.265 0.376 0.258 0.371 0.279 0.394 0.283 0.388 0.237 0.355 0.271 0.379 0.314 0.430 0.284 0.396 0.279 0.395

Promotion 0.7% -0.3% 4.1% 1.3% 4.1% 3.0% 2.1% 1.8% 0.4% -1.1% 2.5% 1.6% 1.6% -0.5% 5.6% 4.1% 4.8% 2.5%

Environment

Uni-modal 0.441 0.494 0.552 0.537 0.551 0.581 0.558 0.591 0.503 0.549 0.577 0.543 0.599 0.598 0.459 0.512 0.460 0.511
MM-TSFLib 0.421 0.478 0.459 0.501 0.427 0.488 0.429 0.502 0.423 0.486 0.478 0.490 0.452 0.502 0.424 0.480 0.425 0.481
TaTS (ours) 0.267 0.369 0.273 0.371 0.284 0.403 0.298 0.428 0.275 0.378 0.272 0.371 0.285 0.387 0.285 0.406 0.276 0.397

Promotion 36.6% 22.8% 40.5% 25.9% 33.5% 17.4% 30.5% 14.7% 35.0% 22.2% 43.1% 24.3% 36.9% 22.9% 32.8% 15.4% 35.1% 17.5%

Health

Uni-modal 1.587 0.817 1.652 0.855 1.535 0.827 1.737 0.848 1.486 0.909 1.982 1.005 1.962 1.039 1.278 0.773 1.378 0.776
MM-TSFLib 1.446 0.816 1.347 0.797 1.273 0.744 1.541 0.800 1.252 0.792 1.675 0.949 1.494 0.887 1.215 0.740 1.218 0.748
TaTS (ours) 1.315 0.744 1.283 0.753 1.226 0.728 1.412 0.787 1.244 0.791 1.421 0.838 1.409 0.861 1.183 0.752 1.142 0.718

Promotion 9.1% 8.8% 4.8% 5.5% 3.7% 2.2% 8.4% 1.6% 0.6% 0.1% 15.2% 11.7% 5.7% 2.9% 2.6% -1.6% 6.2% 4.0%

Security

Uni-modal 115.94 5.660 112.85 5.371 126.96 6.277 109.11 4.711 114.48 5.158 115.55 5.487 115.27 5.118 131.78 6.623 131.35 6.582
MM-TSFLib 116.34 5.532 112.84 5.369 125.72 6.183 108.03 4.712 113.73 5.107 109.19 4.897 111.44 4.973 128.95 6.415 128.47 6.378
TaTS (ours) 112.05 5.151 109.69 5.019 125.16 6.148 107.92 4.676 107.37 4.718 107.85 4.736 108.49 4.787 126.66 6.276 124.58 6.134

Promotion 3.4% 6.9% 2.8% 6.5% 0.4% 0.6% 0.1% 0.7% 5.6% 7.6% 1.2% 3.3% 2.7% 3.7% 1.8% 2.2% 3.0% 3.8%

Social Good

Uni-modal 1.212 0.483 1.097 0.495 0.865 0.467 1.151 0.712 0.979 0.476 1.261 0.654 1.278 0.701 0.870 0.504 0.910 0.484
MM-TSFLib 1.197 0.520 1.073 0.515 0.837 0.398 1.083 0.673 0.962 0.462 1.236 0.626 1.229 0.670 0.839 0.457 0.856 0.461
TaTS (ours) 0.987 0.452 0.972 0.465 0.779 0.412 1.006 0.622 0.888 0.430 1.104 0.626 1.195 0.666 0.810 0.459 0.807 0.419

Promotion 17.5% 6.4% 9.4% 6.1% 6.9% -3.5% 7.1% 7.6% 7.7% 6.9% 10.7% 0.0% 2.8% 0.6% 3.5% -0.4% 5.7% 9.1%

Traffic

Uni-modal 0.213 0.238 0.188 0.242 0.214 0.376 0.230 0.359 0.205 0.264 0.215 0.314 0.212 0.298 0.202 0.355 0.209 0.346
MM-TSFLib 0.199 0.347 0.178 0.230 0.188 0.334 0.209 0.330 0.193 0.238 0.207 0.300 0.212 0.272 0.172 0.299 0.171 0.295
TaTS (ours) 0.187 0.217 0.172 0.209 0.168 0.286 0.188 0.300 0.173 0.212 0.176 0.248 0.177 0.229 0.164 0.281 0.164 0.274

Promotion 6.0% 8.8% 3.4% 9.1% 10.6% 14.4% 10.0% 9.1% 10.4% 10.9% 15.0% 17.3% 16.5% 15.8% 4.7% 6.0% 4.1% 7.1%

We compare our TaTS framework with a wide array of baselines, including (a) numerical-only uni-
modal modeling, which ignores the paired texts and utilizes only the numerical time series with the
given time series model; (b) MM-TSFLib (Liu et al., 2024a), a recently library proposed together with
Time-MMD datasets for multimodal time series forecasting; (c) covariate-based methods: N-BEATS
(Oreshkin et al., 2020), N-HiTS (Challu et al., 2022); (d) convolution-based method TCN (Bai et al.,
2018); (e) a recent multimodal time series foundation model ChatTime (Wang et al., 2025).

Metrics. We evaluate the performance of multimodal time series modeling using MSE, MAE, RMSE,
MAPE, and MSPE. Due to space constraints, we report only the MSE and MAE results in the main
paper, while the results for the other metrics are provided in Appendix E.

5.1 MAIN RESULTS

Improved Forecasting over Uni-modal Modeling and MM-TSFLib. Table 2 presents the per-
formance results for the time series forecasting task on Time-MMD datasets. For each dataset and
time series model, we report the average performance across four different prediction lengths, and
the full results for each prediction length are provided in Appendix E. For datasets with relatively
few samples, we perform short-term forecasting with prediction lengths of {6, 8, 10, 12}. In contrast,
for datasets with a larger number of samples, we perform long-term forecasting with prediction
lengths of {48, 96, 192, 336}. From the results, compared to uni-modal modeling or MM-TSFLib,
our TaTS consistently achieves the best performance across all datasets. Notably, by plugging in
TaTS to various existing time series models, it achieves an average performance improvement of over
5% on 6 out of 9 datasets and delivers a remarkable performance boost of over 30% on the largest
dataset, Environment. The results also demonstrate that TaTS is highly compatible with a wide range
of existing time series forecasting models, consistently delivering performance improvements across
all of them in both long-term forecasting and short-term forecasting tasks. We provide a visualization
of the performance boost in Appendix E.2, showcasing the improvements achieved by different time
series models on each dataset.
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Table 4: TaTS compared with several baselines on a variety of datasets. Best results are bolded and
second-best results are underlined. Full results in Table 28.

Methods TaTS (ours) TaTS (ours) TaTS (ours) N-BEATS N-HiTS TCN ChatTime GPT4MTS
+ iTransformer + PatchTST + FiLM (2020) (2022) (2018) (2025) (2024)

Datasets MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Time-MMD:
Multimodal
Time Series

(2024a)

Agriculture 0.109 0.229 0.114 0.235 0.135 0.251 3.267 1.458 1.852 1.032 4.168 1.797 0.508 0.447 0.327 0.393
Climate 1.028 0.804 1.004 0.798 0.945 0.772 1.093 0.861 1.103 0.858 1.098 0.866 1.568 1.019 1.127 0.873

Economy 0.008 0.077 0.009 0.079 0.009 0.080 1.010 0.920 0.444 0.584 5.546 2.349 0.049 0.166 0.014 0.096
Energy 0.265 0.376 0.258 0.371 0.271 0.379 0.329 0.424 0.372 0.463 0.430 0.512 0.305 0.417 0.269 0.378

Environment 0.267 0.369 0.273 0.371 0.272 0.371 0.518 0.573 0.522 0.583 0.854 0.713 0.580 0.594 0.348 0.422
Health 1.315 0.744 1.283 0.753 1.421 0.838 1.660 0.938 1.666 0.898 1.938 0.970 1.668 0.909 1.766 0.875

Security 112.054 5.151 109.693 5.019 107.850 4.736 130.065 6.618 138.124 6.978 136.596 6.873 133.106 6.887 119.407 5.198
Social Good 0.987 0.452 0.972 0.465 1.104 0.626 1.316 0.665 1.272 0.649 1.314 0.961 1.264 0.652 1.414 0.559

Traffic 0.187 0.217 0.172 0.209 0.176 0.248 0.347 0.464 0.268 0.382 0.708 0.744 0.363 0.429 0.195 0.246

FNSPID:
Company

Stock Price
(2024)

Delta Airlines (DAL) 0.087 0.197 0.086 0.192 0.095 0.201 0.286 0.444 0.226 0.379 0.294 0.466 0.098 0.202 0.093 0.201
IBM (IBM) 0.564 0.501 0.550 0.490 0.891 0.695 1.105 0.777 1.215 0.806 1.936 1.123 0.602 0.536 0.639 0.525

JPMorgan (JPM) 1.693 0.970 1.872 0.990 2.513 1.096 2.419 1.175 3.426 1.232 3.764 1.711 2.037 1.043 2.133 1.122
NVIDIA (NVDA) 0.043 0.141 0.048 0.156 0.050 0.174 0.272 0.434 0.122 0.262 0.457 0.574 0.053 0.161 0.054 0.159

Pfizer (PFE) 0.326 0.416 0.347 0.422 0.448 0.477 0.676 0.572 0.824 0.663 0.628 0.559 0.408 0.477 0.369 0.439
Tesla (TSLA) 0.142 0.281 0.158 0.297 0.110 0.244 0.188 0.332 0.254 0.416 3.476 1.851 0.158 0.300 0.181 0.303

FNF:
Forecast with News

(2024b)

Bitcoin Price 2.609 1.112 2.339 1.045 2.775 1.142 141.738 10.355 159.019 10.535 57.826 6.744 3.590 1.344 2.721 1.152
Web Traffic 17.744 2.712 17.964 2.653 18.110 2.772 22.233 3.017 23.263 3.011 21.626 2.842 20.748 2.909 19.260 2.827

Electricity Demand 0.280 0.396 0.254 0.358 0.266 0.377 0.416 0.496 0.364 0.468 0.516 0.564 0.532 0.566 0.296 0.395

Table 3: Imputation task performance.
Full results in Appendix E.4. Promo-
tion: percentage reduction by TaTS
over the best-performing baseline.

Models PatchTST DLinear FiLM
(2023) (2023) (2022a)

Metric MSE MAE MSE MAE MSE MAE

Climate

Uni-modal 1.111 0.846 0.969 0.801 1.123 0.829
MM-TSFLib 1.010 0.821 0.963 0.802 1.130 0.833
TaTS (ours) 0.878 0.720 0.912 0.757 0.820 0.718

Promotion 13.1% 12.3% 5.3% 5.5% 27.0% 13.4%

Economy

Uni-modal 0.029 0.138 0.057 0.190 0.077 0.209
MM-TSFLib 0.026 0.137 0.061 0.196 0.075 0.203
TaTS (ours) 0.017 0.045 0.045 0.171 0.054 0.168

Promotion 34.6% 67.2% 21.0% 11.2% 28.0% 17.2%

Traffic

Uni-modal 0.210 0.339 0.245 0.417 0.175 0.311
MM-TSFLib 0.189 0.341 0.179 0.335 0.169 0.288
TaTS (ours) 0.131 0.248 0.134 0.297 0.137 0.242

Promotion 30.7% 26.8% 25.1% 11.3% 18.9% 16.0%

Improved Time Series Imputation. We evaluate the perfor-
mance of our TaTS framework on the imputation task using
the Climate, Economy, and Traffic datasets, each with an
imputation length of 24. Though MM-TSFLib only supports
forecasting tasks, we extend it to serve as an imputation base-
line by applying a similar linear interpolation. We select
one representative time series model from each category and
present the results in Table 3. The results demonstrate that
TaTS consistently enhances the imputation capabilities of
existing time series models, achieving improvements of up
to 30% compared to baseline methods.

From the above results, effectively leveraging the text modal-
ity provides significant benefits when paired texts are avail-
able, and our TaTS framework achieves notable improve-
ments over baseline methods that disregard positional information in time-series-paired texts.

TaTS Benefits from Better Alignment (i.e., lower TT-Wasserstein). We compute the average
forecasting improvement of TaTS compared to numerical-only modeling, as well as the ratio of
TT-Wasserstein between original and shuffled Time-MMD datasets. The results, shown in Table
5, reveal that, within the same sampling frequency, lower TT-Wasserstein original-shuffled ratios
tend to correlate with larger performance gains from TaTS (except for Climate). In other words, for
paired time series and texts that have stronger CTR, i.e., more relevant, our TaTS could improve
performance more. Thus, TT-Wasserstein can indicate the usefulness of paired texts and the potential
effectiveness of TaTS when text quality and cross-modal alignment are uncertain.

Table 5: TaTS Improvements positively correlated with TT-Wasserstein measure of Time-MMD (Liu
et al., 2024a) datasets.

Dataset Monthly Sampled Weekly Sampled Daily Sampled
Agriculture Climate Economy Security Social Good Traffic Energy Health Environment

Ratio of Original to Shuffled TT-Wasserstein (%) 26.8 72.4 22.3 91.5 38.2 34.6 97.1 85.6 83.6
Avg. Improvement of TaTS over uni-modal (%) 20.70 18.03 64.80 4.05 10.99 16.78 3.62 19.51 36.00

Comparison beyond Uni-modal Modeling and MM-TSFLib. Besides numerical-only time series
models and the MM-TSFLib framework, we compare our TaTS with several other baselines on
three dataset sources, including Time-MMD (Liu et al., 2024a), FNSPID (Dong et al., 2024), and
FNF (Wang et al., 2024b). Although N-BEATS, N-HiTS and TCN are not specifically designed
for time series with paired texts, we adapt them by feeding both time series and text embeddings
to them. We also include several baselines that explicitly incorporate multimodal information.. For
ChatTime, we concatenate all paired texts into a single long text and perform zero-shot inference.
For GPT4MTS, we convert the datasets we used into their prescribed input format and directly
apply their pipeline. The results averaged from multiple prediction lengths are shown in Table 4,
with full results in Table 28. The results show that covariate-based and convolution-based models
perform comparably or worse than iTransformer, and consistently underperform compared to our
TaTS. Although ChatTime achieves competitive results even in a zero-shot setting, highlighting the
value of integrating texts when high-quality texts are available, our TaTS outperforms it through
supervised learning. We further compare TaTS with several multimodal methods from concurrent
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(a) (b) (c) (d)

Figure 4: Further analysis of our TaTS framework. (a) Learning rate sensitivity: TaTS maintains
stable performance across different learning rates (full results in Appendix E.5). (b) Text Projection
Dimension sensitivity: TaTS remains robust across varying dmapped (full results in Appendix E.6). (c)
Varying text encoder: TaTS consistently outperforms baselines across different text encoders (full
results in Appendix E.7). (d) Efficiency: TaTS introduces only a minor parameter increase (∼ 1%)
but significantly improves the performance according to Table 2.

preprints that also evaluate on Time-MMD. Using their reported results (Table 12), we find that TaTS
elevates standard time-series backbones into highly competitive models, rivaling recent approaches
with substantially more complex designs.

5.2 FURTHER ANALYSIS

Hyperparameter Sensitivity. We perform hyperparameter studies to evaluate the impact of (i) the
learning rate and (ii) dmapped, the dimension to which high-dimensional text embeddings are projected
by the MLP, as defined in Equation 5. The results are presented in Figure 4, subfigures (a) and
(b), with full results available in Appendix E.5 and Appendix E.6. The findings indicate that TaTS
maintains robust performance across different choices of the learning rate and the text projection
dimension dmapped.

Ablation with Different Text Encoders in TaTS. While GPT-2 was used as the primary text encoder
in our main experiments to demonstrate the effectiveness of TaTS, we further evaluate the performance
of TaTS with different text encoders, including BERT (Devlin et al., 2019), GPT-2 (Radford et al.,
2019), and LLaMA2 (Touvron et al., 2023). We utilize the official implementations available on
Hugging Face and present the results in Figure 4, with full results provided in Appendix E.7. The
results show that TaTS remains robust across different text encoders and consistently outperforms
both the uni-modal and MM-TSFLib baselines. Notably, as the size of the language models used
in TaTS increases from 110M (BERT) to 1.5B (GPT-2) and further to 7B (LLaMA2), we observe a
slight improvement in performance. Investigating the relationship between the text encoder size and
TaTS’s effectiveness remains an open direction for future research.

Table 6: TaTS Ablation on Alternative Modality
Fusion Architectures.

Dataset Climate Security Traffic # Parameters

TaTS Settings MSE MAE MSE MAE MSE MAE Fuser Total

MLP projection (original) 0.992 0.791 109.865 4.968 0.178 0.224 74988 6396658
gated residual 0.998 0.794 110.254 4.965 0.177 0.227 9396 6331066
cross-attention 0.989 0.792 109.729 4.976 0.178 0.221 99340 6421010

Ablation with Other Design Choices to Com-
bine Modalities. In our main experiments, TaTS
transforms the paired texts into auxiliary variables
through embedding, projection and concatenation.
Our TaTS framework is readily extensible to other
fusion design choices. We evaluate two alternative
architectures that replace the MLP projection with:
(a) a gated residual and (b) a cross-attention module between the time series and text embeddings. We
report the average MSE and MAE across TaTS with iTransformer, PatchTST, and FiLM in Table 6.
From the results, these alternative mechanisms achieve similar performance to the MLP-based design.
One possible explanation is that linear projections are already highly competitive for time-series
representation learning, especially when paired with strong backbone forecasters that account for the
majority of the model parameters. We leave the exploration of more fine-grained multimodal fusion
designs as an interesting direction for future work.

Table 7: TaTS Ablation on text-shuffled datasets.
Dataset Climate Security Traffic

Settings MSE MAE MSE MAE MSE MAE

iTransformer + TaTS + original data 1.028 0.804 112.05 5.151 0.187 0.217
iTransformer + TaTS + corrupted data 1.242 0.895 117.82 5.767 0.223 0.265

iTransformer + uni-modal + original data 1.183 0.871 115.94 5.660 0.213 0.238

Ablation on Corrupted Datasets. To validate
that the performance gains stem from useful tex-
tual cues, we conduct corruption experiments
where the textual information was randomly shuf-
fled across timestamps. All other settings are un-
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changed, and the results are in Table 7. When
textual alignment is destroyed, the performance drops significantly to matching or even being worse
than the uni-modal baseline. This is expected, as randomly shuffled text acts as noise rather than a
meaningful signal.

Table 8: TaTS Ablation on text-dropped datasets.
Dataset Climate Security Traffic

Settings MSE MAE MSE MAE MSE MAE

TaTS + original data 1.028 0.804 112.05 5.151 0.187 0.217
TaTS + 10% text randomly dropped 1.032 0.809 112.94 5.372 0.194 0.239
TaTS + 25% text randomly dropped 1.056 0.818 114.59 5.231 0.203 0.254

Ablation on Text-Randomly-Dropped Datasets.
Similar to corruption ablations, we conduct ex-
periments with randomly dropped texts. Dropped
texts are filled with “no information available.”
The results are in Table 8. While performance de-
grades slightly as more text is randomly dropped,
TaTS remains effective, performing comparably to MM-TSF Lib even with 25% of the text missing.

Table 9: Dropping extremely noisy texts miti-
gates negative effects from them.

Dataset Climate Security Traffic

Settings MSE MAE MSE MAE MSE MAE

TaTS + corrupted data 1.242 0.895 117.82 5.767 0.223 0.265
TaTS + 60% corrupted data 1.218 0.879 117.43 5.730 0.215 0.260
TaTS + 20% corrupted data 1.201 0.878 116.68 5.713 0.216 0.255
uni-modal + original data 1.183 0.871 115.94 5.660 0.213 0.238

Mitigating Negative Effects of Extremely Noisy
Texts. Our ablation on corrupted datasets shows
that highly noisy text can cause TaTS to even
slightly underperform numerical-only modeling.
To address this, we evaluate a simple mitigation
strategy: randomly dropping a portion of the noisy
texts and replacing them with “no information
available.” We test drop rates of 40% and 80%. As
shown in Table 9, dropping noisy texts allows TaTS to recover performance close to the unimodal
baseline, demonstrating the effectiveness of this strategy in handling unreliable text.

Computational Overhead vs. Performance Gain. We also evaluate the efficiency of our proposed
TaTS by measuring the training time per epoch and the total number of model parameters. Figure
4 (d) presents the total number of parameters for the best-performing models in our forecasting
experiments. TaTS introduces only a lightweight three-layer MLP to project high-dimensional text
embeddings into a lower-dimensional space, adding a minimal number of parameters compared to
the original time series models. As a result, the overall parameter count increases by only about 1%.

Due to the inclusion of augmented time series with auxiliary variables from paired texts, the training
time per epoch increases slightly, as shown in Figure 5, with average performance of each framework
indicated by cross markers. Full results for all datasets are provided in Appendix E.8. Notably, this
marginal efficiency trade-off (∼ 1% in terms of number of learnable parameters and ∼ 8% in terms
of training time) leads to significant improvements (∼ 14%) in forecasting performance.

6 RELATED WORK

Figure 5: While TaTS incurs a
slight increase in training time due
to augmented auxiliary variables, it
significantly improves forecasting.
Full results in Appendix E.8.

Numerical-only Time Series Modeling. Recently, various
deep learning models have been developed for time series anal-
ysis, which can be broadly categorized into three categories.
(1) Patch-based models. PatchTST (Nie et al., 2023) seg-
ments time series into subseries-level patches to capture depen-
dencies, while Crossformer (Zhang & Yan, 2023) employs a
two-stage attention mechanism to model both cross-time and
cross-variable dependencies efficiently. Autoformer (Wu et al.,
2021) introduces decomposition blocks to separate seasonal and
trend-cyclical components. (2) Global representation models.
iTransformer (Liu et al., 2024c) utilizes attention over global
series representations to capture multivariate correlations. In-
former (Zhou et al., 2021) reduces self-attention complexity
using ProbSparse self-attention for improved efficiency. Dlinear
(Zeng et al., 2023) demonstrates that simple linear regression
in the raw space can perform competitively on MTS tasks. (3)
Frequency-aware models. FEDformer (Zhou et al., 2022b)
represents series through randomly selected Fourier components, while FiLM (Zhou et al., 2022a)
enhances representations with frequency-based layers to reduce noise and accelerate training. In this
work, our proposed TaTS is compatible with all of the models listed above.
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Time Series with other data sources. In the financial domain, several early works have explored
integrating time series with textual data, albeit not in a timestamp-aligned manner, or often leveraging
general machine learning models rather than time series-specific architectures. For example, StockNet
(Xu & Cohen, 2018) uses a VAE-like model for chaotic stock-text data, while (Rodrigues et al.,
2019) fuses time series with a single event-related document. BoEC (Farimani et al., 2021) applies
a bag-of-economic-concepts approach, and Dandelion (Zhou et al., 2020) leverages multimodal
attention for feature aggregation from multiple text sources. Some works also explored time series
with vision information (Liu & Cai, 2012; Gerard et al., 2023; Lütjens et al., 2024) for spatio-temporal
analysis. Recently, Time-MMD (Liu et al., 2024a) constructs a dataset of time series paired with
parallel text, covering multiple domains, which we used in our main experiments.

Large Language Models on Time Series. The rapid advancement of Large Language Models
(LLMs) has inspired a new line of research that transforms time series into natural language represen-
tations, enabling LLMs to perform downstream tasks (Zhang et al., 2024c). While these approaches
demonstrate strong generalization capabilities due to the power of LLMs (Gruver et al., 2023; Cao
et al., 2024; Jin et al., 2024; Xue & Salim, 2024), they also inherit limitations such as hallucination
(Huang et al., 2023) and context length constraints (Wang et al., 2024a; Liu et al., 2024b). Notably, a
recent work (Tan et al., 2024) suggests that replacing complex LLM architectures with basic attention
layers does not necessarily degrade the performance. Another emerging line of work focuses on
generating texts from time series, with applications in temporal reasoning and time-series question
answering (Chang et al., 2025). MTBench (Chen et al., 2025) provides a comprehensive evaluation
framework for assessing whether LLMs can jointly reason over structured numerical trends and
unstructured textual narratives. TSAIA (Ye et al., 2025) benchmarks LLMs’ multi-step temporal
reasoning capabilities. TimeXL (Jiang et al., 2025) further introduces collaborating LLM agents to
generate interpretable natural-language explanations alongside time-series forecasts.

In Appendix B, we also discuss available preprints that are related to this research.

7 CONCLUSION

Real-world time series data often comes with textual descriptions, yet prior studies have largely
overlooked this modality. We identify Chronological Textual Resonance, where text embeddings
exhibit periodic patterns similar to their paired time series. To leverage this insight, we propose a
plug-and-play framework that transforms text representations into auxiliary variables, seamlessly
integrating them into existing time series models. Extensive experiments across various forecasting
models and real-world datasets demonstrate the state-of-the-art performance of our approach.
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8 STATEMENTS

8.1 ETHICS STATEMENT

Our work is solely focused on the technical challenge of multimodal time series and does not involve
any elements that could pose ethical risks.

8.2 REPRODUCIBILITY STATEMENT

We provide our full experiment code in the supplementary materials, accompanied by a detailed
README to facilitate reproduction. The experimental environment is described in Appendix D,
including hardware and software configurations. All benchmark datasets used in this work are publicly
available. Comprehensive experiment details, including dataset specifications, hyperparameters, and
optimizer settings, are also documented in Appendix D. Reported results are averaged across multiple
prediction lengths. Furthermore, Section 5 presents hyperparameter studies, demonstrating the
robustness of our proposed TaTS framework.

8.3 LARGE LANGUAGE MODEL USAGE STATEMENT

Large Language Models did not play a significant role in research ideation and/or writing to the
extent that they could be regarded as a contributor. They were used only for minor refinement of
writing and as components within our proposed TaTS framework for handling the text modality.
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Appendix
Roadmap. In this appendix, we provide a detailed overview of our methodology and experimental
setup. Appendix A outlines the complete process of frequency analysis for both time series and
paired texts. Appendix B discusses of preprints that are related to this work. Appendix C illustrates
the TaTS algorithms for time series forecasting and imputation. Appendix D includes details on
datasets, hyperparameters, evaluation metrics, and additional implementation specifics. Due to
space constraints in the main text, Appendix E presents the full experimental results, including
comprehensive forecasting and imputation outcomes, hyperparameter and ablation studies, efficiency
evaluations, and visualizations. The table of contents is provided below for reference.
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A DETAILED FREQUENCY ANALYSIS PROCESS OF TIME SERIES WITH PAIRED
TEXTS

Here, we provide a detailed explanation of the frequency analysis process for both the time series
and their paired texts. In Proposition A.1 and A.2, we simplify the proof by analyzing each periodic
component individually as a single cosine. This is without loss of generality, as the operations
involved are linear. Therefore, the conclusions naturally extend to signals composed of multiple
periodic components through linear superposition.
Proposition A.1. The computation of lag similarity preserves the original periodicities of the data.

Proof. Let S = {st}Tt=1 represent the paired texts or data sequence, where each st corresponds to a
time step t. Define the lag similarity at lag k as:

LagSim(k) =
1

T − k

T−k∑
t=1

sim(st, st+k), (9)

where sim(·, ·) is a similarity measure (e.g., cosine similarity).

Now, consider the periodic component of the data sequence S, which can be represented as:

st = A cos

(
2πt

P
+ ϕ

)
, (10)

where A is the amplitude, P is the period, and ϕ is the phase.

For two points separated by lag k, the similarity sim(st, st+k) depends on the relative difference
between their phases:

st+k = A cos

(
2π(t+ k)

P
+ ϕ

)
= A cos

(
2πt

P
+

2πk

P
+ ϕ

)
. (11)

The lag similarity is then computed as:

LagSim(k) =
1

T − k

T−k∑
t=1

sim
(
A cos

(
2πt

P
+ ϕ

)
, A cos

(
2πt

P
+

2πk

P
+ ϕ

))
. (12)

Since the cosine function is periodic with period P , the similarity sim(st, st+k) also inherits this
periodicity. Therefore, the overall lag similarity LagSim(k) retains the periodicities of the original
sequence S.

Thus, the computation of lag similarity preserves the original periodicities of the data.

Proposition A.2. The stabilization of a data sequence using first-order differentiation preserves its
original periodicities.

Proof. Let S = {st}Tt=1 represent a data sequence, where st is the value at time step t. The first-order
differentiation of the sequence is defined as:

∆st = st+1 − st, t = 1, 2, . . . , T − 1. (13)

Suppose the sequence S exhibits periodic behavior with period P and can be represented as:

st = A cos

(
2πt

P
+ ϕ

)
, (14)

where A is the amplitude, P is the period, and ϕ is the phase.

The first-order difference of st is:

∆st = st+1 − st = A cos

(
2π(t+ 1)

P
+ ϕ

)
−A cos

(
2πt

P
+ ϕ

)
. (15)
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Figure 6: Illustration of the frequency analysis process for time series with paired texts in the
Economy dataset. Step 1⃝: Compute the average text similarity for each lag k. Step 2⃝: Stabilize the
time series using first-order differentiation, apply Fourier Transform, and perform Non-Maximum
Suppression (NMS) to obtain the amplitude spectrum. Step 3⃝: Visualize the lag similarity of paired
texts. Step 4⃝: Stabilize the paired texts, compute the Fourier Transform, and visualize the amplitude
spectrum. Step 5⃝: Overlay the top-l (here l=4) frequencies of paired texts onto the time series
amplitude spectrum to highlight shared periodic patterns. All the data transformation operations in
this process are periodicity-preserving according to Proposition A.1 and Proposition A.2.

Using the trigonometric identity for the difference of cosines:

cos(x+ y)− cos(x) = −2 sin
(y
2

)
sin

(
x+

y

2

)
, (16)

we set x = 2πt
P + ϕ and y = 2π

P , giving:

∆st = −2A sin
( π

P

)
sin

(
2πt

P
+ ϕ+

π

P

)
. (17)

The first term, sin
(
π
P

)
, is a constant dependent on the period P . The second term, sin

(
2πt
P + ϕ+ π

P

)
,

retains the periodicity of P , as it is a sinusoidal function with the same frequency as the original
sequence.

Thus, the first-order difference ∆st preserves the periodicity P of the original data sequence.

The overall process of frequency analysis for the time series X = {x1,x2, . . . ,xN} ∈ RT×N and
paired texts S = {s1, s2, . . . , sT } in the Economy dataset DEconomy = {X,S} is illustrated in Figure
6. In this process, starting from the original dataset (subfigure 1⃝), the time series and paired texts
are analyzed independently. For the time series X = {x1,x2, . . . ,xN} , we perform standard
frequency analysis, stabilizing the data through first-order differentiation.

∆Xt = Xt+1 −Xt, for t = 1, 2, . . . , T − 1, (18)

where ∆Xt represents the first-order difference of the time series. This step removes long-term
trends and ensures that the data is stationary, allowing for a more accurate analysis of its frequency
components.
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Then, we compute the Fourier Transform (Nussbaumer, 1982; Sneddon, 1995) of ∆X to analyze its
frequency components. The Fourier Transform of ∆X is defined as:

F∆X(f) =

T−1∑
t=1

∆Xte
−i2πft, (19)

where f represents the frequency, ∆Xt is the first-order difference of the time series at time t, and i
is the imaginary unit. The resulting F∆X(f) provides the amplitude and phase information of each
frequency component present in the time series.

The magnitude spectrum, which represents the amplitude of each frequency component, is computed
as:

|F∆X(f)| =
√

Re(F∆X(f))2 + Im(F∆X(f))2, (20)
where Re(F∆X(f)) and Im(F∆X(f)) are the real and imaginary parts of F∆X(f), respectively.

By analyzing |F∆X(f)|, we identify the dominant frequencies in the time series, which reveal
its periodic patterns. To further highlight the dominant frequencies, we apply Non-Maximum
Suppression (NMS) to the magnitude spectrum |F∆X(f)|. NMS ensures that only the most prominent
frequencies are retained while suppressing nearby less significant frequencies. The NMS operation is
defined as follows:

N (f) =

{
|F∆X(f)|, if |F∆X(f)| > |F∆X(f ′)| ∀f ′ ∈ N (f),

0, otherwise,
(21)

where N (f) represents a local neighborhood around the frequency f . The operation compares the
magnitude of |F∆X(f)| with those of neighboring frequencies and retains only the largest value
within the neighborhood. Frequencies that do not satisfy the condition are set to zero.

After applying NMS, the remaining frequencies represent the dominant periodic components of
the time series, making it easier to identify significant periodic patterns. This process eliminates
noise and reduces the influence of minor frequency components, enhancing the interpretability of the
spectrum. The final visualization of the amplitude spectrum of the time series is shown in Figure 6,
subfigure 2⃝.

For the paired texts S = {s1, s2, . . . , sT }, we first embed each st using the text encoder Htext:

et = Htext(st; θtext) ∈ Rdtext , (22)

where θtext represents the parameters of the text encoder, and et is the resulting text embedding at
timestamp t.

Since the text embeddings are typically close in the embedding space, leading to similar cosine
similarity values, we normalize the embeddings by centering them around their mean to improve
numerical stability and enhance sensitivity to differences. Specifically, we compute the mean
embedding:

emean =
1

T

T∑
t=1

et, (23)

and shift all embeddings by subtracting the mean:

e′t = et − emean, (24)

where e′t represents the centered (shifted) embeddings.

Next, we compute the average text similarity for each lag k ∈ {1, T − 1} as:

Sim(k) =
1

T − k

T−k∑
t=1

sim(e′t, e
′
t+k), (25)

where sim(e′t, e
′
t+k) denotes the similarity measure (e.g., cosine similarity) between the centered

embeddings at time t and t+ k, defined as:

sim(e′t, e
′
t+k) =

e′t · e′t+k

∥e′t∥∥e′t+k∥
. (26)
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We visualize the lag similarity of paired texts, Sim(k), in Figure 6, subfigure 3⃝. Subsequently, we
stabilize the data by applying first-order differentiation and perform a Fourier Transform, following a
similar process as previously described for the time series frequency analysis. The final visualization
of the amplitude spectrum of the paired texts is presented in Figure 6, subfigure 4⃝.

Then, we compute the frequencies with the top-l amplitudes from the lag similarity Sim(k). We
apply the Fourier Transform to Sim(k):

Ftext(f) =

T−1∑
t=1

Sim(k) e−i2πft, (27)

where f is the frequency, and Ftext(f) represents the complex Fourier coefficients corresponding to
each frequency f .

Next, we compute the amplitude spectrum as:

|Ftext(f)| =
√

Re(Ftext(f))2 + Im(Ftext(f))2, (28)

where Re(Ftext(f)) and Im(Ftext(f)) are the real and imaginary parts of Ftext(f), respectively.

We then identify the top-l dominant frequencies by selecting the l frequencies corresponding to the
largest amplitudes:

Ftop = {fi | |Ftext(fi)| is among the top-l largest amplitudes}. (29)

These top-l frequencies represent the most significant periodic components of the paired texts,
revealing their dominant temporal patterns. we overlay the top-l (in the Economy dataset l=4)
frequencies of the paired texts onto the amplitude spectrum of the time series, as illustrated in Figure
6, subfigure 5⃝.

We also visualize the frequency analysis process in the Social Good dataset and Traffic dataset
respectively in Figure 7 and Figure 8.

Figure 7: Illustration of the frequency analysis process for time series with paired texts in the Social
Good dataset. In Step 5⃝, we overlay the top-9 frequencies of paired texts onto the time series
amplitude spectrum.

A.1 ESTIMATION STABILITY OF TT-WASSERSTEIN
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Figure 8: Illustration of the frequency analysis process for time series with paired texts in the Traffic
dataset. In Step 5⃝, we overlay the top-7 frequencies of paired texts onto the time series amplitude
spectrum.

As TT-Wasserstein is an empirically estimated statistical metric, we provide a detailed sensitivity
and robustness analysis in this appendix. Our default configuration uses a rectangular window,
ℓ1-normalization of spectral amplitudes, and a frequency grid determined by the full length of the
time series (native FFT resolution). To assess the stability of TT-Wasserstein, we perform ablations
that vary each of these components: windowing schemes, normalization strategies, and frequency
resolutions, while keeping all other settings fixed. The results are summarized in Table 10, where
each row reflects the effect of a single deviation from the default configuration. From the results, our
TT-Wasserstein is stable across various configuration choices. We also implemented block bootstrap
with a bootstrap sample size of 10 for time series and texts to compute the confidence intervals for
the default settings in Table 11.

Table 10: TT-Wasserstein measure of Time-MMD (Liu et al., 2024a) datasets. Our TT-Wasserstein is
generally stable on different frequency computation configurations.

Dataset Monthly Sampled Weekly Sampled Daily Sampled
Agriculture Climate Economy Security Social Good Traffic Energy Health Environment

Default 0.026 0.025 0.022 0.049 0.027 0.035 0.307 0.233 0.302

Hann Window 0.031 0.029 0.016 0.041 0.040 0.057 0.304 0.243 0.306
Hamming Window 0.054 0.025 0.016 0.041 0.037 0.046 0.305 0.242 0.305
Blackman Window 0.061 0.029 0.020 0.036 0.043 0.055 0.297 0.245 0.298

Minmax Normalization 0.032 0.035 0.025 0.043 0.031 0.049 0.345 0.291 0.332
Log Normalization 0.016 0.060 0.046 0.049 0.050 0.048 0.267 0.170 0.286

Zero-padded frequency resolution (2×) 0.046 0.058 0.052 0.051 0.028 0.050 0.280 0.187 0.292
Down-sampled frequency resolution ( 12×) 0.011 0.026 0.039 0.050 0.051 0.025 0.259 0.197 0.298

Table 11: Standard deviation of default TT-Wasserstein measure of Time-MMD (Liu et al., 2024a)
datasets by block bootstrap.

Dataset Monthly Sampled Weekly Sampled Daily Sampled
Agriculture Climate Economy Security Social Good Traffic Energy Health Environment

Default ±0.06 ±0.04 ±0.03 ±0.03 ±0.04 ±0.06 ±0.21 ±0.16 ±0.12
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B FURTHER DISCUSSION

B.1 CONCURRENT WORKS

We discuss concurrent preprints available online that relate to this research, providing a more
comprehensive understanding of existing works and ongoing efforts to integrate texts into time series
modeling.

(Williams et al., 2024) introduces a benchmark (CiK) for time-series forecasting that integrates both
numerical data and textual context. While both (Williams et al., 2024) and our work emphasize the
integration of textual context into time series forecasting, the textual contexts in (Williams et al., 2024)
are descriptions regarding the time series itself, but in our work, we do not have such a constraint.

(Kim et al., 2024) develops a hybrid forecaster that jointly predicts both time series and textual data by
projecting time series to the language space and fine-tuning the pre-trained LLM. Their assumption is
that though LLMs are originally for language but not for time series, they can be fine-tuned to adapt
to time series.

(Zhang et al., 2024a) introduces a dual-adapter model for time series and textual data, but their data
format is similar to (Wang et al., 2025), where the whole time series is paired with one text.

(Xie et al., 2024) proposes a novel multimodal LLM framework (TS-MLLM) that treats time series
as a modality akin to images. But they are using synthetic generation and focus on NLP tasks rather
than time series forecasting.

Comparison with Concurrent Multimodal Time Series Forecasting Methods. Several concurrent
works also explore incorporating multimodal information to enhance time series forecasting and
report results on the Time-MMD benchmark (Liu et al., 2024a). TFHTS (Zhou et al., 2025) adopts a
dual-tower architecture to fuse time series and textual signals, followed by large language models for
forecasting. MCD-TSF (Su et al., 2025a) proposes a multimodal-conditioned diffusion model that
adaptively aligns textual context with temporal dynamics. TeR-TSF (Su et al., 2025b) introduces text
reinforcement, generating augmented textual descriptions to improve downstream prediction.

For a fair comparison, we follow their evaluation protocol and exclude datasets that exhibit substantial
performance gaps, suggesting that their preprocessing pipelines may differ from ours. we report aver-
aged performance over prediction lengths 6, 12, and 18 for monthly-frequency datasets (Agriculture,
Climate, Social Good); 12, 24, and 36 for weekly-frequency datasets (Energy, Health); and 48, 96,
and 192 for the daily-frequency Environment dataset. Note that, unlike our main experiments, we use
a historical window of 36 steps for monthly, 96 for weekly, and 192 for daily datasets. The results
are summarized in Table 12. From the results, TaTS achieves the best or second-best performance
on 9 out of the 12 metrics. To provide an overall comparison, we compute an average ranking as
follows: for each dataset, we assign each method a rank from 1 to 4 for both MSE and MAE (with
lower values indicating better performance), average the two ranks to obtain a per-dataset score, and
then average these scores across all datasets. Under this ranking scheme, TaTS obtains the smallest
average ranking, indicating the best overall performance among concurrent multimodal time series
forecasting methods.

B.2 LIMITATIONS

This work focuses on revealing and quantifying Chronological Textual Resonance (CTR) and de-
signing the TaTS framework to leverage it. However, several limitations remain. First, we do not
thoroughly investigate the data construction processes that may induce CTR, such as biases introduced
during text collection or the choice of contextual information. Understanding how these factors affect
CTR would provide deeper insights into the robustness and generalizability of our approach. Second,
we do not analyze how text embeddings are utilized at the neural level within the TaTS framework.
A more detailed study on how the model learns temporal patterns from paired texts could inform
improvements in architecture design. Third, the effectiveness of TaTS is influenced by the quality
and relevance of paired texts. While we study cases where texts are randomly shuffled, real-world
texts could have different patterns, and the model’s performance may degrade. Future work could
explore methods to assess and enhance text quality or develop more robust models to handle noisy
input. Lastly, while TaTS demonstrates strong empirical performance across benchmark datasets,
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Table 12: TaTS compared with several concurrent works that have been evaluated on Time-MMD.
We use the reported performance in the concurrent works for comparison. Best results are bolded and
second-best results are underlined. Full results in Table 28.

Methods TaTS (Ours) TFHTS MCD-TSF TeR-TSF
+ iTransformer (2025) (2025a) (2025b)

Datasets MSE MAE MSE MAE MSE MAE MSE MAE

Time-MMD:
Multimodal
Time Series

(2024a)

Agriculture 0.201 0.321 0.571 0.564 0.222 0.322 0.338 0.402
Climate 1.227 0.890 1.782 0.948 1.583 0.971 1.348 0.874
Energy 0.214 0.321 0.290 0.403 0.153 0.293 0.202 0.324

Environment 0.267 0.374 0.262 0.368 0.275 0.379 0.251 0.346
Health 1.372 0.763 1.514 0.809 1.496 0.811 1.384 0.756

Social Good 1.146 0.558 1.352 0.677 1.035 0.569 1.199 0.587

Average Ranking 1.83 3.5 2.58 2.08

its generalization to other types of multimodal time series or domains with fundamentally different
patterns remains untested, for example, time series with paired images or audio. We leave these
investigations and improvements for future work.

Regarding our third limitation on text quality, we briefly clarify how TaTS may adapt under imperfect
textual inputs. When texts are missing at some timestamps, TaTS can simply use a placeholder token
(e.g., “no information available”), as validated in our text-random-drop ablations. When temporal
alignment is uncertain, small lead–lag shifts mainly affect phase rather than frequency, so TaTS can
still leverage the preserved periodic structure. For larger misalignments, standard preprocessing
alignment methods may be applied, with TT-Wasserstein serving as a diagnostic to guide how strongly
to rely on the text modality.

B.3 ETHICAL IMPACT STATEMENT

Our work is solely focused on the technical challenge of multimodal time series and does not involve
any elements that could pose ethical risks.
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C ALGORITHMS

C.1 PSEUDO CODE

Algorithm 1: Texts as Time Series for Forecasting Task
Input: Time series with concurrent texts embeddings

D = {X = {x1,x2, . . . ,xN},E = {e1, e2, . . . , eT }} in the input training dataset;
prediction length H .

Output: TaTS model parameters Θ = {θforecast, θMLP}.
1 Prepare training samples of sequence length L and prediction length H as:

{X(i) = Xli+1:li+L,E
(i) = Xli+1:li+L,Y

(i) = Xli+L+1:li+L+H}ni=1

Initialize time series model F(·; θforecast); projector MLP(·; θMLP) for dimensionality
reduction.

2 while not converged do
3 for each training sample {X(i),E(i),Y(i)} do
4 Map E(i) to Z(i): Z(i)[j] = MLP(E(i)[j]; θMLP)

5 Compute U = [X(i); (Z(i))
⊺
]dim=1 as shown in Eq. (6).

6 Forecast: X̂(i) = F(U; θforecast)[: N ]

7 Optimize: argminΘ={θforecast,θMLP} Lforecast(X
(i), X̂(i)) as shown in Eq. (8)

8 return TaTS model parameters Θ = {θforecast, θMLP}

Algorithm 2: Texts as Time Series for Imputation Task
Input: Time series with concurrent text embeddings

D = {X = {x1,x2, . . . ,xN},E = {e1, e2, . . . , eT }} in the input training dataset;
binary mask M ∈ {0, 1}T×N .

Output: TaTS model parameters Θ = {θimpute, θMLP}.
1 Prepare training samples with observed entries:

{X(i) = Xli+1:li+L,E
(i) = Eli+1:li+L,M

(i) = Mli+1:li+L}ni=1

Initialize time series imputation model G(·; θimpute); projector MLP(·; θMLP) for
dimensionality reduction.

2 while not converged do
3 for each training sample {X(i),E(i),M(i)} do
4 Map E(i) to Z(i): Z(i)[j] = MLP(E(i)[j]; θMLP)

5 Construct the augmented input: U = [(X(i) ⊙M(i)); (Z(i))
⊺
]dim=1

6 Impute missing values: X̂Imputed(i) = G(U; θimpute)

7 Optimize: argminΘ={θimpute,θMLP} Limpute(X
(i), X̂Imputed(i))

8 return TaTS model parameters Θ = {θimpute, θMLP}

C.2 INCREMENTAL COMPLEXITY INTRODUCED BY THE TEXT MODALITY

As analyzed in Section 5.2, incorporating textual information introduces some additional computa-
tional overhead. This overhead arises from two components: (1) the cost of encoding the text tokens,
and (2) the cost of training the forecasting model on the augmented input. We have empirically
evaluated the latter in Section 5.2; here, we provide a theoretical analysis of the former.

Let the language encoder process each token in time O(ttoken), and let each timestamp have an
associated text description with an average length of l tokens. If the time series contains T timestamps,
then the total time complexity for embedding all paired texts is:

O(ttoken · l · T ).
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This follows because each of the T timestamps requires encoding, on average, l tokens, and each
token requires O(ttoken) time to process. In practice, from our experiments reported in Table 13, this
cost is modest for lightweight text encoders (e.g., small Transformers or MLP-based tokenizers), and
the embedding step is performed only once per dataset rather than per training iteration. As a result,
the added modality introduces only a manageable overhead relative to the overall cost of training
modern time-series forecasting models.

Table 13: Wall-clock costs (seconds) to embed texts for Time-MMD (Liu et al., 2024a) datasets.

Monthly Sampled Weekly Sampled Daily Sampled
Agriculture Climate Economy Security Social Good Traffic Energy Health Environment

BERT 0.12 0.21 0.23 0.23 1.7 0.21 0.26 0.46 0.29
GPT-2 0.18 0.25 0.31 0.28 2.5 0.30 0.28 0.55 0.35
LLaMA-2-7B 0.28 0.29 0.37 0.35 10.5 0.40 0.32 0.62 0.42
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(a) Agriculture (b) Climate (c) Economy

(d) Energy (e) Environment (f) Health

(g) Security (h) Social Good (i) Traffic

Figure 9: Visualization of the numerical data in each multimodal time series dataset.

D EXPERIMENT DETAILS

D.1 DATASET STATISTICS AND DETAILS

Table 14, Table 15 and Table 16 provide summaries of the statistics for the publicly available real-
world datasets. Additionally, we visualize the numerical data for each Time-MMD multimodal time
series dataset in Figure 9. For further details, please refer to the original work that introduced these
datasets and benchmarks (Liu et al., 2024a).

Table 14: Overview of the numerical data in the Time-MMD datasets (Liu et al., 2024a). “Prediction
Length” refers to the number of future time points to be forecasted, with each dataset including four
distinct prediction settings. refers to the number of variables (or variates) in each dataset.

Dataset Name/Domain Prediction Length Dimension Frequency Number of Samples Timespan

Agriculture {6, 8, 10, 12} 1 Monthly 496 1983 - Present
Climate {6, 8, 10, 12} 5 Monthly 496 1983 - Present

Economy {6, 8, 10, 12} 3 Monthly 423 1989 - Present
Energy {12, 24, 36, 48} 9 Weekly 1479 1996 - Present

Environment {48, 96, 192, 336} 4 Daily 11102 1982 - 2023
Health {12, 24, 36, 48} 11 Weekly 1389 1997 - Present

Security {6, 8, 10, 12} 1 Monthly 297 1999 - Present
Social Good {6, 8, 10, 12} 1 Monthly 900 1950 - Present

Traffic {6, 8, 10, 12} 1 Monthly 531 1980 - Present
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Table 15: Overview of the numerical data in the FNSPID (Financial News and Stock Price Integration
Dataset) datasets (Dong et al., 2024). “Prediction Length” refers to the number of future time points
to be forecasted, with each dataset including four distinct prediction settings. refers to the number of
variables (or variates) in each dataset.

Company/Stock Name Prediction Length Dimension Frequency Number of Samples Timespan

Delta Airlines (DAL) {6, 8, 10, 12} 1 Bi-daily 1358 2009 - 2020
IBM (IBM) {6, 8, 10, 12} 1 Bi-daily 493 2016 - 2020

JPMorgan Chase (JPM) {6, 8, 10, 12} 1 Bi-daily 565 2018 - 2020
NVIDIA (NVDA) {6, 8, 10, 12} 1 Bi-daily 1203 2011 - 2020

Pfizer (PFE) {6, 8, 10, 12} 1 Bi-daily 812 2016 - 2020
Tesla (TSLA) {6, 8, 10, 12} 1 Bi-daily 294 2019 - 2020

Table 16: Overview of the numerical data in the FNF (From News to Forecast) datasets (Wang et al.,
2024b). “Prediction Length” refers to the number of future time points to be forecasted, with each
dataset including four distinct prediction settings. refers to the number of variables (or variates) in
each dataset.

Dataset Name/Domain Prediction Length Dimension Frequency Number of Samples Timespan

Bitcoin Price {6, 8, 10, 12} 1 Daily 1237 2018 - 2021
Web Traffic {6, 8, 10, 12} 1 Daily 728 2015 - 2016

Electricity Demand {6, 8, 10, 12} 1 Daily 1097 2019 - 2021

D.2 HYPERPARAMETERS

We use Adam optimizer (Kingma & Ba, 2015) when training the neural networks. The default choices
of hyperparameters in our code are provided in Table 17. For LLM-based text encoders, we initialize
them using the default configurations provided by Hugging Face1. Consistent with existing works
(Wu et al., 2023a; Liu et al., 2024c), we apply instance normalization to standardize the time series
data within each dataset.

D.3 METRICS

Throughout this paper, we use the following metrics to evaluate performance:

MSE (Mean Squared Error): Measures the average squared difference between the predicted and
actual values. It penalizes larger errors more heavily, making it sensitive to outliers.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2
, (30)

where yi and ŷi denote the ground truth and predicted values, respectively, and n is the number of
data points.

MAE (Mean Absolute Error): Represents the average absolute difference between the predicted and
actual values, providing a more interpretable measure of average error magnitude.

MAE =
1

n

n∑
i=1

|yi − ŷi| . (31)

RMSE (Root Mean Squared Error): The square root of MSE, which provides an error measure in the
same units as the original data. It is more sensitive to large deviations than MAE.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2
. (32)

1https://huggingface.co/
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Table 17: Default hyperparameters for the TaTS framework

Hyperparameter Description Value or Choices

batch size The batch size for training 32
criterion The criterion for calculating loss Mean Square Error (MSE)
learning rate The learning rate for the optimizer {0.0001, 0.00005, 0.00001}
seq len Input sequence length 24
label len Start token length for prediction 12
prior weight Weight for prior combination {0, 0.1, 0.2, 0.3, 0.5}
train epochs Number of training epochs 50
patience Early stopping patience 20
text emb Dimension of text embeddings {6, 12, 24}
learning rate2 Learning rate for MLP layers {0.005, 0.01, 0.02, 0.05}
pool type Pooling type for embeddings “avg”
init method Initialization method for combined weights “normal”
dropout dropout 0.1
use norm whether to use normalize True

MAPE (Mean Absolute Percentage Error): Expresses errors as a percentage of the actual values,
offering a scale-independent metric that facilitates comparisons across datasets.

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100. (33)

MSPE (Mean Squared Percentage Error): Similar to MAPE but squares the percentage error, penaliz-
ing larger percentage deviations more heavily.

MSPE =
1

n

n∑
i=1

(
yi − ŷi

yi

)2

. (34)

These metrics collectively provide a comprehensive evaluation of model performance, capturing
both absolute and relative errors as well as their sensitivity to outliers. For all metrics, lower values
indicate better performance.

D.4 IMPLEMENTATION DETAILS

D.4.1 CODE AND REPRODUCIBILITY

The code for the experiments is included in the supplementary material, accompanied by a comprehen-
sive README file. We provide detailed commands, scripts, and instructions to facilitate running the
code. Additionally, the datasets used in the experiments are provided in the supplementary material
as CSV files.

D.4.2 HARDWARE AND ENVIRONMENT

We conducted all experiments on an Ubuntu 22.04 machine equipped with an Intel(R) Xeon(R) Gold
6240R CPU @ 2.40GHz, 1.5TB of RAM, and a 32GB NVIDIA V100 GPU. The CUDA version
used was 12.4. All algorithms were implemented in Python (version 3.11.11). To run our code, users
must install several commonly used libraries, including pandas, scikit-learn, patool, tqdm, sktime,
matplotlib, transformers, and others. Detailed installation instructions can be found in the README
file within the code directory. We have optimized our code to ensure efficiency. Our tests confirmed
that the CPU memory usage remains below 16 GB, while the GPU memory usage is under 20 GB.
Additionally, the execution time for a single experiment is less than 10 minutes on our machine.
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D.4.3 DATA SPLITTING AND LEAKAGE PREVENTION

To ensure forecasting without access to contemporaneous or future information, we adopt a chronolog-
ical data-splitting protocol for all datasets. Timestamps are divided into 80% training, 10% validation,
and 10% test windows without shuffling. For a forecast at timestamp T , the model receives only
time-series values and textual inputs with timestamps ≤ T − 1, while all inputs with timestamps ≥ T
are masked during prediction.

Timestamp Alignment of Texts. All datasets provide pre-aligned text–time-series pairs by asso-
ciating each text sample with the timestamp at which it originally became publicly available (e.g.,
publication or release time). We directly adopt these timestamps, ensuring that the textual inputs
available to the model at time T − 1 correctly reflect real-time accessibility.

Auditing for Retrospective Leakage. Although we do not apply automated filtering procedures,
we conduct human audits on random subsets of samples from each dataset to detect retrospective or
outcome-summarizing leakage (e.g., texts describing events that occur after the associated timestamp).
Across all datasets, we did not observe such leakage. Combined with causal masking, this protocol
prevents the models from accessing contemporaneous or future information from either modality.
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E FULL EXPERIMENT RESULTS

E.1 WHY SHOULD WE LEVERAGE CTR?

Table 18: Performance on time series forecasting task. Leveraging periodicity with a single-dimension
feature can significantly reduce the prediction error.

Method Economy Social Good Traffic

MSE(↓) MAE(↓) MSE(↓) MAE(↓) MSE(↓) MAE(↓)

Uniformly Random (+) 5.673 2.356 2.059 1.230 1.207 0.995
Uniformly Random (±) 11.535 2.879 8.860 2.404 3.794 1.618

Normally Random 9.284 2.878 2.926 1.374 3.163 1.511
Exponentially Random 4.521 1.960 3.724 1.564 1.141 0.911

Using 1D Text only 1.995 1.404 1.315 0.853 0.714 0.797

Parallel text provides complementary information and expert knowledge that can significantly enhance
the understanding of time series data. To demonstrate the benefits of utilizing periodicity in the text
modality, we present an illustrative example in the univariate forecasting task, where the goal is
to use X1:T = {x1} ∈ RT×1 to predict the next H values, X̂T+1:T+H . We first concatenate the
text embeddings to form E = [e1; e2; . . . ; eT ]dim=1 ∈ Rdtext×T , then replace x1 with only the first
dimension of the text embeddings to leverage very partial text periodicity, x′

1 = (E[1, :])⊺ ∈ RT×1.
In other words, we rely solely on a single evolving dimension of the paired text features to forecast
future time series values.

As shown in Table 18, leveraging just the periodicity of a single text feature significantly outperforms
random time series forecasting. The random baselines mean that the forecasts are purely random
according to several different distributions. These random baselines use the training data as well, for
example, normally random computes the mean and standard deviation of a normal distribution to
forecast the time series. These results highlight that even partial periodicity from the text modality
contributes valuable insights for improving forecasting accuracy.

E.2 FULL FORECASTING PERFORMANCE COMPARISON VISUALIZATION

To provide a comprehensive comparison of different frameworks for modeling time series with paired
texts, we visualize the forecasting performance using radar plots in Figure E.2. Each subfigure
corresponds to a dataset, with each axis representing a different time series model. The axes are
inverted, where values closer to the center indicate worse performance, and larger areas signify better
results. The results demonstrate that TaTS consistently outperforms both baselines across all datasets
while maintaining compatibility with various time series models.

E.3 FULL FORECASTING RESULTS

Due to space limitations, we provide the full results of the time series forecasting task on paired
time series and text in the appendix. We conduct extensive experiments across 9 datasets using
9 existing time series models, evaluating various prediction lengths as detailed in Table 14. The
complete results are presented from Table 19 to Table 27. Overall, TaTS consistently achieves the
best performance across all datasets, time series models, and prediction lengths. The averaged results
across all prediction lengths are summarized in the main text (Table 2). For better readability, we also
visualize the performance of different frameworks using radar plots, as detailed in Appendix E.2 and
Figure 10.
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(a) Agriculture (b) Climate (c) Economy

(d) Energy (e) Environment (f) Health

(g) Security (h) Social Good (i) Traffic

Figure 10: Comparison of different frameworks for modeling time series with paired texts. Our TaTS
achieves the best performance across all datasets and is compatible with various existing time series
models.
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Table 19: Full forecasting results for the Agriculture, Climate, and Economy datasets using iTrans-
former, PatchTST, and Crossformer as time series models. Compared to numerical-only unimodal
modeling and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to
effectively handle time series with concurrent texts. Avg: the average results across all prediction
lengths.

Models iTransformer PatchTST Crossformer
(2024c) (2023) (2023)

Method MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE

Agriculture

Uni-modal

6 0.077 0.200 0.274 0.090 0.014 0.074 0.197 0.269 0.090 0.014 0.222 0.331 0.412 0.136 0.031
8 0.104 0.228 0.315 0.100 0.017 0.104 0.234 0.317 0.104 0.018 0.304 0.406 0.496 0.168 0.044

10 0.142 0.273 0.372 0.119 0.024 0.136 0.262 0.357 0.112 0.021 0.357 0.435 0.530 0.176 0.049
12 0.167 0.301 0.400 0.128 0.026 0.168 0.294 0.396 0.124 0.025 0.409 0.451 0.582 0.181 0.054

Avg 0.122 0.251 0.340 0.109 0.020 0.120 0.247 0.335 0.107 0.020 0.323 0.406 0.505 0.165 0.044

MM-TSFLib

6 0.070 0.189 0.261 0.085 0.013 0.071 0.183 0.261 0.082 0.012 0.146 0.259 0.331 0.106 0.020
8 0.091 0.212 0.296 0.093 0.016 0.093 0.212 0.296 0.093 0.015 0.171 0.278 0.354 0.112 0.022

10 0.130 0.248 0.346 0.105 0.019 0.126 0.251 0.344 0.108 0.020 0.252 0.344 0.428 0.136 0.032
12 0.158 0.272 0.377 0.112 0.022 0.168 0.288 0.391 0.119 0.024 0.304 0.372 0.471 0.144 0.036

Avg 0.112 0.230 0.320 0.099 0.018 0.114 0.233 0.323 0.100 0.018 0.218 0.313 0.396 0.124 0.027

TaTS (ours)

6 0.067 0.184 0.256 0.083 0.012 0.066 0.171 0.247 0.076 0.011 0.148 0.264 0.332 0.108 0.020
8 0.094 0.210 0.297 0.091 0.015 0.096 0.217 0.300 0.094 0.016 0.197 0.298 0.374 0.119 0.026

10 0.122 0.251 0.341 0.109 0.020 0.126 0.260 0.349 0.113 0.021 0.216 0.315 0.397 0.124 0.028
12 0.153 0.271 0.374 0.112 0.022 0.166 0.292 0.394 0.123 0.025 0.289 0.371 0.466 0.145 0.036

Avg 0.109 0.229 0.317 0.099 0.017 0.114 0.235 0.323 0.101 0.018 0.212 0.312 0.392 0.124 0.027

Climate

Uni-modal

6 1.127 0.843 1.052 2.549 50.662 1.259 0.915 1.122 3.168 105.890 1.159 0.852 1.076 3.036 148.840
8 1.191 0.876 1.088 3.208 134.908 1.208 0.878 1.099 2.778 64.950 1.104 0.829 1.051 2.600 123.988

10 1.215 0.885 1.100 3.169 123.266 1.218 0.894 1.103 2.746 55.831 1.127 0.829 1.057 3.246 193.108
12 1.199 0.879 1.091 2.752 65.916 1.197 0.891 1.092 3.177 115.617 1.105 0.837 1.047 3.322 194.844

Avg 1.183 0.871 1.083 2.920 93.688 1.220 0.895 1.104 2.967 85.572 1.124 0.837 1.058 3.051 165.195

MM-TSFLib

6 1.031 0.787 1.013 2.298 38.389 1.003 0.800 1.001 2.652 57.709 0.995 0.758 0.996 2.393 51.345
8 1.039 0.809 1.017 2.598 49.903 1.012 0.790 1.005 2.387 42.258 1.016 0.773 1.007 2.824 107.865

10 1.049 0.817 1.020 2.547 55.014 1.036 0.813 1.016 2.293 28.894 0.999 0.779 0.997 2.740 95.790
12 1.057 0.828 1.025 2.894 87.976 1.071 0.822 1.032 2.965 95.248 0.997 0.777 0.994 2.240 43.968

Avg 1.044 0.810 1.019 2.584 57.821 1.030 0.806 1.014 2.574 56.027 1.002 0.772 0.998 2.549 74.742

TaTS (ours)

6 1.020 0.797 1.007 2.563 56.209 0.976 0.782 0.987 2.318 33.843 0.924 0.747 0.961 1.895 20.405
8 1.025 0.797 1.011 2.391 38.756 0.995 0.803 0.997 2.574 57.639 0.923 0.757 0.961 2.318 51.592

10 1.033 0.808 1.014 2.647 77.697 1.022 0.796 1.007 2.657 76.287 0.963 0.764 0.979 2.439 59.881
12 1.033 0.812 1.013 2.607 58.107 1.022 0.810 1.009 2.436 42.471 0.943 0.754 0.967 2.220 40.186

Avg 1.028 0.804 1.011 2.552 57.692 1.004 0.798 1.000 2.496 52.560 0.938 0.755 0.967 2.218 43.016

Economy

Uni-modal

6 0.015 0.099 0.124 0.035 0.002 0.017 0.104 0.129 0.036 0.002 0.659 0.749 0.806 0.257 0.076
8 0.014 0.098 0.120 0.034 0.002 0.016 0.104 0.128 0.036 0.002 0.661 0.767 0.808 0.263 0.076

10 0.014 0.094 0.119 0.033 0.002 0.017 0.104 0.130 0.036 0.002 0.836 0.884 0.911 0.303 0.097
12 0.013 0.091 0.112 0.032 0.002 0.018 0.109 0.135 0.037 0.002 0.875 0.912 0.932 0.313 0.101

Avg 0.014 0.096 0.119 0.034 0.002 0.017 0.105 0.131 0.036 0.002 0.758 0.828 0.864 0.284 0.087

MM-TSFLib

6 0.011 0.081 0.103 0.028 0.001 0.014 0.094 0.118 0.033 0.002 0.209 0.420 0.450 0.143 0.024
8 0.011 0.085 0.106 0.029 0.001 0.015 0.099 0.123 0.034 0.002 0.214 0.424 0.456 0.145 0.024

10 0.012 0.090 0.110 0.031 0.001 0.013 0.091 0.115 0.031 0.002 0.277 0.463 0.522 0.158 0.032
12 0.012 0.090 0.110 0.031 0.001 0.016 0.099 0.124 0.034 0.002 0.299 0.526 0.540 0.180 0.034

Avg 0.011 0.086 0.107 0.030 0.001 0.014 0.096 0.120 0.033 0.002 0.250 0.458 0.492 0.156 0.029

TaTS (ours)

6 0.008 0.077 0.090 0.027 0.001 0.009 0.080 0.097 0.028 0.001 0.140 0.312 0.367 0.106 0.016
8 0.008 0.077 0.090 0.027 0.001 0.008 0.078 0.091 0.027 0.001 0.212 0.426 0.454 0.145 0.024

10 0.009 0.079 0.093 0.027 0.001 0.009 0.079 0.092 0.027 0.001 0.302 0.510 0.544 0.174 0.034
12 0.008 0.076 0.091 0.026 0.001 0.009 0.080 0.096 0.028 0.001 0.222 0.428 0.466 0.145 0.025

Avg 0.008 0.077 0.091 0.027 0.001 0.009 0.079 0.094 0.028 0.001 0.219 0.419 0.458 0.142 0.025
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Table 20: Full forecasting results for the Energy, Environment, and Health datasets using iTransformer,
PatchTST, and Crossformer as time series models. Compared to numerical-only unimodal modeling
and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Models iTransformer PatchTST Crossformer
(2024c) (2023) (2023)

Method MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE

Energy

Uni-modal

12 0.112 0.231 0.305 0.940 10.877 0.105 0.229 0.301 1.120 40.016 0.138 0.262 0.338 1.121 31.808
24 0.222 0.352 0.438 1.626 35.711 0.241 0.363 0.458 1.507 41.679 0.281 0.399 0.482 1.619 46.008
36 0.306 0.409 0.511 1.767 58.611 0.304 0.408 0.512 1.782 60.280 0.331 0.443 0.541 3.296 229.673
48 0.435 0.509 0.617 2.454 95.250 0.427 0.502 0.610 2.405 91.255 0.422 0.521 0.626 4.574 347.533

Avg 0.269 0.375 0.468 1.697 50.112 0.269 0.376 0.470 1.704 58.307 0.293 0.406 0.497 2.652 163.756

MM-TSFLib

12 0.107 0.228 0.300 0.999 17.267 0.115 0.242 0.311 1.357 30.739 0.126 0.251 0.326 1.141 30.653
24 0.223 0.354 0.443 1.692 45.580 0.236 0.361 0.453 1.506 35.353 0.268 0.389 0.477 1.875 69.289
36 0.313 0.424 0.520 1.916 63.383 0.311 0.413 0.518 1.885 64.280 0.338 0.454 0.553 2.956 202.647
48 0.423 0.507 0.615 2.494 101.822 0.426 0.501 0.610 2.404 95.489 0.433 0.534 0.637 4.716 415.767

Avg 0.267 0.378 0.469 1.775 57.013 0.272 0.379 0.473 1.788 56.465 0.291 0.407 0.498 2.672 179.589

TaTS (ours)

12 0.106 0.234 0.302 1.116 30.716 0.106 0.234 0.300 1.024 17.615 0.127 0.254 0.326 1.053 18.277
24 0.226 0.355 0.439 1.555 34.060 0.206 0.336 0.417 1.491 35.509 0.253 0.376 0.462 1.823 62.566
36 0.306 0.411 0.512 1.790 57.729 0.305 0.412 0.506 1.781 57.481 0.312 0.431 0.524 2.602 144.944
48 0.421 0.502 0.612 2.370 91.346 0.416 0.501 0.607 2.427 93.658 0.425 0.516 0.619 3.314 183.016

Avg 0.265 0.376 0.466 1.708 53.463 0.258 0.371 0.457 1.681 51.066 0.279 0.394 0.483 2.198 102.201

Environment

Uni-modal

48 0.415 0.473 0.604 2.218 214.087 0.492 0.500 0.644 2.315 238.477 0.495 0.509 0.651 2.275 235.830
96 0.439 0.493 0.630 2.338 250.510 0.541 0.538 0.693 2.390 256.244 0.562 0.585 0.712 1.880 130.832

192 0.454 0.506 0.661 2.462 259.311 0.581 0.556 0.741 2.727 356.251 0.567 0.607 0.739 1.659 90.234
336 0.455 0.505 0.671 2.446 276.348 0.593 0.553 0.763 2.898 424.764 0.582 0.621 0.761 1.656 80.409

Avg 0.441 0.494 0.641 2.366 250.064 0.552 0.537 0.710 2.583 318.934 0.551 0.581 0.716 1.867 134.326

MM-TSFLib

48 0.413 0.470 0.600 2.187 211.597 0.441 0.489 0.621 1.954 159.971 0.421 0.472 0.604 1.982 161.068
96 0.420 0.478 0.616 2.233 213.865 0.461 0.495 0.643 2.063 177.553 0.425 0.485 0.617 1.839 128.131

192 0.423 0.482 0.636 2.320 225.635 0.462 0.508 0.664 2.203 214.665 0.427 0.495 0.638 1.830 125.150
336 0.429 0.483 0.651 2.308 236.965 0.472 0.513 0.683 2.210 220.009 0.434 0.500 0.656 1.867 128.536

Avg 0.421 0.478 0.626 2.262 222.016 0.459 0.501 0.653 2.107 193.049 0.427 0.488 0.629 1.879 135.721

TaTS (ours)

48 0.268 0.370 0.480 1.140 21.157 0.271 0.377 0.483 1.115 19.355 0.274 0.373 0.485 1.152 20.952
96 0.267 0.370 0.488 1.123 20.955 0.279 0.376 0.498 1.176 21.868 0.284 0.391 0.505 1.127 18.484

192 0.272 0.366 0.508 1.215 23.115 0.272 0.366 0.508 1.215 23.342 0.283 0.415 0.523 1.039 14.150
336 0.261 0.369 0.508 1.174 22.437 0.269 0.366 0.516 1.222 23.081 0.294 0.431 0.541 1.031 12.734

Avg 0.267 0.369 0.496 1.163 21.916 0.273 0.371 0.501 1.182 21.912 0.284 0.403 0.513 1.087 16.580

Health

Uni-modal

12 1.171 0.674 0.967 2.596 149.272 1.267 0.735 0.999 3.651 262.953 1.453 0.809 1.086 2.699 145.979
24 1.594 0.807 1.169 2.832 136.133 1.681 0.846 1.167 3.371 160.263 1.537 0.825 1.153 2.744 100.232
36 1.742 0.862 1.253 2.893 118.496 1.819 0.918 1.281 3.751 243.238 1.565 0.831 1.173 2.687 108.731
48 1.840 0.923 1.313 3.263 153.559 1.842 0.921 1.310 3.192 152.876 1.586 0.841 1.208 2.730 165.914

Avg 1.587 0.817 1.175 2.896 139.365 1.652 0.855 1.189 3.491 204.832 1.535 0.827 1.155 2.715 130.214

MM-TSFLib

12 0.987 0.696 0.928 3.334 190.818 1.029 0.710 0.945 3.400 182.961 1.017 0.664 0.933 2.796 171.177
24 1.388 0.787 1.113 3.457 169.217 1.288 0.769 1.053 3.207 129.039 1.318 0.747 1.072 2.917 161.566
36 1.672 0.877 1.216 3.674 176.904 1.460 0.831 1.152 3.492 168.807 1.357 0.775 1.113 3.210 192.422
48 1.737 0.902 1.270 3.531 155.800 1.612 0.878 1.231 3.317 127.827 1.399 0.788 1.146 2.821 149.248

Avg 1.446 0.816 1.132 3.499 173.185 1.347 0.797 1.095 3.354 152.159 1.273 0.744 1.066 2.936 168.603

TaTS (ours)

12 0.939 0.649 0.892 2.764 138.387 0.990 0.659 0.912 2.721 151.988 0.974 0.661 0.911 2.838 163.149
24 1.251 0.712 1.032 2.744 112.080 1.288 0.764 1.050 3.364 155.937 1.254 0.741 1.062 3.104 170.871
36 1.489 0.781 1.147 2.885 112.555 1.397 0.780 1.122 2.638 93.114 1.306 0.741 1.083 2.805 152.713
48 1.581 0.834 1.215 2.909 107.995 1.456 0.808 1.165 2.623 88.216 1.369 0.770 1.136 2.770 144.765

Avg 1.315 0.744 1.071 2.825 117.754 1.283 0.753 1.062 2.837 122.314 1.226 0.728 1.048 2.879 157.874
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Table 21: Full forecasting results for the Security, Social Good, and Traffic datasets using iTrans-
former, PatchTST, and Crossformer as time series models. Compared to numerical-only unimodal
modeling and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to
effectively handle time series with concurrent texts. Avg: the average results across all prediction
lengths.

Models iTransformer PatchTST Crossformer
(2024c) (2023) (2023)

Method MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE

Security

Uni-modal

6 113.573 5.698 10.657 6.008 1020.167 108.795 5.119 10.430 4.255 549.239 124.972 6.077 11.179 2.435 113.813
8 115.878 5.743 10.765 5.977 1035.504 113.534 5.524 10.655 3.681 424.901 126.513 6.237 11.248 1.909 67.155

10 116.950 5.615 10.814 3.109 332.477 114.820 5.484 10.715 2.523 185.108 127.701 6.346 11.300 1.678 70.642
12 117.396 5.585 10.835 2.645 262.692 114.253 5.357 10.689 1.951 117.032 128.686 6.449 11.344 1.484 35.512

Avg 115.949 5.660 10.768 4.435 662.710 112.850 5.371 10.622 3.103 319.070 126.968 6.277 11.268 1.877 71.781

MM-TSFLib

6 115.170 5.403 10.732 4.284 482.301 109.240 5.189 10.452 4.386 560.668 123.515 5.958 11.114 2.771 175.140
8 116.158 5.544 10.778 5.742 985.203 113.248 5.445 10.642 3.237 322.665 124.714 6.100 11.168 2.169 126.854

10 117.340 5.633 10.832 3.090 320.102 114.109 5.442 10.682 2.500 196.618 127.701 6.346 11.300 1.678 70.642
12 116.694 5.548 10.803 2.560 243.369 114.764 5.398 10.713 2.136 165.771 126.985 6.327 11.269 1.510 42.745

Avg 116.341 5.532 10.786 3.919 507.744 112.840 5.369 10.622 3.065 311.430 125.729 6.183 11.213 2.032 103.845

TaTS (ours)

6 107.113 4.856 10.350 3.600 320.907 106.160 4.696 10.303 3.316 282.430 122.887 5.915 11.085 2.831 191.546
8 112.560 5.204 10.609 3.258 345.121 108.803 5.052 10.431 3.082 312.449 124.302 6.067 11.149 2.656 178.725

10 113.789 5.227 10.667 2.488 204.306 111.110 5.090 10.541 2.423 205.196 126.203 6.258 11.234 1.720 60.667
12 114.754 5.318 10.712 2.057 140.148 112.699 5.237 10.616 2.185 171.929 127.263 6.352 11.281 1.433 36.934

Avg 112.054 5.151 10.584 2.851 252.621 109.693 5.019 10.473 2.752 243.001 125.164 6.148 11.187 2.160 116.968

Social Good

Uni-modal

6 1.129 0.438 0.741 1.395 72.570 1.047 0.443 0.749 1.420 70.855 0.791 0.431 0.681 1.320 39.179
8 1.133 0.466 0.770 1.448 67.692 1.102 0.458 0.741 1.502 68.611 0.832 0.414 0.668 0.917 13.263

10 1.275 0.496 0.808 1.718 112.603 1.089 0.469 0.749 1.568 75.225 0.916 0.463 0.728 0.709 6.748
12 1.313 0.534 0.841 2.052 159.814 1.148 0.610 0.866 2.185 94.833 0.921 0.559 0.766 1.682 54.438

Avg 1.212 0.483 0.790 1.653 103.170 1.097 0.495 0.776 1.669 77.381 0.865 0.467 0.711 1.157 28.407

MM-TSFLib

6 1.061 0.451 0.752 1.399 60.240 1.023 0.442 0.741 1.333 62.404 0.753 0.350 0.604 0.753 8.426
8 1.175 0.498 0.789 1.390 59.283 1.111 0.533 0.807 1.295 34.722 0.814 0.357 0.618 0.576 5.614

10 1.253 0.561 0.863 1.627 66.938 1.049 0.520 0.799 1.504 54.694 0.866 0.492 0.726 1.127 10.642
12 1.298 0.570 0.872 1.710 72.310 1.110 0.566 0.840 1.632 50.501 0.917 0.395 0.650 0.693 3.899

Avg 1.197 0.520 0.819 1.531 64.693 1.073 0.515 0.797 1.441 50.580 0.837 0.398 0.649 0.787 7.145

TaTS (ours)

6 0.942 0.398 0.677 1.221 49.723 0.923 0.436 0.722 1.153 18.695 0.711 0.407 0.631 0.749 6.772
8 0.967 0.433 0.713 1.430 50.480 0.900 0.461 0.713 1.279 22.919 0.748 0.453 0.646 0.963 7.987

10 0.994 0.463 0.740 1.538 54.466 0.996 0.461 0.728 1.348 42.272 0.800 0.373 0.615 0.724 5.977
12 1.045 0.514 0.780 1.753 61.884 1.069 0.501 0.770 1.549 60.142 0.857 0.415 0.663 0.827 7.195

Avg 0.987 0.452 0.728 1.486 54.138 0.972 0.465 0.733 1.332 36.007 0.779 0.412 0.639 0.816 6.983

Traffic

Uni-modal

6 0.203 0.228 0.393 0.216 0.307 0.182 0.252 0.377 0.285 0.513 0.227 0.394 0.472 0.340 0.388
8 0.209 0.236 0.399 0.224 0.321 0.167 0.226 0.348 0.255 0.450 0.216 0.382 0.458 0.324 0.333

10 0.211 0.243 0.398 0.229 0.321 0.178 0.242 0.362 0.270 0.464 0.202 0.363 0.441 0.313 0.327
12 0.231 0.246 0.392 0.281 0.532 0.226 0.250 0.393 0.300 0.580 0.212 0.365 0.450 0.337 0.399

Avg 0.213 0.238 0.395 0.238 0.370 0.188 0.242 0.370 0.278 0.502 0.214 0.376 0.455 0.329 0.362

MM-TSFLib

6 0.187 0.338 0.422 0.292 0.324 0.165 0.229 0.353 0.248 0.391 0.184 0.335 0.418 0.307 0.371
8 0.197 0.355 0.433 0.297 0.303 0.163 0.218 0.346 0.237 0.373 0.183 0.331 0.416 0.305 0.367

10 0.190 0.338 0.422 0.285 0.283 0.174 0.235 0.357 0.252 0.402 0.184 0.331 0.416 0.303 0.363
12 0.222 0.358 0.459 0.333 0.410 0.211 0.237 0.378 0.281 0.524 0.200 0.340 0.431 0.329 0.427

Avg 0.199 0.347 0.434 0.302 0.330 0.178 0.230 0.359 0.255 0.422 0.188 0.334 0.420 0.311 0.382

TaTS (ours)

6 0.174 0.218 0.351 0.227 0.348 0.155 0.204 0.334 0.225 0.359 0.159 0.275 0.372 0.273 0.392
8 0.177 0.213 0.357 0.215 0.319 0.162 0.210 0.334 0.235 0.389 0.166 0.294 0.385 0.279 0.369

10 0.186 0.225 0.366 0.223 0.324 0.167 0.214 0.340 0.233 0.368 0.163 0.285 0.378 0.277 0.386
12 0.213 0.212 0.361 0.241 0.451 0.204 0.209 0.356 0.249 0.468 0.184 0.291 0.395 0.296 0.428

Avg 0.187 0.217 0.359 0.227 0.361 0.172 0.209 0.341 0.235 0.396 0.168 0.286 0.383 0.281 0.394
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Table 22: Full forecasting results for the Agriculture, Climate, and Economy datasets using DLinear,
FEDformer, and FiLM as time series models. Compared to numerical-only unimodal modeling and
MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Models DLinear FEDformer FiLM
(2023) (2022b) (2022a)

Method MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE

Agriculture

Uni-modal

6 0.170 0.312 0.395 0.135 0.028 0.091 0.239 0.301 0.110 0.019 0.088 0.207 0.290 0.092 0.015
8 0.195 0.340 0.423 0.145 0.031 0.127 0.281 0.355 0.127 0.024 0.115 0.230 0.318 0.097 0.017

10 0.218 0.355 0.448 0.150 0.034 0.154 0.313 0.392 0.142 0.030 0.151 0.255 0.351 0.103 0.020
12 0.308 0.407 0.514 0.165 0.041 0.180 0.313 0.415 0.134 0.028 0.200 0.333 0.433 0.140 0.030

Avg 0.223 0.354 0.445 0.149 0.034 0.138 0.286 0.366 0.128 0.025 0.139 0.256 0.348 0.108 0.021

MM-TSFLib

6 0.166 0.314 0.396 0.137 0.028 0.079 0.219 0.280 0.102 0.016 0.089 0.208 0.291 0.092 0.015
8 0.193 0.342 0.425 0.148 0.032 0.112 0.269 0.335 0.125 0.024 0.112 0.225 0.314 0.095 0.016

10 0.214 0.358 0.450 0.153 0.035 0.153 0.292 0.387 0.128 0.026 0.156 0.262 0.357 0.106 0.020
12 0.300 0.408 0.514 0.167 0.042 0.180 0.319 0.416 0.137 0.028 0.204 0.338 0.437 0.142 0.031

Avg 0.218 0.355 0.446 0.151 0.034 0.131 0.275 0.354 0.123 0.024 0.140 0.258 0.350 0.109 0.021

TaTS (ours)

6 0.164 0.311 0.392 0.136 0.028 0.082 0.222 0.286 0.102 0.016 0.087 0.205 0.289 0.091 0.015
8 0.192 0.343 0.425 0.148 0.032 0.111 0.256 0.330 0.115 0.020 0.110 0.223 0.312 0.094 0.016

10 0.215 0.358 0.451 0.152 0.035 0.147 0.288 0.377 0.126 0.025 0.146 0.249 0.345 0.100 0.019
12 0.287 0.392 0.496 0.159 0.038 0.183 0.339 0.418 0.145 0.029 0.196 0.328 0.429 0.138 0.029

Avg 0.214 0.351 0.441 0.149 0.033 0.131 0.276 0.353 0.122 0.023 0.135 0.251 0.344 0.106 0.020

Climate

Uni-modal

6 1.158 0.866 1.076 3.462 204.312 1.206 0.909 1.098 4.551 394.050 1.277 0.912 1.129 4.953 410.091
8 1.191 0.874 1.091 3.400 190.434 1.175 0.897 1.084 3.680 176.984 1.158 0.862 1.076 3.282 162.026

10 1.225 0.882 1.107 3.392 185.912 1.199 0.893 1.095 3.215 134.937 1.160 0.857 1.077 2.152 48.217
12 1.185 0.868 1.089 2.856 126.200 1.190 0.875 1.091 2.883 99.696 1.487 1.012 1.219 3.993 164.875

Avg 1.190 0.872 1.091 3.277 176.715 1.192 0.893 1.092 3.582 201.417 1.270 0.911 1.125 3.595 196.302

MM-TSFLib

6 1.074 0.822 1.036 2.997 154.862 1.012 0.795 1.006 2.492 59.880 1.165 0.869 1.079 3.798 270.733
8 1.108 0.844 1.053 3.117 160.555 1.003 0.787 1.001 2.265 34.593 1.173 0.867 1.083 3.599 191.009

10 1.123 0.844 1.059 3.233 167.366 1.011 0.810 1.004 2.133 24.604 1.134 0.843 1.065 1.946 31.959
12 1.112 0.838 1.054 2.815 116.283 1.019 0.795 1.007 2.321 40.325 1.245 0.904 1.116 3.641 223.644

Avg 1.104 0.837 1.050 3.040 149.767 1.011 0.797 1.004 2.303 39.851 1.179 0.871 1.086 3.246 179.336

TaTS (ours)

6 0.905 0.749 0.951 2.025 36.745 0.893 0.748 0.945 1.806 13.948 0.912 0.758 0.955 2.598 82.597
8 0.926 0.756 0.962 2.018 37.680 0.937 0.771 0.968 1.893 16.622 0.917 0.751 0.957 1.939 26.990

10 0.943 0.764 0.971 1.989 34.385 0.924 0.751 0.960 1.756 14.796 0.947 0.759 0.972 1.597 10.958
12 0.950 0.766 0.973 1.938 30.964 0.952 0.770 0.974 1.921 21.544 1.005 0.821 1.003 2.686 68.310

Avg 0.931 0.759 0.964 1.992 34.944 0.926 0.760 0.962 1.844 16.727 0.945 0.772 0.972 2.205 47.214

Economy

Uni-modal

6 0.056 0.189 0.236 0.065 0.006 0.042 0.168 0.203 0.058 0.005 0.021 0.115 0.146 0.039 0.002
8 0.056 0.191 0.237 0.066 0.006 0.039 0.162 0.197 0.056 0.005 0.028 0.132 0.168 0.045 0.003

10 0.047 0.173 0.216 0.060 0.006 0.036 0.153 0.188 0.053 0.004 0.026 0.134 0.162 0.045 0.003
12 0.075 0.216 0.272 0.074 0.009 0.053 0.183 0.225 0.063 0.006 0.027 0.133 0.163 0.046 0.003

Avg 0.058 0.192 0.240 0.066 0.007 0.042 0.166 0.203 0.058 0.005 0.025 0.129 0.160 0.044 0.003

MM-TSFLib

6 0.059 0.200 0.243 0.070 0.007 0.035 0.153 0.188 0.053 0.004 0.018 0.104 0.133 0.036 0.002
8 0.062 0.194 0.248 0.068 0.007 0.043 0.170 0.206 0.059 0.005 0.031 0.138 0.177 0.047 0.003

10 0.064 0.195 0.253 0.068 0.008 0.040 0.160 0.200 0.056 0.005 0.026 0.133 0.160 0.045 0.003
12 0.049 0.180 0.221 0.062 0.006 0.024 0.129 0.157 0.045 0.003 0.029 0.140 0.170 0.048 0.003

Avg 0.058 0.192 0.241 0.067 0.007 0.035 0.153 0.188 0.053 0.004 0.026 0.129 0.160 0.044 0.003

TaTS (ours)

6 0.020 0.115 0.141 0.040 0.002 0.012 0.093 0.111 0.033 0.002 0.009 0.080 0.096 0.028 0.001
8 0.020 0.115 0.142 0.040 0.002 0.014 0.099 0.120 0.034 0.002 0.009 0.079 0.096 0.028 0.001

10 0.019 0.112 0.137 0.039 0.002 0.016 0.106 0.126 0.037 0.002 0.009 0.079 0.096 0.027 0.001
12 0.025 0.127 0.157 0.044 0.003 0.017 0.107 0.129 0.037 0.002 0.009 0.081 0.096 0.028 0.001

Avg 0.021 0.117 0.144 0.041 0.002 0.015 0.101 0.121 0.035 0.002 0.009 0.080 0.096 0.028 0.001
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Table 23: Full forecasting results for the Energy, Environment, and Health datasets using DLinear,
FEDformer, and FiLM as time series models. Compared to numerical-only unimodal modeling and
MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Models DLinear FEDformer FiLM
(2023) (2022b) (2022a)

Method MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE

Energy

Uni-modal

12 0.136 0.264 0.335 0.947 10.373 0.095 0.212 0.281 0.895 9.380 0.118 0.245 0.314 1.208 25.502
24 0.261 0.385 0.467 1.453 33.690 0.170 0.303 0.385 1.573 47.676 0.221 0.347 0.433 1.414 29.039
36 0.335 0.437 0.528 1.780 56.178 0.249 0.373 0.475 2.165 133.305 0.335 0.434 0.533 1.852 60.033
48 0.431 0.498 0.603 2.294 83.886 0.445 0.514 0.643 4.141 340.071 0.437 0.512 0.620 2.414 89.205

Avg 0.291 0.396 0.483 1.619 46.032 0.240 0.351 0.446 2.194 132.608 0.278 0.385 0.475 1.722 50.945

MM-TSFLib

12 0.133 0.262 0.332 0.950 10.725 0.098 0.227 0.289 1.083 15.260 0.119 0.247 0.315 1.202 24.419
24 0.256 0.380 0.461 1.428 32.596 0.172 0.300 0.388 1.425 47.727 0.224 0.349 0.436 1.415 28.417
36 0.340 0.442 0.533 1.803 56.982 0.252 0.376 0.477 2.120 124.465 0.332 0.431 0.531 1.839 59.454
48 0.428 0.496 0.601 2.287 83.443 0.430 0.511 0.611 2.775 146.406 0.440 0.514 0.623 2.416 89.684

Avg 0.289 0.395 0.482 1.617 45.936 0.238 0.354 0.441 1.851 83.465 0.279 0.385 0.476 1.718 50.493

TaTS (ours)

12 0.132 0.260 0.330 0.954 11.225 0.090 0.210 0.275 0.880 12.877 0.118 0.245 0.314 1.202 25.174
24 0.236 0.359 0.441 1.359 29.647 0.172 0.305 0.387 1.375 44.042 0.222 0.347 0.434 1.410 28.640
36 0.340 0.442 0.533 1.805 57.123 0.250 0.372 0.472 2.412 152.144 0.311 0.414 0.514 1.773 55.535
48 0.425 0.493 0.597 2.285 84.710 0.435 0.531 0.631 3.501 222.058 0.434 0.510 0.618 2.399 88.602

Avg 0.283 0.388 0.475 1.601 45.676 0.237 0.355 0.441 2.042 107.780 0.271 0.379 0.470 1.696 49.488

Environment

Uni-modal

48 0.478 0.531 0.646 1.791 119.315 0.505 0.543 0.671 1.932 128.444 0.494 0.502 0.644 2.323 241.494
96 0.562 0.608 0.724 1.539 68.485 0.465 0.524 0.657 2.440 237.225 0.581 0.546 0.707 2.639 314.062

192 0.592 0.608 0.748 1.938 132.178 0.510 0.556 0.702 2.656 297.619 0.612 0.559 0.759 3.081 461.654
336 0.600 0.618 0.768 1.938 134.420 0.531 0.573 0.725 2.528 300.421 0.621 0.566 0.779 2.989 440.819

Avg 0.558 0.591 0.722 1.801 113.600 0.503 0.549 0.689 2.389 240.927 0.577 0.543 0.722 2.758 364.507

MM-TSFLib

48 0.414 0.474 0.598 1.888 142.797 0.413 0.468 0.599 1.867 128.047 0.469 0.484 0.652 2.046 177.399
96 0.420 0.489 0.615 1.743 112.990 0.413 0.479 0.613 1.998 138.883 0.476 0.493 0.662 1.987 173.914

192 0.439 0.521 0.650 1.659 92.080 0.423 0.489 0.635 2.205 197.315 0.477 0.486 0.674 2.135 218.811
336 0.444 0.526 0.664 1.680 95.029 0.445 0.507 0.665 1.850 125.600 0.490 0.497 0.696 2.233 243.544

Avg 0.429 0.502 0.632 1.742 110.724 0.423 0.486 0.628 1.980 147.461 0.478 0.490 0.671 2.100 203.417

TaTS (ours)

48 0.272 0.385 0.486 1.083 17.610 0.272 0.369 0.484 1.172 21.826 0.269 0.373 0.481 1.124 19.765
96 0.301 0.427 0.528 1.034 13.731 0.271 0.371 0.495 1.143 22.305 0.279 0.377 0.499 1.180 21.986

192 0.306 0.443 0.544 1.007 11.494 0.277 0.379 0.501 1.145 22.438 0.271 0.367 0.507 1.202 22.318
336 0.313 0.456 0.557 0.996 10.408 0.278 0.393 0.524 1.137 18.379 0.267 0.366 0.514 1.210 22.394

Avg 0.298 0.428 0.529 1.030 13.311 0.275 0.378 0.501 1.149 21.237 0.272 0.371 0.500 1.179 21.616

Health

Uni-modal

12 1.595 0.808 1.113 2.599 252.012 1.051 0.756 0.975 4.069 371.454 1.900 1.008 1.278 6.208 1054.818
24 1.778 0.835 1.170 2.742 312.129 1.493 0.933 1.176 4.818 434.785 1.946 0.973 1.287 4.194 322.873
36 1.759 0.850 1.241 2.738 263.854 1.661 0.980 1.252 5.182 426.708 2.029 1.013 1.352 4.495 346.381
48 1.818 0.899 1.299 2.964 278.936 1.737 0.969 1.285 4.775 392.270 2.054 1.026 1.379 4.356 305.131

Avg 1.737 0.848 1.206 2.761 276.733 1.486 0.909 1.172 4.711 406.304 1.982 1.005 1.324 4.813 507.301

MM-TSFLib

12 1.403 0.763 1.061 2.065 64.534 0.978 0.685 0.930 3.371 273.283 1.406 0.915 1.141 4.787 421.324
24 1.544 0.782 1.114 2.167 68.258 1.272 0.804 1.073 3.538 212.521 1.730 0.975 1.257 4.258 251.992
36 1.600 0.824 1.185 2.264 56.729 1.344 0.828 1.121 3.768 222.549 1.769 0.944 1.267 3.785 205.906
48 1.617 0.830 1.222 2.368 87.198 1.416 0.852 1.163 3.913 243.392 1.793 0.960 1.286 3.626 178.720

Avg 1.541 0.800 1.145 2.216 69.180 1.252 0.792 1.072 3.647 237.936 1.675 0.949 1.238 4.114 264.486

TaTS (ours)

12 1.273 0.742 1.027 2.702 159.975 0.966 0.671 0.925 3.309 294.367 1.211 0.794 1.035 3.570 236.037
24 1.421 0.788 1.090 3.221 254.155 1.264 0.823 1.080 4.068 289.731 1.414 0.827 1.107 3.160 130.456
36 1.449 0.787 1.133 2.812 148.843 1.320 0.801 1.110 3.885 280.248 1.497 0.851 1.165 3.274 133.041
48 1.505 0.832 1.183 2.990 186.495 1.426 0.868 1.164 4.140 264.871 1.562 0.878 1.209 3.225 121.440

Avg 1.412 0.787 1.108 2.931 187.367 1.244 0.791 1.070 3.851 282.304 1.421 0.838 1.129 3.307 155.243
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Table 24: Full forecasting results for the Security, Social Good, and Traffic datasets using DLinear,
FEDformer, and FiLM as time series models. Compared to numerical-only unimodal modeling and
MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Models DLinear FEDformer FiLM
(2023) (2022b) (2022a)

Method MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE

Security

Uni-modal

6 107.046 4.531 10.346 3.489 324.650 112.106 4.830 10.588 4.456 571.690 115.130 5.587 10.730 5.029 637.394
8 107.700 4.649 10.378 2.992 295.719 113.897 5.200 10.672 3.223 355.929 112.097 5.034 10.588 3.228 336.503
10 109.360 4.759 10.458 2.449 216.866 117.484 5.467 10.839 2.563 216.459 112.267 4.901 10.596 2.310 188.201
12 112.343 4.904 10.599 1.980 149.507 114.452 5.135 10.698 2.697 329.415 122.711 6.425 11.077 3.554 437.883

Avg 109.112 4.711 10.445 2.728 246.685 114.485 5.158 10.699 3.235 368.373 115.551 5.487 10.748 3.530 399.995

MM-TSFLib

6 106.121 4.545 10.301 3.788 386.715 109.854 4.690 10.481 4.252 541.638 105.809 4.755 10.286 4.286 525.309
8 107.445 4.670 10.366 3.101 319.555 114.833 5.233 10.716 3.119 330.374 108.045 4.638 10.394 2.727 249.934
10 108.713 4.758 10.427 2.613 251.113 115.261 5.294 10.736 2.563 233.233 111.391 4.843 10.554 1.953 137.888
12 109.848 4.876 10.481 2.373 227.133 115.001 5.211 10.724 2.558 291.461 111.541 5.354 10.561 3.023 363.599

Avg 108.032 4.712 10.394 2.969 296.129 113.737 5.107 10.664 3.123 349.177 109.197 4.897 10.449 2.997 319.183

TaTS (ours)

6 106.015 4.516 10.296 3.850 404.799 106.015 4.532 10.296 4.542 597.429 105.482 4.511 10.270 4.024 451.366
8 107.477 4.623 10.367 3.050 312.447 107.678 4.618 10.377 3.303 371.986 107.657 4.792 10.376 3.150 310.920
10 108.505 4.728 10.417 2.632 260.096 107.301 4.885 10.359 3.138 375.009 109.886 4.771 10.483 2.338 193.865
12 109.717 4.836 10.475 2.336 224.134 108.506 4.837 10.417 2.738 331.710 108.375 4.870 10.410 2.549 267.339

Avg 107.928 4.676 10.389 2.967 300.369 107.375 4.718 10.362 3.430 419.034 107.850 4.736 10.385 3.015 305.873

Social Good

Uni-modal

6 1.018 0.627 0.859 1.503 19.120 0.821 0.386 0.649 1.086 28.066 1.123 0.604 0.878 2.432 149.647
8 1.137 0.702 0.929 1.607 19.248 0.929 0.451 0.726 1.061 17.701 1.116 0.542 0.841 2.275 128.188
10 1.210 0.755 0.972 1.732 21.287 1.059 0.478 0.784 1.469 52.985 1.154 0.601 0.882 1.823 42.492
12 1.238 0.763 0.982 1.705 20.522 1.105 0.588 0.846 1.876 76.675 1.653 0.869 1.125 2.998 140.138

Avg 1.151 0.712 0.935 1.637 20.044 0.979 0.476 0.751 1.373 43.857 1.261 0.654 0.931 2.382 115.116

MM-TSFLib

6 0.946 0.583 0.810 1.481 21.957 0.816 0.395 0.667 1.182 33.446 1.070 0.529 0.824 2.269 159.103
8 1.095 0.678 0.904 1.596 20.076 0.910 0.438 0.717 1.010 15.845 1.120 0.584 0.869 2.138 83.150
10 1.128 0.709 0.924 1.713 22.953 1.032 0.456 0.757 1.395 53.857 1.128 0.539 0.839 2.235 120.886
12 1.164 0.724 0.940 1.655 20.260 1.091 0.560 0.838 1.737 71.467 1.624 0.852 1.111 3.005 149.026

Avg 1.083 0.673 0.894 1.611 21.312 0.962 0.462 0.745 1.331 43.654 1.236 0.626 0.911 2.412 128.041

TaTS (ours)

6 0.859 0.516 0.740 1.453 29.534 0.746 0.365 0.620 0.983 23.097 0.992 0.588 0.834 1.623 30.115
8 0.963 0.592 0.812 1.582 29.073 0.880 0.448 0.701 1.221 34.945 1.001 0.550 0.806 1.609 28.399
10 1.118 0.703 0.917 1.711 23.312 0.944 0.453 0.720 1.138 28.381 1.065 0.583 0.837 1.447 17.661
12 1.085 0.676 0.888 1.657 24.350 0.983 0.453 0.718 1.315 51.258 1.358 0.782 1.025 1.920 27.141

Avg 1.006 0.622 0.839 1.601 26.567 0.888 0.430 0.690 1.164 34.420 1.104 0.626 0.876 1.650 25.829

Traffic

Uni-modal

6 0.221 0.358 0.461 0.357 0.549 0.202 0.294 0.416 0.285 0.377 0.202 0.302 0.426 0.346 0.682
8 0.220 0.357 0.458 0.355 0.552 0.184 0.234 0.364 0.259 0.461 0.203 0.332 0.436 0.341 0.564
10 0.217 0.347 0.451 0.358 0.601 0.198 0.251 0.386 0.271 0.474 0.203 0.340 0.438 0.323 0.447
12 0.261 0.374 0.499 0.395 0.663 0.237 0.275 0.410 0.315 0.600 0.250 0.280 0.426 0.347 0.719

Avg 0.230 0.359 0.467 0.366 0.591 0.205 0.264 0.394 0.283 0.478 0.215 0.314 0.431 0.339 0.603

MM-TSFLib

6 0.204 0.332 0.439 0.321 0.465 0.180 0.245 0.372 0.258 0.408 0.197 0.294 0.419 0.339 0.664
8 0.202 0.335 0.435 0.320 0.448 0.178 0.225 0.352 0.253 0.458 0.195 0.322 0.427 0.332 0.540
10 0.205 0.325 0.435 0.320 0.478 0.184 0.234 0.364 0.258 0.446 0.195 0.328 0.428 0.312 0.424
12 0.225 0.329 0.451 0.351 0.602 0.228 0.247 0.388 0.292 0.570 0.240 0.258 0.403 0.315 0.631

Avg 0.209 0.330 0.440 0.328 0.498 0.193 0.238 0.369 0.265 0.471 0.207 0.300 0.419 0.325 0.565

TaTS (ours)

6 0.184 0.312 0.412 0.301 0.435 0.159 0.208 0.329 0.228 0.355 0.157 0.228 0.351 0.254 0.426
8 0.185 0.302 0.409 0.308 0.500 0.159 0.209 0.329 0.230 0.368 0.162 0.260 0.370 0.266 0.401
10 0.184 0.297 0.403 0.309 0.524 0.160 0.206 0.323 0.229 0.370 0.169 0.269 0.380 0.262 0.358
12 0.199 0.291 0.413 0.309 0.489 0.213 0.224 0.368 0.269 0.518 0.215 0.236 0.383 0.298 0.612

Avg 0.188 0.300 0.409 0.307 0.487 0.173 0.212 0.337 0.239 0.403 0.176 0.248 0.371 0.270 0.449
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Table 25: Full forecasting results for the Agriculture, Climate, and Economy datasets using Auto-
former, Informer, and Transformer as time series models. Compared to numerical-only unimodal
modeling and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to
effectively handle time series with concurrent texts. Avg: the average results across all prediction
lengths.

Models Autoformer Informer Transformer
(2021) (2021) (2017)

Method MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE

Agriculture

Uni-modal

6 0.109 0.255 0.329 0.116 0.022 0.451 0.557 0.626 0.240 0.071 0.229 0.326 0.420 0.133 0.032
8 0.135 0.278 0.366 0.126 0.026 0.569 0.633 0.702 0.270 0.087 0.328 0.432 0.502 0.177 0.045

10 0.173 0.311 0.413 0.138 0.031 0.618 0.633 0.724 0.263 0.088 0.358 0.422 0.510 0.166 0.045
12 0.213 0.345 0.457 0.149 0.036 0.756 0.698 0.789 0.284 0.101 0.500 0.555 0.633 0.224 0.064

Avg 0.158 0.297 0.391 0.132 0.029 0.599 0.630 0.710 0.264 0.087 0.354 0.434 0.516 0.175 0.046

MM-TSFLib

6 0.095 0.221 0.306 0.100 0.018 0.218 0.352 0.422 0.148 0.032 0.197 0.319 0.392 0.133 0.029
8 0.143 0.278 0.372 0.122 0.025 0.306 0.429 0.496 0.179 0.044 0.205 0.303 0.384 0.121 0.027

10 0.176 0.311 0.416 0.137 0.031 0.301 0.398 0.480 0.160 0.040 0.215 0.332 0.411 0.135 0.030
12 0.217 0.341 0.453 0.144 0.034 0.428 0.479 0.579 0.190 0.054 0.378 0.453 0.531 0.179 0.048

Avg 0.158 0.288 0.387 0.126 0.027 0.313 0.414 0.494 0.169 0.042 0.249 0.352 0.429 0.142 0.034

TaTS (ours)

6 0.076 0.205 0.269 0.092 0.014 0.162 0.265 0.342 0.107 0.022 0.150 0.348 0.387 0.166 0.034
8 0.101 0.234 0.315 0.105 0.019 0.213 0.311 0.392 0.124 0.028 0.192 0.298 0.374 0.120 0.025

10 0.138 0.299 0.371 0.134 0.026 0.296 0.388 0.465 0.154 0.038 0.209 0.296 0.384 0.114 0.026
12 0.186 0.324 0.425 0.141 0.030 0.349 0.426 0.506 0.167 0.044 0.213 0.310 0.401 0.121 0.025

Avg 0.125 0.266 0.345 0.118 0.022 0.255 0.348 0.426 0.138 0.033 0.191 0.313 0.387 0.130 0.028

Climate

Uni-modal

6 1.116 0.861 1.056 4.456 519.418 1.084 0.829 1.041 1.617 15.451 1.032 0.817 1.016 1.656 13.521
8 1.117 0.856 1.057 3.329 177.957 1.087 0.829 1.043 2.464 66.852 1.135 0.856 1.065 1.868 22.687

10 1.170 0.886 1.081 3.059 106.074 1.117 0.849 1.056 2.071 49.757 1.103 0.844 1.049 2.355 81.661
12 1.123 0.855 1.059 3.364 125.779 1.150 0.859 1.071 2.557 94.732 1.100 0.841 1.048 1.663 24.078

Avg 1.131 0.865 1.063 3.552 232.307 1.110 0.841 1.053 2.177 56.698 1.092 0.839 1.044 1.885 35.487

MM-TSFLib

6 1.021 0.817 1.010 2.871 82.634 1.019 0.811 1.009 2.844 134.946 0.962 0.771 0.981 2.030 23.607
8 1.039 0.819 1.018 3.018 99.283 0.970 0.772 0.985 2.210 43.152 0.991 0.783 0.995 1.976 22.312

10 1.074 0.838 1.035 2.783 92.522 1.006 0.794 1.002 2.311 67.013 1.026 0.790 1.010 2.755 87.765
12 1.078 0.836 1.038 2.731 78.154 1.009 0.791 0.999 2.499 86.993 1.011 0.789 1.000 1.895 27.637

Avg 1.053 0.827 1.025 2.851 88.148 1.001 0.792 0.999 2.466 83.026 0.998 0.783 0.996 2.164 40.330

TaTS (ours)

6 0.880 0.741 0.938 2.222 37.958 0.881 0.741 0.939 2.217 57.260 0.859 0.728 0.926 1.970 35.573
8 0.937 0.768 0.968 2.136 36.109 0.909 0.749 0.953 1.981 29.665 0.913 0.761 0.955 2.524 73.564

10 1.027 0.817 1.011 2.260 31.311 0.973 0.771 0.983 2.020 27.051 0.976 0.767 0.985 2.179 31.989
12 1.075 0.831 1.033 2.317 35.133 0.958 0.764 0.974 1.727 15.480 0.930 0.757 0.960 1.871 23.016

Avg 0.980 0.789 0.987 2.234 35.128 0.930 0.756 0.962 1.986 32.364 0.920 0.753 0.957 2.136 41.035

Economy

Uni-modal

6 0.083 0.222 0.288 0.077 0.010 0.877 0.896 0.930 0.308 0.102 0.276 0.444 0.517 0.150 0.031
8 0.069 0.210 0.263 0.073 0.008 1.606 1.238 1.260 0.425 0.187 0.676 0.797 0.816 0.274 0.078

10 0.070 0.209 0.261 0.072 0.008 1.409 1.153 1.179 0.395 0.162 0.601 0.750 0.768 0.257 0.069
12 0.062 0.186 0.245 0.064 0.007 1.407 1.153 1.183 0.396 0.163 0.781 0.854 0.879 0.293 0.091

Avg 0.071 0.207 0.264 0.071 0.008 1.325 1.110 1.138 0.381 0.153 0.584 0.711 0.745 0.243 0.067

MM-TSFLib

6 0.049 0.173 0.221 0.060 0.006 0.293 0.490 0.531 0.167 0.033 0.110 0.285 0.322 0.096 0.012
8 0.045 0.171 0.211 0.060 0.005 0.445 0.643 0.660 0.220 0.051 0.157 0.359 0.389 0.122 0.018

10 0.071 0.214 0.267 0.075 0.009 0.471 0.664 0.680 0.227 0.054 0.240 0.450 0.483 0.154 0.028
12 0.068 0.209 0.260 0.073 0.008 0.518 0.674 0.715 0.231 0.060 0.347 0.569 0.584 0.195 0.040

Avg 0.058 0.192 0.240 0.067 0.007 0.432 0.618 0.646 0.211 0.049 0.213 0.416 0.445 0.142 0.025

TaTS (ours)

6 0.021 0.115 0.144 0.040 0.002 0.247 0.472 0.488 0.161 0.028 0.029 0.137 0.169 0.047 0.003
8 0.023 0.119 0.150 0.041 0.003 0.166 0.369 0.396 0.125 0.018 0.039 0.162 0.192 0.055 0.004

10 0.024 0.122 0.153 0.042 0.003 0.400 0.610 0.626 0.209 0.046 0.092 0.266 0.299 0.091 0.010
12 0.026 0.127 0.161 0.044 0.003 0.385 0.596 0.617 0.203 0.044 0.156 0.364 0.389 0.123 0.017

Avg 0.024 0.121 0.152 0.042 0.003 0.299 0.512 0.532 0.174 0.034 0.079 0.232 0.262 0.079 0.009
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Table 26: Full forecasting results for the Energy, Environment, and Health datasets using Autoformer,
Informer, and Transformer as time series models. Compared to numerical-only unimodal modeling
and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Models Autoformer Informer Transformer
(2021) (2021) (2017)

Method MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE

Energy

Uni-modal

12 0.161 0.282 0.362 1.403 24.893 0.165 0.289 0.373 1.491 35.971 0.124 0.247 0.320 1.021 8.908
24 0.279 0.416 0.509 2.632 158.931 0.248 0.380 0.475 2.916 185.671 0.291 0.403 0.494 1.951 101.566
36 0.364 0.464 0.564 2.384 93.988 0.368 0.492 0.585 4.022 356.146 0.329 0.435 0.542 3.964 428.707
48 0.471 0.550 0.664 3.106 149.374 0.457 0.539 0.640 5.613 589.886 0.445 0.537 0.642 3.824 285.963

Avg 0.319 0.428 0.525 2.381 106.797 0.309 0.425 0.518 3.511 291.918 0.297 0.405 0.500 2.690 206.286

MM-TSFLib

12 0.164 0.297 0.369 1.720 78.617 0.166 0.291 0.372 1.667 36.449 0.127 0.270 0.334 1.278 11.692
24 0.275 0.407 0.504 2.177 81.316 0.242 0.362 0.456 3.040 235.920 0.276 0.402 0.491 2.297 115.390
36 0.362 0.464 0.561 2.176 88.219 0.342 0.467 0.566 3.221 271.106 0.316 0.439 0.530 3.504 272.971
48 0.477 0.545 0.665 3.100 192.217 0.456 0.530 0.643 5.430 602.773 0.454 0.508 0.641 5.511 748.943

Avg 0.320 0.428 0.525 2.293 110.092 0.301 0.413 0.509 3.340 286.562 0.293 0.405 0.499 3.147 287.249

TaTS (ours)

12 0.153 0.291 0.365 1.490 33.553 0.145 0.271 0.347 1.118 11.872 0.126 0.252 0.324 1.036 12.192
24 0.276 0.404 0.488 2.040 73.651 0.242 0.361 0.463 2.310 184.196 0.265 0.381 0.469 1.706 53.962
36 0.360 0.467 0.555 2.167 80.434 0.301 0.415 0.514 3.658 379.160 0.301 0.419 0.515 2.804 209.452
48 0.466 0.559 0.659 3.431 178.191 0.448 0.538 0.644 4.344 378.638 0.423 0.527 0.620 5.149 416.124

Avg 0.314 0.430 0.517 2.282 91.457 0.284 0.396 0.492 2.857 238.466 0.279 0.395 0.482 2.674 172.933

Environment

Uni-modal

48 0.503 0.544 0.670 1.953 141.941 0.414 0.481 0.602 2.190 216.476 0.412 0.483 0.600 2.190 214.543
96 0.594 0.605 0.743 2.015 135.052 0.467 0.520 0.644 2.454 290.858 0.458 0.511 0.639 2.608 340.210

192 0.607 0.601 0.762 2.163 205.175 0.469 0.519 0.644 2.535 305.217 0.492 0.535 0.677 2.711 404.734
336 0.690 0.643 0.823 2.624 307.413 0.487 0.529 0.693 2.726 355.026 0.479 0.517 0.688 2.824 389.196

Avg 0.599 0.598 0.749 2.189 197.395 0.459 0.512 0.646 2.476 291.894 0.460 0.511 0.651 2.583 337.171

MM-TSFLib

48 0.442 0.492 0.626 2.008 164.960 0.419 0.473 0.604 1.997 163.772 0.420 0.471 0.606 2.027 163.407
96 0.456 0.505 0.645 1.930 154.161 0.426 0.477 0.616 2.074 173.217 0.426 0.485 0.615 2.380 252.997

192 0.461 0.505 0.663 1.995 181.553 0.425 0.481 0.634 2.410 256.710 0.418 0.479 0.630 2.356 252.249
336 0.447 0.506 0.666 1.994 172.427 0.427 0.489 0.651 2.283 225.380 0.435 0.487 0.657 2.551 282.514

Avg 0.452 0.502 0.650 1.982 168.275 0.424 0.480 0.626 2.191 204.770 0.425 0.481 0.627 2.329 237.792

TaTS (ours)

48 0.274 0.374 0.486 1.159 21.042 0.272 0.377 0.483 1.103 18.922 0.268 0.378 0.481 1.074 17.152
96 0.286 0.387 0.509 1.183 21.118 0.287 0.401 0.507 1.040 15.636 0.272 0.391 0.496 1.028 15.508

192 0.291 0.382 0.528 1.272 24.699 0.297 0.426 0.531 1.003 13.899 0.277 0.398 0.512 1.030 16.253
336 0.288 0.403 0.534 1.122 20.057 0.286 0.419 0.533 0.989 13.846 0.287 0.420 0.534 1.006 15.226

Avg 0.285 0.387 0.514 1.184 21.729 0.285 0.406 0.513 1.034 15.576 0.276 0.397 0.506 1.035 16.035

Health

Uni-modal

12 1.389 0.895 1.121 4.898 593.771 1.173 0.743 0.990 4.065 593.314 1.143 0.741 0.998 3.233 133.066
24 2.328 1.191 1.476 6.117 859.160 1.215 0.766 1.042 3.728 389.282 1.480 0.786 1.096 2.435 59.228
36 1.953 1.005 1.348 4.614 392.542 1.315 0.773 1.101 3.541 390.034 1.450 0.772 1.132 2.766 136.630
48 2.179 1.064 1.410 4.865 379.673 1.408 0.809 1.137 3.445 337.635 1.439 0.806 1.137 2.834 125.016

Avg 1.962 1.039 1.339 5.123 556.286 1.278 0.773 1.067 3.695 427.566 1.378 0.776 1.091 2.817 113.485

MM-TSFLib

12 1.331 0.864 1.112 4.427 504.600 0.997 0.673 0.928 3.024 221.350 0.953 0.686 0.920 3.309 198.713
24 1.454 0.868 1.138 3.681 181.137 1.209 0.740 1.046 3.372 257.237 1.315 0.762 1.071 2.833 137.728
36 1.574 0.906 1.216 4.051 234.643 1.282 0.760 1.092 3.111 213.531 1.276 0.763 1.070 2.906 137.944
48 1.616 0.911 1.235 3.884 201.678 1.371 0.785 1.137 3.146 234.342 1.330 0.780 1.109 2.769 125.761

Avg 1.494 0.887 1.175 4.011 280.514 1.215 0.740 1.051 3.163 231.615 1.218 0.748 1.042 2.954 150.036

TaTS (ours)

12 1.320 0.863 1.105 3.769 309.199 0.949 0.658 0.910 3.707 391.895 0.909 0.655 0.862 3.251 292.588
24 1.467 0.885 1.159 3.485 152.650 1.130 0.736 1.020 3.897 352.680 1.187 0.728 1.030 3.143 192.685
36 1.368 0.825 1.120 3.962 230.059 1.301 0.779 1.110 3.540 270.359 1.175 0.728 1.048 3.096 193.526
48 1.483 0.871 1.180 4.108 279.227 1.354 0.833 1.143 3.962 372.090 1.297 0.762 1.113 3.074 185.199

Avg 1.409 0.861 1.141 3.831 242.784 1.183 0.752 1.046 3.776 346.756 1.142 0.718 1.013 3.141 216.000
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Table 27: Full forecasting results for the Security, Social Good, and Traffic datasets using Autoformer,
Informer, and Transformer as time series models. Compared to numerical-only unimodal modeling
and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Models Autoformer Informer Transformer
(2021) (2021) (2017)

Method MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE

Security

Uni-modal

6 115.544 5.268 10.749 2.437 185.108 133.168 6.626 11.540 1.591 19.155 126.925 6.203 11.266 2.547 120.160
8 113.355 4.967 10.647 2.888 298.107 134.383 6.804 11.592 1.236 6.780 132.905 6.641 11.528 1.209 14.174
10 114.407 4.984 10.696 2.164 153.069 131.382 6.631 11.462 1.483 26.411 128.820 6.443 11.350 1.539 32.792
12 117.801 5.253 10.854 2.692 326.651 128.201 6.430 11.323 1.408 26.498 136.753 7.039 11.694 1.168 4.854

Avg 115.277 5.118 10.736 2.545 240.734 131.784 6.623 11.479 1.429 19.711 131.351 6.582 11.460 1.616 42.995

MM-TSFLib

6 108.841 4.861 10.433 3.004 246.068 127.216 6.197 11.279 2.326 99.099 127.277 6.233 11.282 2.592 135.752
8 113.693 5.031 10.663 2.799 265.988 128.914 6.402 11.354 1.660 40.618 126.589 6.227 11.251 2.010 84.511
10 112.545 5.098 10.609 1.885 120.031 128.775 6.434 11.348 1.532 38.764 127.986 6.368 11.313 1.520 32.213
12 110.699 4.902 10.521 2.177 199.450 130.907 6.626 11.441 1.443 33.523 132.033 6.685 11.491 1.217 11.881

Avg 111.445 4.973 10.556 2.466 207.884 128.953 6.415 11.356 1.740 53.001 128.471 6.378 11.334 1.835 66.089

TaTS (ours)

6 107.430 4.658 10.365 4.255 528.013 127.814 6.269 11.306 2.263 110.185 122.803 5.927 11.082 2.966 185.980
8 107.108 4.750 10.349 3.531 455.878 125.990 6.217 11.225 2.390 135.504 123.882 6.057 11.130 2.505 151.979
10 110.061 4.891 10.491 3.615 562.774 125.737 6.248 11.213 2.231 134.082 125.666 6.262 11.210 2.232 128.702
12 109.361 4.847 10.458 3.060 457.480 127.103 6.369 11.274 1.885 86.102 125.971 6.290 11.224 1.899 90.926

Avg 108.490 4.787 10.416 3.615 501.036 126.661 6.276 11.255 2.192 116.468 124.581 6.134 11.162 2.401 139.397

Social Good

Uni-modal

6 1.234 0.684 0.973 1.910 69.347 0.773 0.425 0.668 0.872 13.761 0.848 0.427 0.684 1.208 27.858
8 1.236 0.664 0.956 1.998 80.017 0.871 0.449 0.708 0.933 11.089 0.877 0.460 0.719 1.520 56.020
10 1.332 0.708 1.026 2.116 93.499 0.910 0.498 0.755 0.905 6.360 0.976 0.541 0.783 1.725 63.227
12 1.312 0.749 1.046 2.231 75.925 0.926 0.644 0.818 1.028 7.619 0.938 0.508 0.750 1.389 28.551

Avg 1.278 0.701 1.000 2.064 79.697 0.870 0.504 0.737 0.934 9.707 0.910 0.484 0.734 1.460 43.914

MM-TSFLib

6 1.200 0.664 0.954 1.890 66.499 0.772 0.414 0.666 0.726 8.039 0.784 0.422 0.673 0.938 18.507
8 1.175 0.589 0.891 1.935 84.135 0.829 0.405 0.673 0.746 6.869 0.845 0.426 0.669 1.056 19.505
10 1.268 0.689 1.002 1.756 44.172 0.876 0.466 0.724 0.855 6.248 0.913 0.486 0.731 1.252 25.176
12 1.272 0.739 1.032 2.048 56.789 0.879 0.541 0.765 0.888 7.772 0.882 0.510 0.744 1.021 13.844

Avg 1.229 0.670 0.970 1.907 62.899 0.839 0.457 0.707 0.804 7.232 0.856 0.461 0.704 1.067 19.258

TaTS (ours)

6 1.057 0.564 0.877 1.451 33.099 0.724 0.448 0.660 0.765 7.156 0.740 0.375 0.616 0.700 3.824
8 1.184 0.686 0.954 1.476 20.587 0.788 0.463 0.696 0.890 8.039 0.805 0.393 0.632 0.828 11.467
10 1.278 0.714 0.986 1.578 21.226 0.828 0.468 0.691 0.880 8.487 0.842 0.485 0.700 1.062 11.719
12 1.261 0.699 0.979 1.544 21.227 0.899 0.455 0.698 0.785 4.917 0.842 0.424 0.650 0.777 5.973

Avg 1.195 0.666 0.949 1.512 24.035 0.810 0.459 0.686 0.830 7.150 0.807 0.419 0.649 0.842 8.246

Traffic

Uni-modal

6 0.201 0.295 0.416 0.316 0.542 0.197 0.352 0.434 0.303 0.328 0.203 0.344 0.438 0.299 0.307
8 0.205 0.296 0.419 0.299 0.440 0.202 0.358 0.440 0.320 0.369 0.224 0.364 0.460 0.302 0.285
10 0.200 0.297 0.413 0.310 0.479 0.196 0.351 0.430 0.296 0.314 0.209 0.353 0.445 0.298 0.295
12 0.241 0.303 0.448 0.350 0.653 0.213 0.358 0.448 0.326 0.397 0.200 0.323 0.426 0.316 0.416

Avg 0.212 0.298 0.424 0.319 0.528 0.202 0.355 0.438 0.311 0.352 0.209 0.346 0.442 0.304 0.326

MM-TSFLib

6 0.195 0.248 0.390 0.247 0.360 0.166 0.297 0.387 0.285 0.391 0.164 0.291 0.384 0.271 0.340
8 0.204 0.274 0.401 0.277 0.404 0.169 0.306 0.393 0.285 0.372 0.172 0.305 0.395 0.274 0.318
10 0.207 0.274 0.409 0.268 0.407 0.169 0.305 0.391 0.282 0.358 0.169 0.297 0.391 0.283 0.393
12 0.241 0.292 0.420 0.343 0.795 0.183 0.290 0.392 0.292 0.414 0.181 0.288 0.392 0.287 0.389

Avg 0.212 0.272 0.405 0.284 0.492 0.172 0.299 0.391 0.286 0.384 0.171 0.295 0.390 0.279 0.360

TaTS (ours)

6 0.161 0.225 0.356 0.253 0.440 0.159 0.282 0.375 0.266 0.337 0.159 0.274 0.373 0.269 0.384
8 0.167 0.237 0.353 0.258 0.416 0.161 0.289 0.378 0.270 0.340 0.156 0.268 0.367 0.266 0.386
10 0.163 0.214 0.339 0.250 0.477 0.157 0.276 0.368 0.274 0.399 0.157 0.270 0.367 0.267 0.383
12 0.217 0.242 0.379 0.293 0.575 0.181 0.279 0.387 0.289 0.429 0.183 0.285 0.391 0.292 0.423

Avg 0.177 0.229 0.357 0.264 0.477 0.164 0.281 0.377 0.275 0.376 0.164 0.274 0.374 0.274 0.394
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Table 28: Full forecasting results for various datasets using different time series modeling methods.
Our TaTS framework seamlessly enhances existing time series models to effectively handle time
series with concurrent texts. Avg: the average results across all prediction lengths.

Methods TaTS (ours) TaTS (ours) TaTS (ours) N-BEATS N-HiTS TCN ChatTime GPT4MTS
+ iTransformer + PatchTST + FiLM (2020) (2022) (2018) (2025) (2024)

Datasets MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Time-MMD
(2024a)

Agriculture

6 0.067 0.184 0.066 0.171 0.087 0.205 2.436 1.210 2.274 1.134 3.957 1.770 0.502 0.441 0.197 0.292
8 0.094 0.210 0.096 0.217 0.110 0.223 3.671 1.446 1.575 0.866 5.078 1.919 0.510 0.449 0.352 0.426

10 0.122 0.251 0.126 0.260 0.146 0.249 3.078 1.416 1.441 0.910 4.464 1.866 0.505 0.445 0.358 0.413
12 0.153 0.271 0.166 0.292 0.196 0.328 3.883 1.759 2.119 1.217 3.173 1.633 0.517 0.452 0.404 0.444

Avg 0.109 0.229 0.114 0.235 0.135 0.251 3.267 1.458 1.852 1.032 4.168 1.797 0.508 0.447 0.327 0.393

Climate

6 1.020 0.797 0.976 0.782 0.912 0.758 1.123 0.894 1.114 0.881 1.137 0.875 1.507 1.007 1.062 0.844
8 1.025 0.797 0.995 0.803 0.917 0.751 1.070 0.844 0.981 0.791 1.046 0.804 1.524 1.012 1.177 0.893

10 1.033 0.808 1.022 0.796 0.947 0.759 1.093 0.850 1.152 0.877 1.043 0.857 1.578 1.027 1.100 0.863
12 1.033 0.812 1.022 0.810 1.005 0.821 1.085 0.856 1.166 0.884 1.167 0.926 1.664 1.031 1.169 0.893

Avg 1.028 0.804 1.004 0.798 0.945 0.772 1.093 0.861 1.103 0.858 1.098 0.866 1.568 1.019 1.127 0.873

Economy

6 0.008 0.077 0.009 0.080 0.009 0.080 0.727 0.782 0.224 0.432 5.390 2.315 0.042 0.156 0.013 0.091
8 0.008 0.077 0.008 0.078 0.009 0.079 0.874 0.882 0.675 0.793 5.811 2.406 0.045 0.157 0.014 0.096

10 0.009 0.079 0.009 0.079 0.009 0.079 0.999 0.849 0.486 0.647 5.426 2.324 0.052 0.165 0.015 0.098
12 0.008 0.076 0.009 0.080 0.009 0.081 1.438 1.166 0.389 0.465 5.556 2.352 0.059 0.188 0.016 0.101

Avg 0.008 0.077 0.009 0.079 0.009 0.080 1.010 0.920 0.444 0.584 5.546 2.349 0.049 0.166 0.014 0.096

Energy

12 0.106 0.234 0.106 0.234 0.118 0.245 0.146 0.271 0.195 0.336 0.165 0.318 0.128 0.253 0.117 0.244
24 0.226 0.355 0.206 0.336 0.222 0.347 0.280 0.413 0.612 0.582 0.407 0.507 0.258 0.363 0.212 0.347
36 0.306 0.411 0.305 0.412 0.311 0.414 0.431 0.482 0.380 0.474 0.512 0.569 0.361 0.465 0.328 0.424
48 0.421 0.502 0.416 0.501 0.434 0.510 0.460 0.532 0.301 0.460 0.634 0.654 0.473 0.588 0.421 0.497

Avg 0.265 0.376 0.258 0.371 0.271 0.379 0.329 0.424 0.372 0.463 0.430 0.512 0.305 0.417 0.269 0.378

Environment

48 0.268 0.370 0.271 0.377 0.269 0.373 0.448 0.504 0.440 0.523 0.805 0.693 0.583 0.594 0.312 0.390
96 0.267 0.370 0.279 0.376 0.279 0.377 0.540 0.582 0.421 0.522 0.738 0.686 0.575 0.591 0.345 0.408

192 0.272 0.366 0.272 0.366 0.271 0.367 0.522 0.592 0.635 0.660 1.466 0.982 0.577 0.594 0.358 0.440
336 0.261 0.369 0.269 0.366 0.267 0.366 0.563 0.614 0.593 0.628 0.407 0.490 0.585 0.599 0.377 0.453

Avg 0.267 0.369 0.273 0.371 0.272 0.371 0.518 0.573 0.522 0.583 0.854 0.713 0.580 0.594 0.348 0.422

Health

12 0.939 0.649 0.990 0.659 1.211 0.794 1.572 0.838 1.723 0.866 2.484 1.027 1.482 0.802 1.157 0.704
24 1.251 0.712 1.288 0.764 1.414 0.827 1.680 0.981 1.621 0.905 2.072 1.070 1.645 0.956 1.743 0.904
36 1.489 0.781 1.397 0.780 1.497 0.851 1.834 0.980 1.687 0.908 1.557 0.859 1.732 0.937 1.950 0.938
48 1.581 0.834 1.456 0.808 1.562 0.878 1.556 0.952 1.635 0.911 1.639 0.922 1.813 0.942 2.217 0.957

Avg 1.315 0.744 1.283 0.753 1.421 0.838 1.660 0.938 1.666 0.898 1.938 0.970 1.668 0.909 1.766 0.875

Security

6 107.113 4.856 106.160 4.696 105.482 4.511 131.917 6.866 135.416 6.896 129.616 6.801 130.751 6.854 118.425 5.102
8 112.560 5.204 108.803 5.052 107.657 4.792 113.095 6.287 144.874 7.780 128.578 6.936 134.526 6.875 118.952 5.106

10 113.789 5.227 111.110 5.090 109.886 4.771 163.555 7.344 156.898 6.797 160.129 7.077 131.632 6.895 119.521 5.253
12 114.754 5.318 112.699 5.237 108.375 4.870 111.694 5.974 115.307 6.437 128.062 6.676 135.513 6.923 120.732 5.331

Avg 112.054 5.151 109.693 5.019 107.850 4.736 130.065 6.618 138.124 6.978 136.596 6.873 133.106 6.887 119.407 5.198

Social Good

6 0.942 0.398 0.923 0.436 0.992 0.588 1.752 0.654 1.446 0.626 1.535 0.917 1.213 0.608 1.214 0.485
8 0.967 0.433 0.900 0.461 1.001 0.550 0.952 0.551 1.033 0.531 1.129 0.935 1.252 0.621 1.422 0.560

10 0.994 0.463 0.996 0.461 1.065 0.583 1.116 0.627 1.112 0.594 1.208 0.996 1.278 0.667 1.264 0.572
12 1.045 0.514 1.069 0.501 1.358 0.782 1.445 0.827 1.498 0.846 1.385 0.996 1.313 0.712 1.757 0.622

Avg 0.987 0.452 0.972 0.465 1.104 0.626 1.316 0.665 1.272 0.649 1.314 0.961 1.264 0.652 1.414 0.559

Traffic

6 0.174 0.218 0.155 0.204 0.157 0.228 0.352 0.409 0.295 0.372 0.779 0.775 0.369 0.435 0.185 0.227
8 0.177 0.213 0.162 0.210 0.162 0.260 0.329 0.467 0.279 0.385 0.674 0.704 0.361 0.432 0.190 0.240

10 0.186 0.225 0.167 0.214 0.169 0.269 0.342 0.474 0.281 0.404 0.702 0.758 0.363 0.427 0.189 0.246
12 0.213 0.212 0.361 0.241 0.215 0.236 0.364 0.505 0.217 0.368 0.675 0.739 0.359 0.422 0.219 0.272

Avg 0.187 0.217 0.172 0.209 0.176 0.248 0.347 0.464 0.268 0.382 0.708 0.744 0.363 0.429 0.195 0.246

FNSPID
(2024)

Delta
Airlines
(DAL)

6 0.064 0.161 0.059 0.160 0.065 0.167 0.253 0.417 0.191 0.342 0.247 0.422 0.068 0.169 0.069 0.179
12 0.110 0.233 0.116 0.224 0.126 0.235 0.320 0.470 0.260 0.416 0.341 0.509 0.128 0.235 0.118 0.223

Avg 0.087 0.197 0.086 0.192 0.095 0.201 0.286 0.444 0.226 0.379 0.294 0.466 0.098 0.202 0.093 0.201

IBM
(IBM)

6 0.324 0.401 0.341 0.401 0.642 0.534 0.820 0.667 0.913 0.675 2.001 1.150 0.396 0.453 0.392 0.424
12 0.804 0.602 0.758 0.580 1.140 0.856 1.390 0.887 1.517 0.937 1.870 1.096 0.807 0.619 0.886 0.627

Avg 0.564 0.501 0.550 0.490 0.891 0.695 1.105 0.777 1.215 0.806 1.936 1.123 0.602 0.536 0.639 0.525

JPMorgan
Chase
(JPM)

6 1.173 0.817 1.275 0.819 1.606 0.912 1.788 1.063 2.217 1.082 3.971 1.785 1.332 0.843 1.644 0.922
12 2.214 1.124 2.470 1.161 3.421 1.281 3.050 1.287 4.635 1.383 3.557 1.637 2.742 1.244 2.622 1.323

Avg 1.693 0.970 1.872 0.990 2.513 1.096 2.419 1.175 3.426 1.232 3.764 1.711 2.037 1.043 2.133 1.122

NVIDIA
(NVDA)

6 0.032 0.123 0.041 0.151 0.037 0.172 0.257 0.424 0.093 0.224 0.431 0.560 0.038 0.139 0.043 0.149
12 0.054 0.159 0.055 0.162 0.063 0.177 0.288 0.445 0.151 0.301 0.483 0.587 0.067 0.183 0.066 0.170

Avg 0.043 0.141 0.048 0.156 0.050 0.174 0.272 0.434 0.122 0.262 0.457 0.574 0.053 0.161 0.054 0.159

Pfizer
(PFE)

6 0.240 0.355 0.255 0.363 0.329 0.419 0.767 0.623 0.662 0.608 0.601 0.557 0.354 0.451 0.283 0.389
12 0.412 0.476 0.439 0.482 0.567 0.535 0.586 0.520 0.987 0.718 0.654 0.561 0.462 0.503 0.456 0.490

Avg 0.326 0.416 0.347 0.422 0.448 0.477 0.676 0.572 0.824 0.663 0.628 0.559 0.408 0.477 0.369 0.439

Tesla
(TSLA)

6 0.101 0.241 0.071 0.204 0.098 0.235 0.166 0.306 0.262 0.452 3.784 1.929 0.123 0.256 0.166 0.315
12 0.183 0.321 0.245 0.390 0.122 0.253 0.210 0.358 0.247 0.381 3.168 1.773 0.192 0.343 0.196 0.292

Avg 0.142 0.281 0.158 0.297 0.110 0.244 0.188 0.332 0.254 0.416 3.476 1.851 0.158 0.300 0.181 0.303

FNF
(2024b)

Bitcoin
Price

6 1.760 0.916 1.552 0.858 1.751 0.899 123.135 9.413 105.978 9.806 43.935 5.848 2.525 1.085 1.808 0.894
8 2.147 1.006 1.998 0.964 2.458 1.080 126.985 9.703 163.110 10.690 53.318 6.412 3.352 1.163 2.521 1.050

10 3.007 1.212 2.621 1.128 3.399 1.287 157.388 11.113 179.247 10.759 65.162 7.253 3.853 1.486 3.014 1.208
12 3.521 1.313 3.185 1.229 3.491 1.304 159.445 11.192 187.741 10.884 68.887 7.464 4.631 1.641 3.542 1.456

Avg 2.609 1.112 2.339 1.045 2.775 1.142 141.738 10.355 159.019 10.535 57.826 6.744 3.590 1.344 2.721 1.152

Web
Traffic

6 15.106 2.504 17.348 2.755 17.378 2.755 21.596 3.003 21.993 2.912 16.625 2.157 19.265 2.869 18.106 2.832
8 18.474 2.740 17.715 2.625 16.11 2.600 19.330 2.754 21.001 2.828 20.144 2.826 21.724 2.924 18.421 2.745

10 18.313 2.783 18.008 2.643 16.23 2.516 20.866 2.901 24.046 2.930 21.976 2.947 20.164 2.875 19.902 2.792
12 19.084 2.823 18.783 2.590 22.721 3.217 27.141 3.409 26.011 3.374 27.759 3.439 21.841 2.969 20.611 2.942

Avg 17.744 2.712 17.964 2.653 18.110 2.772 22.233 3.017 23.263 3.011 21.626 2.842 20.748 2.909 19.260 2.827

Electricity
Demand

6 0.262 0.379 0.257 0.374 0.260 0.375 0.385 0.470 0.338 0.443 0.436 0.506 0.510 0.544 0.271 0.388
8 0.274 0.391 0.257 0.370 0.244 0.360 0.419 0.497 0.426 0.504 0.501 0.565 0.524 0.562 0.284 0.369

10 0.288 0.405 0.173 0.266 0.252 0.366 0.407 0.494 0.335 0.454 0.558 0.582 0.536 0.571 0.292 0.398
12 0.295 0.408 0.327 0.424 0.310 0.408 0.451 0.522 0.355 0.471 0.567 0.601 0.558 0.588 0.337 0.428

Avg 0.280 0.396 0.254 0.358 0.266 0.377 0.416 0.496 0.364 0.468 0.516 0.564 0.532 0.566 0.296 0.395
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E.4 FULL IMPUTATION RESULTS

Table 29: Full imputation results for the Climate, Economy, and Traffic datasets using PatchTST,
DLinear and FiLM as time series models. Compared to numerical-only unimodal modeling and
MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Promotion: the improvement of the best baseline.

Models PatchTST DLinear FiLM
(2023) (2023) (2022a)

Metric MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE MSE MAE RMSE MAPE MSPE

Climate

Uni-modal 1.111 0.846 1.052 3.898 442.010 0.969 0.801 0.983 1.881 59.681 1.123 0.829 1.059 2.647 128.421
MM-TSFLib 1.010 0.821 1.002 2.156 81.983 0.963 0.802 0.980 1.394 18.580 1.130 0.833 1.061 1.949 51.811
TaTS (ours) 0.878 0.720 0.937 1.573 35.877 0.912 0.757 0.951 1.701 25.242 0.820 0.718 0.902 1.478 30.622

Promotion 13.1% 12.3% 6.5% 27.0% 56.2% 5.3% 5.5% 3.0% -22.0% -35.9% 27.0% 13.4% 14.8% 24.2% 40.9%

Economy

Uni-modal 0.029 0.138 0.170 0.051 0.004 0.057 0.190 0.239 0.068 0.007 0.077 0.209 0.277 0.076 0.010
MM-TSFLib 0.026 0.137 0.161 0.049 0.003 0.061 0.196 0.247 0.069 0.007 0.075 0.203 0.271 0.072 0.009
TaTS (ours) 0.017 0.107 0.128 0.038 0.002 0.045 0.171 0.210 0.061 0.006 0.054 0.168 0.232 0.061 0.007

Promotion 34.6% 21.9% 20.5% 22.4% 33.3% 21.1% 10.0% 12.1% 10.3% 14.3% 28.0% 17.2% 14.4% 15.3% 22.2%

Traffic

Uni-modal 0.210 0.339 0.444 0.358 0.600 0.245 0.417 0.489 0.430 0.720 0.175 0.311 0.409 0.343 0.508
MM-TSFLib 0.189 0.341 0.428 0.391 0.690 0.179 0.335 0.419 0.362 0.630 0.169 0.288 0.396 0.316 0.545
TaTS (ours) 0.131 0.248 0.331 0.312 0.647 0.134 0.297 0.352 0.266 0.270 0.137 0.242 0.354 0.281 0.388

Promotion 30.7% 26.8% 22.7% 12.8% -7.8% 25.1% 11.3% 16.0% 26.5% 57.1% 18.9% 16.0% 10.6% 11.1% 23.6%
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E.5 FULL HYPERPARAMETER STUDY RESULTS OF LEARNING RATE

(a) Agriculture (b) Climate (c) Economy

(d) Energy (e) Environment (f) Health

(g) Security (h) Social Good (i) Traffic

Figure 11: Parameter study on the learning rate. We evaluate the impact of varying the learning rate in
{0.00005, 0.0001, 0.00015, 0.0002, 0.00025, 0.0003} by reporting the mean squared error (MSE) of
our TaTS framework across datasets. The results demonstrate that TaTS maintains stable performance
across different learning rate choices.
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E.6 FULL HYPERPARAMETER STUDY RESULTS OF TEXT EMBEDDING DIMENSION

(a) Agriculture (b) Climate (c) Economy

(d) Energy (e) Environment (f) Health

(g) Security (h) Social Good (i) Traffic

Figure 12: Parameter study on the projection dimension of paired texts. We vary the text projection
dimension in {6, 12, 18, 24} and report the mean squared error (MSE) of our TaTS framework across
datasets. The results indicate that TaTS maintains robust performance across different choices of text
projection dimensions.
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E.7 FULL ABLATION STUDY RESULTS USING DIFFERENT TEXT ENCODERS

We conduct experiments to evaluate the performance of our TaTS with multiple language encoders.
Specifically, we evaluation TaTS with BERT-110M2, GPT2-1.5B3 and LLaMA2-7B4 as the language
encoders. The results, presented in Figure 13, demonstrate that TaTS remains robust across different
text encoders and consistently outperforms the baselines.

(a) Agriculture (b) Climate (c) Economy

(d) Energy (e) Environment (f) Health

(g) Security (h) Social Good (i) Traffic

Figure 13: Performance comparison of different text encoders within the TaTS framework. Specif-
ically, we evaluate BERT-110M, GPT2-1.5B, and LLaMA2-7B across multiple datasets using
PatchTST (transformer-based model), DLinear (linear-based model), and FiLM (frequency-based
model). TaTS maintains relatively stable performance across various models and datasets.

In the main experiments, the text embeddings are obtained by a mean pooling over token embeddings.
There are more advanced embedding techniques. To this end, we conducted an additional experiment
using LLaMA-3.2-1B to generate sentence-level embeddings, while keeping all other settings the
same. The results are shown below in Table 30.

Table 30: Mean Square Error of TaTS forecasting with different text embedding methods.

Text Embedding Method Agriculture Climate Economy Security Social Good Traffic

GPT-2 average pooling (prediction length 6) 0.067 1.020 0.008 107.113 0.942 0.174
LLaMA-3.2-1B sentence embeddings (prediction length 6) 0.067 1.015 0.008 106.625 0.935 0.179
GPT-2 average pooling (prediction length 12) 0.153 1.033 0.008 114.754 1.045 0.213
LLaMA-3.2-1B sentence embeddings (prediction length 12) 0.152 1.021 0.008 114.219 1.025 0.209

2https://huggingface.co/google-bert/bert-base-uncased
3https://huggingface.co/openai-community/gpt2
4https://huggingface.co/meta-llama/Llama-2-7b
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E.8 FULL EFFICIENCY RESULTS: COMPUTATIONAL OVERHEAD VS. PERFORMANCE GAIN
TRADE-OFFS

We conduct experiments to analyze the efficiency of TaTS, with results presented in Figure 14.
Each subfigure visualizes the training time per epoch and the forecasting mean squared error (MSE)
for different time series models, represented as transparent colored scatter points. The average
performance is computed and marked with cross markers: the green cross represents the average
performance of TaTS, while the red and blue crosses indicate the average performance of the baseline
models. As TaTS introduces a lightweight MLP and augments the original time series with auxiliary
variables projected from paired texts, it incurs a slight computational overhead, with an average
increase of ∼ 8%. Yet this trade-off results in a ∼ 14% average improvement of forecasting MSE.

(a) Agriculture (b) Climate (c) Economy

(d) Energy (e) Environment (f) Health

(g) Security (h) Social Good (i) Traffic

Figure 14: Efficiency and forecasting performance comparison of uni-modal time-series modeling,
MM-TSFLib, and our TaTS framework. While TaTS incurs a slight increase in training time due
to the augmentation of auxiliary variables projected from paired texts, it significantly enhances
forecasting accuracy, achieving a lower MSE.
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