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ABSTRACT

While many advances in time series models focus exclusively on numerical data,
research on multimodal time series, particularly those involving contextual textual
information, remains in its infancy. With recent progress in large language models
and time series learning, we revisit the integration of paired texts with time series
through the Platonic Representation Hypothesis (Huh et al., 2024), which posits that
representations of different modalities converge to shared spaces. In this context,
we identify that time-series-paired texts may naturally exhibit periodic properties
that closely mirror those of the original time series. Building on this insight, we
propose a novel framework, Texts as Time Series (TaTS), which considers the time-
series-paired texts to be auxiliary variables of the time series. TaTS can be plugged
into any existing numerical-only time series models and effectively enable them to
handle time series data with paired texts. Through extensive experiments on both
multimodal time series forecasting and imputation tasks across benchmark datasets
with various existing time series models, we demonstrate that TaTS can enhance
multimodal predictive performance without modifying model architectures.

1 INTRODUCTION

Time series modeling plays an important role in a wide range of real- crosstormer
world applications, including finance (Sezer et al., 2020), healthcare
(Zhang et al., 2024b), climate (Fu et al., 2024), and energy systems
(Kotzur et al., 2017; Li et al., 2015). While extensive research has  reoronfe
focused on approaches that rely solely on the numerical values
of time series (Zhou et al., 2021; Liu et al., 2024c; Wu et al.,
2023b; Wang et al., 2024c), real-world scenarios often involve s
additional modalities that co-occur with the time series and can
provide valuable complementary information (De Baets & Harvey,
2023; Rai et al., 2023; Kyei & Antwi, 2017; Wang et al., 2024d). ) nformer

== Numerical-only uni-modal modeling
MMTS bag-of-tex

In scenarios like pandemic policymaking, economic planning, or — Tertsa Tme e 3T, s
investment strategies, textual information can provide explanations,
updates, or external factors that influence the underlying numerical
patterns. However, research on effectively leveraging data from
other modalities paired with time series remains in its early stages.
In this work, we focus on time-series paired with texts at each
timestamp, a common data format where textual descriptions are associated with time series at each
timestamp in a parallel manner, as illustrated in Figure 3 (left). For instance, during a pandemic,
infection rates are often accompanied by government announcements and news reports in real-
time (Cinelli et al., 2020). On the one hand, numerical-only models overlook valuable contextual
information that may influence or explain the patterns in the time series. On the other hand, the
current state-of-the-art approach (Liu et al., 2024a) disregards the unique positional characteristics
that time-series-paired texts may inherently possess. Such limitations raise a pivotal question:
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Figure 1: Mean Square Error of
modeling frameworks of time
series with paired texts. Full
results in Appendix E.2.

What unique attributes may characterize time-series-paired texts, and how can they be systematically
integrated to improve time series modeling and predictions?
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In this paper, motivated by the Platonic Representation Hypothesis (PRH) (Huh et al., 2024), we
pioneer the exploration of effectively leveraging paired texts to enrich time series analysis. We
identify an intriguing phenomenon, which we term “Chronological Textual Resonance” (CTR):
depending on data quality, time-series-paired texts may exhibit periodic patterns that closely reflect
the temporal dynamics of their corresponding numerical time series. More specifically, despite
variations in expressions, the hidden representations of two periodicity-lagged texts associated with
time series may demonstrate high similarities, revealing a deeper alignment between textual and
numerical modalities. We attribute this phenomenon to the fact that the paired texts inherently evolve
in response to the dynamics of the time series itself. Further, we introduce TT-Wasserstein, a new
metric designed to measure the level of CTR and quantify alignment quality.

Building on these insights, we propose Texts as Time Series (TaTS), a simple yet effective framework
for integrating paired texts to enhance multimodal time series modeling. Previous studies have shown
that different variables in one multivariate time series exhibit similar periodicity properties (Zhang
& Yan, 2023; Wang et al., 2024d; Yi et al., 2024), and CTR suggests that time-series-paired texts
follow a similar pattern. This observation implies that paired texts can be considered as special
auxiliary variables to augment the original time series. Motivated by this, TaTS first transforms
the paired textual information into a lower-dimensional representation, then combines the original
time series with the textual representations as new variables to form an augmented time series. This
augmented time series is subsequently fed into existing time series models, allowing them to capture
both numerical and textual dynamics. TaTS offers two key benefits: (i) it effectively captures the
evolving positional characteristics of texts paired with a time series; and (ii) it functions as a plug-in
module, maintaining compatibility with existing time series models. Empirically, the proposed TaTS
achieves state-of-the-art performance on both forecasting and imputation tasks. Notably, we observe
that a higher CTR level (i.e., a lower TT-Wasserstein) correlates with greater improvements compared
to numerical-only modeling. In summary, our contributions are:

* We revisit multimodal time series with the PRH and uncover a previously overlooked
phenomenon, termed Chronological Textual Resonance (CTR), that time-series-paired texts
may exhibit periodic patterns closely aligned with their corresponding numerical time series.
Further, we propose TT-Wasserstein to quantify the level of CTR and the alignment quality.

* Based on this phenomenon, we propose a plug-and-play multimodal time series forecasting
framework, Texts as Time Series (TaTS), which transforms text representations into auxiliary
variables, seamlessly integrating them into existing time series models.

» Experiments on diverse benchmark datasets and multiple time series models demonstrate
TaTS’s superior performance without requiring modifications to model architectures.

2 PRELIMINARY

We use calligraphic letters (e.g., A) for sets and bold capital letters for matrices (e.g., A). For matrix
indices, A[i, j] denotes the entry in the ™ row and the 5" column. For a vector v, v[i : j] represents
the sub-vector sliced from the 7" to the ;" position, inclusively. A[4, :] returns the i*" row in A and
AJ[: i] returns the first ¢ rows of A. In this paper, we focus on both forecasting and imputation.

Time Series Forecasting. A time series is denoted as X = {x1,Xa2,...,Xy} € RT*N  where T
represents the number of time steps and N denotes the number of variables. x; is the time series
sequence of the i variable. When N > 1, the time series is referred to as a multivariate time series.
Let X, represent the time slice of the series from timestamp a to b, i.e., X, = {x1]a : b],x2[a :
bl,...,xnla: b]}. The task of time series forecasting is to predict the future H steps:

XT+1:T+H =F (XlzT; 0forecast) € RHXNa (1)
where F denotes the mapping function, and Ofyecqs denotes the learnable parameters of F.
Time Series Imputation. The goal of imputation is to estimate missing values in the time series X,

where the missing entries are denoted by a binary mask M € {0, 1}7*¥ Specifically, M, =1
indicates X ,, being observed, M, ,, = 0 indicates X ,, being missing. Formally,

leputed =g (X © M, M; eimpute) S RTXN; 2)

where Xmputed represents the imputed time series, G denotes the imputation function, jmpue denotes
its learnable parameters, and ® represents the element-wise multiplication. The imputation process

aims to recover the missing entries such that X'™Pued ~ X with respect to the actual X values.
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Figure 2: By overlaying the top frequencies of paired texts (vertical dashed lines) onto the amplitude
spectrum of the time series, it is observed that the time-series-paired texts exhibit similar periodic
properties that closely mirror those of the original time series. We term this phenomenon Chronologi-
cal Textual Resonance. More Details are provided in Appendix A.

Extending Time Series with Paired Texts. In addition to the numerical time series X € RT*N the
dataset D = {X, S} includes textual information S = {s1, sa, ..., S}, where each s; represents
the text at timestamp ¢. Each s; is a string that can be tokenized into a sequence of tokens, i.e.,
Tokenize(s;) = {w,1, w2, ..., w1, }, Where L, denotes the number of tokens in the text at time .
The textual data can be transformed into numerical representations using a textual encoder Hex:

er = Hiext(5¢; Orext) € R%e, A3

where e; is the encoded text representation at time ¢, diex, is text embedding dimension, and 6y are
encoder parameters. In this work, we leverage pre-trained large language models to encode the texts.

3 CHRONOLOGICAL TEXTUAL RESONANCE (CTR)

The association of time series at each timestamp may imbue time-series-paired texts with unique
characteristics that can be effectively harnessed through an appropriate design.

The Platonic Representation Hypothesis. PRH (Huh et al., 2024) posits that different modalities
describing the same object converge towards a shared, latent representation. Extending this hypothesis,
if time series and paired text both describe the same changing event, their representations are dynamic
projections from a common underlying source, and should exhibit similar periodic properties.

To illustrate this hypothesis for time series with paired texts, we analyze three real-world datasets (Liu
et al., 2024a), including (i) Economy: The time series represents trade data of the U.S., while the texts
describe the general economic conditions of the country. (ii) Social Good: The time series captures
the unemployment rate in the U.S., and the texts include detailed unemployment reports. (iii) Traffic:
The time series reflects monthly travel volume trends from the U.S. Department of Transportation,
with corresponding texts derived from traffic volume reports issued by the same department.

For each dataset D = {X, S}, we employ Fourier Transform (Nussbaumer, 1982; Sneddon, 1995) to
analyze the frequency components of time series data and identify its dominant periodic components,
illustrated by the blue curves in Figure 2. To examine the periodicity of texts, we embed each s; € S
to obtain the text embedding e; at timestamp ¢. Then, we compute their lag-similarity, defined as
d; = ), cos(es, eqq1,) where L is the lag and cos(-, -) represents the cosine similarity. If the text
embeddings exhibit a significant periodic pattern, the lag-similarity d; will also fluctuate periodically
as the lag [ increases (proof in Proposition A.1). Finally, we identify major frequencies (with the
largest amplitudes) of the texts by applying FFT to text lag-similarity, and mark them with red dashed
lines, as shown in Figure 2. Detailed process is provided in Appendix A. We find that the major
frequencies of the paired texts closely match those of the time series. Specifically, the paired texts
also show periodicity of 12 (frequency 0.083) for monthly sampled time series, indicating that the
paired texts exhibit periodicity that is strongly aligned with the temporal dynamics of the time series.

Why may CTR happen? We present three key reasons for the observed alignment in periodicity
between time series and their paired texts: (i) Shared External Drivers: Both the time series
and their paired texts are often influenced by common external factors, such as seasonal changes,
recurring events, or societal and economic cycles. These shared drivers naturally induce periodicity
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Figure 3: Texts as Time Series (TaTS) framework. As paired texts may exhibit behaviors similar to
accompanying variables in a time series, TaTS transforms the paired texts into auxiliary variables.
These variables augment the numerical sequence, forming a unified multimodal sequence that can be
seamlessly integrated into any existing time series model.

in both modalities. (ii) Influence of Time Series on Texts: Paired texts often serve as contextual
reflections of the underlying time series, adapting and evolving in response to numerical trends. For
instance, news articles or government reports accompanying economic indicators are frequently
updated in response to the numerical trends. (iii) Texts Contain Additional Variables with Aligned
Periodicity: Paired texts often include additional variables that are closely related to the time series.
For example, if the time series represents economic GDP data, the accompanying texts may reference
related variables such as stock market indices or inflation rates. These related variables often exhibit
periodicity patterns aligned with the time series and affect the periodicity of the paired texts.

Table 1: TT-Wasserstein measure of Time-MMD (Liu et al., 2024a) datasets and their random shuffle.

Dataset Monthly Sampled Weekly Sampled Daily Sampled
S Agriculture  Climate ~ Economy  Security Social Good  Traffic Energy  Health Environment

Original 0.026 0.025 0.022 0.049 0.027 0.035 0.307 0.233 0.302

TS shuffled 0.088 0.032 0.098 0.054 0.069 0.102 0.320 0.268 0.358

Text shuffled 0.106 0.037 0.099 0.053 0.072 0.104 0312 0.277 0.364

Quantifying CTR level. Of course we cannot expect every time series with paired texts at each
timestamp to exhibit periodicity similarity. In some cases, texts aligned with timestamps may not
provide meaningful or complementary information, for example, daily lottery winning numbers. To
this end, we propose a new metric for CTR, TT-Wasserstein, defined as the Wasserstein distance
between the normalized spectra of time series and texts. Formally, based on Wasserstein distance
W (P, Q) (Kantorovich, 1960), for time series with paired texts dataset D = {X, S}, after computing
normalized frequencies and amplitudes fiexs, fis, Grexts, Gtss

F(4) #(5)

texts — Jts

n m
TT-Wasserstein(D) = W ( Piexts, Pis) = inf T
(D) (Prexiss Pss) 'YGH(lglexl7F)ls) ; JZ:; Vij

m n 4
Subjectto 7yi; >0, Y 7ij = Qs > i = a
j=1 i=1

Intuitively, TT-Wasserstein(D) quantifies the discrepancy between the spectral distributions of paired
texts and time series data. By design, a lower value of TT-Wasserstein(D) should indicate a higher
alignment between the textual and numerical modalities. To validate this, we compute our TT-
Wasserstein measure of Time-MMD (Liu et al., 2024a) datasets, whose web-retrieved texts are
filtered, disentangled, and summarized for relevance and alignment. We also compute TT-Wasserstein
on time-series-shuffled or text-shuffled versions of the datasets to disrupt alignment. As shown
in Table 1, the corrupted Time-MMD datasets yield much larger Wasserstein distances compared
to the original datasets. This finding suggests that TT-Wasserstein can serve as an indicator for
the alignment between modalities and a gauge of dataset quality. In Section 5, we will show that
TT-Wasserstein can even predict the potential effectiveness of our proposed framework. Additionally,
because TT-Wasserstein is an empirical statistical metric, we further analyze its sensitivity and
estimation stability in Appendix A.1.
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4 TEXTS AS TIME SERIES
An overview of the proposed Texts as Time Series (TaTS) is illustrated in Figure 3.

Concurrent Texts are Secretly Auxiliary Variables. As we elucidated in Section 3, the properties of
concurrent texts closely align with those of variables in a multivariate time series: similar to numerical
variables, concurrent texts are influenced by shared external drivers and interact dynamically with the
time series. Furthermore, mapping concurrent texts to structured variables enables capturing hidden
variables embedded within the concurrent texts.

Given the dataset D = {X = {x1,X2,...,Xn},S = {s1,2,...,$7}}, TaTS first embed the texts
using a text encoder Hiey to obtain text embeddings E = {e1,ea,...,er} € R%exxT  Since the text
embedding dimension dy.y, is typically much larger than the number of variables in the time series,
we reduce the dimensionality of the text embeddings by applying a Multi-Layer Perceptron (MLP),
mapping them into a lower-dimensional space of reduced dimensionality dmapped-

z; = MLP(e;; Oy p) € R%morred 5)

Unifying by Plugging-in a Time Series Model. = The resulting mapped embeddings Z =

{21,22,...,27} € RmmaxT are then treated as auxiliary variables in the time series. Specifi-
cally, Z is concatenated with X to form a unified multimodal sequence:

U = [X; Z7]gim=y € RT (N Hdnarees) 6)

The unified sequence U is then passed into an existing time series model for downstream tasks. Here,
we formulate the example of forecasting the next H steps of the time series

Xri1rim = F (U1.7; Ororecast) [ N] € RN @)

where F(+; Ororecast) denotes the time series forecasting model with parameters Oforecast, and [: V]
extracts the first V variables corresponding to the original time series.

Finally, we joint train the time series model Ggopecast as well as the mapping MLP Gy p using the Mean
Squared Error (MSE) loss.

R 1 T+H N N 2
Lioeeast(X,X) = 7 37 3 (X = Xt @®)

t=T+1 1=1

where X, ; and )A(m represent the ground truth and predicted values of the i variable at time step
t, respectively. TaTS for imputation follows a similar process and is omitted here due to space
constraints. Detailed algorithms for both forecasting and imputation are provided in Appendix C.

To conclude this section, we note that while some existing literatures make similar but limited
attempts to model covariates in multivariate time series or multiple time series. Our TaTS framework
differentiates from those approaches by unifying multi-modality using deep learning architectures. In
Section 5, we compare TaTS with these existing approaches.

5 EXPERIMENT

In this section, we empirically validate the effectiveness of the proposed TaTS framework. In
particular, we use GPT2 (Radford et al., 2019) encoder to embed the paired texts. We also validate the
performance of TaTS with other text encoders across different datasets in section 5.2 and Appendix
E.7. Implementation details are provided in Appendix D.4.

Datasets. We evaluate our framework on 18 real-world datasets from Time-MMD (Liu et al., 2024a),
FNSPID Dong et al. (2024), and FNF Wang et al. (2024b). The datasets span diverse domains with
sample frequencies ranging from daily to weekly and monthly. More details are in Appendix D.1.

Time Series Models and Baselines. To demonstrate the compatibility of TaTS with existing time
series models, we integrate TaTS with 9 widely used models across different categories, including (i)
Transformer-based models: iTransformer (Liu et al., 2024¢), PatchTST (Nie et al., 2023), Crossformer
(Zhang & Yan, 2023), Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021) and Transformer
(Vaswani et al., 2017). (ii) Linear models: DLinear (Zeng et al., 2023). (iii) Frequency-based models:
FEDformer (Zhou et al., 2022b), FiLM (Zhou et al., 2022a).
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Table 2: Time-series forecasting performance. Compared to numerical-only unimodal modeling and
MM-TSFLib, TaTS consistently and significantly enhances existing time series models to effectively
handle paired texts. The results are averaged across all prediction lengths. Full results reported in
Appendix E.3. Promotion (positive or negative) denotes the percentage reduction (or increase) in
MSE or MAE achieved by TaTS compared to the best-performing baseline.

Model iTransformer PatchTST Crossformer DLinear FEDformer FiLM Autoformer Informer Transformer
odels (2024¢) (2023) (2023) (2023) (2022b) (2022a) 2021y (2021) (2017)

Metric | MSE_MAE | MSE__MAE | MSE _MAE | MSE_MAE | MSE _MAE | MSE _MAE | MSE _MAE | MSE _MAE | MSE _MAE

Uni-modal | 0.122 0251 | 0.120 0247 | 0.323 0406 | 0223 0354 | 0.138  0.286 | 0.139 0256 | 0.158 0297 | 0599 0630 | 0.354 0434

Aericulture | MM-TSELib | 0.112° 0230 | 0.114 0233 | 0218 0313 | 0218 0355 | 0.131 0275 | 0140 0258 | 0.8 0288 | 0.313 0414 | 0249 0352

ENCUlUe | TS (ours) | 0.109 0229 | 0.114 0235 | 0212 0312 | 0214 0351 | 0.131 0276 | 0.135 0251 | 0.125 0266 | 0255 0348 | 0.191 0313

| Promotion | 27% 04% | 00% -09% | 28% 03% 18% 08% | 0.0% -04% 29% 2.0% | 209% 7.6% | 185% 159% | 233% 11.1%

Uni-modal | 1.183 0871 | 1220 0895 | 1.124 0837 | 1.190 0872 | 1.192 0.893 | 1270 0911 | 1131 0.865 | 1.110 0.841 | 1.092 0.839

Climate | MM-TSFLib | 1044 0.810 | 1.030 0806 | 1002 0772 | 1.104 0837 | 1011 0797 | 1.179 0871 | 1053 0827 | 1.001 0792 | 0.998 0783

M| TaTS (ours) | 1028 0.804 | 1.004 0798 | 0.938 0755 | 0.931 0759 | 0.926 0.760 | 0.945 0772 | 0.980 0.789 | 0.930 0.756 | 0.920 0.753

| Promotion | 1.5% 07% 25% 10% | 64% 22% 157% 93% | 84% 4.6% 198% 114%| 69% 4.6% | 71% 45% | 78% 3.8%

Uni-modal | 0.014  0.096 | 0.017 0.105 | 0.758 0.828 | 0.058 0.192 | 0.042 0.166 | 0.025 0.129 | 0.071 0207 | 1.325 1110 | 0.58¢ 0711

Economy | MMETSFLib | 0.011  0.086 | 0.014 0096 | 0.250 0458 | 0058 0192 | 0.035 0.153 | 0026 0.129 | 0.058 0.192 | 0432 0618 | 0213 0416

ONOMY | TaTS (ours) | 0.008 0.077 | 0.009 0.079 | 0.219 0419 | 0.021 0.117 | 0.015 0.101 | 0.009 0080 | 0.024 0.121 | 0299 0512 | 0.079 0232

| Promotion | 273% 105% 357% 17.7% | 12.4% 8.5% [[638% 39.1% | 57.1% 34.0% [[640% 38.0% | 58:6% 37.0% | 30.8% 17.2% [629% 44.2%

Uni-modal | 0269 0375 | 0269 0376 | 0293 0406 | 0291 0396 | 0.240 0.351 | 0.278 0.385 | 0.319 0428 | 0.309 0425 | 0.297  0.405

Ener MM-TSFLib | 0.267 0.378 | 0272 0379 | 0291 0407 | 0289 0395 | 0.238 0.354 | 0279 0385 | 0.320 0428 | 0301 0413 | 0293  0.405

NCTEY | TaTS (ours) | 0.265 0376 | 0258 0371 | 0279 0394 | 0283 0388 | 0237 0355 | 0271 0379 | 0314 0430 | 0284 0396 | 0279 0395

| Promotion | 07% -03% 4.1% 13% | 41% 30% 21% 18% | 04% -11% 25% 1.6% | 1.6% -05%| 56% 4.1% | 48% 25%

Uni-modal | 0.441 0.494 | 0552 0.537 | 0.551 0.581 | 0.558 0.591 | 0.503 0.549 | 0.577 0543 | 0.599 0.598 | 0459 0.512 | 0460 0.511
Environment | MM-TSFLib | 0421 0478 | 0459  0.501 | 0427 0488 | 0429 0.502 | 0423 0486 | 0478 0490 | 0452 0502 | 0424 0480 | 0425 0481
TaTs$ (ours) | 0.267 0.369 | 0273  0.371 | 0.284 0403 | 0298 0428 | 0275 0378 | 0272 0.371 | 0.285 0.387 | 0.285 0.406 | 0.276  0.397

| Promotion | 36.6% 22.8% | 40.5% 25.9% | 33.5% 17.4% 30.5% 14.7% | 35.0% 222% | 43.1% 24.3% | 36.9% 22.9% | 32.8% 15.4% | 351% 17.5%

Uni-modal | 1.587 0.817 | 1.652 0.855 | 1.535 0.827 | 1.737 0.848 | 1.486 0.909 | 1.982 1.005 | 1.962 1.039 | 1.278 0.773 | 1.378 0.776

Health MM-TSFLib | 1.446 0816 | 1.347 0.797 | 1.273 0.744 | 1.541 0.800 | 1.252 0.792 | 1.675 0.949 | 1.494 0.887 | 1215 0.740 | 1.218 0.748
e TaTS (ours) | 1.315 0.744 | 1.283 0753 | 1.226  0.728 | 1412 0.787 | 1.244 0.791 | 1421 0.838 | 1.409 0.861 | 1.183 0.752 | 1.142 0.718

| Promotion | 9.1% 88% 48% 55% | 37% 22% 84% 16% | 06% 01% 152% 117%| 51% 29% | 2.6% -1.6% | 62% 4.0%
Uni-modal | 115.94 5.660 | 112.85 5371 | 12696 6277 |109.11 4711 | 11448 5.158 | 115.55 5487 | 11527 5.118 | 131.78 6.623 | 131.35 6.582

Securit MM-TSFLib | 116.34 5532 | 112.84 5369 | 12572 6.183 | 108.03 4.712 | 113.73 5.107 | 109.19 4.897 | 111.44 4.973 | 12895 6.415 | 12847 6.378
U | TaTS (ours) | 11205 5.151 | 109.69 5019 | 125.16 6.148 | 107.92 4.676 | 10737 4718 | 107.85 4.736 | 10849 4787 | 126.66 6.276 | 12458 6.134

| Promotion | 34% 69% 28% 65% | 04% 06% 01% 0% | 56% 76% 12% 33% | 27% 37% | 18% 22% | 3.0% 38%

Uni-modal | 1212 0.483 | 1.097 0.495 | 0.865 0.467 | 1.151 0.712 | 0.979 0476 | 1.261 0.654 | 1.278 0.701 | 0.870 0.504 | 0.910 0.484
Social Good MM-TSFLib | 1.197 0.520 | 1.073 0515 | 0.837 0398 | 1.083 0.673 | 0.962 0462 | 1.236 0.626 | 1.229 0.670 | 0.839 0.457 | 0.856 0.461
b TaT$ (ours) | 0.987 0452 | 0972 0465 | 0.779 0412 | 1.006 0.622 | 0.888 0430 | 1.104 0.626 | 1.195 0.666 | 0.810 0.459 | 0.807 0.419

| Promotion | 17.5% 64% 94% 6.1% | 69% -35% 71% 76% | 17% 69% 107% 00% | 28% 06% | 35% -04%| 57% 9.1%

Uni-modal | 0.213  0.238 | 0.188 0.242 | 0.214 0.376 | 0230 0.359 | 0.205 0.264 | 0215 0314 | 0212 0298 | 0.202 0.355 | 0.209 0.346
Traffi MM-TSFLib | 0.199 0.347 | 0.178 0.230 | 0.188 0.334 | 0209 0.330 | 0.193 0.238 | 0.207 0.300 | 0.212 0272 | 0.172 0299 | 0.171  0.295
ratiie TaT$ (ours) | 0.187 0.217 | 0.172  0.209 | 0.168 0.286 | 0.188 0.300 | 0.173 0212 | 0.176 0248 | 0.177 0229 | 0.164 0281 | 0.164 0.274

| Promotion | 6.0% 88% 34% 9.1% | 10.6% 144% 100% 9.1% | 104% 109% 150% 17.3% | 165% 158%| 47% 6.0% | 41% 7.1%

We compare our TaTS framework with a wide array of baselines, including (a) numerical-only uni-
modal modeling, which ignores the paired texts and utilizes only the numerical time series with the
given time series model; (b) MM-TSFLib (Liu et al., 2024a), a recently library proposed together with
Time-MMD datasets for multimodal time series forecasting; (c) covariate-based methods: N-BEATS
(Oreshkin et al., 2020), N-HiTS (Challu et al., 2022); (d) convolution-based method TCN (Bai et al.,
2018); (e) a recent multimodal time series foundation model ChatTime (Wang et al., 2025).

Metrics. We evaluate the performance of multimodal time series modeling using MSE, MAE, RMSE,
MAPE, and MSPE. Due to space constraints, we report only the MSE and MAE results in the main
paper, while the results for the other metrics are provided in Appendix E.

5.1 MAIN RESULTS

Improved Forecasting over Uni-modal Modeling and MM-TSFLib. Table 2 presents the per-
formance results for the time series forecasting task on Time-MMD datasets. For each dataset and
time series model, we report the average performance across four different prediction lengths, and
the full results for each prediction length are provided in Appendix E. For datasets with relatively
few samples, we perform short-term forecasting with prediction lengths of {6, 8, 10, 12}. In contrast,
for datasets with a larger number of samples, we perform long-term forecasting with prediction
lengths of {48,96, 192, 336}. From the results, compared to uni-modal modeling or MM-TSFLib,
our TaTS consistently achieves the best performance across all datasets. Notably, by plugging in
TaTS to various existing time series models, it achieves an average performance improvement of over
5% on 6 out of 9 datasets and delivers a remarkable performance boost of over 30% on the largest
dataset, Environment. The results also demonstrate that TaTS is highly compatible with a wide range
of existing time series forecasting models, consistently delivering performance improvements across
all of them in both long-term forecasting and short-term forecasting tasks. We provide a visualization
of the performance boost in Appendix E.2, showcasing the improvements achieved by different time
series models on each dataset.
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Table 4: TaTS compared with several baselines on a variety of datasets. Best results are bolded and
second-best results are underlined. Full results in Table 28.

Methods TaTS (ours) TaTS (ours) TaTS (ours) N-BEATS N-HiTS TCN ChatTime GPT4MTS
+ iTransformer + PatchTST +FLM (2020) (2022) (2018) (2025) (2024)
Datasets | MSE__MAE| MSE MAE| MSE MAE| MSE MAE | MSE MAE | MSE MAE| MSE MAE| MSE MAI
Agriculture 0.109 0229 | 0.114 0235| 0.135 0251 | 3267 1458 | 1852 1.032 | 4168 1.797 | 0.508 0447 | 0327 0393
Climate 1.028 0.804 | 1.004 0.798 | 0.945 0.772 | 1.093 0.861 1.103 0858 1.098  0.866 | 1.568 1.019 7 0.873
Time-MMD: Economy 0.008 0.077 | 0.009 0.079 | 0.009 0.080| 1.010 0.920 | 0.444 0584 | 5546 2.349| 0.049 0.166 | 0.0] 0.096
Multimodal Energy 0265 0376 | 0258 0371 0271 0379 0329 0424 | 0372 0463 | 0430 0512| 0305 0417 0269 0378
Time Series Environment 0.267 0369 | 0273 0371 | 0272 0.371| 0.518 0.573 0522 0.583 0854 0.713| 0580 0.594 | 0348 0422
(20242) Health 1.315 0.744 | 1.283 0.753 | 1421 0.838 | 1.660  0.938 1.666  0.898 1.938 0970 | 1.668 0.909 | 1.766  0.875
o Security 112.054 5.151 | 109.693 5.019 | 107.850 4.736 | 130.065 6.618 | 138.124 6.978 | 136.596 6.873 | 133.106 6.887 | 119.407 5.198
Social Good 0.987 0.452| 0972 0465| 1.104 0.626 | 1.316  0.665 1.272 0.649 1314 0961 | 1.264 0.652| 141 0.559
Traffic 0.187 0217 | 0.172 0209 | 0.176 0248 | 0347 0464 | 0268 0382 | 0708 0.744| 0363 0.429| 0.195 0246
Delta Airlines (DAL) | 0.087  0.197 | 0.086 0.192| 0.095 0201 | 0286 0444 | 0226 0379 | 0294 0466 | 0.098 0.202 0.201
ENSPID: IBM (IBM) 0.564 0.501| 0.550 0.490 | 0.891 0.695| 1.105 0.777 1.215  0.806 1.936  1.123 | 0.602 0.536
Company JPMorgan (JPM) 1.693 0970 | 1.872 0.990 | 2513 1.096 | 2419 1.175 3.426 1.232 3.764 1.711| 2.037 1.043
Stock Price NVIDIA (NVDA) 0.043  0.141 | 0.048 0.156 | 0.050 0.174 | 0272 0434 | 0.122 0262 | 0457 0574 | 0.053 0.161 0.159
(2024) Pfizer (PFE) 0326 0.416| 0347 0422 | 0448 0477 | 0.676  0.572 | 0.824  0.663 0.628 0559 | 0.408 0477 | 0369 0439
Tesla (TSLA) 0.142 0281 | 0.158 0297 | 0.110 0.244| 0.188  0.332 0254 0416 3476  1.851| 0.158 0.300 | 0.181  0.303
FNF: Bitcoin Price 2609 1112 2339 1.045| 2775 1.142| 141.738 10.355 | 159.019 10.535 | 57.826 6.744 | 3.590 1.344| 2721 1.152
Forecast with News Web Traffic 17.744 2712 | 17.964 2.653 | 18.110 2.772| 22.233 3.017 | 23.263 3.011 | 21.626 2.842 | 20.748 2.909 | 19.260 2.827
(2024b) Electricity Demand 0.280 0396 | 0.254 0.358 | 0.266 0.377 | 0.416 0.496 | 0364 0468 | 0.516 0.564 | 0.532 0.566 | 0.296  0.395

Improved Time Series Imputation. We evaluate the perfor- Table 3: Imputation task performance.
mance of our TaTS framework on the imputation task using  Full results in Appendix E.4. Promo-
the Climate, Economy, and Traffic datasets, each with an  fjon: percentage reduction by TaTS
imputation length of 24. Though MM-TSFLib only supports  over the best-performing baseline.

forecasting tasks, we extend it to serve as an imputation base-

line by applying a similar linear interpolation. We select v | ST W _d

one representative time series model from each category and e : T | Do o0 ‘ Y
present the results in Table 3. The results demonstrate that — ime | Rrdous | o5 050 | 002 0797 | 0820 0718
TaTS consistently enhances the imputation capabilities of | Pomoton |I31% 123%|53% 5% |20% 134%
existing time series models, achieving improvements of up ..o, ﬁr»f;ﬁlr; §§T§ §5§ §§§Z §i§$ §§§ §%§§
to 30% Compared to baseline methods. | Promotion |34.6% 67.2% |21.0% 11.2% | 28.0% 17.2%
From the above results, effectively leveraging the text modal- e “Tfﬁff‘ﬁ'; §%§ §§Z §?§ §§§ §?;§ ?’i%

ity provides significant benefits when paired texts are avail- | Promotion |307% 268% | 25.1% 11.3% | 189% 16.0%
able, and our TaTS framework achieves notable improve-
ments over baseline methods that disregard positional information in time-series-paired texts.

TaTS Benefits from Better Alignment (i.e., lower TT-Wasserstein). We compute the average
forecasting improvement of TaTS compared to numerical-only modeling, as well as the ratio of
TT-Wasserstein between original and shuffled Time-MMD datasets. The results, shown in Table
5, reveal that, within the same sampling frequency, lower TT-Wasserstein original-shuffled ratios
tend to correlate with larger performance gains from TaTS (except for Climate). In other words, for
paired time series and texts that have stronger CTR, i.e., more relevant, our TaTS could improve
performance more. Thus, TT-Wasserstein can indicate the usefulness of paired texts and the potential
effectiveness of TaTS when text quality and cross-modal alignment are uncertain.

Table 5: TaTS Improvements positively correlated with TT-Wasserstein measure of Time-MMD (Liu
et al., 2024a) datasets.

Dataset Monthly Sampled Weekly Sampled Daily Sampled
atase Agriculture  Climate  Economy  Security ~ Social Good  Traffic | Energy  Health | Environment

Ratio of Original to Shuffled TT-Wasserstein (%) 26.8 72.4 22.3 91.5 38.2 34.6 97.1 85.6 83.6

Avg. Improvement of TaTS over uni-modal (%) 20.70 18.03 64.80 4.05 10.99 16.78 3.62 19.51 36.00

Comparison beyond Uni-modal Modeling and MM-TSFLib. Besides numerical-only time series
models and the MM-TSFLib framework, we compare our TaTS with several other baselines on
three dataset sources, including Time-MMD (Liu et al., 2024a), FNSPID (Dong et al., 2024), and
FNF (Wang et al., 2024b). Although N-BEATS, N-HiTS and TCN are not specifically designed
for time series with paired texts, we adapt them by feeding both time series and text embeddings
to them. We also include several baselines that explicitly incorporate multimodal information.. For
ChatTime, we concatenate all paired texts into a single long text and perform zero-shot inference.
For GPT4AMTS, we convert the datasets we used into their prescribed input format and directly
apply their pipeline. The results averaged from multiple prediction lengths are shown in Table 4,
with full results in Table 28. The results show that covariate-based and convolution-based models
perform comparably or worse than iTransformer, and consistently underperform compared to our
TaTS. Although ChatTime achieves competitive results even in a zero-shot setting, highlighting the
value of integrating texts when high-quality texts are available, our TaTS outperforms it through
supervised learning. We further compare TaTS with several multimodal methods from concurrent
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Figure 4: Further analysis of our TaTS framework. (a) Learning rate sensitivity: TaTS maintains
stable performance across different learning rates (full results in Appendix E.5). (b) Text Projection
Dimension sensitivity: TaTS remains robust across varying dmapped (full results in Appendix E.6). (c)
Varying text encoder: TaTS consistently outperforms baselines across different text encoders (full
results in Appendix E.7). (d) Efficiency: TaTS introduces only a minor parameter increase (~ 1%)
but significantly improves the performance according to Table 2.

preprints that also evaluate on Time-MMD. Using their reported results (Table 12), we find that TaTS
elevates standard time-series backbones into highly competitive models, rivaling recent approaches
with substantially more complex designs.

5.2 FURTHER ANALYSIS

Hyperparameter Sensitivity. We perform hyperparameter studies to evaluate the impact of (i) the
learning rate and (ii) dmapped, the dimension to which high-dimensional text embeddings are projected
by the MLP, as defined in Equation 5. The results are presented in Figure 4, subfigures (a) and
(b), with full results available in Appendix E.5 and Appendix E.6. The findings indicate that TaTS
maintains robust performance across different choices of the learning rate and the text projection
dimension dapped-

Ablation with Different Text Encoders in TaTS. While GPT-2 was used as the primary text encoder
in our main experiments to demonstrate the effectiveness of TaTS, we further evaluate the performance
of TaTS with different text encoders, including BERT (Devlin et al., 2019), GPT-2 (Radford et al.,
2019), and LLaMA?2 (Touvron et al., 2023). We utilize the official implementations available on
Hugging Face and present the results in Figure 4, with full results provided in Appendix E.7. The
results show that TaTS remains robust across different text encoders and consistently outperforms
both the uni-modal and MM-TSFLib baselines. Notably, as the size of the language models used
in TaTS increases from 110M (BERT) to 1.5B (GPT-2) and further to 7B (LLaMA?2), we observe a
slight improvement in performance. Investigating the relationship between the text encoder size and
TaTS’s effectiveness remains an open direction for future research.

Ablation with Other Design Choices to Com-
bine Modalities. In our main experiments, TaTS
transforms the paired texts into auxiliary variables
through embedding, projection and concatenation. -

Our TaTS framework is readily extensible to other P pi n (original) | 0992 0.791 109.865 4968 0.178 0224 74988 639
fusion design choices. We evaluate two alternative Hoaarention H(ﬁf\, 079 109739 497 0178 0231 90M0 Giloro
architectures that replace the MLP projection with:

(a) a gated residual and (b) a cross-attention module between the time series and text embeddings. We
report the average MSE and MAE across TaTS with iTransformer, PatchTST, and FiLM in Table 6.
From the results, these alternative mechanisms achieve similar performance to the MLP-based design.
One possible explanation is that linear projections are already highly competitive for time-series
representation learning, especially when paired with strong backbone forecasters that account for the
majority of the model parameters. We leave the exploration of more fine-grained multimodal fusion
designs as an interesting direction for future work.

Table 6: TaTS Ablation on Alternative Modality
Fusion Architectures.

Dataset ‘ Climate Security Traffic # Parameters

TS Settings | MSE  MAE MSE MAE MSE MAE Fuser Total

Ablation on Corrupted Datasets. To validate .
plec Table 7: TaTS Ablation on text-shuffled datasets.
that the performance gains stem from useful tex-
tual cues, we conduct corruption experiments Dataset | Climae Sceurity Traffie
. . Settings \ MSE MAE MSE MAE MSE MAE
where the textual information was randomly shuf- iTransformer + TaTS + original data | 1.028 0.804 11205 5.151 0.187 0217

. . iTransformer + TaTS + corrupted data | 1242 0.895 11782 5767 0223 0265
fled across timestamps. All other settings are un- Transformer + uniomodal  original data | 1183 0871 11594 3660 0213 0238
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changed, and the results are in Table 7. When

textual alignment is destroyed, the performance drops significantly to matching or even being worse
than the uni-modal baseline. This is expected, as randomly shuffled text acts as noise rather than a
meaningful signal.

Ablation on Text-Randomly-Dropped Datasets.

- . . Table 8: TaTS Ablation on text-dropped datasets.
Similar to corruption ablations, we conduct ex-

periments with randomly dropped texts. Dropped ;’“‘?’“E‘ } MSCE“""‘::AE M:}:C““z[AE MST]_;“fﬁLAE
. " . - . ”s ettings
texts are ﬁlled Wlth no lnformatlon aVallable. TaTS + original data 1.028 0.804 112.05 5.151 0.187 0217

1 1 —  TaTS + 10% text randomly d d | 1.032 0.809 11294 5372 0.194 0239
The resul_ts are 1 Table 8 Whlle performance de T:TS:ZS%t:;t ;::dz:li d::gg:d 1.056 0.818 114.59 5231 0203 0254
grades slightly as more text is randomly dropped,
TaTS remains effective, performing comparably to MM-TSF Lib even with 25% of the text missing.

Mitigating Negative Effects of Extremely Noisy
Texts. Our ablation on corrupted datasets shows
that highly noisy text can cause TaTS to even

Table 9: Dropping extremely noisy texts miti-
gates negative effects from them.

slightly underperform numerical-only modeling. Dataset | Climate Security Traffic
. B et . Settings MSE MAE MSE MAE MSE MAE
To address this, we evaluate a simple mitigation — ‘
) ) ] . S . TaTS + corrupted data | 1.242 0.895 117.82 5767 0223 0.265
strategy: randomly dropping a portion of the N0iSy  TuTs +60% comupted data | 1218 0879 11743 5730 0215 0260
Vc . ac 1 (3 informati TaTS + 20% corrupted data ‘ 1.201 0878 116.68 5713 0216 0255
texts and replacing them with “no information [ modal + original data | 1.183  0.871 11594 5.660 0213 0.238

available.” We test drop rates of 40% and 80%. As
shown in Table 9, dropping noisy texts allows TaTS to recover performance close to the unimodal
baseline, demonstrating the effectiveness of this strategy in handling unreliable text.

Computational Overhead vs. Performance Gain. We also evaluate the efficiency of our proposed
TaTS by measuring the training time per epoch and the total number of model parameters. Figure
4 (d) presents the total number of parameters for the best-performing models in our forecasting
experiments. TaTS introduces only a lightweight three-layer MLP to project high-dimensional text
embeddings into a lower-dimensional space, adding a minimal number of parameters compared to
the original time series models. As a result, the overall parameter count increases by only about 1%.

Due to the inclusion of augmented time series with auxiliary variables from paired texts, the training
time per epoch increases slightly, as shown in Figure 5, with average performance of each framework
indicated by cross markers. Full results for all datasets are provided in Appendix E.8. Notably, this
marginal efficiency trade-off (~ 1% in terms of number of learnable parameters and ~ 8% in terms
of training time) leads to significant improvements (~ 14%) in forecasting performance.

6 RELATED WORK

Numerical-only Time Series Modeling. Recently, various :

deep learning models have been developed for time series anal- : pn-mede s
ysis, which can be broadly categorized into three categories.
(1) Patch-based models. PatchTST (Nie et al., 2023) seg-
ments time series into subseries-level patches to capture depen-
dencies, while Crossformer (Zhang & Yan, 2023) employs a
two-stage attention mechanism to model both cross-time and
cross-variable dependencies efficiently. Autoformer (Wu et al.,
2021) introduces decomposition blocks to separate seasonal and
trend-cyclical components. (2) Global representation models. 0 3 4 6 8 10
iTransformer (Liu et al., 2024c) utilizes attention over global Training Time for Each Epoch
series representations to capture multivariate correlations. In- . . .

former (I%hou et al., 2021 )I;educes self-attention complexity Figure 5: While TaTS incurs a
using ProbSparse self-attention for improved efficiency. Dlinear
(Zeng et al., 2023) demonstrates that simple linear regression
in the raw space can perform competitively on MTS tasks. (3)
Frequency-aware models. FEDformer (Zhou et al., 2022b)
represents series through randomly selected Fourier components, while FiLM (Zhou et al., 2022a)
enhances representations with frequency-based layers to reduce noise and accelerate training. In this
work, our proposed TaTS is compatible with all of the models listed above.
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slight increase in training time due
to augmented auxiliary variables, it
significantly improves forecasting.
Full results in Appendix E.8.
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Time Series with other data sources. In the financial domain, several early works have explored
integrating time series with textual data, albeit not in a timestamp-aligned manner, or often leveraging
general machine learning models rather than time series-specific architectures. For example, StockNet
(Xu & Cohen, 2018) uses a VAE-like model for chaotic stock-text data, while (Rodrigues et al.,
2019) fuses time series with a single event-related document. BoEC (Farimani et al., 2021) applies
a bag-of-economic-concepts approach, and Dandelion (Zhou et al., 2020) leverages multimodal
attention for feature aggregation from multiple text sources. Some works also explored time series
with vision information (Liu & Cai, 2012; Gerard et al., 2023; Liitjens et al., 2024) for spatio-temporal
analysis. Recently, Time-MMD (Liu et al., 2024a) constructs a dataset of time series paired with
parallel text, covering multiple domains, which we used in our main experiments.

Large Language Models on Time Series. The rapid advancement of Large Language Models
(LLMs) has inspired a new line of research that transforms time series into natural language represen-
tations, enabling LLMs to perform downstream tasks (Zhang et al., 2024c). While these approaches
demonstrate strong generalization capabilities due to the power of LLMs (Gruver et al., 2023; Cao
et al., 2024; Jin et al., 2024; Xue & Salim, 2024), they also inherit limitations such as hallucination
(Huang et al., 2023) and context length constraints (Wang et al., 2024a; Liu et al., 2024b). Notably, a
recent work (Tan et al., 2024) suggests that replacing complex LLM architectures with basic attention
layers does not necessarily degrade the performance. Another emerging line of work focuses on
generating texts from time series, with applications in temporal reasoning and time-series question
answering (Chang et al., 2025). MTBench (Chen et al., 2025) provides a comprehensive evaluation
framework for assessing whether LLMs can jointly reason over structured numerical trends and
unstructured textual narratives. TSAIA (Ye et al., 2025) benchmarks LLMs’ multi-step temporal
reasoning capabilities. TimeXL (Jiang et al., 2025) further introduces collaborating LLM agents to
generate interpretable natural-language explanations alongside time-series forecasts.

In Appendix B, we also discuss available preprints that are related to this research.

7 CONCLUSION

Real-world time series data often comes with textual descriptions, yet prior studies have largely
overlooked this modality. We identify Chronological Textual Resonance, where text embeddings
exhibit periodic patterns similar to their paired time series. To leverage this insight, we propose a
plug-and-play framework that transforms text representations into auxiliary variables, seamlessly
integrating them into existing time series models. Extensive experiments across various forecasting
models and real-world datasets demonstrate the state-of-the-art performance of our approach.

10
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8 STATEMENTS

8.1 ETHICS STATEMENT

Our work is solely focused on the technical challenge of multimodal time series and does not involve
any elements that could pose ethical risks.

8.2 REPRODUCIBILITY STATEMENT

We provide our full experiment code in the supplementary materials, accompanied by a detailed
READMEE to facilitate reproduction. The experimental environment is described in Appendix D,
including hardware and software configurations. All benchmark datasets used in this work are publicly
available. Comprehensive experiment details, including dataset specifications, hyperparameters, and
optimizer settings, are also documented in Appendix D. Reported results are averaged across multiple
prediction lengths. Furthermore, Section 5 presents hyperparameter studies, demonstrating the
robustness of our proposed TaTS framework.

8.3 LARGE LANGUAGE MODEL USAGE STATEMENT

Large Language Models did not play a significant role in research ideation and/or writing to the
extent that they could be regarded as a contributor. They were used only for minor refinement of
writing and as components within our proposed TaTS framework for handling the text modality.
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Appendix

Roadmap. In this appendix, we provide a detailed overview of our methodology and experimental
setup. Appendix A outlines the complete process of frequency analysis for both time series and
paired texts. Appendix B discusses of preprints that are related to this work. Appendix C illustrates
the TaTS algorithms for time series forecasting and imputation. Appendix D includes details on
datasets, hyperparameters, evaluation metrics, and additional implementation specifics. Due to
space constraints in the main text, Appendix E presents the full experimental results, including
comprehensive forecasting and imputation outcomes, hyperparameter and ablation studies, efficiency
evaluations, and visualizations. The table of contents is provided below for reference.
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A DETAILED FREQUENCY ANALYSIS PROCESS OF TIME SERIES WITH PAIRED
TEXTS

Here, we provide a detailed explanation of the frequency analysis process for both the time series
and their paired texts. In Proposition A.1 and A.2, we simplify the proof by analyzing each periodic
component individually as a single cosine. This is without loss of generality, as the operations
involved are linear. Therefore, the conclusions naturally extend to signals composed of multiple
periodic components through linear superposition.

Proposition A.1. The computation of lag similarity preserves the original periodicities of the data.
Proof. LetS = {s;}]_, represent the paired texts or data sequence, where each s; corresponds to a

time step t. Define the lag similarity at lag k as:

T—k
. 1 .
LagSim(k) = T % E sim(s¢, 8¢+), ®
t=1

where sim(+, -) is a similarity measure (e.g., cosine similarity).

Now, consider the periodic component of the data sequence S, which can be represented as:

&ZM%G§+@7 (10)

where A is the amplitude, P is the period, and ¢ is the phase.

For two points separated by lag k, the similarity sim(s;, s;+) depends on the relative difference
between their phases:

2n(t + k 2nt  2mk
5t+kAcos<(f))+¢>ACOS(P+P+¢>- (11)
The lag similarity is then computed as:
T—k
1 2wt 2nt 2wk
LagSi = im ( A — A —_— 4+ — . 12
agSim(k) Tik;:l s1m< cos(P +<Z>>, COS(P + 5 —I—(b)) (12)

Since the cosine function is periodic with period P, the similarity sim(s;, s¢1) also inherits this
periodicity. Therefore, the overall lag similarity LagSim(k) retains the periodicities of the original
sequence S.

Thus, the computation of lag similarity preserves the original periodicities of the data. O
Proposition A.2. The stabilization of a data sequence using first-order differentiation preserves its
original periodicities.

Proof. LetS = {s;}I_, represent a data sequence, where s; is the value at time step ¢. The first-order

differentiation of the sequence is defined as:

ASt:5t+1—St, t:1,2,,T—1 (13)
Suppose the sequence S exhibits periodic behavior with period P and can be represented as:

&ZM%G§+@7 (14)

where A is the amplitude, P is the period, and ¢ is the phase.

The first-order difference of s; is:

2 1 2
Asy = Spq41 — s¢ = Acos <7T(tp+>+¢>—z4cos (;t—&—qb). (15)

19



Under review as a conference paper at ICLR 2026

@ Lag Similarity of Concurrent Texts: Economy
02

Compute Average Text Similarity WW

for Each Lag k 01

Time Series with
Concurrent Texts on

Text Similarity
2

0 100 200 300 400
k Lag

Stabilization, Fourier Transform and Stabilization and

@ Non-Maximum Suppression @ @ @ Fourier Transform

Amplitude Spectrum of Time Series: Economy Amplitude Spectrum of Time Series: Economy Amplitude Spectrum of Concurrent Texts: Economy
700000 700000 7 25

600000 600000
20
500000 500000

$ 400000 £ 400000 is

i
i
i
i
g g
£ 300000 £ 300000 10
200000 200000
A 05
100000 100000 i

00 01 02 03 04 s 0o 01 02 03 04 s 00 o1 02 03 04 05
Frequency Frequency Frequency

[ 52 I

Mark Texts' Top-Amplitude Frequencies onto Time Series Spectrum

Amplitude

Figure 6: Illustration of the frequency analysis process for time series with paired texts in the
Economy dataset. Step (I): Compute the average text similarity for each lag k. Step (2): Stabilize the
time series using first-order differentiation, apply Fourier Transform, and perform Non-Maximum
Suppression (NMS) to obtain the amplitude spectrum. Step 3): Visualize the lag similarity of paired
texts. Step @): Stabilize the paired texts, compute the Fourier Transform, and visualize the amplitude
spectrum. Step O): Overlay the top-I (here [=4) frequencies of paired texts onto the time series
amplitude spectrum to highlight shared periodic patterns. All the data transformation operations in
this process are periodicity-preserving according to Proposition A.1 and Proposition A.2.

Using the trigonometric identity for the difference of cosines:

cos(z + y) — cos(x) = —2sin (g) sin (:17 + %) , (16)

we set r = % +¢andy = 2?”, giving:

21t

As; = —2Asin (%) sin ( o+ ;) . 17)

The first term, sin (%), is a constant dependent on the period P. The second term, sin (25t + ¢ + %),
retains the periodicity of P, as it is a sinusoidal function with the same frequency as the original
sequence.

Thus, the first-order difference As; preserves the periodicity P of the original data sequence. O

The overall process of frequency analysis for the time series X = {x1,Xa,...,xy} € RT*Y and
paired texts S = {s1, s2,...,s7} in the Economy dataset Dgconomy = {X, S} is illustrated in Figure
6. In this process, starting from the original dataset (subfigure (I)), the time series and paired texts
are analyzed independently. For the time series X = {x1,xXs,...,Xx} , we perform standard
frequency analysis, stabilizing the data through first-order differentiation.

AX, =Xy — Xy, fort=1,2,....,T—1, (18)

where AX, represents the first-order difference of the time series. This step removes long-term
trends and ensures that the data is stationary, allowing for a more accurate analysis of its frequency
components.
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Then, we compute the Fourier Transform (Nussbaumer, 1982; Sneddon, 1995) of AX to analyze its
frequency components. The Fourier Transform of AX is defined as:

T-1

Fax(f) =) AXe 21, (19)

t=1

where f represents the frequency, AX; is the first-order difference of the time series at time ¢, and ¢
is the imaginary unit. The resulting Fax (f) provides the amplitude and phase information of each
frequency component present in the time series.

The magnitude spectrum, which represents the amplitude of each frequency component, is computed

as:
[Fax(f)l = VRe(Fax(f))? +Im(Fax(f))?, (20)
where Re(Fax (f)) and Im(Fax (f)) are the real and imaginary parts of Fax (f), respectively.

By analyzing |Fax(f)|, we identify the dominant frequencies in the time series, which reveal
its periodic patterns. To further highlight the dominant frequencies, we apply Non-Maximum
Suppression (NMS) to the magnitude spectrum |Fax (f)|. NMS ensures that only the most prominent
frequencies are retained while suppressing nearby less significant frequencies. The NMS operation is
defined as follows:

o e e o

0, otherwise,

where N(f) represents a local neighborhood around the frequency f. The operation compares the
magnitude of |Fax (f)| with those of neighboring frequencies and retains only the largest value
within the neighborhood. Frequencies that do not satisfy the condition are set to zero.

After applying NMS, the remaining frequencies represent the dominant periodic components of
the time series, making it easier to identify significant periodic patterns. This process eliminates
noise and reduces the influence of minor frequency components, enhancing the interpretability of the
spectrum. The final visualization of the amplitude spectrum of the time series is shown in Figure 0,
subfigure 2.

For the paired texts S = {s1, s2, ..., s7}, we first embed each s; using the text encoder Hex:
dlcxl
€ = Htext(st; etext) € R%e, (22)

where 0,y represents the parameters of the text encoder, and e; is the resulting text embedding at
timestamp .

Since the text embeddings are typically close in the embedding space, leading to similar cosine
similarity values, we normalize the embeddings by centering them around their mean to improve
numerical stability and enhance sensitivity to differences. Specifically, we compute the mean
embedding:

1 T
Cmean = ; e, (23)

and shift all embeddings by subtracting the mean:

€, = €t — €meun; 24)
where e} represents the centered (shifted) embeddings.
Next, we compute the average text similarity for each lag k € {1,7 — 1} as:

T—k
1
Sim(k) = - > sim(ef, €] 4), (25)
t=1

where sim(e;, €] ;) denotes the similarity measure (e.g., cosine similarity) between the centered
embeddings at time ¢ and ¢ + k, defined as:

€ €y (26)

sim(e}, e, ) = :
PR el
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We visualize the lag similarity of paired texts, Sim(k), in Figure 6, subfigure 3). Subsequently, we
stabilize the data by applying first-order differentiation and perform a Fourier Transform, following a
similar process as previously described for the time series frequency analysis. The final visualization
of the amplitude spectrum of the paired texts is presented in Figure 6, subfigure @.

Then, we compute the frequencies with the top-/ amplitudes from the lag similarity Sim(k). We
apply the Fourier Transform to Sim(k):

T-1
Fext(f) = Sim(k) e~ 27", 27)
t=1
where f is the frequency, and Frex( f) represents the complex Fourier coefficients corresponding to
each frequency f.

Next, we compute the amplitude spectrum as:

[Fext (/)] = VRe(Fien(£))? + Im(Fiex(£))?, (28)
where Re(Fiexi(f)) and Im(Fiex (f)) are the real and imaginary parts of Fex(f), respectively.

We then identify the top-l dominant frequencies by selecting the [ frequencies corresponding to the
largest amplitudes:

Fiop = {fi | |Fexe(fi)| is among the top-I largest amplitudes }. (29)

These top-I frequencies represent the most significant periodic components of the paired texts,
revealing their dominant temporal patterns. we overlay the top-I (in the Economy dataset [=4)
frequencies of the paired texts onto the amplitude spectrum of the time series, as illustrated in Figure
6, subfigure ).

We also visualize the frequency analysis process in the Social Good dataset and Traffic dataset
respectively in Figure 7 and Figure 8.

3
>
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Figure 7: Tllustration of the frequency analysis process for time series with paired texts in the Social
Good dataset. In Step ), we overlay the top-9 frequencies of paired texts onto the time series
amplitude spectrum.

A.1 ESTIMATION STABILITY OF TT-WASSERSTEIN
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Figure 8: Illustration of the frequency analysis process for time series with paired texts in the Traffic
dataset. In Step (), we overlay the top-7 frequencies of paired texts onto the time series amplitude
spectrum.

As TT-Wasserstein is an empirically estimated statistical metric, we provide a detailed sensitivity
and robustness analysis in this appendix. Our default configuration uses a rectangular window,
/1-normalization of spectral amplitudes, and a frequency grid determined by the full length of the
time series (native FFT resolution). To assess the stability of TT-Wasserstein, we perform ablations
that vary each of these components: windowing schemes, normalization strategies, and frequency
resolutions, while keeping all other settings fixed. The results are summarized in Table 10, where
each row reflects the effect of a single deviation from the default configuration. From the results, our
TT-Wasserstein is stable across various configuration choices. We also implemented block bootstrap
with a bootstrap sample size of 10 for time series and texts to compute the confidence intervals for
the default settings in Table 11.

Table 10: TT-Wasserstein measure of Time-MMD (Liu et al., 2024a) datasets. Our TT-Wasserstein is
generally stable on different frequency computation configurations.

Monthly Sampled ‘Weekly Sampled Daily Sampled

Dataset ‘ Agriculture  Climate ~ Economy  Security ~ Social Good  Traffic ‘ Energy  Health ‘ Environment
Default | 0.026 0.025 0.022 0.049 0.027 0.035 | 0.307 0.233 | 0.302
Hann Window 0.031 0.029 0.016 0.041 0.040 0.057 0.304 0.243 0.306
Hamming Window 0.054 0.025 0.016 0.041 0.037 0.046 0.305 0.242 0.305
Blackman Window 0.061 0.029 0.020 0.036 0.043 0.055 0.297 0.245 0.298
Minmax Normalization 0.032 0.035 0.025 0.043 0.031 0.049 0.345 0.291 0.332
Log Normalization 0.016 0.060 0.046 0.049 0.050 0.048 0.267 0.170 0.286
Zero-padded frequency resolution (2x) 0.046 0.058 0.052 0.051 0.028 0.050 0.280 0.187 0.292
Down-sampled frequency resolution (% x) 0.011 0.026 0.039 0.050 0.051 0.025 0.259 0.197 0.298

Table 11: Standard deviation of default TT-Wasserstein measure of Time-MMD (Liu et al., 2024a)
datasets by block bootstrap.

Dataset Monthly Sampled Weekly Sampled Daily Sampled
Agriculture  Climate ~ Economy  Security ~ Social Good  Traffic | Energy  Health Environment
Default | +0.06 +0.04 +0.03 +0.03 +0.04 +0.06 | +0.21 +0.16 | +0.12
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B FURTHER DISCUSSION

B.1 CONCURRENT WORKS

We discuss concurrent preprints available online that relate to this research, providing a more
comprehensive understanding of existing works and ongoing efforts to integrate texts into time series
modeling.

(Williams et al., 2024) introduces a benchmark (CiK) for time-series forecasting that integrates both
numerical data and textual context. While both (Williams et al., 2024) and our work emphasize the
integration of textual context into time series forecasting, the textual contexts in (Williams et al., 2024)
are descriptions regarding the time series itself, but in our work, we do not have such a constraint.

(Kim et al., 2024) develops a hybrid forecaster that jointly predicts both time series and textual data by
projecting time series to the language space and fine-tuning the pre-trained LLM. Their assumption is
that though LLMs are originally for language but not for time series, they can be fine-tuned to adapt
to time series.

(Zhang et al., 2024a) introduces a dual-adapter model for time series and textual data, but their data
format is similar to (Wang et al., 2025), where the whole time series is paired with one text.

(Xie et al., 2024) proposes a novel multimodal LLM framework (TS-MLLM) that treats time series
as a modality akin to images. But they are using synthetic generation and focus on NLP tasks rather
than time series forecasting.

Comparison with Concurrent Multimodal Time Series Forecasting Methods. Several concurrent
works also explore incorporating multimodal information to enhance time series forecasting and
report results on the Time-MMD benchmark (Liu et al., 2024a). TFHTS (Zhou et al., 2025) adopts a
dual-tower architecture to fuse time series and textual signals, followed by large language models for
forecasting. MCD-TSF (Su et al., 2025a) proposes a multimodal-conditioned diffusion model that
adaptively aligns textual context with temporal dynamics. TeR-TSF (Su et al., 2025b) introduces text
reinforcement, generating augmented textual descriptions to improve downstream prediction.

&

For a fair comparison, we follow their evaluation protocol and exclude datasets that exhibit substantial
performance gaps, suggesting that their preprocessing pipelines may differ from ours. we report aver-
aged performance over prediction lengths 6, 12, and 18 for monthly-frequency datasets (Agriculture,
Climate, Social Good); 12, 24, and 36 for weekly-frequency datasets (Energy, Health); and 48, 96,
and 192 for the daily-frequency Environment dataset. Note that, unlike our main experiments, we use
a historical window of 36 steps for monthly, 96 for weekly, and 192 for daily datasets. The results
are summarized in Table 12. From the results, TaTS achieves the best or second-best performance
on 9 out of the 12 metrics. To provide an overall comparison, we compute an average ranking as
follows: for each dataset, we assign each method a rank from 1 to 4 for both MSE and MAE (with
lower values indicating better performance), average the two ranks to obtain a per-dataset score, and
then average these scores across all datasets. Under this ranking scheme, TaTS obtains the smallest
average ranking, indicating the best overall performance among concurrent multimodal time series
forecasting methods.

B.2 LIMITATIONS

This work focuses on revealing and quantifying Chronological Textual Resonance (CTR) and de-
signing the TaTS framework to leverage it. However, several limitations remain. First, we do not
thoroughly investigate the data construction processes that may induce CTR, such as biases introduced
during text collection or the choice of contextual information. Understanding how these factors affect
CTR would provide deeper insights into the robustness and generalizability of our approach. Second,
we do not analyze how text embeddings are utilized at the neural level within the TaTS framework.
A more detailed study on how the model learns temporal patterns from paired texts could inform
improvements in architecture design. Third, the effectiveness of TaTS is influenced by the quality
and relevance of paired texts. While we study cases where texts are randomly shuffled, real-world
texts could have different patterns, and the model’s performance may degrade. Future work could
explore methods to assess and enhance text quality or develop more robust models to handle noisy
input. Lastly, while TaTS demonstrates strong empirical performance across benchmark datasets,
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Table 12: TaTS compared with several concurrent works that have been evaluated on Time-MMD.
We use the reported performance in the concurrent works for comparison. Best results are bolded and
second-best results are underlined. Full results in Table 28.

TaTS (Ours) TFHTS MCD-TSF TeR-TSF
+ iTransformer (2025) (2025a) (2025b)

Datasets | MSE MAE | MSE MAE | MSE MAE | MSE MAE

Agriculture | 0.201 0.321 | 0.571 0.564 | 0.222 0.322 | 0.338 0.402
Time-MMD: Climate 1.227 0.890 | 1.782 0.948 | 1.583 0.971 | 1.348 0.874
Multimodal Energy 0.214 0.321 | 0.290 0.403 | 0.153 0.293 | 0.202 0.324
Time Series | Environment | 0.267 0.374 | 0.262 0.368 | 0.275 0.379 | 0.251 0.346

Methods

(2024a) Health 1.372  0.763 | 1.514 0.809 | 1.496 0.811 | 1.384 0.756
Social Good | 1.146 0.558 | 1.352 0.677 | 1.035 0.569 | 1.199 0.587
Average Ranking | 1.83 | 3.5 | 2.58 | 2.08

its generalization to other types of multimodal time series or domains with fundamentally different
patterns remains untested, for example, time series with paired images or audio. We leave these
investigations and improvements for future work.

Regarding our third limitation on text quality, we briefly clarify how TaTS may adapt under imperfect
textual inputs. When texts are missing at some timestamps, TaTS can simply use a placeholder token
(e.g., “no information available”), as validated in our text-random-drop ablations. When temporal
alignment is uncertain, small lead—lag shifts mainly affect phase rather than frequency, so TaTS can
still leverage the preserved periodic structure. For larger misalignments, standard preprocessing
alignment methods may be applied, with TT-Wasserstein serving as a diagnostic to guide how strongly
to rely on the text modality.

B.3 ETHICAL IMPACT STATEMENT

Our work is solely focused on the technical challenge of multimodal time series and does not involve
any elements that could pose ethical risks.
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C ALGORITHMS

C.1 PSteEupoO CODE

Algorithm 1: Texts as Time Series for Forecasting Task

Input: Time series with concurrent texts embeddings
D ={X={x1,x9,...,xn},E ={e1,ea,...,er}} in the input training dataset;
prediction length H.
Output: TaTS model parameters © = {Oorecast, OmLp }-
1 Prepare training samples of sequence length L and prediction length H as:

(XD =Xy 410,40 BY = Xy 1,40, YO = Xy piva s rm ey

Initialize time series model F (+; Oforecast); projector MLP(-; Oyp) for dimensionality
reduction.
2 while not converged do

3 for each training sample {X E® Y1 do

4 Map E® to Z®): Z(4)[j] = MLP(E®™ [j]; 6yrp)

5 Compute U = [X®; (Z() g1 as shown in Eq. (6).

6 Forecast: X () = F(U; Ogorecast) [: N]

7 Optimize: arg ming_g, . o} Eforecasl(X(i), ﬁ(i)) as shown in Eq. (8)

8 return TaTS model parameters © = {Oforecast, Ovrp }

Algorithm 2: Texts as Time Series for Imputation Task

Input: Time series with concurrent text embeddings
D ={X={x1,X2,...,xn},E ={e1,ea,...,er}} in the input training dataset;
binary mask M € {0, 1}7>#.

Output: TaTS model parameters © = {fimpute, Omrp }-

Prepare training samples with observed entries:

-

(XD =X 1,00, BY = By, MO = My a0,

Initialize time series imputation model G(-; @impute); projector MLP(-; Oy p) for
dimensionality reduction.
while not converged do

for each training sample {X(i), E®, M(i)} do
Map E® to Z®): Z([j] = MLP(E®™ [j]; fyrp)
Construct the augmented input: U = [(X(i) ® M(i)); (Z(i))T]dim=1
Impute missing values: XmPued(®) — G(U; Gimpute)

Optimize: arg ming_(g, . o} Limpute (X, f(lmputed(i))

impute 5

8 return TaTS model parameters © = {fimpute, Ovrp }

C.2 INCREMENTAL COMPLEXITY INTRODUCED BY THE TEXT MODALITY

As analyzed in Section 5.2, incorporating textual information introduces some additional computa-
tional overhead. This overhead arises from two components: (1) the cost of encoding the text tokens,
and (2) the cost of training the forecasting model on the augmented input. We have empirically
evaluated the latter in Section 5.2; here, we provide a theoretical analysis of the former.

Let the language encoder process each token in time O(fyen), and let each timestamp have an
associated text description with an average length of [ tokens. If the time series contains 7" timestamps,
then the total time complexity for embedding all paired texts is:

()(/ml\cn : ] : T)
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This follows because each of the 7" timestamps requires encoding, on average, [ tokens, and each
token requires O (foken) time to process. In practice, from our experiments reported in Table 13, this
cost is modest for lightweight text encoders (e.g., small Transformers or MLP-based tokenizers), and
the embedding step is performed only once per dataset rather than per training iteration. As a result,
the added modality introduces only a manageable overhead relative to the overall cost of training
modern time-series forecasting models.

Table 13: Wall-clock costs (seconds) to embed texts for Time-MMD (Liu et al., 2024a) datasets.

Monthly Sampled Weekly Sampled Daily Sampled
Agriculture  Climate  Economy  Security = Social Good  Traffic | Energy  Health \ Environment
BERT 0.12 0.21 0.23 0.23 1.7 0.21 0.26 0.46 0.29
GPT-2 0.18 0.25 0.31 0.28 25 0.30 0.28 0.55 0.35
LLaMA-2-7B 0.28 0.29 0.37 0.35 10.5 0.40 0.32 0.62 0.42
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Figure 9: Visualization of the numerical data in each multimodal time series dataset.

D EXPERIMENT DETAILS

D.1

DATASET STATISTICS AND DETAILS

Table 14, Table 15 and Table 16 provide summaries of the statistics for the publicly available real-
world datasets. Additionally, we visualize the numerical data for each Time-MMD multimodal time
series dataset in Figure 9. For further details, please refer to the original work that introduced these
datasets and benchmarks (Liu et al., 2024a).

Table 14: Overview of the numerical data in the Time-MMD datasets (Liu et al., 2024a). “Prediction
Length” refers to the number of future time points to be forecasted, with each dataset including four
distinct prediction settings. refers to the number of variables (or variates) in each dataset.

Dataset Name/Domain  Prediction Length  Dimension Frequency Number of Samples Timespan

Agriculture {6, 8,10, 12} 1 Monthly 496 1983 - Present
Climate {6, 8,10, 12} 5 Monthly 496 1983 - Present
Economy {6, 8,10, 12} 3 Monthly 423 1989 - Present
Energy {12, 24, 36, 48} 9 Weekly 1479 1996 - Present

Environment {48, 96, 192, 336} 4 Daily 11102 1982 - 2023
Health {12, 24, 36, 48} 11 Weekly 1389 1997 - Present
Security {6, 8, 10, 12} 1 Monthly 297 1999 - Present
Social Good {6, 8,10, 12} 1 Monthly 900 1950 - Present
Traffic {6, 8,10, 12} Monthly 531 1980 - Present
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Table 15: Overview of the numerical data in the FNSPID (Financial News and Stock Price Integration
Dataset) datasets (Dong et al., 2024). “Prediction Length” refers to the number of future time points
to be forecasted, with each dataset including four distinct prediction settings. refers to the number of
variables (or variates) in each dataset.

Company/Stock Name  Prediction Length Dimension Frequency Number of Samples  Timespan

Delta Airlines (DAL) {6, 8,10, 12} 1 Bi-daily 1358 2009 - 2020
IBM (IBM) {6, 8,10, 12} 1 Bi-daily 493 2016 - 2020
JPMorgan Chase (JPM) {6, 8,10, 12} 1 Bi-daily 565 2018 - 2020
NVIDIA (NVDA) {6, 8, 10, 12} 1 Bi-daily 1203 2011 - 2020
Pfizer (PFE) {6, 8,10, 12} 1 Bi-daily 812 2016 - 2020
Tesla (TSLA) {6, 8,10, 12} 1 Bi-daily 294 2019 - 2020

Table 16: Overview of the numerical data in the FNF (From News to Forecast) datasets (Wang et al.,
2024b). “Prediction Length” refers to the number of future time points to be forecasted, with each
dataset including four distinct prediction settings. refers to the number of variables (or variates) in
each dataset.

Dataset Name/Domain  Prediction Length  Dimension  Frequency —Number of Samples ~ Timespan

Bitcoin Price {6, 8,10, 12} 1 Daily 1237 2018 - 2021
Web Traffic {6, 8,10, 12} 1 Daily 728 2015 - 2016
Electricity Demand {6, 8,10, 12} 1 Daily 1097 2019 - 2021

D.2 HYPERPARAMETERS

We use Adam optimizer (Kingma & Ba, 2015) when training the neural networks. The default choices
of hyperparameters in our code are provided in Table 17. For LLM-based text encoders, we initialize
them using the default configurations provided by Hugging Face'. Consistent with existing works
(Wu et al., 2023a; Liu et al., 2024c), we apply instance normalization to standardize the time series
data within each dataset.

D.3 METRICS

Throughout this paper, we use the following metrics to evaluate performance:
MSE (Mean Squared Error): Measures the average squared difference between the predicted and
actual values. It penalizes larger errors more heavily, making it sensitive to outliers.

n

_ 1 a2
MSE = — > (i —9:)?, (30)

i=1

where y; and ¢; denote the ground truth and predicted values, respectively, and n is the number of
data points.

MAE (Mean Absolute Error): Represents the average absolute difference between the predicted and
actual values, providing a more interpretable measure of average error magnitude.

1 n
MAE = =S [ys — dil. 31
=~ lvi 3 31)

=1

RMSE (Root Mean Squared Error): The square root of MSE, which provides an error measure in the
same units as the original data. It is more sensitive to large deviations than MAE.

RMSE = (yi — 9:)° (32)

"https://huggingface.co/
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Table 17: Default hyperparameters for the TaTS framework

Hyperparameter Description Value or Choices
batch_size The batch size for training 32

criterion The criterion for calculating loss Mean Square Error (MSE)
learning_rate The learning rate for the optimizer {0.0001, 0.00005, 0.00001}
seq_len Input sequence length 24

label_len Start token length for prediction 12
prior_weight Weight for prior combination {0,0.1,0.2,0.3,0.5}
train_epochs Number of training epochs 50

patience Early stopping patience 20

text_emb Dimension of text embeddings {6, 12, 24}
learning_rate2 Learning rate for MLP layers {0.005, 0.01, 0.02, 0.05}
pool_type Pooling type for embeddings “avg”
init_method Initialization method for combined weights “normal”

dropout dropout 0.1

use_norm whether to use normalize True

MAPE (Mean Absolute Percentage Error): Expresses errors as a percentage of the actual values,
offering a scale-independent metric that facilitates comparisons across datasets.

n

1
MAPE = — ;

ViVt 5 100, (33)

Yi

MSPE (Mean Squared Percentage Error): Similar to MAPE but squares the percentage error, penaliz-
ing larger percentage deviations more heavily.

n

1 yi — 90\
MSPE = — Z () . (34)

i=1 Yi

These metrics collectively provide a comprehensive evaluation of model performance, capturing
both absolute and relative errors as well as their sensitivity to outliers. For all metrics, lower values
indicate better performance.

D.4 IMPLEMENTATION DETAILS
D.4.1 CODE AND REPRODUCIBILITY

The code for the experiments is included in the supplementary material, accompanied by a comprehen-
sive README file. We provide detailed commands, scripts, and instructions to facilitate running the
code. Additionally, the datasets used in the experiments are provided in the supplementary material
as CSV files.

D.4.2 HARDWARE AND ENVIRONMENT

We conducted all experiments on an Ubuntu 22.04 machine equipped with an Intel(R) Xeon(R) Gold
6240R CPU @ 2.40GHz, 1.5TB of RAM, and a 32GB NVIDIA V100 GPU. The CUDA version
used was 12.4. All algorithms were implemented in Python (version 3.11.11). To run our code, users
must install several commonly used libraries, including pandas, scikit-learn, patool, tqdm, sktime,
matplotlib, transformers, and others. Detailed installation instructions can be found in the README
file within the code directory. We have optimized our code to ensure efficiency. Our tests confirmed
that the CPU memory usage remains below 16 GB, while the GPU memory usage is under 20 GB.
Additionally, the execution time for a single experiment is less than 10 minutes on our machine.
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D.4.3 DATA SPLITTING AND LEAKAGE PREVENTION

To ensure forecasting without access to contemporaneous or future information, we adopt a chronolog-
ical data-splitting protocol for all datasets. Timestamps are divided into 80% training, 10% validation,
and 10% test windows without shuffling. For a forecast at timestamp 7', the model receives only
time-series values and textual inputs with timestamps < 7" — 1, while all inputs with timestamps > T'
are masked during prediction.

Timestamp Alignment of Texts. All datasets provide pre-aligned text—time-series pairs by asso-
ciating each text sample with the timestamp at which it originally became publicly available (e.g.,
publication or release time). We directly adopt these timestamps, ensuring that the textual inputs
available to the model at time 7" — 1 correctly reflect real-time accessibility.

Auditing for Retrospective Leakage. Although we do not apply automated filtering procedures,
we conduct human audits on random subsets of samples from each dataset to detect retrospective or
outcome-summarizing leakage (e.g., texts describing events that occur after the associated timestamp).
Across all datasets, we did not observe such leakage. Combined with causal masking, this protocol
prevents the models from accessing contemporaneous or future information from either modality.
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E FULL EXPERIMENT RESULTS
E.1 WHY SHOULD WE LEVERAGE CTR?

Table 18: Performance on time series forecasting task. Leveraging periodicity with a single-dimension
feature can significantly reduce the prediction error.

Method \ Economy | Social Good | Traffic
| MSE()) MAE() | MSE()) MAE() | MSE()) MAE()

Uniformly Random (+) | 5.673 2.356 2.059 1.230 1.207 0.995
Uniformly Random (+) | 11.535 2.879 8.860 2.404 3.794 1.618
Normally Random 9.284 2.878 2.926 1.374 3.163 1.511
Exponentially Random 4.521 1.960 3.724 1.564 1.141 0.911
Using 1D Text only 1.995 1.404 1.315 0.853 0.714 0.797

Parallel text provides complementary information and expert knowledge that can significantly enhance
the understanding of time series data. To demonstrate the benefits of utilizing periodicity in the text
modality, we present an illustrative example in the univariate forecasting task, where the goal is
touse Xi.pr = {x1} € RT*1 to predict the next H values, )A(T_H:TJFH. We first concatenate the
text embeddings to form E = [e1;e9;...;er]dim=1 € RéexxT then replace x; with only the first
dimension of the text embeddings to leverage very partial text periodicity, x; = (E[1,:])T € RT*!,
In other words, we rely solely on a single evolving dimension of the paired text features to forecast
future time series values.

As shown in Table 18, leveraging just the periodicity of a single text feature significantly outperforms
random time series forecasting. The random baselines mean that the forecasts are purely random
according to several different distributions. These random baselines use the training data as well, for
example, normally random computes the mean and standard deviation of a normal distribution to
forecast the time series. These results highlight that even partial periodicity from the text modality
contributes valuable insights for improving forecasting accuracy.

E.2 FULL FORECASTING PERFORMANCE COMPARISON VISUALIZATION

To provide a comprehensive comparison of different frameworks for modeling time series with paired
texts, we visualize the forecasting performance using radar plots in Figure E.2. Each subfigure
corresponds to a dataset, with each axis representing a different time series model. The axes are
inverted, where values closer to the center indicate worse performance, and larger areas signify better
results. The results demonstrate that TaTS consistently outperforms both baselines across all datasets
while maintaining compatibility with various time series models.

E.3 FULL FORECASTING RESULTS

Due to space limitations, we provide the full results of the time series forecasting task on paired
time series and text in the appendix. We conduct extensive experiments across 9 datasets using
9 existing time series models, evaluating various prediction lengths as detailed in Table 14. The
complete results are presented from Table 19 to Table 27. Overall, TaTS consistently achieves the
best performance across all datasets, time series models, and prediction lengths. The averaged results
across all prediction lengths are summarized in the main text (Table 2). For better readability, we also
visualize the performance of different frameworks using radar plots, as detailed in Appendix E.2 and
Figure 10.
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models.
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Table 19: Full forecasting results for the Agriculture, Climate, and Economy datasets using iTrans-
former, PatchTST, and Crossformer as time series models. Compared to numerical-only unimodal
modeling and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to
effectively handle time series with concurrent texts. Avg: the average results across all prediction
lengths.

Models iTransformer PatchTST Crossformer
(2024¢) (2023) (2023)
Method ‘ MSE MAE RMSE MAPE MSPE ‘ MSE MAE RMSE MAPE MSPE ‘ MSE MAE RMSE MAPE MSPE
6 ]0.077 0200 0.274 0.090 0.014 | 0.074 0.197 0.269  0.090 0.014 |0.222 0331 0412 0.136 0.031

8 [0.104 0228 0.315 0.100 0.017 |0.104 0.234 0317 0.104 0.018 |0.304 0406 0496 0.168 0.044
Uni-modal 10 10.142 0.273 0372 0.119  0.024 |0.136 0262 0.357 0.112 0.021 |0.357 0435 0.530 0.176  0.049
12 | 0.167 0.301 0.400 0.128 0.026 | 0.168 0294 0.396 0.124  0.025 |0.409 0451 0.582 0.181 0.054

| | Avg | 0.122 0251 0340 0.109 0020 |0.120 0247 0335 0.107 0020 |0.323 0406 0505 0.165 0.044

6 [0.070 0.189 0.261 0.085 0.013 |0.071 0.183 0261 0.082 0.012 |0.146 0259 0.331 0.106  0.020
Agriculture 8 [0.091 0212 0296 0.093 0.016 |0.093 0212 0296 0.093 0.015 |0.171 0278 0.354 0.112  0.022
MM-TSFLib | 10 | 0.130 0.248 0.346 0.105 0.019 |0.126 0251 0.344 0.108 0.020 |0.252 0.344 0428 0.136  0.032
12 ]0.158 0.272 0377 0.112  0.022 | 0.168 0288 0.391 0.119 0.024 |0.304 0.372 0471 0.144  0.036

| | Avg|0.112 0230 0320 0.099 0018 |0.114 0233 0323 0.100 0018 | 0218 0313 039 0.124  0.027

6 |0.067 0.184 0256 0.083 0.012 |0.066 0.171 0247 0.076  0.011 |0.148 0264 0.332 0.108  0.020
8 [0.094 0210 0.297 0.091 0.015 |0.096 0217 0300 0.094 0.016 |0.197 0298 0.374 0.119 0.026
TaTS (ours) | 10 | 0.122 0.251 0.341 0.109 0.020 |0.126 0.260 0.349 0.113  0.021 |0.216 0.315 0397 0.124  0.028
12 ]0.153 0271 0374 0.112  0.022 |0.166 0292 0.394 0.123 0.025 |0.289 0.371 0466 0.145  0.036

| | Avg | 0.109 0229 0317 0.099 0017 |0.114 0235 0323 0.01 0018 |0212 0312 0392 0.124 0.027
6 | 1.127 0.843 1.052 2549 50.662 | 1.259 0915 1.122 3.168 105.890 | 1.159 0.852 1.076 3.036 148.840
8 | 1191 0.876 1.088 3.208 134908 | 1.208 0.878 1.099 2.778 64.950 | 1.104 0.829 1.051 2.600 123.988
Uni-modal 10 | 1.215 0.885 1.100 3.169 123.266 | 1.218 0.894 1.103 2.746  55.831 | 1.127 0.829 1.057 3.246 193.108

12 | 1.199 0.879 1.091 2752 65916 | 1.197 0.891 1.092 3.177 115.617 | 1.105 0.837 1.047 3.322 194.844
Avg | 1.183 0871 1.083 2920 93.688 | 1.220 0.895 1.104 2967 85572 | 1.124 0.837 1.058 3.051 165.195
g

6 | 1.031 0.787 1.013 2298 38389 | 1.003 0.800 1.001 2.652 57.709 |0.995 0.758 0.996 2.393 51.345
Climate 8 | 1.039 0.809 1.017 2598 49.903 | 1.012 0.790 1.005 2387 42258 |1.016 0.773 1.007 2.824 107.865
MM-TSFLib | 10 | 1.049 0817 1.020 2.547 55014 | 1.036 0.813 1.016 2293 28.894 |0.999 0.779 0997 2.740 95.790
12 | 1.057 0.828 1.025 2.894 87976 | 1.071 0.822 1.032 2965 95.248 |0.997 0.777 0.994 2240 43.968

| | Avg | 1.044 0810 1.019 2584 57.821 |1.030 0.806 1014 2574 56.027 |1.002 0772 0998 2549 74742

6 | 1.020 0.797 1.007 2563 56.209 | 0.976 0.782 0.987 2.318 33.843 | 0.924 0.747 0.961 1.895 20.405
8 | 1.025 0.797 1.011 2391 38756 | 0.995 0.803 0.997 2574 57.639 |0.923 0.757 0.961 2318 51.592
TaTS (ours) | 10 | 1.033 0.808 1.014 2.647 77.697 | 1.022 0.796 1.007 2.657 76.287 | 0.963 0.764 0.979 2439 59.881
12 | 1.033 0.812 1.013 2.607 58.107 | 1.022 0.810 1.009 2436 42471 |0.943 0.754 0.967 2220 40.186

| | Avg | 1.028 0.804 1.011 2552 57.692 | 1.004 0.798 1.000 2496 52560 |0.938 0.755 0.967 2218 43.016

6 0015 0.099 0.124 0.035 0.002 |0.017 0.104 0.129 0.036  0.002 |0.659 0.749 0.806 0257  0.076
8 [0.014 0.098 0.120 0.034 0.002 |0.016 0.104 0.128 0.036 0.002 |0.661 0.767 0.808 0263 0.076
Uni-modal 10 | 0.014 0.094 0.119 0.033  0.002 |0.017 0.104 0.130 0.036  0.002 |0.836 0.884 0.911 0.303  0.097
12 10.013 0.091 0.112 0.032 0.002 |0.018 0.109 0.135 0.037 0.002 |0.875 0912 0.932 0313 0.101

| | Avg | 0.014 0.096 0.119 0.034 0002 | 0017 0.105 0.131 0.036 0.002 |0.758 0.828 0.864 0.284  0.087

6 0011 0.081 0.103 0.028 0.001 |0.014 0.094 0.118 0.033  0.002 |0.209 0420 0450 0.143 0.024
Economy 8 0011 0.085 0.106 0.029 0.001 |0.015 0.099 0.123 0.034 0.002 |0.214 0424 0456 0.145 0.024
MM-TSFLib | 10 | 0.012 0.090 0.110 0.031  0.001 |0.013 0.091 0.115 0.031 0.002 |0.277 0463 0522 0.158 0.032
12 10.012 0.090 0.110 0.031  0.001 |0.016 0.099 0.124 0.034 0.002 |0.299 0.526 0.540 0.180 0.034

| | Avg | 0.011 0.086 0.107 0.030 0001 |0.014 0096 0.120 0033 0002 |0250 0458 0492 0.156 0.029

6 |0.008 0.077 0.090 0.027 0.001 |0.009 0.080 0.097 0.028 0.001 |0.140 0312 0.367 0.106 0.016
8 [0.008 0.077 0.090 0.027 0.001 |0.008 0.078 0.091 0.027 0.001 |0212 0426 0454 0.145 0.024
TaTS (ours) | 10 | 0.009 0.079 0.093 0.027  0.001 |0.009 0.079 0.092 0.027 0.001 |0.302 0.510 0.544 0.174  0.034
12 10.008 0.076 0.091 0.026  0.001 |0.009 0.080 0.096 0.028 0.001 |0.222 0428 0466 0.145  0.025

| | Avg | 0.008 0.077 0.091 0.027  0.001 |0.009 0.079 0.094 0.028 0.001 |0219 0419 0458 0.142 0.025
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Table 20: Full forecasting results for the Energy, Environment, and Health datasets using iTransformer,
PatchTST, and Crossformer as time series models. Compared to numerical-only unimodal modeling
and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Models iTransformer PatchTST Crossformer
(2024c¢) (2023) (2023)
Method ‘ MSE MAE RMSE MAPE MSPE ‘ MSE MAE RMSE MAPE MSPE ‘ MSE MAE RMSE MAPE MSPE
12 | 0.112 0.231 0305 0.940 10.877 |0.105 0229 0.301 1.120 40.016 | 0.138 0.262 0.338 1.121  31.808
24 10222 0352 0438 1.626 35711 | 0241 0363 0458 1.507 41.679 [0.281 0399 0482 1.619 46.008
‘Uni-modal 36 | 0.306 0409 0511 1767 58.611 | 0304 0408 0512 1.782 60.280 | 0.331 0.443 0.541 3.296 229.673

48 | 0435 0.509 0.617 2454 95250 | 0.427 0.502 0.610 2405 91255 | 0422 0.521 0.626 4.574 347.533
| | Avg | 0269 0375 0.468 1.697 50.112 | 0269 0376 0470 1.704 58307 | 0.293 0.406 0497 2652 163.756

12 1 0.107 0228 0.300 0.999 17.267 | 0.115 0242 0311 1.357 30.739 | 0.126 0.251 0.326 1.141  30.653
Energy 24 0.223 0354 0443 1.692 45580 |0.236 0.361 0453 1.506 35353 | 0.268 0.389 0477 1.875 69.289
MM-TSFLib | 36 | 0.313 0424 0520 1916 63.383 | 0.311 0413 0.518 1.885 64.280 | 0.338 0.454 0.553 2956 202.647
48 0423 0507 0.615 2494 101.822|0.426 0.501 0.610 2404 95489 | 0433 0.534 0.637 4716 415.767

| | Avg | 0267 0378 0.469 1775 57.013 | 0272 0379 0473 1788 56.465 | 0.291 0.407 0498 2672 179.589

12 1 0.106 0234 0302 1.116 30.716 | 0.106 0234 0300 1.024 17.615 | 0.127 0254 0.326 1.053 18.277
24 10.226 0355 0439 1.555 34.060 | 0206 0.336 0417 1491 35509 | 0.253 0.376 0462 1.823  62.566
TaTS (ours) | 36 | 0.306 0.411 0512 1.790 57.729 | 0.305 0.412 0506 1.781 57.481 | 0312 0431 0524 2602 144.944
48 | 0421 0502 0.612 2370 91.346 | 0416 0.501 0.607 2.427 93.658 | 0425 0.516 0.619 3314 183.016

| | Avg | 0265 0376 0.466 1708 53.463 | 0.258 0.371 0457 1.681 51.066 |0.279 0.394 0483 2.198 102201

48 | 0415 0473 0.604 2218 214.087 | 0.492 0.500 0.644 2315 238.477|0.495 0.509 0.651 2275 235.830
96 | 0.439 0493 0.630 2338 250.510 | 0.541 0.538 0.693 2390 256.244|0.562 0.585 0.712 1.880 130.832
Uni-modal | 192 | 0.454 0.506 0.661 2462 259.311 |0.581 0.556 0.741 2727 356.251|0.567 0.607 0.739 1.659 90.234
336 | 0455 0.505 0.671 2446 276.348 | 0.593 0.553 0.763 2.898 424.764 | 0.582 0.621 0.761 1.656  80.409

| | Avg | 0.441 0494 0.641 2366 250.064 | 0552 0.537 0.710 2583 318934 |0.551 0.581 0.716 1.867 134.326

48 | 0.413 0470 0.600 2.187 211.597 | 0.441 0489 0.621 1954 159.971|0.421 0472 0.604 1982 161.068
Environment 96 | 0420 0478 0.616 2.233 213.865 | 0461 0495 0.643 2.063 177.553 | 0425 0485 0.617 1.839 128.131
MM-TSFLib | 192 | 0.423 0.482 0.636 2320 225.635|0.462 0.508 0.664 2203 214.665|0.427 0495 0.638 1.830 125.150
336 | 0.429 0483 0.651 2308 236.965|0.472 0.513 0.683 2210 220.009 | 0.434 0.500 0.656 1.867 128.536

| | Avg | 0421 0478 0.626 2262 222016 | 0.459 0.501 0.653 2.107 193.049 | 0.427 0488 0.629 1879 135721

48 10.268 0.370 0.480 1.140 21.157 |0.271 0.377 0483 1.115 19.355 | 0.274 0373 0485 1.152 20952
96 |0.267 0370 0.488 1.123 20.955 | 0.279 0.376 0498 1.176 21.868 | 0.284 0.391 0.505 1.127 18.484
TaTS (ours) | 192 | 0272 0366 0.508 1215 23.115 | 0272 0366 0.508 1215 23.342 | 0.283 0415 0523 1.039 14.150
336 | 0.261 0.369 0.508 1.174 22437 |0.269 0.366 0.516 1222 23.081 | 0.294 0.431 0541 1.031 12.734

| | Avg | 0267 0.369 0.496 1.163 21916 | 0273 0371 0501 1.182 21912 |0.284 0403 0.513 1.087 16.580

12 | 1171 0.674 0.967 2.596 149272 1.267 0.735 0.999 3.651 262953 | 1.453 0.809 1.086 2.699 145979
24 | 1.594 0.807 1.169 2.832 136.133 | 1.681 0.846 1.167 3.371 160.263 | 1.537 0.825 1.153 2.744 100.232
Uni-modal | 36 | 1.742 0.862 1.253 2.893 118.496 | 1.819 0918 1.281 3.751 243.238 | 1.565 0.831 1.173  2.687 108.731
48 | 1.840 0923 1.313 3263 153.559 | 1.842 0921 1310 3.192 152.876|1.586 0.841 1.208 2730 165.914

| | Avg | 1.587 0.817 1175 2896 139.365|1.652 0.855 1.189 3491 204.832|1.535 0.827 1.155 2715 130214

12 10.987 0.696 0.928 3334 190.818 | 1.029 0.710 0.945 3.400 182961 | 1.017 0.664 0.933 2796 171.177
Health 24 | 1.388 0.787 1.113  3.457 169.217 | 1.288 0.769 1.053 3.207 129.039 | 1.318 0.747 1.072 2917 161.566
MM-TSFLib | 36 | 1.672 0.877 1216 3.674 176.904 | 1.460 0.831 1.152 3.492 168.807 | 1.357 0.775 1.113 3210 192.422
48 | 1.737 0.902 1.270 3.531 155.800 | 1.612 0.878 1.231 3317 127.827 | 1.399 0.788 1.146 2.821 149.248

| | Avg | 1.446 0.816 1.132 3.499 173.185| 1.347 0.797 1.095 3354 152159 | 1.273 0.744 1.066 2936 168.603

12 10939 0.649 0.892 2764 138.387]0.990 0.659 0.912 2.721 151.988|0.974 0.661 0911 2.838 163.149
24 | 1251 0.712 1.032 2.744 112.080 | 1.288 0.764 1.050 3.364 155937 | 1.254 0.741 1.062 3.104 170.871
TaTS (ours) | 36 | 1.489 0.781 1.147 2.885 112555 |1.397 0.780 1.122 2.638 93.114 | 1.306 0.741 1.083 2.805 152.713
48 | 1.581 0.834 1.215 2909 107.995|1.456 0.808 1.165 2.623 88216 | 1.369 0.770 1.136 2.770 144.765

‘ ‘Avg‘l.SlS 0.744 1071 2.825 117.754‘1.283 0.753 1.062 2.837 ]22.314‘1.226 0.728 1.048 2.879 157.874
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Table 21: Full forecasting results for the Security, Social Good, and Traffic datasets using iTrans-
former, PatchTST, and Crossformer as time series models. Compared to numerical-only unimodal
modeling and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to
effectively handle time series with concurrent texts. Avg: the average results across all prediction

lengths.
Models iTransformer PatchTST Crossformer
(2024¢) (2023) (2023)

Method | MSE  MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE
6 | 113573 5.698 10.657 6.008 1020.167 | 108.795 5.119 10.430 4.255 549239 | 124.972 6.077 11.179 2435 113.813

8 | 115.878 5743 10.765 5977 1035.504 | 113.534 5.524 10.655 3.681 424.901 | 126.513 6.237 11.248 1.909 67.155

Uni-modal | 10 | 116950 5.615 10.814 3.109 332477 | 114.820 5.484 10.715 2523 185.108 | 127.701 6.346 11.300 1.678  70.642
12 | 117.396 5.585 10.835 2.645 262.692 | 114253 5357 10.689 1.951 117.032 | 128.686 6.449 11.344 1.484 35512

| | Avg | 115949 5660 10.768 4.435 662.710 | 112.850 5371 10.622 3.103 319.070 | 126.968 6277 11.268 1.877 71781
6 | 115170 5403 10.732 4284 482301 | 109.240 5.189 10.452 4.386 560.668 | 123.515 5.958 11.114 2771 175.140
Security 8 | 116.158 5544 10.778 5742 985203 | 113248 5445 10.642 3237 322.665 | 124.714 6.100 11.168 2.169 126.854
MM-TSFLib | 10 | 117.340 5.633 10.832 3.090 320.102 | 114.109 5.442 10.682 2500 196.618 | 127.701 6.346 11.300 1.678 70.642
12 | 116.694 5.548 10.803 2.560 243.369 | 114.764 5.398 10.713 2.136 165.771 | 126.985 6.327 11.269 1.510 42.745

| | Avg | 116.341 5532 10786 3.919 507.744 | 112.840 5369 10.622 3.065 311.430| 125729 6.183 11213 2.032 103.845
6 | 107.113 4.856 10.350 3.600 320.907 | 106.160 4.696 10.303 3.316 282.430 | 122.887 5915 11.085 2831 191.546

8 | 112560 5204 10.609 3.258 345.121 | 108.803 5.052 10431 3.082 312.449 | 124302 6.067 11.149 2.656 178.725

TaTs (ours) | 10 | 113.789 5227 10.667 2.488 204.306 | 111.110 5.090 10.541 2423 205.196 | 126.203 6.258 11.234 1.720  60.667
12 | 114754 5318 10.712 2057 140.148 | 112.699 5237 10.616 2.185 171.929 | 127.263 6.352 11.281 1433 36.934
| | Avg | 112.054 5.151 10.584 2.851 252.621 | 109.693 5.019 10.473 2752 243.001 | 125.164 6.148 11.187 2.160 116.968
6 1.129 0438 0.741 1395 72570 1.047 0443 0749 1420 70.855 | 0.791 0431 0.681 1320 39.179

8 1.133 0466 0.770 1448  67.692 1.102 0458 0.741 1502 68.611 | 0.832 0414 0.668 0917 13.263

Uni-modal | 10 | 1275 0496 0.808 1.718 112.603 | 1.089 0469 0.749 1568 75225 | 0916 0463 0.728 0.709  6.748
12 | 1313 0534 0841 2052 159.814 | 1.148 0.610 0.866 2.185 94.833 | 0.921 0559 0.766 1.682 54.438

| | Avg | 1212 0483 0790 1.653 103.170 | 1.097 0495 0776 1669 77.381 | 0.865 0467 0711 1.157 28407
6 1.061 0451 0752 1399  60.240 1.023 0442 0741 1333 62404 | 0.753 0350 0.604 0.753  8.426

Social Good 8 1175 0498 0.789 1390  59.283 1111 0533 0.807 1.295 34722 | 0814 0357 0618 0576 5614
MM-TSFLib | 10 | 1253 0.561 0.863 1.627  66.938 1.049 0520 0.799 1.504 54.694 | 0866 0492 0726 1.127  10.642
12 | 1.298 0.570 0872 1710  72.310 1.110  0.566 0.840 1.632 50.501 | 0917 0395 0.650 0.693  3.899

| | Avg | 1.197 0520 0819 1531 64.693 | 1073 0515 0797 1441 50580 | 0837 0398 0649 0787 7.145
6 0942 0398 0.677 1221  49.723 0923 0436 0722 1153 18.695 | 0.711 0407 0.631 0749  6.772

8 0.967 0433 0713 1430  50.480 0900 0461 0713 1279 22919 | 0.748 0453 0.646 0963  7.987

TaTS (ours) | 10 | 0.994 0463 0740 1538  54.466 0996 0461 0728 1348 42272 | 0.800 0.373 0615 0724 5977
12 | 1.045 0514 0780 1.753  61.884 1.069 0.501 0.770 1.549 60.142 | 0.857 0415 0.663 0827 7.195

| | Avg | 0987 0452 0728 1486 54138 | 0972 0465 0733 1332 36.007 | 0779 0412 0639 0816 6983
6 0203 0228 0393 0216  0.307 0.182 0252 0377 0285 0513 0.227 0394 0472 0340  0.388

8 0.209 0236 0399 0224 0321 0.167 0226 0348 0255 0450 | 0216 0.382 0458 0324 0333

Uni-modal | 10 | 0211 0243 0.398 0.229 0.321 0.178 0242 0362 0270 0464 | 0202 0363 0441 0313 0327

12 | 0231 0246 0392 0.281 0.532 0226 0250 0393 0300 0580 | 0212 0365 0450 0337 0399

| | Avg | 0213 0238 0395 0.238 0.370 | 0.188 0242 0370 0278 0502 | 0214 0376 0455 0329 0362
6 0.187 0338 0422 0292 0324 0.165 0229 0353 0248 0.391 0.184 0335 0418 0307 0371

Traffic 8 0.197 0355 0433 0.297 0.303 0.163 0218 0346 0237 0373 0.183 0331 0416 0305 0.367
MM-TSFLib | 10 | 0.190 0338 0422 0.285 0.283 0.174 0235 0357 0252 0.402 0.184 0331 0416 0303  0.363
12 | 0222 0358 0459 0333 0410 0211 0237 0378 0281 0524 | 0200 0340 0431 0329 0427

| | Avg | 0.199 0347 0434 0.302 0.330 | 0.178 0230 0359 0255 0422 | 0.188 0334 0420 0311 0382
6 0.174 0218 0351 0227 0.348 0.155 0204 0334 0225 0359 0.159 0275 0372 0273 0392

8 0.177 0213 0357 0215 0.319 0.162 0210 0334 0235 0389 0.166  0.294 0385 0279  0.369

TaTs (ours) | 10 | 0.186 0225 0366 0.223 0.324 0.167 0214 0340 0233 0368 0.163 0285 0378 0277  0.386
12 | 0213 0212 0361 0241 0.451 0204 0209 0356 0249  0.468 0.184 0291 0395 0296 0428

| | Avg | 0.187 0217 0359 0.227 0361 | 0.172 0209 0341 0235 039 | 0168 0286 0383 0281 0394
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Table 22: Full forecasting results for the Agriculture, Climate, and Economy datasets using DLinear,
FEDformer, and FILM as time series models. Compared to numerical-only unimodal modeling and
MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Models DLinear FEDformer FLM
(2023) (2022b) (2022a)
Method | MSE MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE

6 [0.170 0312 0395 0.135  0.028 |0.091 0.239 0301 0.110 0.019 |0.088 0207 029 0.092 0.015
8 [0.195 0340 0423 0.145 0.031 |0.127 0281 0355 0.127 0.024 |0.115 0230 0.318 0.097 0.017
Uni-modal | 10 |0.218 0.355 0448 0.150 0.034 |0.154 0.313 0392 0.142 0.030 |0.151 0255 0.351 0.103 0.020
12 10308 0407 0514 0.165 0.041 |0.180 0313 0415 0.134 0.028 |0.200 0.333 0433 0.140  0.030

| | Avg | 0223 0354 0445 0.149 0034 |0.138 0286 0366 0.128 0.025 |0.139 0256 0348 0.108  0.021

6 |0.166 0314 0396 0.137 0.028 |0.079 0219 0280 0.102 0.016 |0.089 0208 0291 0.092 0.015
Agriculture 8 [0.193 0342 0425 0.148 0.032 |0.112 0269 0335 0.125 0.024 |0.112 0225 0.314 0.095 0.016
MM-TSFLib | 10 | 0.214 0358 0.450 0.153  0.035 |0.153 0.292 0.387 0.128  0.026 |0.156 0.262 0.357 0.106  0.020
12 10300 0408 0514 0.167 0.042 |0.180 0319 0416 0.137 0.028 |0.204 0.338 0437 0.142 0.031

| | Avg | 0.218 0.355 0446 0.151 0034 |0.131 0275 0354 0.23 0024 |0.140 0258 0350 0.109 0.021

6 |0.164 0311 0392 0.136  0.028 |0.082 0.222 0286 0.102 0.016 |0.087 0205 0289 0.091 0.015
8 [0.192 0343 0425 0.148 0.032 |0.111 0256 0330 0.115 0.020 |0.110 0223 0.312 0.094 0.016
TaTS (ours) | 10 | 0.215 0358 0451 0.152  0.035 |0.147 0.288 0.377 0.126  0.025 |0.146 0.249 0345 0.100  0.019
12 10.287 0392 0496 0.159 0.038 |0.183 0339 0418 0.145 0.029 |0.196 0.328 0429 0.138  0.029

| | Avg | 0214 0351 0441 0.149 0033 |0.131 0276 0353 0.122 0.023 |0.135 0251 0344 0.106 0.020

6 | 1.158 0.866 1.076 3.462 204.312|1.206 0.909 1.098 4.551 394.050 | 1.277 0912 1.129 4.953 410.091
8 | 1191 0.874 1.091 3400 190.434|1.175 0.897 1.084 3.680 176.984 | 1.158 0.862 1.076 3282 162.026
Uni-modal 10 | 1.225 0.882 1.107 3.392 185912 | 1.199 0.893 1.095 3.215 134.937 | 1.160 0.857 1.077 2.152 48.217
12 | 1.185 0.868 1.089 2.856 126.200 | 1.190 0.875 1.091 2883 99.696 | 1.487 1.012 1.219 3993 164.875

| | Avg | 1.190 0.872 1.091 3277 176.715|1.192 0.893 1.092 3.582 201.417|1.270 0911 1125 3.595 196.302

6 | 1.074 0.822 1.036 2997 154862 | 1.012 0.795 1.006 2.492 59.880 | 1.165 0.869 1.079 3.798 270.733
Climate 8 | 1.108 0.844 1.053 3.117 160.555|1.003 0.787 1.001 2.265 34.593 |1.173 0.867 1.083 3.599 191.009
MM-TSFLib | 10 | 1.123 0.844 1.059 3.233 167.366 | 1.011 0.810 1.004 2.133 24.604 | 1.134 0.843 1.065 1.946 31.959
12 | 1.112 0.838 1.054 2.815 116.283|1.019 0.795 1.007 2321 40.325 | 1245 0904 1.116 3.641 223.644

| | Avg | 1.104 0.837 1.050 3.040 149.767 | 1.011 0.797 1.004 2303 39.851 | 1.179 0871 1.086 3246 179.336

6 0905 0.749 0.951 2.025 36.745 | 0.893 0.748 0945 1.806 13.948 | 0912 0.758 0.955 2.598 82.597
8 10926 0.756 0962 2.018 37.680 | 0.937 0.771 0.968 1.893 16.622 | 0917 0.751 0.957 1939 26.990
TaTS (ours) | 10 | 0.943 0.764 0971 1989 34385 | 0.924 0.751 0.960 1.756 14.796 | 0.947 0.759 0972 1.597 10.958
12 10.950 0.766 0973 1.938 30.964 | 0.952 0.770 0974 1.921 21.544 | 1.005 0.821 1.003 2.686 68.310

| | Avg | 0.931 0759 0964 1.992 34.944 |0.926 0.760 0962 1.844 16727 |0.945 0772 0972 2205 47.214

6 |0.056 0.189 0.236 0.065 0.006 |0.042 0.168 0203 0.058 0.005 |0.021 0.115 0.146 0.039  0.002
8 [0.056 0.191 0.237 0.066 0.006 |0.039 0.162 0.197 0.056 0.005 |0.028 0.132 0.168 0.045  0.003
Uni-modal 10 | 0.047 0.173 0216 0.060 0.006 |0.036 0.153 0.188 0.053 0.004 |0.026 0.134 0.162 0.045  0.003
12 10.075 0216 0272 0.074 0.009 |0.053 0.183 0225 0.063 0.006 |0.027 0.133 0.163 0.046  0.003

| | Avg | 0.058 0.192 0240 0.066 0.007 |0.042 0.166 0203 0.058 0.005 |0.025 0.129 0.160 0.044  0.003

6 |0.059 0200 0.243 0.070  0.007 |0.035 0.153 0.188 0.053 0.004 |0.018 0.104 0.133 0.036  0.002

Economy 8 [0.062 0.194 0.248 0.068 0.007 |0.043 0.170 0206 0.059 0.005 |0.031 0.138 0.177 0.047  0.003
MM-TSFLib | 10 | 0.064 0.195 0.253 0.068 0.008 |0.040 0.160 0200 0.056 0.005 |0.026 0.133 0.160 0.045 0.003

12 1 0.049 0.180 0221 0.062 0.006 |0.024 0.129 0.157 0.045 0.003 |0.029 0.140 0.170 0.048  0.003
| | Avg | 0.058 0.192 0241 0.067 0.007 |0.035 0.153 0.188 0053 0.004 |0.026 0.129 0.160 0.044  0.003

6 [0.020 0.115 0.141 0.040 0.002 |0.012 0.093 0.111 0.033  0.002 |0.009 0.080 0.096 0.028 0.001
8 [0.020 0.115 0.142 0.040 0.002 |0.014 0.099 0.120 0.034 0.002 |0.009 0.079 0.096 0.028 0.001
TaTS (ours) | 10 | 0.019 0.112 0.137 0.039 0.002 |0.016 0.106 0.126 0.037  0.002 |0.009 0.079 0.096 0.027  0.001
12 10.025 0.127 0.157 0.044 0.003 |0.017 0.107 0.129 0.037  0.002 |0.009 0.081 0.096 0.028  0.001

‘ ‘Avg‘().()Zl 0.117 0.144  0.041 0.002 ‘().015 0.101  0.121  0.035  0.002 ‘().()()9 0.080 0.096 0.028  0.001
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Table 23: Full forecasting results for the Energy, Environment, and Health datasets using DLinear,
FEDformer, and FiLM as time series models. Compared to numerical-only unimodal modeling and
MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Models DLinear FEDformer FiILM
(2023) (2022b) (2022a)
Method | MSE_ MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE

12 10.136 0264 0.335 0947 10373 | 0.095 0.212 0.281 0.895 9.380 |0.118 0.245 0314 1208  25.502
24 10261 0385 0467 1453 33.690 | 0.170 0303 0.385 1.573 47.676 | 0.221 0.347 0433 1414  29.039
Uni-modal | 36 |0.335 0.437 0.528 1.780 56.178 | 0.249 0.373 0.475 2.165 133.305|0.335 0434 0.533 1.852  60.033
48 | 0431 0.498 0.603 2294 83.886 | 0.445 0.514 0.643 4.141 340.071 | 0.437 0.512 0.620 2.414  89.205

| | Avg | 0291 0396 0483 1.619 46.032 |0.240 0351 0446 2.194 132608 | 0.278 0.385 0475 1722  50.945

12 10.133 0262 0.332 0950 10.725 | 0.098 0.227 0289 1.083 15260 | 0.119 0.247 0.315 1.202  24.419
Energy 24 10.256 0.380 0.461 1428 32596 | 0.172 0.300 0.388 1.425 47.727 | 0.224 0349 0436 1415 28417
MM-TSFLib | 36 | 0.340 0.442 0.533 1.803 56.982 |0.252 0.376 0.477 2.120 124.465|0.332 0431 0.531 1.839  59.454
48 | 0428 0.496 0.601 2287 83443 | 0430 0511 0.611 2775 146.406 | 0.440 0.514 0.623 2.416  89.684

| | Avg | 0.289 0395 0482 1.617 45936 |0.238 0354 0441 1.851 83465 |0.279 0385 0476 1718  50.493

12 10.132 0260 0.330 0954 11.225 | 0.090 0.210 0.275 0.880 12.877 | 0.118 0.245 0.314 1.202 25.174
24 10236 0359 0441 1359 29.647 | 0.172 0.305 0.387 1.375 44.042 | 0.222 0.347 0434 1410 28.640
TaTS (ours) | 36 | 0.340 0.442 0.533 1.805 57.123 | 0250 0.372 0472 2412 152.144 | 0.311 0414 0514 1.773  55.535
48 | 0425 0493 0597 2285 84710 | 0435 0531 0.631 3.501 222.058 | 0.434 0.510 0.618 2.399  88.602

‘ ‘Avg 0.283 0.388 0475 1.601 45676 ‘().237 0355 0441 2042 1()7.78()‘().271 0.379 0470 1.696  49.488

48 | 0478 0.531 0.646 1791 119.315|0.505 0.543 0.671 1932 128.444|0.494 0.502 0.644 2.323 241494
96 |0.562 0.608 0.724 1.539 68.485 | 0.465 0.524 0.657 2.440 237.225|0.581 0.546 0.707 2.639 314.062
Uni-modal | 192 | 0.592 0.608 0.748 1938 132.178 | 0.510 0.556 0.702 2.656 297.619 | 0.612 0.559 0.759 3.081 461.654
336 | 0.600 0.618 0.768 1.938 134.420 | 0.531 0.573 0.725 2.528 300.421 | 0.621 0.566 0.779 2.989 440.819

| | Avg | 0558 0.591 0722 1.801 113.600 | 0.503 0.549 0.689 2389 240.927 | 0.577 0.543 0722 2758 364.507

48 | 0414 0474 0598 1.888 142797 | 0.413 0.468 0599 1.867 128.047 | 0.469 0484 0.652 2.046 177.399
Environment 96 | 0420 0.489 0615 1.743 112.990 | 0.413 0479 0.613 1.998 138.883 | 0.476 0.493 0.662 1987 173914
MM-TSFLib | 192 | 0.439 0.521 0.650 1.659 92.080 | 0.423 0.489 0.635 2.205 197.315|0.477 0486 0.674 2.135 218.811
336 | 0444 0.526 0.664 1.680 95029 | 0.445 0.507 0.665 1.850 125.600 | 0.490 0.497 0.696 2.233  243.544

| | Avg | 0.429 0502 0632 1742 110724 | 0423 0486 0.628 1.980 147.461 | 0478 0490 0.671 2.100 203.417

48 0.272 0.385 0.486 1.083 17.610 | 0.272 0369 0484 1.172 21.826 | 0.269 0373 0481 1.124  19.765
96 |0.301 0427 0528 1.034 13731 | 0.271 0371 0495 1.143 22305 | 0279 0.377 0499 1.180  21.986
TaTS (ours) | 192 | 0.306 0.443 0.544 1.007 11.494 | 0.277 0.379 0.501 1.145 22438 | 0.271 0.367 0.507 1202 22318
336 | 0.313 0.456 0.557 0.996 10.408 | 0.278 0393 0.524 1.137 18.379 | 0.267 0.366 0.514 1.210  22.394

‘ ‘Avg 0298 0428 0.529 1.030 13.311 ‘().275 0378 0.501 1.149  21.237 ‘0.272 0371 0.500 1.179  21.616

12 | 1.595 0.808 1.113 2599 252012 | 1.051 0.756 0.975 4.069 371.454|1.900 1.008 1.278 6.208 1054.818
24 | 1.778 0835 1.170 2742 312.129 | 1.493 0.933 1.176 4.818 434785 |1.946 0973 1.287 4.194 322.873
Uni-modal | 36 | 1.759 0.850 1.241 2738 263.854 | 1.661 0.980 1252 5.182 426.708 | 2.029 1.013 1.352 4.495 346.381
48 | 1.818 0.899 1.299 2964 278936 | 1.737 0.969 1285 4.775 392270 |2.054 1.026 1379 4356 305.131

| | Avg | 1.737 0.848 1206 2761 276.733 | 1486 0909 1.172 4711 406304 | 1.982 1.005 1324 4813 507.301

12 | 1403 0.763 1.061 2.065 64.534 | 0.978 0.685 0930 3.371 273.283|1.406 0.915 1.141 4.787 421.324
Health 24 | 1.544 0782 1.114 2.167 68.258 | 1.272 0.804 1.073 3.538 212.521 | 1.730 0.975 1.257 4258 251.992
MM-TSFLib | 36 | 1.600 0.824 1.185 2264 56.729 | 1.344 0.828 1.121 3.768 222.549 | 1.769 0.944 1.267 3.785 205.906
48 | 1.617 0830 1222 2368 87.198 | 1.416 0.852 1.163 3.913 243392 |1.793 0960 1.286 3.626 178.720

| | Avg | 1.541 0.800 1.145 2216 69.180 | 1.252 0792 1.072 3.647 237.936 | 1.675 0.949 1238 4.114 264.486

12 | 1273 0.742 1.027 2702 159.975|0.966 0.671 0.925 3.309 294.367 | 1.211 0.794 1.035 3.570 236.037
24 | 1421 0.788 1.090 3.221 254.155 | 1.264 0.823 1.080 4.068 289.731 | 1.414 0.827 1.107 3.160 130.456
TaTS (ours) | 36 | 1.449 0.787 1.133 2812 148.843 | 1.320 0.801 1.110 3.885 280.248 | 1.497 0.851 1.165 3.274 133.041
48 | 1.505 0.832 1.183 2990 186.495| 1.426 0.868 1.164 4.140 264.871 | 1.562 0.878 1.209 3.225 121.440

‘ ‘Avg‘l.4l2 0.787 1.108  2.931 187.367‘1.244 0.791 1.070  3.851 282.3()4‘1.421 0.838 1.129 3.307 155243
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Table 24: Full forecasting results for the Security, Social Good, and Traffic datasets using DLinear,
FEDformer, and FiLM as time series models. Compared to numerical-only unimodal modeling and
MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Model DLinear FEDformer FiLM
odels (2023) (2022b) (2022a)
Method | MSE _MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE

6 | 107.046 4531 10.346 3.489 324.650 | 112.106 4.830 10.588 4.456 571.690 | 115.130 5.587 10.730 5.029 637.394
8 | 107.700 4.649 10.378 2.992 295719 | 113.897 5.200 10.672 3.223 355929 | 112.097 5.034 10.588 3.228 336.503
Uni-modal 10 | 109.360 4.759 10.458 2.449 216.866 | 117.484 5.467 10.839 2.563 216.459 | 112.267 4.901 10.596 2.310 188.201
12 | 112.343 4904 10.599 1.980 149.507 | 114.452 5.135 10.698 2.697 329.415| 122.711 6.425 11.077 3.554 437.883

‘ ‘A\'g‘109.112 4711 10445 2728 246.685‘114.485 5.158 10.699 3235 368.373 | 115.551 5.487 10.748 3.530 399.995

6 | 106.121 4.545 10.301 3.788 386.715| 109.854 4.690 10.481 4.252 541.638 | 105.809 4.755 10.286 4.286 525.309
Security 8 | 107.445 4.670 10366 3.101 319.555 | 114.833 5.233 10.716 3.119 330.374 | 108.045 4.638 10.394 2727 249.934
MM-TSFLib | 10 | 108.713 4.758 10.427 2.613 251.113 | 115.261 5.294 10.736 2.563 233.233 | 111.391 4.843 10.554 1.953 137.888
12 | 109.848 4.876 10.481 2.373 227.133 | 115.001 5.211 10.724 2.558 291.461 | 111.541 5.354 10.561 3.023 363.599

| | Avg | 108.032 4712 10394 2969 296.129 | 113.737 5.107 10.664 3.123 349.177 | 109.197 4.897 10.449 2997 319.183

6 | 106.015 4516 10296 3.850 404.799 | 106.015 4.532 10.296 4.542 597.429 | 105.482 4.511 10.270 4.024 451.366
8 | 107.477 4.623 10.367 3.050 312.447 | 107.678 4.618 10.377 3.303 371.986 | 107.657 4.792 10.376 3.150 310.920
TaTS (ours) | 10 | 108.505 4.728 10.417 2.632 260.096 | 107.301 4.885 10.359 3.138 375.009 | 109.886 4.771 10.483 2.338 193.865
12 | 109.717 4.836 10.475 2336 224.134 | 108.506 4.837 10.417 2738 331.710 | 108.375 4.870 10.410 2.549 267.339

| | Avg | 107.928 4.676 10389 2.967 300.369 | 107.375 4.718 10.362 3.430 419.034 | 107.850 4.736 10385 3.015 305.873

6 1.018 0.627 0.859 1.503 19.120 | 0.821 0.386 0.649 1.086 28.066 | 1.123 0.604 0.878 2.432 149.647
8 1.137 0702 0929 1.607 19.248 | 0.929 0451 0.726 1.061 17.701 1.116  0.542 0.841 2275 128.188
Uni-modal 10 1210  0.755 0972 1732 21.287 1.059 0478 0.784 1469  52.985 1.154  0.601 0882 1.823 42492
12 1238 0.763 0982 1.705 20.522 1.105 0.588 0.846 1.876 76.675 1.653  0.869 1.125 2998 140.138

‘ ‘A\'g‘ 1151 0712 0935 1.637 20.044‘ 0.979 0476 0.751 1373 43.857 1261  0.654 0.931 2382 115116

6 0946 0.583 0810 1.481 21957 | 0816 0.395 0.667 1.182 33.446 1.070 0.529 0.824 2269 159.103
Social Good 8 1.095 0.678 0.904 1.596 20.076 | 0.910 0438 0717 1.010 15.845 1.120  0.584 0.869 2.138  83.150
MM-TSFLib | 10 1.128 0709 0924 1713 22953 1.032 0456 0.757 1395 53.857 | 1.128 0539 0.839 2235 120.886
12 1.164 0724 0940 1.655 20260 | 1.091 0560 0838 1.737 71.467 1.624 0.852 1.111  3.005 149.026

| | Avg| 1.083 0673 0894 1.611 21312 | 0962 0462 0745 1331 43.654 1236 0.626 0911 2412 128.041

6 0.859 0516 0.740 1.453 29.534 | 0.746 0.365 0.620 0.983 23.097 | 0.992 0.588 0.834 1.623 30.115
8 0963 0592 0812 1.582 29.073 | 0.880 0.448 0.701 1.221 34945 1.001 0550 0.806 1.609 28.399
TaTS (ours) | 10 1118 0703 0917 1711 23312 | 0944 0453 0720 1.138 28.381 1.065 0583 0.837 1447 17.661
12 1.085 0.676 0.888 1.657 24.350 | 0.983 0453 0.718 1315 51.258 1.358 0782 1.025 1.920 27.141

| | Avg| 1.006 0.622 0839 1.601 26.567 | 0.888 0430 0.690 1.164 34420 | 1.104 0.626 0876 1.650 25.829

6 0221 0358 0461 0357 0549 0202 0294 0416 0285 0377 0.202 0302 0426 0346  0.682
8 0220 0.357 0.458 0.355 0552 0.184 0234 0364 0259 046l 0.203 0332 0436 0341  0.564
Uni-modal 10 | 0217 0347 0451 0358  0.601 0.198 0251 0386 0271 0474 0.203 0340 0438 0323 0447
12 | 0261 0374 0499 0395 0.663 0.237 0275 0410 0315  0.600 0.250 0280 0.426 0347 0.719

‘ ‘ Avg ‘ 0230 0359 0467 0366 0.591 ‘ 0.205 0264 0394 0283 0478 0.215 0314 0431 0339 0.603
6 0204 0332 0439 0321 0465 0.180 0245 0372 0258  0.408 0.197 0294 0419 0339  0.664
Traffic 8 0202 0335 0435 0320 0448 0.178 0225 0352 0253 0458 0.195 0322 0427 0332 0.540
MM-TSFLib | 10 | 0205 0325 0435 0320 0478 0.184 0234 0364 0258 0446 0.195 0328 0428 0312 0424
12 | 0225 0329 0451 0351 0.602 0.228 0247 038 0292 0.570 0.240 0258 0403 0315  0.631
| | Avg| 0209 0330 0440 0328 0498 | 0.193 0238 0369 0265 0471 0.207 0300 0.419 0325  0.565
6 0.184 0312 0412 0301 0435 0.159 0208 0329 0228 0.355 0.157 0228 0.351 0254 0426
8 0.185 0302 0409 0308 0500 0.159 0209 0329 0230 0.368 0.162 0260 0.370 0266  0.401

TaTS (ours) | 10 | 0.184 0297 0.403 0309 0524 0.160 0206 0323 0229 0.370 0.169 0269 0.380 0262 0.358
12 | 0.199 0291 0413 0309 0489 0213 0224 0368 0269 0518 0.215 0236 0383 0298 0.612

| | Avg| 0.188 0300 0409 0307 0487 | 0.173 0212 0337 0239 0403 | 0.176 0248 0371 0270 0.449
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Table 25: Full forecasting results for the Agriculture, Climate, and Economy datasets using Auto-
former, Informer, and Transformer as time series models. Compared to numerical-only unimodal
modeling and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to
effectively handle time series with concurrent texts. Avg: the average results across all prediction
lengths.

Models Autoformer Informer Transformer
(2021) (2021) (2017)
Method | MSE  MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE

6 |0.109 0255 0.329 0.116 0.022 | 0451 0.557 0.626 0240 0.071 |0.229 0326 0420 0.133 0.032
8 |0.135 0278 0366 0.126  0.026 |0.569 0.633 0.702 0270  0.087 |0.328 0.432 0.502 0.177 0.045
Uni-modal 10 | 0.173 0311 0413 0.138  0.031 |0.618 0.633 0.724 0.263  0.088 | 0.358 0.422 0510 0.166 0.045
12 10213 0345 0457 0.149 0.036 |0.756 0.698 0.789 0.284  0.101 | 0.500 0.555 0.633 0.224 0.064

| | Avg | 0.158 0.297 0391 0.132  0.029 [0.599 0.630 0.710 0264 0.087 | 0354 0434 0516 0.175 0.046

6 ]0.095 0221 0306 0.100 0.018 |0218 0352 0422 0.148 0.032 |0.197 0319 0392 0.133  0.029
Agriculture 8 |0.143 0278 0.372 0.122  0.025 |0.306 0429 0.496 0.179 0.044 | 0.205 0.303 0.384 0.121  0.027
MM-TSELib | 10 | 0.176 0.311 0416 0.137  0.031 |0.301 0.398 0.480 0.160 0.040 |0.215 0332 0411 0.135 0.030
12 10217 0341 0453 0.144 0.034 |0428 0479 0.579 0.190 0.054 |0.378 0453 0531 0.179 0.048

| | Avg | 0.158 0.288 0387 0.126 0027 |0313 0414 0494 0.169 0042 |0249 0352 0429 0.142 0034

6 ]0.076 0205 0.269 0.092 0.014 |0.162 0.265 0.342 0.107 0.022 |0.150 0.348 0.387 0.166 0.034
8 |0.101 0234 0315 0.105 0.019 |0213 0311 0392 0.124 0.028 |0.192 0298 0.374 0.120 0.025
TaTS (ours) | 10 | 0.138 0.299 0.371 0.134  0.026 |0.296 0.388 0.465 0.154  0.038 | 0.209 0296 0.384 0.114 0.026
12 10.186 0.324 0425 0.141  0.030 |0.349 0426 0506 0.167 0.044 |0.213 0310 0401 0.121 0.025

| | Avg [ 0.125 0266 0345 0.118 0022 |0.255 0348 0426 0.138 0033 |0.191 0313 0387 0.130 0.028

6 | 1.116 0861 1.056 4.456 519418 |1.084 0.829 1.041 1617 15451 |1.032 0817 1.016 1.656 13.521
8 | L.I17 0856 1.057 3.329 177.957 | 1.087 0.829 1.043 2464 66.852 | 1.135 0.856 1.065 1.868 22.687
Uni-modal 10 | 1.170 0.886 1.081 3.059 106.074 | 1.117 0.849 1.056 2.071 49.757 | 1.103 0.844 1.049 2.355 81.661
12 | 1.123 0855 1.059 3.364 125.779 | 1.150 0.859 1.071 2.557 94.732 | 1.100 0.841 1.048 1.663 24.078

| | Avg | 1131 0.865 1.063 3.552 232307 | 1.110 0.841 1.053 2177 56.698 | 1.092 0.839 1.044 1.885 35.487

6 |1.021 0817 1.010 2.871 82.634 |1.019 0.811 1.009 2.844 1349460.962 0.771 0.981 2.030 23.607
Climate 8 |1.039 0819 1.018 3.018 99.283 [0.970 0.772 0985 2210 43.152 | 0.991 0.783 0.995 1976 22.312
MM-TSFLib | 10 | 1.074 0.838 1.035 2783 92.522 | 1.006 0.794 1.002 2311 67.013 | 1.026 0.790 1.010 2.755 87.765
12 | 1.078 0.836 1.038 2.731 78.154 | 1.009 0.791 0.999 2499 86.993 | 1.011 0.789 1.000 1.895 27.637

| | Avg | 1.053 0.827 1.025 2.851 88.148 | 1.001 0.792 0.999 2.466 83.026 | 0.998 0.783 0.996 2.164 40.330

6 |0.880 0.741 0.938 2222 37958 |0.881 0.741 0939 2217 57.260 | 0.859 0.728 0.926 1.970 35.573
8 10.937 0.768 0.968 2.136 36.109 [0.909 0.749 00953 1981 29.665 | 0.913 0.761 0.955 2.524 73.564
TaTS (ours) | 10 | 1.027 0.817 1.011 2260 31311 |0.973 0.771 00983 2.020 27.051 | 0.976 0.767 0.985 2.179 31.989
12 | 1.075 0.831 1.033 2317 35.133 | 0.958 0.764 0.974 1.727 15480 | 0.930 0.757 0.960 1.871 23.016

| | Avg [ 0.980 0.789 0.987 2234 35128 |0.930 0.756 0962 1986 32364 |0.920 0.753 0957 2.136 41.035

6 ]0.083 0222 0288 0.077 0.010 |0.877 0.896 0.930 0308 0.102 |0.276 0.444 0.517 0.150 0.031
8 [0.069 0210 0.263 0.073 0.008 |1.606 1238 1.260 0425 0.187 |0.676 0.797 0816 0274 0.078
Uni-modal 10 | 0.070 0.209 0.261 0.072 0.008 | 1.409 1.153 1.179 0.395 0.162 | 0.601 0.750 0.768 0257 0.069
12 | 0.062 0.186 0.245 0.064 0.007 | 1407 1.153 1.183 0396 0.163 |0.781 0.854 0.879 0.293 0.091

| | Avg [0.071 0207 0264 0071 0008 |1.325 1110 1138 0381 0.153 |0.584 0711 0745 0243 0.067

6 [0.049 0.173 0.221 0.060 0.006 |0.293 0490 0531 0.167 0.033 |0.110 0.285 0.322 0.096 0.012
Economy 8 10.045 0.171 0.211 0.060  0.005 |0.445 0.643 0.660 0220 0.051 |0.157 0359 0.389 0.122 0.018
MM-TSELib | 10 | 0.071 0.214 0267 0.075 0.009 | 0471 0.664 0.680 0.227 0.054 |0.240 0450 0483 0.154 0.028
12 1 0.068 0209 0.260 0.073 0.008 |0.518 0.674 0.715 0231  0.060 | 0.347 0.569 0.584 0.195 0.040

| | Avg [ 0.058 0.192 0240 0.067 0007 |0432 0.618 0646 0211 0049 |0213 0416 0445 0.142 0.025

6 ]0.021 0.115 0.144 0.040 0.002 |0.247 0472 0488 0.161 0.028 |0.029 0.137 0.169 0.047 0.003
8 10.023 0.119 0.150 0.041 0.003 |0.166 0.369 0.396 0.125 0.018 |0.039 0.162 0.192 0.055 0.004
TaTS (ours) | 10 |0.024 0.122 0.153 0.042 0.003 |0.400 0.610 0.626 0209  0.046 |0.092 0266 0.299 0.091 0.010
12 10.026 0.127 0.161 0.044 0.003 |0.385 0.596 0.617 0203 0.044 | 0.156 0.364 0389 0.123 0.017

| | Avg [0.024 0.121 0.152 0042 0003 ]0.299 0512 0532 0.174 0034 |0.079 0232 0262 0079 0.009
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Table 26: Full forecasting results for the Energy, Environment, and Health datasets using Autoformer,
Informer, and Transformer as time series models. Compared to numerical-only unimodal modeling
and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Models Autoformer Informer Transformer
2021) 2021) (2017)
Method ‘ MSE MAE RMSE MAPE MSPE ‘ MSE MAE RMSE MAPE MSPE ‘ MSE MAE RMSE MAPE MSPE

12 ] 0.161 0.282 0.362 1.403 24.893 | 0.165 0.289 0.373 1.491 35971 | 0.124 0.247 0.320 1.021 8.908

24 10279 0416 0.509 2.632 158.931|0.248 0.380 0475 2916 185.671|0.291 0.403 0494 1951 101.566
Uni-modal | 36 | 0.364 0464 0564 2384 93988 | 0368 0492 0.585 4.022 356.146|0.329 0435 0.542 3964 428.707
48 | 0471 0.550 0.664 3.106 149.374 | 0.457 0.539 0.640 5.613 589.886 | 0.445 0.537 0.642 3.824 285.963

‘ ‘Avg‘().Sl‘) 0428 0525 2.381 l()6.797‘().3()9 0425 0518 3.511 291.918 | 0.297 0405 0.500 2.690 206.286

12 | 0.164 0297 0369 1.720 78.617 | 0.166 0291 0372 1.667 36.449 | 0.127 0270 0334 1278 11.692
Energy 24 | 0.275 0407 0.504 2.177 81.316 | 0.242 0.362 0.456 3.040 235920 | 0.276 0.402 0491 2.297 115390
MM-TSFLib | 36 | 0.362 0.464 0561 2.176 88.219 | 0.342 0.467 0.566 3.221 271.106 | 0.316 0.439 0.530 3.504 272.971
48 | 0477 0.545 0.665 3.100 192.217 | 0456 0.530 0.643 5430 602.773 | 0.454 0.508 0.641 5511 748.943

| | Avg | 0320 0428 0525 2293 110.092]0301 0413 0509 3340 286.562|0.293 0.405 0499 3.147 287.249

12 |0.153 0291 0365 1490 33.553 | 0.145 0271 0347 1.118 11.872 | 0.126 0252 0.324 1.036 12.192
24 10.276 0.404 0488 2.040 73.651 |0.242 0.361 0463 2310 184.196 | 0.265 0.381 0.469 1.706  53.962
TaTS (ours) | 36 | 0.360 0.467 0.555 2.167 80.434 | 0301 0415 0.514 3.658 379.160|0.301 0.419 0.515 2804 209.452
48 | 0466 0.559 0.659 3431 178.191|0.448 0.538 0.644 4.344 378.638 | 0423 0.527 0.620 5.149 416.124

| | Avg | 0314 0430 0.517 2282 91457 [0.284 0396 0492 23857 2384660279 0395 0482 2674 172.933

48 | 0.503 0.544 0.670 1953 141.941 |0.414 0481 0.602 2.190 216.476|0.412 0483 0.600 2.190 214.543
96 | 0.594 0.605 0.743 2015 135.052|0.467 0.520 0.644 2454 290.858 | 0.458 0.511 0.639 2.608 340.210
Uni-modal | 192 | 0.607 0.601 0.762  2.163 205.175 | 0.469 0.519 0.644 2.535 305.217 | 0.492 0.535 0.677 2711 404.734
336 | 0.690 0.643 0.823 2.624 307.413 | 0487 0.529 0.693 2726 355.026|0.479 0.517 0.688 2.824 389.196

| | Avg | 0599 0.598 0.749 2.189 197.395]0.459 0.512 0.646 2476 291.894 0460 0.511 0.651 2583 337.171

48 0442 0492 0.626 2008 164.960 | 0.419 0473 0.604 1997 163.772]0.420 0471 0.606 2.027 163.407
Environment 96 | 0456 0.505 0.645 1.930 154.161 | 0426 0.477 0.616 2.074 173217 | 0426 0485 0.615 2.380 252.997
MM-TSFLib | 192 | 0.461 0.505 0.663 1.995 181.553 | 0.425 0.481 0.634 2410 256.710|0.418 0479 0.630 2356 252.249
336 | 0.447 0.506 0.666 1994 172427 | 0.427 0489 0.651 2283 225.380|0.435 0487 0.657 2551 282514

| | Avg | 0452 0502 0.650 1.982 1682750424 0480 0.626 2191 204770 | 0425 0481 0.627 2329 237.792

48 10.274 0374 0486 1.159 21.042 | 0.272 0.377 0.483 1.103 18.922 | 0.268 0.378 0.481 1.074 17.152
96 |0.286 0.387 0.509 1.183 21.118 | 0.287 0.401 0.507 1.040 15.636 | 0.272 0.391 0.496 1.028 15.508
TaTS (ours) | 192 | 0.291 0382 0528 1272 24.699 | 0297 0426 0.531 1.003 13.899 | 0277 0.398 0512 1.030 16.253
336 | 0.288 0403 0.534 1.122  20.057 | 0.286 0.419 0.533 0989 13.846 | 0.287 0420 0.534 1.006 15226

| | Avg | 0285 0.387 0514 1.184 21729 | 0.285 0406 0513 1.034 15576 |0.276 0397 0.506 1.035 16.035

12 | 1.389 0.895 1.121  4.898 593771 | 1.173 0.743 0.990 4.065 593314 | 1.143 0.741 0.998 3.233 133.066
24 2328 1.191 1476 6.117 859.160 | 1.215 0.766 1.042 3.728 389.282 | 1.480 0.786 1.096 2435 59.228
Uni-modal | 36 | 1.953 1.005 1348 4.614 392.542 | 1.315 0.773 1.101 3.541 390.034 | 1.450 0.772 1.132 2.766 136.630
48 | 2.179 1.064 1410 4.865 379.673 | 1.408 0.809 1.137 3.445 337.635|1.439 0.806 1.137 2834 125.016

| | Avg | 1962 1.039 1.339 5123 556.286 | 1.278 0.773 1.067 3.695 427.566 | 1.378 0.776 1.091 2817 113485
12 | 1.331 0.864 [1.112 4427 504.600 | 0.997 0.673 0928 3.024 221.350 | 0.953 0.686 0.920 3.309 198.713

Health 24 | 1454 0.868 1.138 3.681 181.137 | 1.209 0.740 1.046 3.372 257237 | 1.315 0.762 1.071 2.833 137.728
MM-TSFLib | 36 | 1.574 0906 1216 4.051 234.643 |1282 0.760 1.092 3.111 213.531 | 1276 0.763 1.070 2906 137.944
48 | 1.616 0911 1.235 3.884 201.678 | 1.371 0.785 1.137 3.146 234.342| 1.330 0.780 1.109 2.769 125.761

| | Avg | 1.494 0.887 1.175 4011 280514 | 1215 0740 1.051 3.163 231.615|1.218 0.748 1.042 2954 150.036

12 | 1.320 0.863 1.105 3.769 309.199 | 0.949 0.658 0.910 3.707 391.895|0.909 0.655 0.862 3.251 292.588
24 | 1467 0.885 1.159 3485 152.650 | 1.130 0.736 1.020 3.897 352.680 | 1.187 0.728 1.030 3.143 192.685
TaTS (ours) | 36 | 1.368 0.825 1.120 3.962 230.059 | 1.301 0.779 1.110 3.540 270359 | 1.175 0.728 1.048 3.096 193.526
48 | 1.483 0.871 1.180 4.108 279.227 | 1.354 0.833 1.143 3962 372.090 | 1.297 0.762 1.113  3.074 185.199

‘ ‘Avg‘1.4()9 0.861 1.141 3.831 242.784‘1.183 0.752 1.046 3.776 346.756‘1.]42 0.718 1.013  3.141 216.000
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Table 27: Full forecasting results for the Security, Social Good, and Traffic datasets using Autoformer,
Informer, and Transformer as time series models. Compared to numerical-only unimodal modeling
and MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Avg: the average results across all prediction lengths.

Model Autoformer Informer Transformer
odels 2021) 2021) (2017)
Method | MSE MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE | MSE MAE RMSE MAPE MSPE

6 | 115.544 5268 10.749 2437 185.108 | 133.168 6.626 11.540 1.591 19.155 | 126.925 6.203 11.266 2.547 120.160
8 | 113355 4.967 10.647 2.888 298.107 | 134.383 6.804 11.592 1236  6.780 | 132905 6.641 11.528 1209 14.174
Uni-modal 10 | 114.407 4.984 10.696 2.164 153.069 | 131.382 6.631 11.462 1.483 26411 | 128.820 6.443 11.350 1.539 32.792
12 | 117.801 5253 10.854 2.692 326.651 | 128.201 6.430 11.323 1.408 26.498 | 136.753 7.039 11.694 1.168  4.854

‘ ‘A\'g‘115.277 5.118 10.736  2.545 240.734‘131.784 6.623 11479 1429 19711 | 131.351 6.582 11.460 1.616 42.995

6 | 108.841 4.861 10.433 3.004 246.068 | 127.216 6.197 11279 2326 99.099 | 127.277 6.233 11.282 2.592 135.752
Security 8 | 113.693 5.031 10.663 2.799 265988 | 128914 6.402 11.354 1.660 40.618 | 126.589 6.227 11.251 2.010 84.511
MM-TSFLib | 10 | 112.545 5.098 10.609 1.885 120.031 | 128.775 6.434 11.348 1.532 38.764 | 127.986 6.368 11.313 1.520 32.213
12 | 110.699 4.902 10.521 2.177 199.450 | 130.907 6.626 11.441 1.443 33.523 | 132.033 6.685 11.491 1.217 11.881

| | Avg | 111.445 4973 10556 2466 207.884|128.953 6415 11.356 1740 53.001 | 128471 6.378 11334 1.835 66.089

6 | 107.430 4.658 10.365 4.255 528.013|127.814 6.269 11.306 2263 110.185| 122.803 5.927 11.082 2.966 185.980
8 | 107.108 4.750 10.349 3.531 455878 | 125.990 6.217 11.225 2390 135.504 | 123.882 6.057 11.130 2.505 151.979
TaTS (ours) | 10 | 110.061 4.891 10.491 3.615 562.774 | 125.737 6.248 11.213 2231 134.082 | 125.666 6.262 11.210 2.232 128.702
12 | 109.361 4.847 10.458 3.060 457.480 | 127.103 6.369 11.274 1.885 86.102 | 125971 6.290 11.224 1.899 90.926

| | Avg | 108.490 4.787 10416 3.615 501.036 | 126.661 6.276 11.255 2.192 116.468 | 124.581 6.134 11.162 2401 139.397

6 1.234  0.684 0973 1910 69347 | 0.773 0.425 0.668 0.872 13.761 0.848 0427 0.684 1208 27.858
8 1236 0.664 0956 1.998 80.017 | 0.871 0449 0.708 00933 11.089 | 0.877 0460 0.719 1520 56.020
Uni-modal 10 1332 0708 1.026 2.116 93.499 | 0910 0498 0755 0.905  6.360 0.976  0.541 0.783 1725  63.227
12 1312 0749 1.046 2231 75925 | 0926 0.644 0818 1.028 7.619 0.938 0508 0.750 1.389 28551

‘ ‘A\'g‘ 1.278 0.701 1.000 2.064 79.697‘ 0.870  0.504 0.737 0.934  9.707 0.910 0484 0.734 1460 43914

6 1.200 0.664 00954 1890 66.499 | 0.772 0414 0.666 0.726  8.039 0.784 0422 0.673 0938 18.507
Social Good 8 1.175  0.589 0.891 1.935 84.135 | 0.829 0405 0.673 0.746  6.869 0.845 0426 0.669 1.056 19.505
MM-TSFLib | 10 1.268 0.689 1.002 1756 44.172 | 0.876 0.466 0.724 0.855  6.248 0913 0486 0.731 1252 25.176
12 1272 0739 1.032 2048 56.789 | 0.879 0541 0.765 0.888  7.772 0.882 0510 0.744 1.021 13.844

| | Avg | 1229 0670 0970 1907 62.899 | 0.839 0457 0.707 0804 7.232 0.856  0.461 0.704 1.067 19.258

6 1.057 0.564 0.877 1451 33.099 | 0.724 0448 0.660 0.765  7.156 0.740 0375 0.616 0.700  3.824
8 1.184  0.686 00954 1476 20.587 | 0.788 0.463 0.696 0.890  8.039 0.805 0393 0.632 0.828 11.467
TaTS (ours) | 10 1.278 0714 0986 1578 21.226 | 0.828 0.468 0.691 0.880  8.487 0.842 0485 0.700 1.062 11.719
12 1261 0.699 0979 1.544 21.227 | 0.899 0455 0.698 0.785 4.917 0.842 0424 0.650 0.777 5973

| | Avg | 1.195 0666 0949 1512 24.035 | 0.810 0459 0.686 0830 7.150 0.807 0419 0649 0.842 8246

6 0201 0295 0416 0316 0542 0.197 0352 0434 0303 0328 0.203 0344 0438 0299 0.307
8 0205 0296 0419 0299 0440 0.202 0358 0.440 0320  0.369 0.224 0364 0460 0302 0.285
Uni-modal 10 | 0200 0297 0413 0310 0479 0.196 0351 0430 0296 0314 0.209 0353 0445 0298  0.295
12 | 0241 0303 0448 0350 0.653 0213 0358 0448 0326 0.397 0.200 0323 0426 0316 0416

‘ ‘A\'g‘ 0212 0298 0424 0319 0528 ‘ 0202 0355 0438 0311 0352 ‘ 0.209 0346 0.442 0304 0.326

6 0.195 0248 0390 0.247 0360 0.166 0297 0.387 0.285  0.391 0.164 0291 0.384 0271 0.340
Traffic 8 0204 0274 0401 0277 0404 0.169 0306 0393 0285 0372 0.172 0305 0.395 0274 0318
MM-TSFLib | 10 | 0207 0274 0.409 0.268  0.407 0.169 0305 0391 0282 0.358 0.169 0297 0391 0283 0.393
12 | 0241 0292 0420 0343 0.795 0.183 0290 0392 0292 0414 0.181 0288 0.392 0287  0.389

| |Avg| 0212 0272 0405 0284 0492 | 0.172 0299 0391 028 0384 | 0.171 0295 0390 0279 0.360

6 0.161 0225 0356 0.253  0.440 0.159 0282 0375 0266 0337 0.159 0274 0.269  0.384

8 0.167 0237 0353 0258 0416 0.161 0289 0378 0270  0.340 0.156  0.268 0.266  0.386

TaTS (ours) | 10 | 0.163 0214 0339 0250 0477 0.157 0276 0368 0274 0.399 0.157  0.270 0.267  0.383
12 | 0217 0242 0379 0293 0.575 0.181 0279 0387 0289 0429 0.183  0.285 0292 0423

| | Avg| 0.177 0229 0357 0264 0477 | 0.164 0281 0377 0275 0376 | 0.164 0274 0.274  0.394
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Table 28: Full forecasting results for various datasets using different time series modeling methods.
Our TaTS framework seamlessly enhances existing time series models to effectively handle time
series with concurrent texts. Avg: the average results across all prediction lengths.

Methods TaTS (ours) TaTS (ours) TaTS (ours) N-BEATS N-HiTS TCN ChatTime GPT4AMTS
i + iTransformer + PatchTST +FiLM (2020) (2022) (2018) (2025) (2024)
Datasets | MSE MAE| MSE MAE| MSE MAE| MSE MAE | MSE MAE | MSE MAE| MSE MAE| MSE MAE

6 0.067 0.184| 0.066 0.171| 0.087 0.205| 2436 1210 | 2274 1.134 | 3957 1.770 | 0.502 0.441| 0.197 0.292
8 0.094 0210| 0.096 0217 | 0.110 0223 | 3.671 1.446 1.575 0.866 | 5.078 1919 | 0.510 0.449| 0352 0426
Agriculture | 10 | 0.122 0251 | 0.126 0.260 | 0.146 0.249 | 3.078 1.416 1.441 0910 | 4464 1866 | 0.505 0.445| 0.358 0413
12 | 0153 0271 0.166 0.292| 0.196 0.328 | 3.883 1.759 | 2.119 1217 | 3.173 1.633 | 0.517 0452| 0.404 0444

‘ ‘Avg 0.109 0.229| 0.114 0.235| 0.135 0.251‘ 3.267 1.458 1.852 1.032 | 4.168 ].797‘ 0.508 0,447‘ 0.327  0.393

6 1.020  0.797 | 0976 0.782| 0912 0.758 | 1.123  0.89%4 1114 0.881 1.137  0.875| 1.507 1.007 | 1.062 0.844
8 1.025 0797 | 0.995 0.803| 0917 0.751| 1.070 0.844 | 0.981 0.791 1.046  0.804 | 1.524 1.012| 1.177 0.893
Climate 10 1.033  0.808 | 1.022 0.796 | 0.947 0.759 | 1.093  0.850 1152 0.877 1.043  0.857 | 1.578 1.027 | 1.100 0.863
12 1.033 0812 | 1.022 0810| 1.005 0.821| 1085 0.856 1.166  0.884 1.167 0926 | 1.664 1.031| 1.169 0.893

| | Avg| 1.028 0.804| 1.004 0.798| 0945 0.772| 1.093  0.861 1103 0.858 | 1.098 0.866 | 1.568 1.019| 1.127 0.873

6 0.008 0.077 | 0.009 0.080| 0.009 0.080| 0.727 0.782 | 0.224 0432 | 5390 2.315| 0.042 0.156| 0.013 0.091
8 0.008 0.077 | 0.008 0.078 | 0.009 0.079 | 0.874 0.882 | 0.675 0.793 | S5.811 2406 | 0.045 0.157 | 0.014 0.096
Economy 10 | 0.009 0.079 | 0.009 0.079 | 0.009 0.079| 0999 0.849 | 0486 0.647 | 5426 2324 | 0052 0.165| 0.015 0.098
12 | 0.008 0.076 | 0.009 0.080| 0.009 0.081| 1438 1.166 | 0.389 0465 | 5556 2.352| 0.059 0.188| 0.016 0.101

‘ ‘ Avg | 0.008 0.077 | 0.009 0.079 | 0.009 0.080 ‘ 1.010  0.920 ‘ 0.444  0.584 | 5546 2349 ‘ 0.049  0.166 ‘ 0.014  0.096
12 | 0.106 0.234| 0.106 0.234| 0.118 0.245]| 0.146  0.271 0.195 0336 | 0.165 0.318| 0.128 0.253| 0.117 0.244
24 | 0226 0355| 0206 0336| 0222 0.347| 0280 0413 | 0612 0582 | 0407 0.507| 0258 0.363| 0212 0.347

Energy 36 | 0306 0411 0305 0412 0311 0414 | 0431 0482 | 0380 0474 | 0512 0569 | 0361 0.465| 0.328 0.424
48 | 0421 0502 | 0416 0501 ] 0434 0.510] 0460 0532 | 0301 0460 | 0.634 0.654| 0473 0.588| 0421 0497

Time-MMD
(2024a) ‘ ‘ Avg ‘ 0.265 0.376 ‘ 0.258 0.371 ‘ 0271  0.379 ‘ 0.329 0424 ‘ 0372 0.463 ‘ 0.430 0512 ‘ 0.305 0417 ‘ 0.269 0.378
48 | 0268 0.370| 0271 0377] 0269 0.373| 0.448 0.504 | 0440 0.523 | 0.805 0.693 | 0.583 0.594| 0.312 0.390
96 0267 0370 | 0.279 0376 | 0279 0377 | 0.540 0582 | 0421 0.522 | 0.738 0.686 | 0.575 0.591| 0.345 0.408
Environment | 192 | 0272 0.366 | 0272 0366 | 0271 0367 | 0522  0.592 | 0.635 0.660 | 1.466 0982 | 0.577 0.594| 0.358 0.440
336 | 0.261 0369 | 0269 0366 | 0267 0.366| 0563 0.614 | 0.593  0.628 0.407 0490 | 0.585 0.599| 0.377 0453
| | Avg| 0267 0369 | 0273 0371] 0272 0371| 0518 0573 | 0522 0583 | 0.854 0713 ] 0580 0.594| 0348 0422
12 0939 0.649| 0.990 0.659 | 1211 0.794| 1572 0838 1723 0.866 | 2484 1.027 | 1482 0.802| 1.157 0.704
24 1251 0712 | 1.288 0.764 | 1414 0.827 | 1.680  0.981 1.621 0.905 2.072 1070 | 1.645 0.956| 1.743  0.904
Health 36 1489 0.781| 1.397 0.780 | 1497 0851 | 1.834  0.980 1.687  0.908 1.557 0.859 | 1.732 0937 | 1950 0.938
48 1.581 0.834 | 1456 0808 | 1562 0.878| 1.556 0952 1.635 0911 1.639 0922 | 1813 0.942| 2217 0.957
‘ ‘ Avg ‘ 1315 0.744 ‘ 1.283  0.753 ‘ 1421 0.838 ‘ 1.660  0.938 ‘ 1.666  0.898 ‘ 1.938  0.970 ‘ 1.668  0.909 ‘ 1.766  0.875
6 | 107.113 4.856 | 106.160 4.696 | 105.482 4.511 | 131.917 6.866 | 135416 6.896 | 129.616 6.801 | 130.751 6.854 | 118.425 5.102
8 | 112560 5.204 | 108.803 5.052 | 107.657 4.792 | 113.095 6.287 | 144.874 7.780 | 128.578 6.936 | 134.526 6.875 | 118.952 5.106
Security 10 | 113.789 5.227 | 111.110 5.090 | 109.886 4.771 | 163.555 7.344 | 156.898 6.797 | 160.129 7.077 | 131.632 6.895 | 119.521 5.253
12 | 114.754 5318 | 112.699 5.237 | 108.375 4.870 | 111.694 5974 | 115.307 6.437 | 128.062 6.676 | 135.513 6.923 | 120.732 5.331
‘ ‘ Avg ‘ 112.054 5.151 ‘ 109.693 5.019 ‘ 107.850 4.736 ‘ 130.065 6.618 ‘ 138.124  6.978 ‘ 136.596 6.873 ‘ 133.106 6.887 ‘ 119.407 5.198
6 0.942 0398 | 0923 0436]| 0992 0.588| 1.752  0.654 1.446  0.626 1.535 0917 | 1213 0.608 | 1214 0.485
8 0967 0433 | 0.900 0461 | 1.001 0550 0952 0.551 1.033  0.531 1129 0935| 1.252 0.621 | 1422 0.560
Social Good | 10 | 0.994 0463 | 0996 0461 | 1.065 0.583| 1.116 0.627 | 1.112 0594 | 1.208 0996 | 1.278 0.667 | 1.264 0.572
12 1.045 0514 | 1.069 0501 | 1.358 0.782| 1.445 0.827 1.498  0.846 1.385 099 | 1313 0.712| 1757 0.622
\ | Avg| 0987 0452] 0972 0465| 1104 0.626| 1316 0.665 | 1272 0649 | 1314 0961 | 1264 0652 1414 0559
6 0.174  0.218 | 0.155 0204 | 0.157 0228 | 0352 0409 | 0295 0372 | 0779 0.775| 0369 0435| 0.185 0.227
8 0.177 0213 | 0.162 0.210| 0.162 0260 | 0329 0467 | 0279 0.385 0.674 0.704 | 0361 0432 0.190 0.240
Traffic 10 0.186  0.225| 0.167 0.214| 0.169 0269 | 0342 0474 | 0.281 0.404 | 0.702 0.758 | 0.363 0.427 | 0.189 0.246
12 0213 0212 0361 0241 | 0215 0236 0364 0.505 0217 0.368 0.675 0.739 | 0359 0422 0219 0272
| | Avg| 0.187 0217 0.172 0209| 0.176 0248 | 0.347  0.464 | 0268 0382 | 0.708 0.744 | 0363 0429 | 0.195 0.246
Delta 6 0.064 0.161 | 0.059 0.160 | 0.065 0.167| 0253 0417 | 0.191 0342 | 0247 0422 0068 0.169| 0.069 0.179
Airlines 12 0.110 0233 | 0.116 0224 | 0.126 0235| 0320 0470 | 0260 0416 | 0341 0.509 | 0.128 0.235| 0.118 0.223
| AL | Ave| 0087 0197] 0086 0.92] 0095 0201 | 0286 0444 | 0226 0379 | 0294 0466| 0098 0.202] 0.093 0201
IBM 6 0.324  0.401| 0341 0401 | 0.642 0.534| 0.820 0.667 | 0913 0.675 2,001  1.I50| 0396 0453 | 0.392 0424
(IBM) 12 0.804 0.602| 0.758 0.580 | 1.140 0.856| 1.390  0.887 1.517 0937 1.870 1.096 | 0.807 0.619| 0.886 0.627
| | Avg| 0564 0.501| 0.550 0.490| 0.891 0.695| 1.105 0777 | 1215 0.806 | 1.936 1.123| 0.602 0.536| 0.639 0.525
ENSPID JPMorgan 6 1.173 0817 | 1.275 0.819| 1.606 0912 | 1.788 1.063 2217 1.082 | 3971 1.785| 1332 0.843| 1.644 0.922
(2024) Chase 12 2214 1.124| 2470 1.161| 3421 1.281 | 3.050 1.287 | 4.635 1.383 3.557 1.637| 2742 1.244| 2622 1.323
| OPM) Ave| 1693 0970 | 1872 099 | 2513 1.096| 2419 1175 | 3426 1232 | 3764 1711| 2037 1.043| 2133 1122
NVIDIA 6 0.032  0.123 | 0.041 0.151| 0.037 0.172| 0257 0424 | 0.093 0.224 | 0431 0.560| 0.038 0.139| 0.043 0.149
(NVDA) 12 0.054 0.159 | 0.055 0.162| 0.063 0.177 | 0.288  0.445 0.151 0.301 0.483  0.587 | 0.067 0.183| 0.066 0.170
‘ ‘ Avg ‘ 0.043  0.141 ‘ 0.048  0.156 ‘ 0.050 0.174 ‘ 0272 0434 ‘ 0.122 0262 ‘ 0.457 0.574 ‘ 0.053  0.161 ‘ 0.054  0.159
Plizer 6 0240 0.355| 0255 0363 | 0329 0419| 0767 0.623 | 0.662 0.608 | 0.601 0.557 | 0.354 0.451| 0.283 0.389
(PFEL) 12 0412 0476 | 0439 0482 0567 0535 0586 0520 | 0987 0.718 0.654 0.561 | 0462 0.503 | 0.456 0.490
‘ ‘ Avg ‘ 0326 0416 ‘ 0.347 0422 ‘ 0.448 0477 ‘ 0.676  0.572 ‘ 0.824  0.663 ‘ 0.628  0.559 ‘ 0.408  0.477 ‘ 0.369  0.439
Tesla 6 0.101 0241 | 0.071 0.204| 0.098 0235| 0.166 0306 | 0262 0452 | 3.784 1.929| 0.123 0.256| 0.166 0.315
(TSLA) 12 0.183 0.321| 0.245 0390 | 0.122 0253 | 0210 0358 | 0.247 0.381 3.168 1.773 | 0.192 0343 | 0.196 0.292
| | Avg| 0.142 0281 | 0.158 0.297| 0.110 0244 | 0.188 0332 | 0254 0416 | 3476 1.851| 0.158 0.300| 0.181 0.303
6 1.760 0916 | 1.552 0.858| 1.751 0.899 | 123.135 9.413 | 105.978 9.806 | 43.935 5.848 | 2.525 1.085| 1.808 0.894
Bitcoin 8 2.147 1.006 | 1.998 0.964 | 2458 1.080 | 126.985 9.703 | 163.110 10.690 | 53.318 6.412| 3.352 1.163 | 2521 1.050
Price 10 3.007 1212 2.621 1.128 | 3.399 1.287 | 157.388 11.113 | 179.247 10.759 | 65.162 7.253 | 3.853 1.486| 3.014 1208
12 3521 1.313 | 3.185 1229 | 3491 1304 | 159.445 11.192 | 187.741 10.884 | 68.887 7.464 | 4.631 1.641| 3.542 1456
‘ ‘ Avg ‘ 2.609 1.112 ‘ 2339  1.045 ‘ 2775 1.142 ‘ 141.738 10.355 ‘ 159.019 10.535 ‘ 57.826 6.744 ‘ 3.590 1.344 ‘ 2721 1152
FNF 6 | 15.106 2.504 | 17.348 2755 | 17.378 2755 | 21.596 3.003 | 21.993 2912 | 16.625 2.157 | 19.265 2.869 | 18.106 2.832
2024b) Web 8 18474 2740 | 17.715 2.625| 16.11 2.600 | 19.330 2.754 | 21.001  2.828 | 20.144 2.826 | 21.724 2.924 | 18.421 2745
(202 Traffic 10 | 18313 2.783 | 18.008 2.643 | 1623 2516 | 20.866 2.901 | 24.046 2930 | 21.976 2.947 | 20.164 2.875| 19.902 2.792
12 | 19.084 2.823 | 18.783 2.590 | 22.721 3217 | 27.141 3.409 | 26.011 3.374 | 27.759 3.439 | 21.841 2969 | 20.611 2.942
| | Avg | 17.744 2712 | 17964 2.653| 18.110 2772 | 22.233 3.017 | 23.263 3.011 | 21.626 2.842 | 20.748 2.909 | 19.260 2.827
6 0262 0379 | 0.257 0.374| 0260 0375 0385 0470 | 0.338 0.443 0.436  0.506 | 0.510 0.544| 0.271 0.388
Electricit 8 0274 0391 | 0257 0370| 0244 0360 | 0.419 0497 | 0426 0504 | 0.501 0.565| 0.524 0.562 | 0.284 0.369
Demandy 10 0288 0.405| 0.173 0266 | 0.252 0366 | 0.407 0494 | 0335 0454 | 0558 0.582| 0.536 0.571| 0.292 0.398
12 | 0295 0.408 | 0327 0.424| 0310 0408 | 0451 0522 | 0355 0471 | 0567 0.601| 0.558 0.588 | 0337 0428

‘ ‘Avg‘ 0.280 0396‘ 0.254 0,358‘ 0.266 0.377‘ 0.416 0.496‘ 0.364  0.468 ‘ 0.516 0.564‘ 0.532 0.566‘ 0.296  0.395
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E.4 FuLL IMPUTATION RESULTS

Table 29: Full imputation results for the Climate, Economy, and Traffic datasets using PatchTST,
DLinear and FiLM as time series models. Compared to numerical-only unimodal modeling and
MM-TSFLib, our TaTS framework seamlessly enhances existing time series models to effectively
handle time series with concurrent texts. Promotion: the improvement of the best baseline.

PatchTST DLinear FiLM
(2023) (2023) (2022a)
Metric ‘MSE MAE RMSE MAPE MSPE ‘ MSE MAE RMSE MAPE MSPE‘ MSE MAE RMSE MAPE MSPE

Uni-modal | 1.111 0.846 1.052 3.898 442.010 | 0.969 0.801 0.983 1.881 59.681 | 1.123 0.829 1.059 2.647 128.421
MM-TSFLib | 1.010 0.821 1.002 2.156 81.983 | 0.963 0.802 0.980 1.394 18.580 | 1.130 0.833 1.061 1949 51.811
TaTS (ours) | 0.878 0.720 0.937 1.573 35877 | 0912 0.757 0951 1.701 25.242 | 0.820 0.718 0.902 1478 30.622

| Promotion |13.1% 123% 6.5% 27.0% 562% | 53% 55% 3.0% -220% -359% |27.0% 13.4% 14.8% 242% 40.9%

Uni-modal | 0.029 0.138 0.170 0.051  0.004 | 0.057 0.190 0239 0.068 0.007 | 0.077 0.209 0.277 0.076  0.010
MM-TSFLib | 0.026 0.137 0.161 0.049 0.003 | 0.061 0.196 0247 0.069 0.007 | 0.075 0.203 0271 0.072 0.009
TaTS (ours) | 0.017 0.107 0.128 0.038  0.002 | 0.045 0.171 0210 0.061 0.006 | 0.054 0.168 0.232 0.061  0.007

‘ Promotion ‘34.6% 21.9% 20.5% 22.4% 33.3% ‘21.1% 10.0% 12.1% 103% 14.3% ‘28.0% 172% 14.4% 153% 22.2%

Uni-modal | 0.210 0339 0444 0358 0.600 | 0.245 0417 0489 0430 0.720 | 0.175 0311 0409 0343 0.508
MM-TSFLib | 0.189 0341 0428 0391 0.690 | 0.179 0.335 0419 0362 0.630 | 0.169 0.288 0396 0316 0.545
TaTS (ours) | 0.131 0248 0.331 0312 0.647 | 0.134 0297 0.352 0266 0270 | 0.137 0.242 0.354 0.281 0.388

| Promotion |30.7% 26.8% 22.7% 12.8% -7.8% |25.1% 113% 16.0% 26.5% 57.1% |18.9% 16.0% 10.6% 11.1% 23.6%

Models

Climate

Economy

Traffic
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E.5 FULL HYPERPARAMETER STUDY RESULTS OF LEARNING RATE
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Figure 11: Parameter study on the learning rate. We evaluate the impact of varying the learning rate in
{0.00005, 0.0001, 0.00015, 0.0002, 0.00025, 0.0003} by reporting the mean squared error (MSE) of
our TaTS framework across datasets. The results demonstrate that TaTS maintains stable performance
across different learning rate choices.
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E.6 FULL HYPERPARAMETER STUDY RESULTS OF TEXT EMBEDDING DIMENSION
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Figure 12: Parameter study on the projection dimension of paired texts. We vary the text projection
dimension in {6, 12,18, 24} and report the mean squared error (MSE) of our TaTS framework across
datasets. The results indicate that TaTS maintains robust performance across different choices of text
projection dimensions.
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E.7 FULL ABLATION STUDY RESULTS USING DIFFERENT TEXT ENCODERS

We conduct experiments to evaluate the performance of our TaTS with multiple language encoders.
Specifically, we evaluation TaTS with BERT-110M?, GPT2-1.5B" and LLaMA2-7B* as the language
encoders. The results, presented in Figure 13, demonstrate that TaTS remains robust across different
text encoders and consistently outperforms the baselines.
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Figure 13: Performance comparison of different text encoders within the TaTS framework. Specif-
ically, we evaluate BERT-110M, GPT2-1.5B, and LLaMAZ2-7B across multiple datasets using
PatchTST (transformer-based model), DLinear (linear-based model), and FiLM (frequency-based
model). TaTS maintains relatively stable performance across various models and datasets.

In the main experiments, the text embeddings are obtained by a mean pooling over token embeddings.
There are more advanced embedding techniques. To this end, we conducted an additional experiment
using LL.aMA-3.2-1B to generate sentence-level embeddings, while keeping all other settings the
same. The results are shown below in Table 30.

Table 30: Mean Square Error of TaTS forecasting with different text embedding methods.

Text Embedding Method Agriculture  Climate Economy Security Social Good Traffic
GPT-2 average pooling (prediction length 6) 0.067 1.020 0.008 107.113 0.942 0.174
LLaMA-3.2-1B sentence embeddings (prediction length 6) 0.067 1.015 0.008 106.625 0.935 0.179
GPT-2 average pooling (prediction length 12) 0.153 1.033 0.008 114.754 1.045 0.213
LLaMA-3.2-1B sentence embeddings (prediction length 12) 0.152 1.021 0.008 114.219 1.025 0.209

https://huggingface.co/google—bert/bert-base-uncased
*https://huggingface.co/openai-community/gpt2
*nttps://huggingface.co/meta-1llama/Llama-2-7b
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E.8 FULL EFFICIENCY RESULTS: COMPUTATIONAL OVERHEAD VS. PERFORMANCE GAIN

TRADE-OFFS

We conduct experiments to analyze the efficiency of TaTS, with results presented in Figure 14.
Each subfigure visualizes the training time per epoch and the forecasting mean squared error (MSE)
for different time series models, represented as transparent colored scatter points. The average
performance is computed and marked with cross markers: the green cross represents the average
performance of TaTS, while the red and blue crosses indicate the average performance of the baseline
models. As TaTS introduces a lightweight MLP and augments the original time series with auxiliary
variables projected from paired texts, it incurs a slight computational overhead, with an average
increase of ~ 8%. Yet this trade-off results in a ~ 14% average improvement of forecasting MSE.
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Figure 14: Efficiency and forecasting performance comparison of uni-modal time-series modeling,
MM-TSFLib, and our TaTS framework. While TaTS incurs a slight increase in training time due
to the augmentation of auxiliary variables projected from paired texts, it significantly enhances
forecasting accuracy, achieving a lower MSE.
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