
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXOPREDICATOR: LEARNING ABSTRACT MODELS OF
DYNAMIC WORLDS FOR ROBOT PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-horizon embodied planning is challenging because the world does not only
change through an agent’s actions: exogenous processes (e.g., water heating,
dominoes cascading) unfold concurrently with the agent’s actions. We propose
a framework for abstract world models that jointly learns (i) symbolic state rep-
resentations and (ii) causal processes for both endogenous actions and exogenous
mechanisms. Each causal process models the time course of a stochastic cause-
effect relation. We learn these world models from limited data via variational
Bayesian inference combined with LLM proposals. Across five simulated tabletop
robotics environments, the learned models enable fast planning that generalizes to
held-out tasks with more objects and more complex goals, outperforming a range
of baselines.

1 INTRODUCTION

For an agent to think about the future consequences of its actions, does it need to simulate the world
pixel-by-pixel, frame-by-frame, or can it reason more abstractly? Consider planning a flight to an-
other country: we can reason about buying tickets, changing airplanes, and crossing borders without
committing to the color of the airplane or the milliseconds before takeoff. Absent abstraction, plan-
ning over long time horizons would be intractable, because every minute detail of the world would
need to be simulated. This intuition is captured by abstract world models, (Konidaris, 2019; Wong
et al., 2025) which retain information essential for decision-making, while hiding irrelevant details.

Recent work on learning abstract world models (e.g., (Liang et al., 2024; Athalye et al., 2024))
assumes that the world changes only by direct, instantaneous actions. But in the real world, our
actions are not instantaneous, and are only half the story: the external world has its own causal
mechanisms, which unfold continuously in time concurrent with our own actions. For instance,
consider boiling water (Figure 1). After switching on a kettle, the water’s temperature continuously
rises independently of the agent’s subsequent actions until it finally boils. A good abstract world
model must therefore abstract not just the states, but also the temporal granularity: decision-makers
should know that switching on a kettle triggers another causal mechanism, which eventually results
in boiling, without reasoning about the exact timecourse of the water’s temperature (i.e., a robot
could chop vegetables while waiting for the water to boil). Such abstraction is conceptually separate
from options/skills/high-level actions, which abstract the timecourse of one’s own actions, but do
not abstract the timecourse of external causal processes in the outside world.

The standard planning representation used for decades, PDDL, also fails to capture this: it only mod-
els the effects of one’s own actions, and treats each action as instantaneous. Learning a symbolic
PDDL planning model (Silver et al., 2023; Liang et al., 2024) combinatorially explodes with respect
to temporal granularity. Vision-language models (VLMs) and vision-language-action models (Team
et al., 2023; Black et al., 2025) could in principle reason about external causal mechanisms, but gen-
eralize poorly to novel situations, particularly when reasoning about temporal physical constraints.

To address these challenges, we introduce a framework for learning world models that abstract both
the state space, and the timecourse of causal processes. We contribute the following: (1) A symbolic
yet learnable representation of abstract world models for environments with temporal dynamics and
external causal processes. (2) A state abstraction learner that leverages the commonsense knowledge
of foundation models. (3) An efficient Bayesian inference method for learning the parameters and
structures of these causal models. (4) A fast planner for reasoning with the proposed representation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Dynamic environments include both endogenous processes (actions under the agent’s
direct control, such as Switch On Faucet) and exogenous processes (e.g., Jug Filling with Water)
that evolve on their own. Planning requires reasoning about both kinds of processes.

2 BACKGROUND AND PROBLEM FORMULATION

We consider learning abstract world models for robot planning in environments whose causal mech-
anisms include both the agent’s own action space, and external mechanisms not directly under the
agent’s control. The actual environment operates frame-by-frame (high temporal granularity), and
exposes a state space with object tracking features and pixel-level visual appearance (high-resolution
perception). We assume built-in motor skills, such as Pick/Place, a common assumption (Ku-
mar et al., 2024; Silver et al., 2021). The goal is to learn a world model abstractly describing the
timecourse of causal processes, and to generalize to held-out decision-making tasks.

Environments. An environment E is a tuple ⟨X ,U , C, f,Λ⟩ where X is a state space, U ⊆ Rm is a
low-level action space (e.g. motor torques), C is a set of controllers for skills (e.g. Pick/Place),
f : X × U → X is a transition function, and Λ is a set of object types (object classifier outputs).

Tasks. Within an environment, a task T is a tuple ⟨O, x0, g⟩ of objects O, initial state x0, and goal
g. The allowed states depend on the objectsO, so we write the state space as XO (or sometimes just
X when the objects are clear from context). Each state x ∈ XO includes associated object features,
such as 3D object position. The environment is shared across tasks.

3 ABSTRACTING STATES, TIME, AND CAUSAL PROCESSES

Environments present a high-dimensional observation space that evolves frame-by-frame. Abstract
world models hide this complexity behind a state abstraction, which distills a small set of features
from observations, together with causal processes, which describe temporal dynamics (Figure 2).

State Abstraction with Predicates. A predicate ψ – after being parameterized by specific objects
– is a Boolean feature of states. A predicate is represented as a Python function that queries a VLM
to inspect the robot’s visual input. We treat this as function ψ : Om → (X → B) that given m
objects predicts whether a predicate holds in a state. A set of predicates Ψ induces an abstract state
s corresponding to all the predicate/object combinations (ground atoms) that hold in that state:

s := ABSTRACTΨ(x) = {(ψ, o1, ..., om) : ψ(o1, ..., om) holds in state x, for ψ ∈ Ψ and oj ∈ O}

Thus an abstract state is the collection of symbolic facts the agent believes about the world. This
style of state abstraction is standard in robot task planning (Garrett et al., 2021). We write S for the
set of possible abstract states.

Causal Processes: Informal intuition. A causal process coarsely models a cause-effect relation.
For example, opening a faucet above a bucket triggers a chain of cause-effect relations: a stopper
opens, hidden pipes fill with water, water rises in the bucket, and eventually the bucket is filled. For
decision making, many such details are irrelevant, or omitted from the state abstraction. A causal
process therefore abstracts away such details by saying that certain conditions (the “cause”) later lead
to other conditions (the “effect”). We further distinguish two kinds of causal processes. Endogenous
processes correspond to the agent’s high-level actions or skills. They represent operations that are
under the agent’s direct control, such as switching a faucet on. Exogenous processes describe the
background dynamics of the environment. They represent processes that unfold autonomously once
certain conditions hold, independent of whether the conditions were created by the agent or by some

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Raw input maps to a state abstraction via predicates: short Python programs detecting
binary features. Learning the state abstraction means synthesizing these programs. Temporal dy-
namics of abstract states are governed by causal processes: either endogenous processes (actions),
or exogenous processes in the outside world. Causes realize their effects only after a delay, and can
be interleaved. Learning causal processes allows planning by breaking frame-by-frame dynamics
into discrete jumps between abstract states. (Illustration simplified; see text.)

external mechanism, such as a kettle filling with water after being placed under a running tap. This
separation allows the agent to reason about the consequences of its actions while also anticipating
changes initiated by the environment itself. Figure 2 (top right) shows concrete examples of such
causal processes (e.g., switching a burner on, filling a jug), with their conditions, delayed effects,
and whether they are endogenous or exogenous.1

Causal Processes: Formalization. Abstract world models are equipped with a set of causal pro-
cesses L. Each causal process L ∈ L is defined by a schema tuple, ⟨PAR, C,O,E,W, pdelay⟩ (see
fig. 2, top right, for concrete schema examples), where:

• PAR (parameters) is a list of typed variables present in the condition or effect of the process.

• C is the condition at start, a set of atoms that must be true for the process to be activated.

• O is the condition overall, a set of atoms that must remain true throughout the process’s duration.

• E is the effect, an add and a delete set of atoms describing the state change upon completion.

• W ∈ R (log strength) quantifies how likely the effect will happen when the conditions are satis-
fied.

• pdelay is a probability distribution over the delay between the process’s activation and effect (Ap-
pendix C.2).

Endogenous processes further include a skill c ∈ C. A schema is instantiated into a ground causal
process L = ⟨PAR, C,O,E,W, pdelay⟩ (and optionally c) by substituting its parameters with specific
objects. For example, the endogenous process SwitchBurnerOn has parameters ?robot and
?burner. Its conditionC requires that the burner is off and the robot’s hand is free. Once executed,
its effect E (the burner being on) occurs after a delay sampled from pdelay.

1Our terminology differs from standard definitions in causality (Pearl, 2009) and recent RL literature (e.g.,
Efroni et al. (2021)), where “exogenous” typically refers to variables that are determined outside the system
or are irrelevant to the task. In contrast, our exogenous processes are task-relevant and can be triggered by
the agent (and are thus causally downstream), but differ in that they evolve autonomously without requiring
continuous agent actuation. This aligns with the definition of “processes” in temporal planning frameworks
like PDDL+ (Fox & Long, 2002)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Interdependence of state abstraction and causal processes. The right abstractions depend on
downstream tasks, as our goal is generalization to unseen planning problems. Tasks demanding
a more detailed state abstraction will generally require modeling more temporal dynamics. This
couples the causal processes to the state abstraction.

Probabilistic Semantics. The causal processes define how abstract states evolve over time. Math-
ematically, L defines a probabilistic generative model over sequences of abstract states {st} at fine-
grained timesteps t ∈ N. At each step, active causal processes contribute pressure for their effect
atoms to change, while a separate frame term prefers all atoms to remain as they are. To write this
compactly, we use indicator functions for the conditions at start: CL(s1:t) is 1 iff all atoms in the
condition-at-start set C of ground process L are satisfied at state st but not satisfied at state st−1,
and 0 otherwise; similarly, OL(st′+1:t−1) is 1 iff all atoms in the overall-condition set O hold at
every step between t′ + 1 and t− 1. We probabilistically model the effect of ground process L as a
potential Ej

L upon each feature j of the abstract state:

logEj
L(s

j) =


WL × sj if j ∈ EL.Add
WL × (1− sj) if j ∈ EL.Del
0 otherwise.

We similarly define a frame axiom potential logF (sjt |s
j
t−1) =WF × 1

[
sjt = sjt−1

]
, which encour-

ages states to stay constant over time; WF is a learnable parameter. Because causal processes have
stochastic delays, we associate each ground causal process L with random variables {∆L

t } for the
delay should the process trigger at time t, i.e. ∆L

t ∼ pdelay
L . With these definitions in hand, the joint

distribution over delays and abstract states is

p(s1:t, {∆L
1:t} | s0) =

∏
t

p
(
st | s<t, {∆L

<t}
)∏

L

p(∆
L
t |s≤t) (autoregressive)

p
(
st | s<t, {∆L

<t}
)
=
∏
j

p
(
sjt | s<t, {∆L

<t}
)

(next-state factorizes over features)

p
(
sjt | s<t, {∆L

<t}
)
∝ F (sjt |s

j
t−1)

∏
L∈L
t′<t

Ej
L(s

j
t)

CL(s1:t′)OL(st′+1:t−1)1[t=t′+∆
L

t′] (cause-effect)

p(∆
L
t |s≤t) = pdelay

L (∆
L
t)

CL(s1:t) (delay distribution for when condition at start holds)
But this formalization simulates every fine-grained timestep: reasoners should abstract away tem-
poral details like the milliseconds before a domino falls. We describe next how to do that.

4 PLANNING WITH CAUSAL PROCESSES

We model the world as changing abruptly in discrete “jumps” between abstract states. Planning
can clump together stretches of time where the abstract state remains constant. We define a big-step
transition function, Tbig, which runs the world model until the abstract state changes, and optionally
takes as input an action to initiate. The agent doesn’t always need to manipulate an object directly; it
can also choose to wait for an exogenous process to unfold on its own (such as waiting for water to
boil). The agent achieves this by initiating a special NoOp (no operation) action, which terminates
as soon as the abstract state changes. Formalizing Tbig is relatively technical; see Appendix A.1.

This big-step function allows a planner to perform forward search in the space of high-level ac-
tions, simulating the concurrent and delayed effects of both its own actions and the environment’s
exogenous dynamics. Given causal processes L and a task, the agent performs an A* search over se-
quences of ground endogenous processes. The search uses Tbig to determine successor states and we
design a version of the fast-forward heuristic (Hoffmann, 2001) to guide the search (Appendix A.2).

5 PROCESS LEARNING AND PREDICATE INVENTION

Our goal is to learn how the outside world works: we assume an unfamiliar environment, but not
an unfamiliar body. We therefore equip the agent with some basic predicates (such as whether

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: The online learning loop, where the agent repeatedly uses its current model to plan and
interact with the world, then refines that model by learning new predicates and causal processes from
the experience. The figure shows an example where the agent’s initial model in iteration i leads to a
failed plan (Water Spilled!). After observing this failure and updating its knowledge (“Diff Learned
Model”), the agent creates a successful plan in iteration i+ 1 (“Diff plan after learning”).

it is holding an object) and endogenous causal processes defining its own action space, such as
Pick/Place (Appendix B), and learn the remaining causal processes and state abstractions.

We initialize with 1-2 demonstration trajectories, and then perform online learning (Figure 3). On-
line learning involves planning to solve training tasks to collect further trajectories (when planning
fails, random actions are taken). At each stage of online learning, we have a dataset of state-action
trajectories Dlow = {(x0, c0, . . . , cT−1, xT)}. Given predicates Ψ, this generates a dataset of ab-
stract state-action trajectories Dabs = {(s0, c0, . . . , cT−1, sT)}. Given this dataset, we learn predi-
cates (Section 5.3), exogenous processes (section 5.2), and continuous parameters (Section 5.1)—
described in a reverse order, because each component is used in the previous component during
learning.

5.1 PARAMETER LEARNING VIA VARIATIONAL INFERENCE

Each causal process has continuous parameters for the delay distribution pdelay
L and the proba-

bilistic weight WL, and we have a global parameter WF for the frame axiom. Fixing all dis-
crete structure—including the predicates—we seek parameters maximizing the marginal likelihood
p(Dabs) = p(s1:t|s0) =

∑
{∆L

1:t} p(s1:t, {∆
L
1:t}|s0). This is intractable because there are combina-

torially many ways of timing the cause-effects.

We therefore approximate the marginal likelihood by introducing variational distributions over the
time at which each process realizes its effect: categorical distribution qLt (A

L
t) encodes belief about

A
L
t , the “arrival time” of the effect coming from the process L due to its activation at time t. This

is a change of basis from delays to absolute times, AL
t = ∆

L
t + t, which leads to a tidier ELBO

decomposition. We provide the full expression and derivation of the following variational lower
bound on the marginal likelihood in Appendix A.3, which we optimize using Adam (Kingma, 2014).

log p(s1:t) ≥ Eq

[
log p

(
{AL

t }
)]

︸ ︷︷ ︸
delay model

+ Eq

[
log p

(
{st} | {AL

t }
)]

︸ ︷︷ ︸
abstract dynamics

+ Hq

[
{AL

t }
]

︸ ︷︷ ︸
entropy regularizer

5.2 LEARNING EXOGENOUS PROCESSES: BAYESIAN MODEL SELECTION, LLM GUIDANCE

We learn causal processes by assuming a fixed set of predicates Ψ (which fixes the abstract state
space SΨ): we segment the trajectories into shorter clips, where each clip consists of a sequence of
constant abstract states followed by a final state in which one or more atoms change value; cluster
segments according to which features in the abstract state were changed; then learn one process per
cluster by optimizing Bayesian criteria. To make optimization tractable, we use an LLM to propose
different symbolic forms for processes and then score them with our Bayesian objective.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Given a set of trajectories Dabs, we would ideally learn the causal processes L⋆ maximizing

L⋆ = argmax
L

p(L|Dabs) = argmax
L

p(Dabs|L)p(L) (intractable)

where p(L) is a minimum description length prior and p(Dabs|L) is approximated by Section 5.1.
As this optimization is intractable, we learn a separate process LC for each cluster C:

L⋆ =
⋃

C∈CLUSTER(Dabs)

{LC} where LC = argmax
L

p(C|L)p(L) (still intractable)

But computing argmaxL p(C|L)p(L) means optimizing over combinatorially many discrete struc-
tures for L. To narrow down the discrete search, we prompt a language model with the cluster and
ask it to propose a small number of candidate processes:

L⋆ =
⋃

C∈CLUSTER(Dabs)

{LC} where LC = argmax
L∈PROMPT(C)

p(C|L)p(L) (tractable)

Appendix A.4 fully specifies this algorithm, which builds on Chitnis et al. (2022).

5.3 LEARNING STATE ABSTRACTIONS: PROGRAM SYNTHESIS AND LOCAL SEARCH

The abstract state space is defined by a collection of short Python programs (predicates) which check
for an abstract feature within the raw perceptual input. Learning the state abstraction therefore means
synthesizing that set of programs. One strategy for learning the predicates is to propose a large set
of candidate predicates and then use discrete search to select a subset optimizing certain objectives
(Silver et al., 2023) In our setting, we propose predicates by prompting an LLM with trajectories,
and seek a subset of those predicates, Ψ⋆, maximizing:

Ψ⋆ = argmax
Ψ∈P(PROMPT(Dlow))

p(Dlow | L⋆(Ψ))p(L⋆(Ψ))p(Ψ)

where P (·) is the powerset, p(Ψ) is a prior favoring fewer predicates, and we have made explicit
the dependence of L⋆ upon the predicates Ψ (Section 5.2). But the above objective is intractable for
two reasons, which we address as follows (Appendix A.5):

• Expensive outer loop: The powerset is exponentially large. Rather than exhaustively enumerate
every subset of predicates, we do a local hill-climbing search starting from Ψ = ∅ and greedily
adding new predicates from the LLM (Silver et al., 2023).

• Expensive inner loop: Scoring a candidate subset of predicates is expensive, requiring varia-
tional inference and causal process structure learning (Sections 5.1 and 5.2). We therefore run
structure learning and parameter estimation only once, using all proposed predicates, and cache
the resulting processes and parameters for reuse when scoring different subsets of predicates.

6 EXPERIMENTS

We design our experiments to answer the following questions: (Q1) How does ExoPredicator per-
form compared to state-of-the-art methods, including hierarchical reinforcement learning (HRL),
VLM planning, and operator learning approaches, in terms of overall solve rate and sample effi-
ciency? (Q2) How do the learned abstractions perform relative to manually engineered abstractions,
and relative to the case where no learning is performed? (Q3) How useful are the Bayesian model
selection and the LLM-guidance components in model learning?

Experimental Setup. We evaluate eight approaches across five simulated robotics environments,
illustrated in Figure 4, using the PyBullet physics engine (Coumans & Bai, 2016). All results are
averaged across three random seeds. For each seed, we train the agent with one or two training tasks,
each of which includes one demonstration. We then evaluate their performance on 50 held-out test
tasks, which include more objects and more complex goals. In each online learning iteration, the
agent performs 8 rollouts in a training task with each rollout lasting a maximum of 300 timesteps.

Environments. We describe the environments and their corresponding predefined closed-loop
skills, which are shared across all approaches. All environments have a NoOp skill in addition
to the ones listed for each environment. See Appendix B for more details.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Tr
ai

n
Ta

sk
s

Coffee Grow Boil Domino Fan

E
va

l.
Ta

sk
s

Figure 4: Environments. Top row: train task examples. Bottom row: evaluation task examples.

Figure 5: Successful ExoPredicator trajectories in the Domino (top) and Fan (bottom) environ-
ments. The code highlights the key learned exogenous processes, describing how dominoes cascade
and how the fan’s wind moves the ball. These processes incorporate predicates invented by the
agent, like NOT-IsImmovable and FanFaces, which enable efficient and effective planning.

1. Coffee. The agent is asked to fill the cups with coffee. To do so, the agent needs first to get
coffee from the coffee machine, then pour it into cups, both of which are exogenous processes.
The environment provides 4 skills: Pick, Place, Push, and Pour.

2. Grow. The agent is tasked with watering plants in pots. A plant will only grow when watered by
a jug that has the same color as its pot. The provided skills include Pick, Place and Pour.

3. Boil. A cooking domain where the agent is asked to fill jugs with water using the faucet and boil
it with the burner, without overspilling any water, which may happen when the faucet is on and
no jug is under it or the jug underneath is full, which are all exogenous processes. Four skills are
defined in this domain, including Pick, Place, and Switch On/Off.

4. Domino. A domino puzzle environment with two types of tasks. The agent is tasked to only
move the blue dominos and push the green dominoes such that all the purple target dominoes are
toppled. Additionally, there are “impossible” tasks, where there are red target dominoes whose
mass is too large to be toppled in a cascade. Impossible tasks are “solved” if the agent predicts
that the goal is unachievable. Inter-domino dynamics are exogenous processes. The included
skills are Pick, Place, and Push.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5. Fan. A maze environment where a ball is blown by fans. The agent must control the fans in each
cardinal direction to move the ball to the green target location while avoiding obstacles. The
provided skills are turning the Switch On/Off.

Approaches.

1. Manual. A planning agent with manually engineered predicates and processes for each domain.

2. Ours. Our ExoPredicator approach.

3. MAPLE (Nasiriany et al., 2022). An HRL baseline that learns to select ground controllers by
learning an action-value function, but does not explicitly learn abstract world models and perform
lookahead planning. This approach is provided with 1000 training tasks and given a budget of
10000 interaction rollouts per online learning iteration.

4. ViLA (Hu et al., 2023). A VLM planning baseline that prompts a VLM (Gemini-2.5-Pro) to plan
a sequence of ground skills. We experiment with two variants, which either exclude (zero-shot;
zs) or include (few-shot; fs) the demonstrations. Both this and MAPLE are provided with the full
set of predicates in Manual, which they can use as termination conditions for the NoOp action.

5. VisPred (VisualPredicator) (Liang et al., 2024). An online STRIPS-style operator learning and
planning agent. We provide it with all the necessary predicates used in Manual, which sidestep
the challenge of predicate learning, to highlight the difference between our causal processes
representation with traditional STRIPS-style representations.

6. No Bayes. An ablation that uses an LLM to learn processes without Bayesian model selection.

7. No LLM. An ablation that replaces the LLM condition proposer with a fast-to-compute heuristic.
Note that we still use an LLM for predicate proposal.

8. Manual-d (Manual minus tuned delay parameters). A planning agent that uses the Manual
abstraction, but has the same delay parameter (e.g., 1) across all processes.

9. No invent. An ablation that uses the initial abstractions and does not perform any learning.

(a) Percentage solved in different domains (↑) by different agents.

(b) Learning curves of different online learning agents.

Figure 6: Performance metrics for various agents across different domains. The error bars/shaded
regions show ± 1 standard deviation.

Results and Discussion. Figure 6 shows the evaluation solve rate for all approaches and the learning
curve of our online learning agents.

(Q1). Our approach consistently outperforms the VLM planning (ViLa), HRL (MAPLE) and
STRIPS-style operator learning and planning (VisPred) approaches, achieving a near-perfect score
across all domains. For each environment, ExoPredicator learns 1-4 exogenous processes and con-
verges after at most three online interaction iterations (fig. 6b). Once trained, it can solve nearly all
tasks in Coffee, Domino, and Fan, and over 80% in Boil and Grow. In comparison, we find

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

that MAPLE is unable to achieve a high level of success even with 1000 times more interactions
and evaluated only on the training distribution. We hypothesize that this is largely due to the chal-
lenge of exploration with sparse rewards. ViLa (zero-shot) was not able to do well in any domains.
The few-shot variant achieves good performance in simple domains where satisficing plans share
significant similarity with the demonstration plan (e.g., in Coffee, one simply needs to perform
Pour and NoOp more times than in the demonstration). We observe that its performance degrades
significantly in other domains where it must identify additional rules through trial and error (e.g.,
the requirement of matching colors in Grow) or domains that require compositional generalization
(sequencing skills in potentially new ways). VisPred also struggles in these tasks because it learns
in a highly constrained model space. It attempted to learn the exogenous processes as different op-
erators for the NoOp skill, but fell short due to an overly strong inductive bias. This bias restricts
preconditions to only include atoms with variables already present in an operator’s effects or option,
which is especially limiting for the NoOp skill, where “robot” is the only variable. Moreover, it
does not learn about the varying delays for different processes, a feature crucial for effective and
efficient planning (e.g., in Boil). We note that ExoPredicator is unable to solve all tasks in Boil,
partly because it failed to recognize the full disjunctive condition under which a spill can happen:
it learned a process for water spilling when there is nothing under the faucet, but not when the jug
underneath is full.

(Q2). Ours achieves the same (in Coffee and Fan) or better (in Grow and Domino) performance
as Manual which uses manually engineered abstractions. We attribute this to the parameters learned
via variational inference instead of being manually tuned. Furthermore, the near-zero performance
of No invent and Manual-d underscores the importance of model learning and parameter learning.
For example, in Domino their incomplete knowledge of the environment’s dynamics and delay
caused them to classify most tasks as unsolvable.

(Q3). Both the Bayesian model learning and the LLM guidance play a critical role in efficient,
effective, and robust model structure learning. Without LLM guidance, the size of the search space
for each process becomes astronomically large (sometimes reaching 250), making it intractable to
score all possible conditions. Without computing the Bayesian posterior of the data and model, the
selection is based entirely on the prior in the LLM, which is not always reliable, especially with
uncommon or unseen environment dynamics.

7 RELATED WORKS

Temporal Planning. Classical planners handle effects after a delay with durative actions (PDDL
2.1) (Fox & Long, 2003) and with autonomous processes and events (PDDL+) (Fox & Long, 2002);
(RDDL) (Sanner et al., 2010), while heuristic search–based temporal planners such as COLIN
(Coles et al., 2012) or OPTIC (Benton et al., 2012) support numeric fluents and deadlines. These
works assume the full domain description is given. Our contribution is complementary: we learn
models—including conditional stochastic delays—directly from a small number of trajectories.

Hierarchical Reinforcement Learning. HRL uses temporally extended actions to address long-
horizon decision-making (Barto & Mahadevan, 2003). While many skill-learning approaches exist,
they typically adopt the (semi-)Markov assumption at the option level: the distribution over out-
comes depends only on the initiation state and the chosen option (Masson et al., 2016; Nasiriany
et al., 2022; Mishra et al., 2023). This fails to explicitly model exogenous dynamics or variable
delays, attributing all changes to the agent’s actions. We relax this assumption by learning a model
for these external dynamics and stochastic delays, allowing a fixed set of skills to be flexibly used
as the environment evolves.

Hierarchical Reinforcement Learning. HRL uses temporally extended actions to address long-
horizon decision-making (Barto & Mahadevan, 2003). While many skill-learning approaches exist,
they typically adopt the (semi-)Markov assumption at the option level: the distribution over out-
comes depends only on the initiation state and the chosen option (Masson et al., 2016; Nasiriany
et al., 2022; Mishra et al., 2023). This fails to explicitly model exogenous dynamics or variable
delays, attributing all changes to the agent’s actions. In such formulations, environment-driven or
exogenous dynamics can be absorbed into the option’s transition model, but are not usually rep-
resented as separate causal processes with their own activation conditions and delay distributions.
We relax this assumption by learning a model for these external dynamics and stochastic delays,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

allowing a fixed set of skills to be flexibly used as the environment evolves. Our approach is com-
plementary: we learn an explicit model for these external dynamics and stochastic delays, allowing
a fixed set of skills to be used more flexibly as the environment evolves and enabling more general-
izable planning.

Large Foundation Models for Robotics. Approaches such as SayCan (Ahn et al., 2022), RT-2
(Brohan et al., 2023), Inner Monologue (Huang et al., 2022), Code-as-Policy (Liang et al., 2023),
ViLA (Hu et al., 2023), and π0 (Black et al., 2025) treat planning as prompting: a pretrained
LLM/VLM selects or synthesizes the next action at each step. These approaches inherit strong
general-language priors, but—because they do not learn a world model—struggle to reason about
concurrent processes (e.g. water keeps heating) or about actions whose effects materialize only if
certain conditions persist. Our method calls foundation models for predicate invention (as in Visu-
alPredicator) and model learning, yet it grounds their suggestions in experience and learns symbolic
world models that supports look-ahead search.

Causal Reasoning and Causal RL. Structural causal models (SCMs) (Pearl, 2009) and their dy-
namic extensions form the foundation of various recent causal-RL algorithms (Buesing et al., 2019;
Hammond et al., 2023; Zeng et al., 2025). These approaches assume that the underlying causal graph
is either known or learnable at the feature level, but they do not tackle the challenges of symbolic
abstraction or planning over durative processes. In contrast, ExoPredicator learns a causally consis-
tent SCM (Rubenstein et al., 2017) whose variables are invented predicates and whose mechanisms
are the learned causal processes, which enables reasoning at a higher level of abstraction.

Learning Abstractions for Planning. Early work learned STRIPS or NDR transition rules from
demonstrations given a fixed predicate set (Pasula et al., 2007; Silver et al., 2021; 2022; Chitnis
et al., 2022). Recent methods invent new predicates to improve generalisation (Silver et al., 2023;
Liang et al., 2024); however, all assume instantaneous deterministic effects they typically abstract
dynamics through agent-centric actions, without explicitly modeling exogenous causal processes
that unfold over time in the background,. ExoPredicator extends predicate-invention to environments
with exogenous dynamics and delayed causal effect.

8 CONCLUSION

We presented ExoPredicator, an integrated approach for learning and planning with causal processes
in environments with exogenous dynamics and delayed effects. Our method demonstrates the ability
to learn abstract world models from limited data, generalizing to new tasks with unseen objects and
goals across various simulated environments, and outperforming key baselines. Future work will
scale the framework to more complex, noisier, larger-scale environments, enhance learning with
foundation models, and explore the interplay between skill and world modeling.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Ashay Athalye, Nishanth Kumar, Tom Silver, Yichao Liang, Jiuguang Wang, Tomás Lozano-Pérez,
and Leslie Pack Kaelbling. From pixels to predicates: Learning symbolic world models via
pretrained vision-language models. arXiv preprint arXiv:2501.00296, 2024.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13:341–379, 2003.

J Benton, Amanda Coles, and Andrew Coles. Temporal planning with preferences and time-
dependent continuous costs. In Proceedings of the International Conference on Automated Plan-
ning and Scheduling, volume 22, pp. 2–10, 2012.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. corr, abs/2410.24164, 2024. doi: 10.48550. RSS 2025, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Lars Buesing, Theophane Weber, Yori Zwols, Nicolas Heess, Sebastien Racaniere, Arthur Guez,
and Jean-Baptiste Lespiau. Woulda, coulda, shoulda: Counterfactually-guided policy search. In
International Conference on Learning Representations, 2019.

Rohan Chitnis, Tom Silver, Joshua B Tenenbaum, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
Learning neuro-symbolic relational transition models for bilevel planning. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 4166–4173. IEEE, 2022.

Amanda Jane Coles, Andrew I Coles, Maria Fox, and Derek Long. Colin: Planning with continuous
linear numeric change. Journal of Artificial Intelligence Research, 44:1–96, 2012.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning, 2016.

Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.
Provably filtering exogenous distractors using multistep inverse dynamics. In International Con-
ference on Learning Representations, 2021.

Maria Fox and Derek Long. Pddl+: Modeling continuous time dependent effects. In Proceedings of
the 3rd International NASA Workshop on Planning and Scheduling for Space, volume 4, pp. 34,
2002.

Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal planning
domains. Journal of artificial intelligence research, 20:61–124, 2003.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. Annual review of
control, robotics, and autonomous systems, 4(1):265–293, 2021.

Lewis Hammond, James Fox, Tom Everitt, Ryan Carey, Alessandro Abate, and Michael Wooldridge.
Reasoning about causality in games. Artificial Intelligence, 2023.

Jörg Hoffmann. Ff: The fast-forward planning system. AI magazine, 22(3):57–57, 2001.

Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before you leap: Unveiling the
power of gpt-4v in robotic vision-language planning. arXiv preprint arXiv:2311.17842, 2023.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

George Konidaris. On the necessity of abstraction. Current opinion in behavioral sciences, 29:1–7,
2019.

Nishanth Kumar, Tom Silver, Willie McClinton, Linfeng Zhao, Stephen Proulx, Tomás Lozano-
Pérez, Leslie Pack Kaelbling, and Jennifer Barry. Practice makes perfect: Planning to learn skill
parameter policies, 2024.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Yichao Liang, Nishanth Kumar, Hao Tang, Adrian Weller, Joshua B Tenenbaum, Tom Silver,
João F Henriques, and Kevin Ellis. Visualpredicator: Learning abstract world models with neuro-
symbolic predicates for robot planning. arXiv preprint arXiv:2410.23156, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Warwick Masson, Pravesh Ranchod, and George Konidaris. Reinforcement learning with param-
eterized actions. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chaining:
Long-horizon skill planning with diffusion models. In Conference on Robot Learning, pp. 2905–
2925. PMLR, 2023.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with behavior
primitives for diverse manipulation tasks. In 2022 International Conference on Robotics and
Automation (ICRA), pp. 7477–7484. IEEE, 2022.

Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling. Learning symbolic models of
stochastic domains. Journal of Artificial Intelligence Research, 29:309–352, 2007.

Judea Pearl. Causality. Cambridge university press, 2009.

Paul K Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M Mooij, Dominik Janzing,
Moritz Grosse-Wentrup, and Bernhard Schölkopf. Causal consistency of structural equation mod-
els. arXiv preprint arXiv:1707.00819, 2017.

Scott Sanner et al. Relational dynamic influence diagram language (rddl): Language description.
Unpublished ms. Australian National University, 32:27, 2010.

Tom Silver, Rohan Chitnis, Joshua Tenenbaum, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Learning symbolic operators for task and motion planning. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3182–3189. IEEE, 2021.

Tom Silver, Ashay Athalye, Joshua B Tenenbaum, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
Learning neuro-symbolic skills for bilevel planning. arXiv preprint arXiv:2206.10680, 2022.

Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie McClinton, Tomás Lozano-Pérez, Leslie Kael-
bling, and Joshua B Tenenbaum. Predicate invention for bilevel planning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 12120–12129, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Lionel Wong, Katherine M Collins, Lance Ying, Cedegao E Zhang, Adrian Weller, Tobias Ger-
stenberg, Timothy O’Donnell, Alexander K Lew, Jacob D Andreas, Joshua B Tenenbaum, et al.
Modeling open-world cognition as on-demand synthesis of probabilistic models. arXiv preprint
arXiv:2507.12547, 2025.

Yan Zeng, Ruichu Cai, Fuchun Sun, Libo Huang, and Zhifeng Hao. A survey on causal reinforce-
ment learning. IEEE Transactions on Neural Networks and Learning Systems, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

A Additional Approach details 14

A.1 Causal Process Semantics . 14

A.2 Fast Forward Heuristic for Causal Processes . 15

A.3 Probabilistic Model and ELBO Derivation . 16

A.4 Process Learning details . 18

A.5 Predicate Learning Details . 19

B Additional Environment details 24

B.1 Coffee . 24

B.2 Grow . 25

B.3 Boil . 27

B.4 Domino . 29

B.5 Fan . 31

C Additional Experiment Details 31

C.1 Learned Causal Processes . 31

C.2 Further Learning and Planning Statistics . 41

C.3 Priors and Distributions . 41

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL APPROACH DETAILS

A.1 CAUSAL PROCESS SEMANTICS

We formalize the semantics of our causal process model, which underpins the planner described in
section 4. We begin by defining a small-step transition function that describes the world’s evo-
lution at the finest temporal granularity, advancing one discrete timestep at a time. This detailed
model allows us to precisely specify how and when processes are activated and their effects are ap-
plied. We then build upon this to define the big-step transition function, Tbig, which abstracts away
these fine-grained details. This function enables the planner to efficiently jump between significant
changes in the abstract state, which is crucial for tractable long-horizon planning.

Small-Step Semantics. We model the world’s evolution in discrete timesteps t ∈ N. A complete
snapshot of the world, or the world state, is a tuple wt = ⟨st, Qt, Ht⟩, where:

• st is the set of ground atoms that are currently true.

• Qt is the event dictionary, a dictionary of scheduled effects of the form ⟨L, tstart⟩, keyed by their
end time tend.

• Ht is the history of all past atomic states, [s0, s1, . . . , st−1].

The world’s fundamental dynamics are defined by a small-step transition function,
Tsmall(wt, αt) 7→ wt+1, which advances the world by a single timestep. The transition given a
potential agent command αt (which may be an ground endogenous process or None) occurs in
three stages:

1. Event Execution: Effects from events due at time t are applied. We initialize st+1 ← st. For
every event ⟨L, tstart⟩ in Qt scheduled for time t, if its overall condition OL held from the step
after activation up to the previous step, (i.e., for all si ∈ Ht where i > tstart), its effects are
applied: st+1 ← (st+1 \ EL.Del) ∪ EL.Add.

2. Process Activation: New events are scheduled based on the state st+1 and the agent’s command.
• Endogenous Activation: If the agent issues a command αt = Len and the process’s start con-

dition Cstart,Len
is satisfied in st+1, a delay d ∼ pdelay

Len
is sampled (with d ≥ 1). A new event

⟨Len, t⟩ is added to the queue for time t+ d.
• Exogenous Activation: For every exogenous process Lex, if its start condition Cstart,Lex

is satis-
fied in st+1 but was not satisfied in the previous state st−1 (i.e., it is edge-triggered), a delay
d ∼ pdelay

Lex
is sampled. A new event ⟨Lex, t⟩ is added to the queue for time t+ d.

3. State Finalization: The next world state is wt+1 = ⟨st+1, Q
′
t, Ht ∪ {st}⟩, where Q′

t is the
updated event dictionary.

Big-Step Semantics. We define a big-step transition function, Tbig(wt, Len), which computes
the resulting world state after executing a single ground endogenous process Len starting from world
state wt, or after simply waiting for the world to change (Len = NoOp).

This function simulates the environment forward by applying the small-step transition function Tsmall
iteratively. The simulation proceeds until the chosen action Len has completed or a maximum hori-
zon Kmax is reached.

The transition Tbig(wt, Len) 7→ wt+k is computed as follows:

1. Initialization:
• Initialize a step counter: k ← 0.
• Set the initial world state for the simulation: w′

k ← wt.
• The endogenous process Len is set as the command for the first step. Let the command for

step i be denoted αi. So, αk ← Len. For all subsequent steps i > 0, the command is null:
αi ← None.

2. Simulation Loop: While the action Len is still considered active and k < Kmax:
• Apply the small-step transition: w′

k+1 ← Tsmall(w
′
k, αk).

• Increment the step counter: k ← k + 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• The action Len is considered complete if its corresponding event has been executed within the
simulation. This is tracked implicitly by the simulator state. A special case is the NoOp action,
which is considered complete if any atom changes in the state, allowing the agent to wait for
exogenous events.

3. Final State: The resulting world state is the state at the end of the simulation loop: wt+k ← w′
k.

A.2 FAST FORWARD HEURISTIC FOR CAUSAL PROCESSES

The Fast-Forward (FF) heuristic (Hoffmann, 2001) is a domain-independent planning heuristic that
estimates the distance to goal by solving a relaxed version of the planning problem. We adapt
this heuristic to our causal process framework, accounting for both endogenous and exogenous
processes, as well as derived predicates.

Relaxed Planning Graph Construction The FF heuristic constructs a Relaxed Planning Graph
(RPG) by iteratively applying all applicable processes without considering delete effects. Given a
state with atoms s, the heuristic proceeds as follows:

1. Initialization: Start with the current atoms s, augmented with any derived predicates that hold
given those atoms.

2. Forward Propagation: For each layer i:
• Find all processes whose C (condition at start) is satisfied by facts in layer i− 1

• Add all add effectsE.Add from these processes to create layer i (ignoring delete effectsE.Del)
• Incrementally compute new derived predicates based on newly added primitive facts

3. Termination: Stop when the goal atoms g ⊆ layer i, or when a fixed point is reached (no new
facts can be added).

Incremental Derived Predicate Computation To efficiently handle derived predicates, we main-
tain a dependency map from auxiliary predicates to derived predicates. When new primitive facts
are added to a layer, we:

1. Identify which derived predicates might be affected based on their auxiliary predicate dependen-
cies

2. Incrementally evaluate only those derived predicates on the updated state

3. Propagate newly derived facts through the dependency chain until a fixed point is reached

This avoids redundant recomputation of derived predicates that cannot be affected by the new facts.

Relaxed Plan Extraction Once the RPG is built, we extract a relaxed plan via backward search:

1. Start with the goal atoms as subgoals to achieve

2. For each layer i from n to 1:
• For each subgoal appearing for the first time in layer i:

– If it’s a derived predicate, replace it with its supporting auxiliary predicates
– If it’s a primitive predicate, find a process from layer i− 1 that achieves it

• Add the preconditions of selected processes as new subgoals
• Count only endogenous processes toward the heuristic value

Heuristic Value The heuristic value hFF(s) is the number of endogenous processes in the ex-
tracted relaxed plan. Exogenous processes are treated as having zero cost, reflecting that they occur
automatically when their conditions are met. Formally:

hFF(s) = |{L ∈ RelaxedPlan : L is endogenous}| (1)

This provides an admissible estimate when all action costs are uniform, and guides the search toward
states that require fewer agent interventions to reach the goal.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Implementation Notes The implementation uses several optimizations:

• Add-effect indexing: We maintain a map from atoms to processes that add them, enabling effi-
cient backward search during plan extraction

• Early termination: If the RPG reaches a fixed point without achieving the goal, we return h =∞
• Zero-cost exogenous processes: These are included in the RPG construction but not counted in

the final heuristic value, allowing the planner to leverage environmental dynamics

A.3 PROBABILISTIC MODEL AND ELBO DERIVATION

The derivation for the probabilistic model is:

p({st}, {∆L
t })

= (the law of conditional probability)
T∏

t=1

p
(
st, {∆L

t }|s1:t−1, {∆L
1:t−1}

)
= (the law of conditional probability)
T∏

t=1

p
(
{∆L

t }|s1:t, {∆
L
1:t−1}

)
× p

(
st|s1:t−1, {∆L

1:t−1}
)

= (conditional independence of the delay vars.) T∏
t=1

∏
L

p
(
∆

L
t |s1:t

)×(T∏
t=1

p
(
st|s1:t−1, {∆L

1:t−1}
))

= (by the structure of our model) T∏
t=1

∏
L

pdelay
L (∆

L
t)

CL(s1:t)

×
 T∏

t=1

1

Zt
F (st|st−1)

∏
L

t−1∏
t′=1

EL(st)
CL(s1:t′)OL(st′+1:t−1)1[t=t′+∆

L

t′]


where Zt =

∑
st∈S

F (st|st−1)
∏
L

t−1∏
t′=1

EL(st)
CL(s1:t′)OL(st′+1:t−1)1[t=t′+∆

L

t′]

= (assume factored state st = (s1t , s
2
t , ...)) T∏

t=1

∏
L

pdelay
L (∆

L
t)

CL(s1:t)

×
 T∏

t=1

J∏
j=1

1

Zj
t

F (sjt |s
j
t−1)

∏
L

t−1∏
t′=1

Ej
L(s

j
t)

CL(s1:t′)OL(st′+1:t−1)1[t=t′+∆
L

t′]


where Zj

t =
∑

sjt∈Sj

F (sjt |s
j
t−1)

∏
L

t−1∏
t′=1

Ej
L(s

j
t)

CL(s1:t′)OL(st′+1:t−1)1[t=t′+∆
L

t′]

With the change of basis, our model becomes:

p({st}, {AL
t }) = T∏

t=1

∏
L

pdelay
L (A

L
t − t)CL(s1:t)

×
 T∏

t=1

J∏
j=1

1

Zj
t

F (sjt |s
j
t−1)

∏
L

t−1∏
t′=1

Ej
L(s

j
t)

CL(s1:t′)OL(st′+1:t−1)1[A
L

t′=t]


where Zj

t =
∑

ŝjt∈Sj

F (ŝjt |s
j
t−1)

∏
L

t−1∏
t′=1

Ej
L(ŝ

j
t)

CL(s1:t′)OL(st′+1:t−1)1[A
L

t′=t]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The derivation for the ELBO is:

log p ({st})

= log

∫
q({AL

t })
q({AL

t })
p({st}, {AL

t })d{A
L
t }

= logEq

[
p({st}, {AL

t })
q({AL

t })

]

≥Eq

[
log

p({st}, {AL
t })

q({AL
t })

]
=Eq

[
log p({st}, {AL

t }))
]
+Hq

[
{AL

t }
]

=

T∑
t=1

∑
L

Eq

[
CL(s1:t) log

(
pdelay
L (A

L
t − t)

)]
︸ ︷︷ ︸

expected log delay probability

+

T∑
t=1

J∑
j=1

log
(
F (sjt |s

j
t−1)

)
+
∑
L

t−1∑
t′=1

Eq

[
CL(s1:t′)OL(st′+1:t−1)1[A

L
t′ = t] log

(
Ej

L(s
j
t)
)]

︸ ︷︷ ︸
unnormalized expected log state probability

−

T∑
t=1

J∑
j=1

Eq

log
 ∑

ŝjt∈Sj

F (ŝjt |s
j
t−1)

∏
L

t−1∏
t′=1

Ej
L(ŝ

j
t)

CL(s1:t′)OL(st′+1:t−1)1[A
L

t′=t]


︸ ︷︷ ︸

Zj
t

+Hq

[
{AL

t }
]

≥ (reverse bound the expected normalization constant; independence of AL
t)

T∑
t=1

∑
L

Eq

[
CL(s1:t) log

(
pdelay
L (A

L
t − t)

)]
+

T∑
t=1

J∑
j=1

log
(
F (sjt |s

j
t−1)

)
+
∑
L

t−1∑
t′=1

Eq

[
CL(s1:t′)OL(st′+1:t−1)1[A

L
t′ = t] log

(
Ej

L(s
j
t)
)]
−

T∑
t=1

J∑
j=1

log
∑

ŝjt∈Sj

F (ŝjt |s
j
t−1)

∏
L

t−1∏
t′=1

Eq

[
Ej

L(ŝ
j
t)

CL(s1:t′)OL(st′+1:t−1)1[A
L

t′=t]
]
+Hq

[
{AL

t }
]

= (expand the expectation out independently)
T∑

t=1

∑
L

CL(s1:t)

T∑
A

L
t =t+1

q
L
t (A

L
t) log

(
pdelay
L (A

L
t − t)

)
+

T∑
t=1

J∑
j=1

log
(
F (sjt |s

j
t−1)

)
+
∑
L

t−1∑
t′=1

q
L
t′(A

L
t′ = t)CL(s1:t′)OL(st′+1:t−1) log

(
Ej

L(s
j
t)
)
−

T∑
t=1

J∑
j=1

log
∑

ŝjt∈Sj

F (ŝjt |s
j
t−1)

∏
L

t−1∏
t′=1

qLt′(AL
t′ = t) Ej

L(ŝ
j
t)

OL(st′+1:t−1)︸ ︷︷ ︸
exp(OL(st′+1:t−1) logEj

L(ŝjt))

+
(
1− qLt′(A

L
t′ = t)

)
CL(s1:t′)

+

Hq

[
{AL

t }
]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Evaluating this objective is computationally intensive due to the nested loops, but can be simplified
by some algebraic refactoring. In the first term, the second sum only needs to loop through the
non-zero terms, which are laws whose conditions are satisfied at time t.

In the second term, the sum over j and L can be reduced to a sum over sjt s that are in the effects
of some laws, and thus have non-zero log

(
Ej

L(s
j
t)
)

plus the log frame strength from unchanged
atoms, and the sum over t′ can be reduced to just steps where the law is activated, similar to the first
term above.

For experiments, we use a categorical variational distribution over the discrete support of the delays.
The variational parameters are initialized to be uniform over this support.

A.4 PROCESS LEARNING DETAILS

Given a set of trajectories Dabs, a set of predicates Ψ, and the agent’s known endogenous processes
Len, we learn the set of exogenous processes Lex. Our method follows Chitnis et al. (2022) in
assuming that for any given effect (a unique pair of add/delete atoms), there is at most one exogenous
process that causes it. While this prevents learning multiple distinct causes for the same outcome,
it significantly simplifies the search problem. Any lost expressivity can be recovered by inventing
more nuanced predicates. The learning algorithm proceeds in five steps:

1. Segment. First, we split each raw trajectory into shorter segments based on changes in the ab-
stract state. Specifically, a new segment begins whenever the set of true predicates changes. Each
segment therefore contains a sequence of constant abstract states followed by a single timestamp
where the state changes.

2. Filter. Next, we filter out any segments where the observed state change can be explained by one
of the agent’s known endogenous processes. For example, if the agent executes the Pick action
and the Holding predicate becomes true, that segment is attributed to an endogenous process
and removed from consideration. This ensures we only attempt to learn models for effects caused
by the environment’s own dynamics.

3. Cluster. We then cluster the remaining segments based on their effects. We assume that each
exogenous process has a single, atomic effect (e.g., one predicate changing from false to true).2
If a segment involves multiple predicate changes, we duplicate it into multiple clusters—one for
each change—allowing us to learn a separate process for each atomic effect. This induces a de-
terministic partition of segments by effect, so the step introduces no clustering hyperparameters.

4. Intersect. For each cluster, we identify a set of potential preconditions for the associated ef-
fect. This is done by taking the set intersection of all predicates that were true at the start of
every segment in the cluster. This step produces a superset of candidate atoms for the process’s
conditions.

5. Select. The intersection from the previous step often contains many irrelevant atoms. To find the
true preconditions, we first use an LLM to propose a small number of plausible condition sets
from this large superset (the prompt is detailed in the end of this section). We then use Bayesian
model selection to score each candidate condition set Ci and select the one that maximizes the
posterior probability:

LC∗,E = argmax
LCi,E

log p(LCi,E |Dabs) = argmax
LCi,E

(log p(Dabs|LCi,E) + log p(LCi,E))

where log p(Dabs|LCi,E) is the approximate marginal likelihood from the previous section and
log p(LCi,E) is a minimum description length prior that penalizes overly complex conditions.

Process condition proposal prompt

2This imposes no loss of generality, because separate processes can be learned for each changed predicate.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

You are an expert in automated planning and causal reasoning. Your
task is to propose the most likely sets of conditions for
specific process effects to occur.

Given a process with specific add effects and delete effects, you
need to propose multiple coherent sets of candidate atoms that
could serve as necessary conditions for the process to
successfully achieve its effects.

Key principles for proposing condition sets:
1. **Causal Relevance**: Each set should contain atoms that are

causally necessary for the effects to occur
2. **Physical Constraints**: Include atoms representing physical

constraints or requirements
3. **Domain Knowledge**: Use common sense about how processes work

in the real world
4. **State Dependencies**: Include atoms that represent

prerequisite states for the effects
5. Terminal-Progress Exclusion: If an add effect is a

terminal/complete state within a progression family, do not
include any intermediate/progress predicates from the same
family as preconditions (e.g., Partially*, Started, InProgress,
HasSome).

Available predicates in the candidate atoms are:
{PREDICATE_LISTING}

For each process, I will provide:
- Add effects: What the process makes true
- Delete effects: What the process makes false
- Candidate atoms: Potential precondition atoms to choose from

{PROCESS_EFFECTS_AND_CANDIDATES}

Please propose as many likely condition sets as you deem suitable
for each process. Each condition set should be a coherent
combination of atom indices that together form a plausible set
of preconditions. It’s possible that there is a large number of
atoms in a condition set in some cases.

Think step by step if it’s helpful before outputting your final
response, formatted strictly as:

<answer>
Process 0:
Set 1: [2, 0, 4]
Set 2: [1, 3, 0, 5]
Set 3: [2, 4]
Process 1:
Set 1: [1, 3]
Set 2: [0, 1, 3]
...
</answer>

A.5 PREDICATE LEARNING DETAILS

Our approach to predicate learning follows the general methodology of prior work (Liang et al.,
2024; Silver et al., 2023), where a foundation model (Gemini 2.5 Pro) is prompted to synthesize a set
of candidate predicates adhering to a predefined API. The final subset of predicates is then selected
by maximizing an approximate planning metric; a subset receives a higher score if it enables the
planner to find plans that are similar to successful demonstrations while requiring fewer planning
resources.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Our proposal process involves two stages. First, we prompt a VLM with a trajectory from the
environment to propose a set of high-level, symbolic concepts that could be useful for planning. We
use different prompts depending on whether the provided trajectory was successful or resulted in
failure. In the second stage, these concepts are translated into executable Python code that matches
our predicate object API.

Since the primary focus of this work is on learning abstract models in a more expressive and com-
plex model space, we simplify the perception problem. We assume the agent has access to a state
representation containing all the necessary object features to evaluate any relevant predicate, without
needing to ground them directly in image data.

In our experiments, we found it sufficient to generate a pool of candidate predicates only once,
based on the initial demonstration trajectories. This set of candidates is then retained and made
available for the agent to select from during all subsequent online learning iterations. The full
prompt templates used for predicate invention are provided below.

Predicate invention from successful trajectory prompt template

Context: You are an expert AI planning researcher. Your task is to
design task-specific predicates that can be used in a PDDL-like
model to facilitate effective and efficient robot planning.

Types and Features
The environment has the following types, each with some features:

{TYPES_IN_ENV}

Existing Predicates
You should consider the following existing predicates:

{PREDICATES_IN_ENV}

Robot’s Goal
The robot’s ultimate goal in this environment is to make the

predicate {GOAL_PREDICATE} true.

Demonstration Trajectory
The demonstrator performs a sequence of actions, ending with the

goal being achieved. The state-feature-action trajectory is
provided below.

{EXPERIENCE_IN_ENV}

Your Task
Invent a small set of the *most essential* new predicates. These

should be simple, primitive concepts that represent critical
subgoals, **conditions for subgoals**, or *any conditions
that must be maintained to prevent failure, even if failure is
not shown in the demonstration*.

Note:
- If a continuous feature represents progress toward a subgoal,

define exactly one terminal predicate for its end state (with a
high threshold near the value observed when the goal is
achieved) and ignore intermediate progress states.

- Geometry/affordance guardrail: Do not invent predicates that
rely on pose or derived geometry (distance, proximity,
alignment, path, line-of-sight, "within theta", abs() < tau),
or on capabilities (Can*, AbleTo*, Near*), unless such
relations are already provided as explicit non-pose features.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

- There maybe some risk or violation condition that must remain
safe for the goal to succeed, even if failure is not shown. For
such features include a maintenance predicate that keeps it
within a safe bound (e.g., T_low <= 0.1 for normalized
features).

Constraints
- Do *not* propose any new predicates that are purely pose-based

(i.e., based on raw x, y, z coordinates or ’rot’, ’tilt’
angles).

- Avoid composite predicates (no negation/AND/OR of other
predicates). Each proposal should state one primitive property
or relation that can be verified from the given features.

- Assertions must be clear and unambiguous, describing the
relationship or properties of variables ?<var1>, ?<var2>, etc.,
so an external observer could label truth values from the
provided object features alone.

- Replace placeholders like <predicate1_name>, <var1>, etc., with
actual names; <type1> and <obj1> with actual names and types
from the state dictionary provided. *Do not* use types that are
not present in the states (e.g., int or float).

- Do not use bold or italic fonts in your response.
- Respond only with the output section outlined below.

Output Format
Provide your predicate proposals in the following format:

‘‘‘plaintext
Predicate Proposals
* <predicate1_name>(?<var1>:<type1>, ?<var2>:<type2>, ...): <The

assertion this predicate is making>.
* ...
‘‘‘

Predicate invention from failed trajectory prompt template

Context: You are an expert AI planning researcher. Your task is to
design task-specific predicates that can be used in a PDDL-like
model to (a) detect unreachable goals early and (b) avoid
futile plans.

Types and Features
The environment has the following types, each with some features:

{TYPES_IN_ENV}

Existing Predicates
You should consider the following existing predicates:

{PREDICATES_IN_ENV}

Robot’s Goal
The robot’s goal in this environment is to make the predicate

{GOAL_PREDICATE} true.

Demonstration Trajectory
The demonstrator performs a sequence of actions, which they

thought would achieve the goal but did not. The
state-feature-action trajectory is provided below.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

{EXPERIENCE_IN_ENV}

Your Task
Invent a small set of the most essential new predicates whose

primary purpose is to expose **blocking conditions**:
primitive, easily-checkable properties that must hold somewhere
in the environment for the goal to be achievable. If a blocking
condition is true (or a required enabling condition is false),
a rational planner can conclude that the goal is unreachable
under the available actions.

Prioritize:
- Necessary preconditions for success that the demonstrator

overlooked.
- Irreversible or static properties (e.g., object class, material,

color category) that make certain transitions impossible.
- Local checks that can be evaluated from the provided object

features without simulating dynamics.

Note: Features such as colors may encode latent material or
affordance classes. You may want to propose predicates that
identify such classes when they impose hard constraints on
feasible state transitions or interactions (e.g.,
non-deformable, too-heavy, low-friction, brittle, sealed,
non-activatable).

For every new predicate, explicitly state how its truth value is
decided from the listed non-pose features. Use a deterministic
rule with concrete feature names and numeric thresholds or
categorical equalities (no vague phrases like "such as mass").
If invoking a latent property, tie it to an explicit feature
pattern.

Constraints
- Geometry/pose prohibition (hard): Do not use or derive from pose

fields (x, y, z, yaw, roll, tilt, wrist) or any geometric
constructs (distance, proximity, alignment, vector, path,
line-of-sight, "within theta", abs()<tau). Predicates
mentioning these are invalid.

- Soft blacklist (names/definitions to avoid): aligned, path,
near, distance, airstream, obstructed, adjacency (unless given
as a non-pose feature).0

- Avoid composite predicates (no negation/AND/OR of other
predicates). Each proposal should state one primitive property
or relation that can be verified from the given features.

- Assertions must be clear and unambiguous, describing the
relationship or properties of variables ?<var1>, ?<var2>, etc.,
so an external observer could label truth values from the
provided object features alone.

- Replace placeholders like <predicate1_name>, <var1>, etc., with
actual names; use only types present in the states.

- Do not use bold or italic fonts.
- Respond only with the Output section below.

Output Format
Provide your predicate proposals in the following format:

‘‘‘plaintext
Predicate Proposals
* <predicate1_name>(?<var1>:<type1>, ?<var2>:<type2>, ...): <The

assertion this predicate is making>.
* ...

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Predicate implementation prompt template

Context: You are an expert AI researcher tasked with inventing
task-specific state abstraction predicates for effective and
efficient robotic planning.

I will describe the API you should use for writing predicates and
the environment the robot is in.

The API for ‘Predicate‘ and ‘State‘ is:
{STRUCT_DEFINITION}

The environment includes the following object-type variables with
features:

{TYPES_IN_ENV}
where ‘bbox_left‘, ‘bbox_lower‘, ..., corresponds to the pixel

index of the left, lower boundary of the object bounding box in
the image starting from (0, 0) at the bottom left corner of the
image.

‘pose_x‘, ‘pose_y‘, and ‘pose_z‘ correspond to the 3d object
position in the world frame, so these are not comparable to the
bbox values.

The existing predicates are:
{PREDICATES_IN_ENV}

The states the predicates have been evaluated on are:
{LISTED_STATES}

Please implement the following predicates which would have
evaluation values that matches the following specification:

{PREDICATE_SPECS}

Implement each predicate in a seperate Python block as follows:
‘‘‘python
def _<predicate_name>_holds(state: State, objects:

Sequence[Object]) -> bool:
Implement the boolean classifier function here
...

Define the predicate name here
name: str = ...

A list of object-type variables for the predicate, using the
ones defined in the environment

param_types: List[Type] = ...
<predicate_name> = Predicate(name, param_types, classifier)
‘‘‘

- When writing the proposals, strictly adhere to the following
guidlines:
- Use only object-type variables defined in the environment
when defining ‘param_types‘.
- Don’t use any undefined constants;
- Don’t use object features that are not present in the
definition of that object type.
- Adhere to the type hints in the predicate definition
template.
- Make use of helper functions such as the classifier function
in the existing predicates, if they’re helpful.
- Your don’t need to import anything.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B ADDITIONAL ENVIRONMENT DETAILS

We describe the predicates and endogenous processes that we provide to ExoPredicator at the be-
ginning of learning. In contrast, the baselines (Manual, ViLa, MAPLE and VisualPredicator) are
provided with an expanded set of predicates that we intend our approach to discover autonomously.

B.1 COFFEE

Train/Test split The training tasks for this environment involve filling a single cup with coffee.
The held-out test tasks require the agent to fill two or three cups. In both distributions, the size and
color of the cups may vary.

Goal predicates. {CupFilled}

Initial predicates and endogenous processes. {JugAboveCup, OnTable, NotAboveCup,
CupFilled, Holding, MachineOn, JugInMachine, HandEmpty}

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 1.0000
Delay Distribution: ConstantDelay(1.0000)
Option Spec: NoOp(?robot:robot),

EndogenousProcess-PickJugFromMachine:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [HandEmpty(?robot:robot), JugInMachine(?jug:jug,
?machine:coffee_machine)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugInMachine(?jug:jug, ?
machine:coffee_machine)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

EndogenousProcess-PickJugFromTable:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), OnTable(?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), OnTable(?jug:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

EndogenousProcess-PlaceJugInMachine:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Add Effects: [HandEmpty(?robot:robot), JugInMachine(?jug:jug, ?
machine:coffee_machine)]
Delete Effects: [Holding(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(4.0000, 0.1000)
Option Spec: PlaceJugInMachine(?robot:robot, ?jug:jug, ?machine:
coffee_machine),

EndogenousProcess-PourFromCup:
Parameters: [?robot:robot, ?jug:jug, ?to_cup:cup, ?from_cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?from_cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?to_cup:cup)]
Delete Effects: [JugAboveCup(?jug:jug, ?from_cup:cup), NotAboveCup(?
robot:robot, ?jug:jug)]
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: Pour(?robot:robot, ?jug:jug, ?to_cup:cup),

EndogenousProcess-PourFromNotAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?cup:cup)]
Delete Effects: [NotAboveCup(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: Pour(?robot:robot, ?jug:jug, ?cup:cup),

EndogenousProcess-TurnMachineOn:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [HandEmpty(?robot:robot), JugInMachine(?jug:jug,
?machine:coffee_machine)]
Conditions overall: []
Conditions at end: []
Add Effects: [MachineOn(?machine:coffee_machine)]
Delete Effects: []
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: TurnMachineOn(?robot:robot, ?machine:coffee_machine)

Additional predicates. {JugFilled}

B.2 GROW

Train/Test split. In the training tasks, the agent must grow plants in two pots. For each pot, at least
one jug of a matching color is available, with a maximum of two jugs present in the environment
overall. The test tasks increase in complexity, requiring the agent to grow plants in three pots, again
with at least one matching jug available for each and a maximum of two jugs in total.

Goal predicates. {Grown}

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Initial predicates and endogenous processes. {NotAboveCup, JugOnTable, Holding}

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(1.0000, 0.1000)
Option Spec: NoOp(?robot:robot),

EndogenousProcess-PickJugFromTable:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), JugOnTable(?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugOnTable(?jug:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

EndogenousProcess-PlaceJugOnTable:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugOnTable(?jug:jug),
NotAboveCup(?robot:robot, ?jug:jug)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?jug:
jug, ?cup:cup)]
Ignore Effects: [HandEmpty, Holding, JugAboveCup, JugOnTable,
NotAboveCup]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: Place(?robot:robot, ?jug:jug),

EndogenousProcess-PourFromAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?from_cup:cup, ?to_cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?from_cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?to_cup:cup)]
Delete Effects: [JugAboveCup(?jug:jug, ?from_cup:cup)]
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: Pour(?robot:robot, ?jug:jug, ?to_cup:cup),

EndogenousProcess-PourFromNotAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?cup:cup)]
Delete Effects: [NotAboveCup(?robot:robot, ?jug:jug)]

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: Pour(?robot:robot, ?jug:jug, ?cup:cup)

Additional predicates. {SameColor}

B.3 BOIL

Train/Test split. Training tasks require the agent to boil a single jug of water. The evaluation
includes tasks that involve boiling either one or two jugs.

Goal predicates. {HumanHappy}

Initial predicates and endogenous processes. { FaucetOn, FaucetOff, HumanHappy,
JugAtBurner, Holding, JugAtFaucet, NoJugAtBurner, BurnerOff, HandEmpty,
BurnerOn, NoJugAtFaucet, JugNotAtBurnerOrFaucet}

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: ConstantDelay(1.0000)
Option Spec: NoOp(?robot:robot),

EndogenousProcess-PickJugFromBurner:
Parameters: [?robot:robot, ?jug:jug, ?burner:burner]
Conditions at start: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug,
?burner:burner)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner(?burner:
burner)]
Delete Effects: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug, ?
burner:burner)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(4.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

EndogenousProcess-PickJugFromFaucet:
Parameters: [?robot:robot, ?jug:jug, ?faucet:faucet]
Conditions at start: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug,
?faucet:faucet)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet(?faucet:
faucet)]
Delete Effects: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug, ?
faucet:faucet)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(4.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

EndogenousProcess-PickJugFromOutsideFaucetAndBurner:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet
(?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet(?jug
:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

EndogenousProcess-PlaceOnBurner:
Parameters: [?robot:robot, ?jug:jug, ?burner:burner]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner
(?burner:burner)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug, ?burner:
burner)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner(?
burner:burner)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(5.0000, 0.1000)
Option Spec: PlaceOnBurner(?robot:robot, ?burner:burner),

EndogenousProcess-PlaceOutsideFaucetAndBurner:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [Holding(?robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet(?jug:
jug)]
Delete Effects: [Holding(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PlaceOutsideBurnerAndFaucet(?robot:robot),

EndogenousProcess-PlaceUnderFaucet:
Parameters: [?robot:robot, ?jug:jug, ?faucet:faucet]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet
(?faucet:faucet)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug, ?faucet:
faucet)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet(?
faucet:faucet)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PlaceUnderFaucet(?robot:robot, ?faucet:faucet),

EndogenousProcess-SwitchBurnerOff:
Parameters: [?robot:robot, ?burner:burner]
Conditions at start: [BurnerOn(?burner:burner), HandEmpty(?robot:
robot)]
Conditions overall: []

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Conditions at end: []
Add Effects: [BurnerOff(?burner:burner)]
Delete Effects: [BurnerOn(?burner:burner)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(1.0000, 0.1000)
Option Spec: SwitchBurnerOff(?robot:robot, ?burner:burner),

EndogenousProcess-SwitchBurnerOn:
Parameters: [?robot:robot, ?burner:burner]
Conditions at start: [BurnerOff(?burner:burner), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [BurnerOn(?burner:burner)]
Delete Effects: [BurnerOff(?burner:burner)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: SwitchBurnerOn(?robot:robot, ?burner:burner),

EndogenousProcess-SwitchFaucetOff:
Parameters: [?robot:robot, ?faucet:faucet]
Conditions at start: [FaucetOn(?faucet:faucet), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [FaucetOff(?faucet:faucet)]
Delete Effects: [FaucetOn(?faucet:faucet)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(1.0000, 0.1000)
Option Spec: SwitchFaucetOff(?robot:robot, ?faucet:faucet),

EndogenousProcess-SwitchFaucetOn:
Parameters: [?robot:robot, ?faucet:faucet]
Conditions at start: [FaucetOff(?faucet:faucet), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [FaucetOn(?faucet:faucet)]
Delete Effects: [FaucetOff(?faucet:faucet)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(1.0000, 0.1000)
Option Spec: SwitchFaucetOn(?robot:robot, ?faucet:faucet)

Additional predicates. NoWaterSpilled, WaterBoiled, JugFilled,
NoJugAtFaucetOrAtFaucetAndFilled

B.4 DOMINO

Train/Test split. The training tasks takes place in a compact 3x2 grid, where the agent must
arrange one movable domino to successfully topple a single target domino. The test tasks are more
complex in three ways: the workspace is enlarged to a 4x3 grid, the number of movable dominoes
is increased to two, and the goals may require toppling either one or two target dominoes.

Goal predicates. Toppled

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Initial predicates and endogenous processes. Upright, InFrontDirection,
InitialBlock, MovableBlock, Toppled, AdjacentTo, DominoAtPos, Holding,
DominoAtRot, HandEmpty, Tilting, PosClear

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear]
Log Strength: 1.0000
Delay Distribution: ConstantDelay(1.0000)
Option Spec: NoOp(?robot:robot),

EndogenousProcess-PickDomino:
Parameters: [?robot:robot, ?domino:domino, ?pos:loc, ?rot:angle]
Conditions at start: [DominoAtPos(?domino:domino, ?pos:loc),
DominoAtRot(?domino:domino, ?rot:angle), HandEmpty(?robot:robot),
MovableBlock(?domino:domino), Upright(?domino:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?domino:domino), PosClear(?pos:
loc)]
Delete Effects: [DominoAtPos(?domino:domino, ?pos:loc), DominoAtRot(?
domino:domino, ?rot:angle), HandEmpty(?robot:robot)]
Ignore Effects: [DominoAtPos, DominoAtRot, PosClear, Tilting, Toppled
, Upright]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(4.0000, 0.1000)
Option Spec: Pick(?robot:robot, ?domino:domino),

EndogenousProcess-PlaceDomino:
Parameters: [?robot:robot, ?domino1:domino, ?domino2:domino, ?pos1:
loc, ?rot:angle]
Conditions at start: [AdjacentTo(?pos1:loc, ?domino2:domino), Holding
(?robot:robot, ?domino1:domino), PosClear(?pos1:loc), Upright(?
domino2:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [DominoAtPos(?domino1:domino, ?pos1:loc), DominoAtRot(?
domino1:domino, ?rot:angle), HandEmpty(?robot:robot)]
Delete Effects: [Holding(?robot:robot, ?domino1:domino), PosClear(?
pos1:loc)]
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear,
Tilting]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: Place(?robot:robot, ?domino1:domino, ?domino2:domino, ?
pos1:loc, ?rot:angle),

EndogenousProcess-PushStartBlock:
Parameters: [?robot:robot, ?domino:domino]
Conditions at start: [HandEmpty(?robot:robot), InitialBlock(?domino:
domino), Upright(?domino:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [Tilting(?domino:domino)]
Delete Effects: [Upright(?domino:domino)]
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(1.0000, 0.1000)
Option Spec: Push(?robot:robot, ?domino:domino)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Additional predicates. {NotHeavy}

B.5 FAN

Train/Test split. Training tasks are conducted on a small 3x3 grid containing a single wall obsta-
cle. In contrast, test tasks feature a larger 6x4 grid and more intricate mazes constructed with either
two or three walls.

Goal predicates. {BallAtLoc}

Initial predicates and endogenous processes. {SideOf, BallAtLoc, ClearLoc, FanOn,
FanOff }
EndogenousProcess-NoOp:

Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: ConstantDelay(1.0000)
Option Spec: NoOp(?robot:robot),

EndogenousProcess-TurnFanOff:
Parameters: [?robot:robot, ?fan:fan]
Conditions at start: [FanOn(?fan:fan)]
Conditions overall: []
Conditions at end: []
Add Effects: [FanOff(?fan:fan)]
Delete Effects: [FanOn(?fan:fan)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: SwitchOff(?robot:robot, ?fan:fan),

EndogenousProcess-TurnFanOn:
Parameters: [?robot:robot, ?fan:fan]
Conditions at start: [FanOff(?fan:fan)]
Conditions overall: []
Conditions at end: []
Add Effects: [FanOn(?fan:fan)]
Delete Effects: [FanOff(?fan:fan)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: SwitchOn(?robot:robot, ?fan:fan)

Additional predicates. {FanFacingSide, OppositeFan}

C ADDITIONAL EXPERIMENT DETAILS

C.1 LEARNED CAUSAL PROCESSES

We show example learned predicates and causal processes in each domain.

C.1.1 COFFEE

Learned predicates and processes. {JugFilled}

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: -0.0113
Delay Distribution: ConstantDelay(-0.0115)
Option Spec: NoOp(?robot:robot)

EndogenousProcess-PickJugFromMachine:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [HandEmpty(?robot:robot), JugInMachine(?jug:jug,
?machine:coffee_machine)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugInMachine(?jug:jug, ?
machine:coffee_machine)]
Ignore Effects: []
Log Strength: 4.8335
Delay Distribution: DiscreteGaussianDelay(13.8455, 5.3512)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PickJugFromTable:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), OnTable(?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), OnTable(?jug:jug)]
Ignore Effects: []
Log Strength: 1.5300
Delay Distribution: DiscreteGaussianDelay(23.8392, 6.6450)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PlaceJugInMachine:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugInMachine(?jug:jug, ?
machine:coffee_machine)]
Delete Effects: [Holding(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: 1.6979
Delay Distribution: DiscreteGaussianDelay(20.0003, 6.5394)
Option Spec: PlaceJugInMachine(?robot:robot, ?jug:jug, ?machine:
coffee_machine)

EndogenousProcess-PourFromCup:
Parameters: [?robot:robot, ?jug:jug, ?to_cup:cup, ?from_cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?from_cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?to_cup:cup)]
Delete Effects: [JugAboveCup(?jug:jug, ?from_cup:cup), NotAboveCup(?
robot:robot, ?jug:jug)]

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 0.0012
Delay Distribution: DiscreteGaussianDelay(1.0125, 1.0112)
Option Spec: Pour(?robot:robot, ?jug:jug, ?to_cup:cup)

EndogenousProcess-PourFromNotAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?cup:cup)]
Delete Effects: [NotAboveCup(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: 1.7079
Delay Distribution: DiscreteGaussianDelay(7.4837, 5.0596)
Option Spec: Pour(?robot:robot, ?jug:jug, ?cup:cup)

EndogenousProcess-TurnMachineOn:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [HandEmpty(?robot:robot), JugInMachine(?jug:jug,
?machine:coffee_machine)]
Conditions overall: []
Conditions at end: []
Add Effects: [MachineOn(?machine:coffee_machine)]
Delete Effects: []
Ignore Effects: []
Log Strength: 1.7298
Delay Distribution: DiscreteGaussianDelay(18.3430, 6.4795)
Option Spec: TurnMachineOn(?robot:robot, ?machine:coffee_machine)

ExogenousProcess-Op3:
Parameters: [?x0:coffee_machine, ?x2:jug]
Conditions at start: [JugInMachine(?x2:jug, ?x0:coffee_machine),
MachineOn(?x0:coffee_machine)]
Conditions overall: [JugInMachine(?x2:jug, ?x0:coffee_machine),
MachineOn(?x0:coffee_machine)]
Conditions at end: []
Add Effects: [JugFilled(?x2:jug)]
Delete Effects: []
Log Strength: 1.7168
Delay Distribution: DiscreteGaussianDelay(17.3098, 6.4991)

ExogenousProcess-Op5:
Parameters: [?x1:cup, ?x2:jug, ?x3:robot]
Conditions at start: [Holding(?x3:robot, ?x2:jug), JugAboveCup(?x2:
jug, ?x1:cup), JugFilled(?x2:jug)]
Conditions overall: [Holding(?x3:robot, ?x2:jug), JugAboveCup(?x2:jug
, ?x1:cup), JugFilled(?x2:jug)]
Conditions at end: []
Add Effects: [CupFilled(?x1:cup)]
Delete Effects: []
Log Strength: 1.7250
Delay Distribution: DiscreteGaussianDelay(4.5577, 1.8173)

C.1.2 GROW

Learned predicates and processes. {ColorMatches}
EndogenousProcess-NoOp:

Parameters: [?robot:robot]
Conditions at start: []

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: -0.0113
Delay Distribution: DiscreteGaussianDelay(25.6750, 6.9284)
Option Spec: NoOp(?robot:robot)

EndogenousProcess-PickJugFromTable:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), JugOnTable(?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugOnTable(?jug:jug)]
Ignore Effects: []
Log Strength: 2.3222
Delay Distribution: DiscreteGaussianDelay(32.9836, 6.9427)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PlaceJugOnTable:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugOnTable(?jug:jug),
NotAboveCup(?robot:robot, ?jug:jug)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?jug:
jug, ?cup:cup)]
Ignore Effects: [HandEmpty, Holding, JugAboveCup, JugOnTable,
NotAboveCup]
Log Strength: 1.9316
Delay Distribution: DiscreteGaussianDelay(24.9979, 6.6815)
Option Spec: Place(?robot:robot, ?jug:jug)

EndogenousProcess-PourFromAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?from_cup:cup, ?to_cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?from_cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?to_cup:cup)]
Delete Effects: [JugAboveCup(?jug:jug, ?from_cup:cup)]
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: -0.0126
Delay Distribution: DiscreteGaussianDelay(1.0035, 1.0031)
Option Spec: Pour(?robot:robot, ?jug:jug, ?to_cup:cup)

EndogenousProcess-PourFromNotAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?cup:cup)]
Delete Effects: [NotAboveCup(?robot:robot, ?jug:jug)]
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 2.2282
Delay Distribution: DiscreteGaussianDelay(28.9585, 6.9970)
Option Spec: Pour(?robot:robot, ?jug:jug, ?cup:cup)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

ExogenousProcess-Op0:
Parameters: [?x1:cup, ?x3:jug, ?x4:robot]
Conditions at start: [ColorMatches(?x3:jug, ?x1:cup), CupOnTable(?x1:
cup), Holding(?x4:robot, ?x3:jug), JugAboveCup(?x3:jug, ?x1:cup)]
Conditions overall: [ColorMatches(?x3:jug, ?x1:cup), CupOnTable(?x1:
cup), Holding(?x4:robot, ?x3:jug), JugAboveCup(?x3:jug, ?x1:cup)]
Conditions at end: []
Add Effects: [Grown(?x1:cup)]
Delete Effects: []
Log Strength: 1.2238
Delay Distribution: DiscreteGaussianDelay(30.6220, 6.7903)

C.1.3 BOIL

Learned predicates and processes. {JugIsHot, JugIsFull, NotSpilling}
EndogenousProcess-NoOp:

Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: -0.0113
Delay Distribution: ConstantDelay(-0.0115)
Option Spec: NoOp(?robot:robot)

EndogenousProcess-PickJugFromBurner:
Parameters: [?robot:robot, ?jug:jug, ?burner:burner]
Conditions at start: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug,
?burner:burner)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner(?burner:
burner)]
Delete Effects: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug, ?
burner:burner)]
Ignore Effects: []
Log Strength: -0.0043
Delay Distribution: DiscreteGaussianDelay(1.0085, 1.0069)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PickJugFromFaucet:
Parameters: [?robot:robot, ?jug:jug, ?faucet:faucet]
Conditions at start: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug,
?faucet:faucet)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet(?faucet:
faucet)]
Delete Effects: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug, ?
faucet:faucet)]
Ignore Effects: []
Log Strength: 1.9823
Delay Distribution: DiscreteGaussianDelay(23.5668, 6.6476)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PickJugFromOutsideFaucetAndBurner:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet
(?jug:jug)]

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet(?jug
:jug)]
Ignore Effects: []
Log Strength: 1.1899
Delay Distribution: DiscreteGaussianDelay(43.4278, 6.8760)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PlaceOnBurner:
Parameters: [?robot:robot, ?jug:jug, ?burner:burner]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner
(?burner:burner)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug, ?burner:
burner)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner(?
burner:burner)]
Ignore Effects: []
Log Strength: 2.1507
Delay Distribution: DiscreteGaussianDelay(21.9568, 6.6072)
Option Spec: PlaceOnBurner(?robot:robot, ?burner:burner)

EndogenousProcess-PlaceOutsideFaucetAndBurner:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [Holding(?robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet(?jug:
jug)]
Delete Effects: [Holding(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: -0.0025
Delay Distribution: DiscreteGaussianDelay(0.9866, 0.9832)
Option Spec: PlaceOutsideBurnerAndFaucet(?robot:robot)

EndogenousProcess-PlaceUnderFaucet:
Parameters: [?robot:robot, ?jug:jug, ?faucet:faucet]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet
(?faucet:faucet)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug, ?faucet:
faucet)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet(?
faucet:faucet)]
Ignore Effects: []
Log Strength: 1.9426
Delay Distribution: DiscreteGaussianDelay(41.1660, 6.8798)
Option Spec: PlaceUnderFaucet(?robot:robot, ?faucet:faucet)

EndogenousProcess-SwitchBurnerOff:
Parameters: [?robot:robot, ?burner:burner]
Conditions at start: [BurnerOn(?burner:burner), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [BurnerOff(?burner:burner)]
Delete Effects: [BurnerOn(?burner:burner)]
Ignore Effects: []
Log Strength: 5.6200

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Delay Distribution: DiscreteGaussianDelay(9.8894, 4.0791)
Option Spec: SwitchBurnerOff(?robot:robot, ?burner:burner)

EndogenousProcess-SwitchBurnerOn:
Parameters: [?robot:robot, ?burner:burner]
Conditions at start: [BurnerOff(?burner:burner), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [BurnerOn(?burner:burner)]
Delete Effects: [BurnerOff(?burner:burner)]
Ignore Effects: []
Log Strength: 1.9554
Delay Distribution: DiscreteGaussianDelay(32.0574, 6.7500)
Option Spec: SwitchBurnerOn(?robot:robot, ?burner:burner)

EndogenousProcess-SwitchFaucetOff:
Parameters: [?robot:robot, ?faucet:faucet]
Conditions at start: [FaucetOn(?faucet:faucet), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [FaucetOff(?faucet:faucet)]
Delete Effects: [FaucetOn(?faucet:faucet)]
Ignore Effects: []
Log Strength: 1.4501
Delay Distribution: DiscreteGaussianDelay(27.5714, 6.7946)
Option Spec: SwitchFaucetOff(?robot:robot, ?faucet:faucet)

EndogenousProcess-SwitchFaucetOn:
Parameters: [?robot:robot, ?faucet:faucet]
Conditions at start: [FaucetOff(?faucet:faucet), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [FaucetOn(?faucet:faucet)]
Delete Effects: [FaucetOff(?faucet:faucet)]
Ignore Effects: []
Log Strength: 1.7156
Delay Distribution: DiscreteGaussianDelay(35.2949, 6.7557)
Option Spec: SwitchFaucetOn(?robot:robot, ?faucet:faucet)

ExogenousProcess-Op0:
Parameters: [?x1:faucet, ?x2:jug]
Conditions at start: [FaucetOn(?x1:faucet), JugAtFaucet(?x2:jug, ?x1:
faucet)]
Conditions overall: [FaucetOn(?x1:faucet), JugAtFaucet(?x2:jug, ?x1:
faucet)]
Conditions at end: []
Add Effects: [JugIsFull(?x2:jug)]
Delete Effects: []
Log Strength: 1.2791
Delay Distribution: DiscreteGaussianDelay(33.1148, 6.7873)

ExogenousProcess-Op1:
Parameters: [?x0:burner, ?x2:jug]
Conditions at start: [BurnerOn(?x0:burner), JugAtBurner(?x2:jug, ?x0:
burner), JugIsFull(?x2:jug)]
Conditions overall: [BurnerOn(?x0:burner), JugAtBurner(?x2:jug, ?x0:
burner), JugIsFull(?x2:jug)]
Conditions at end: []
Add Effects: [JugIsHot(?x2:jug)]

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Delete Effects: []
Log Strength: 1.9391
Delay Distribution: DiscreteGaussianDelay(17.6401, 6.4452)

ExogenousProcess-Op2:
Parameters: [?x0:burner, ?x1:faucet, ?x2:human, ?x3:jug, ?x4:robot]
Conditions at start: [BurnerOff(?x0:burner), FaucetOff(?x1:faucet),
HandEmpty(?x4:robot), JugIsFull(?x3:jug), JugIsHot(?x3:jug),
NotSpilling(?x1:faucet)]
Conditions overall: [BurnerOff(?x0:burner), FaucetOff(?x1:faucet),
HandEmpty(?x4:robot), JugIsFull(?x3:jug), JugIsHot(?x3:jug),
NotSpilling(?x1:faucet)]
Conditions at end: []
Add Effects: [HumanHappy(?x2:human, ?x3:jug, ?x0:burner)]
Delete Effects: []
Log Strength: 1.9474
Delay Distribution: DiscreteGaussianDelay(5.5717, 4.1486)

ExogenousProcess-Op3:
Parameters: [?x1:faucet]
Conditions at start: [FaucetOn(?x1:faucet), NoJugAtFaucet(?x1:faucet)
, NotSpilling(?x1:faucet)]
Conditions overall: [FaucetOn(?x1:faucet), NoJugAtFaucet(?x1:faucet),
NotSpilling(?x1:faucet)]
Conditions at end: []
Add Effects: []
Delete Effects: [NotSpilling(?x1:faucet)]
Log Strength: -0.0029
Delay Distribution: DiscreteGaussianDelay(1.0005, 1.0052)

C.1.4 DOMINO

Learned predicates and processes. {NOT-IsImmovable}

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear]
Log Strength: 1.0000
Delay Distribution: ConstantDelay(1.0000)
Option Spec: NoOp(?robot:robot)

EndogenousProcess-PickDomino:
Parameters: [?robot:robot, ?domino:domino, ?pos:loc, ?rot:angle]
Conditions at start: [DominoAtPos(?domino:domino, ?pos:loc),
DominoAtRot(?domino:domino, ?rot:angle), HandEmpty(?robot:robot),
MovableBlock(?domino:domino), Upright(?domino:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?domino:domino), PosClear(?pos:
loc)]
Delete Effects: [DominoAtPos(?domino:domino, ?pos:loc), DominoAtRot(?
domino:domino, ?rot:angle), HandEmpty(?robot:robot)]
Ignore Effects: [DominoAtPos, DominoAtRot, PosClear, Tilting, Toppled
, Upright]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(14.0000, 0.1000)
Option Spec: Pick(?robot:robot, ?domino:domino)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

EndogenousProcess-PlaceDomino:
Parameters: [?robot:robot, ?domino1:domino, ?domino2:domino, ?pos1:
loc, ?rot:angle]
Conditions at start: [AdjacentTo(?pos1:loc, ?domino2:domino), Holding
(?robot:robot, ?domino1:domino), PosClear(?pos1:loc), Upright(?
domino2:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [DominoAtPos(?domino1:domino, ?pos1:loc), DominoAtRot(?
domino1:domino, ?rot:angle), HandEmpty(?robot:robot)]
Delete Effects: [Holding(?robot:robot, ?domino1:domino), PosClear(?
pos1:loc)]
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear,
Tilting]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(8.0000, 0.1000)
Option Spec: Place(?robot:robot, ?domino1:domino, ?domino2:domino, ?
pos1:loc, ?rot:angle)

EndogenousProcess-PushStartBlock:
Parameters: [?robot:robot, ?domino:domino]
Conditions at start: [HandEmpty(?robot:robot), InitialBlock(?domino:
domino), Upright(?domino:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [Tilting(?domino:domino)]
Delete Effects: [Upright(?domino:domino)]
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(8.0000, 0.1000)
Option Spec: Push(?robot:robot, ?domino:domino)

ExogenousProcess-Op0:
Parameters: [?x1:domino, ?x2:domino, ?x11:direction]
Conditions at start: [InFrontDirection(?x1:domino, ?x2:domino, ?x11:
direction), NOT-IsImmovable(?x1:domino), NOT-IsImmovable(?x2:domino),
Tilting(?x1:domino), Upright(?x2:domino)]
Conditions overall: [InFrontDirection(?x1:domino, ?x2:domino, ?x11:
direction), NOT-IsImmovable(?x1:domino), NOT-IsImmovable(?x2:domino),
Tilting(?x1:domino), Upright(?x2:domino)]
Conditions at end: []
Add Effects: [Tilting(?x2:domino)]
Delete Effects: []
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)

ExogenousProcess-Op1:
Parameters: [?x1:domino, ?x2:domino, ?x11:direction]
Conditions at start: [InFrontDirection(?x1:domino, ?x2:domino, ?x11:
direction), NOT-IsImmovable(?x1:domino), NOT-IsImmovable(?x2:domino),
Tilting(?x1:domino), Upright(?x2:domino)]
Conditions overall: [InFrontDirection(?x1:domino, ?x2:domino, ?x11:
direction), NOT-IsImmovable(?x1:domino), NOT-IsImmovable(?x2:domino),
Tilting(?x1:domino), Upright(?x2:domino)]
Conditions at end: []
Add Effects: []
Delete Effects: [Upright(?x2:domino)]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)

ExogenousProcess-Op2:
Parameters: [?x1:domino]

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Conditions at start: [Tilting(?x1:domino)]
Conditions overall: [Tilting(?x1:domino)]
Conditions at end: []
Add Effects: []
Delete Effects: [Tilting(?x1:domino)]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(5.0000, 0.1000)

ExogenousProcess-Op3:
Parameters: [?x1:domino]
Conditions at start: [Tilting(?x1:domino)]
Conditions overall: [Tilting(?x1:domino)]
Conditions at end: []
Add Effects: [Toppled(?x1:domino)]
Delete Effects: []
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(5.0000, 0.1000)

C.1.5 FAN

Learned predicates and processes. {FanFaces}

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: 0.0000
Delay Distribution: ConstantDelay(0.0000)
Option Spec: NoOp(?robot:robot)

EndogenousProcess-TurnFanOff:
Parameters: [?robot:robot, ?fan:fan]
Conditions at start: [FanOn(?fan:fan)]
Conditions overall: []
Conditions at end: []
Add Effects: [FanOff(?fan:fan)]
Delete Effects: [FanOn(?fan:fan)]
Ignore Effects: []
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(11.0000, 0.1000)
Option Spec: SwitchOff(?robot:robot, ?fan:fan)

EndogenousProcess-TurnFanOn:
Parameters: [?robot:robot, ?fan:fan]
Conditions at start: [FanOff(?fan:fan)]
Conditions overall: []
Conditions at end: []
Add Effects: [FanOn(?fan:fan)]
Delete Effects: [FanOff(?fan:fan)]
Ignore Effects: []
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(13.6667, 2.0817)
Option Spec: SwitchOn(?robot:robot, ?fan:fan)

ExogenousProcess-Op1:
Parameters: [?x0:ball, ?x2:fan, ?x3:fan, ?x14:loc, ?x15:loc, ?x16:
side]

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Conditions at start: [BallAtLoc(?x0:ball, ?x14:loc), ClearLoc(?x15:
loc), FanFaces(?x2:fan, ?x16:side), FanOff(?x3:fan), FanOn(?x2:fan),
SideOf(?x15:loc, ?x14:loc, ?x16:side)]
Conditions overall: [BallAtLoc(?x0:ball, ?x14:loc), ClearLoc(?x15:loc
), FanFaces(?x2:fan, ?x16:side), FanOff(?x3:fan), FanOn(?x2:fan),
SideOf(?x15:loc, ?x14:loc, ?x16:side)]
Conditions at end: []
Add Effects: [BallAtLoc(?x0:ball, ?x15:loc)]
Delete Effects: [BallAtLoc(?x0:ball, ?x14:loc)]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(21.5000, 8.2407)

C.2 FURTHER LEARNING AND PLANNING STATISTICS

Each online learning iteration of ExoPredicator takes approximately 30–360 seconds wall-clock
time depending on the domain, using 32 CPU cores and no GPU. In comparison, the HRL baseline
requires on average about 600 seconds per online iteration, and its runtime increases as it accumu-
lates more data (taking longer to converge), reaching up to 3200 seconds in some cases. The VLM
planning baseline does not perform online learning, but can incur substantial test-time cost because
it issues computationally expensive VLM calls every time it generates a plan.

Monetaryly, assuming Gemini 2.5 Pro with standard pricing, a representative online iteration con-
suming a combined 10,000 input tokens and 1,000 output tokens would cost approximately $0.0225
in total: $0.0125 for inputs (10,000 / 1,000,000 × 1.25) and $0.01 for outputs (1,000 / 1,000,000 ×
10).

The following table lists the success rate and planning time statistics.

Manual Ours No invent
Environment Succ Time Succ Time Succ Time
Coffee 99.3 0.612 99.3 0.851 0.0 –
Grow 92.0 0.608 93.3 0.922 0.0 –
Boil 100.0 15.467 92.7 12.204 0.0 –
Domino 97.3 31.710 98.7 21.299 62.0 0.000
Fan 97.3 16.143 97.3 58.244 0.0 –

C.3 PRIORS AND DISTRIBUTIONS

In all experiments, we model process delays with a truncated discrete Gaussian distribution over
positive integers {1, . . . , 300}. The distribution is parameterized by a log-mean and a log-standard-
deviation.

The log-mean, log-standard-deviation, and log-process-weights are initialized from a normal distri-
bution with mean 0 and standard deviation 0.01.

41

	Introduction
	Background and Problem Formulation
	Abstracting States, Time, and Causal Processes
	Planning with Causal Processes
	Process Learning and Predicate Invention
	Parameter Learning via Variational Inference
	Learning Exogenous Processes: Bayesian Model Selection, LLM Guidance
	Learning State Abstractions: Program Synthesis and Local Search

	Experiments
	Related Works
	Conclusion
	Appendix Table of Contents
	Additional Approach details
	Causal Process Semantics
	Fast Forward Heuristic for Causal Processes
	Probabilistic Model and ELBO Derivation
	Process Learning details
	Predicate Learning Details

	Additional Environment details
	Coffee
	Grow
	Boil
	Domino
	Fan

	Additional Experiment Details
	Learned Causal Processes
	Further Learning and Planning Statistics
	Priors and Distributions

