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ABSTRACT

Long-horizon embodied planning is challenging because the world does not only
change through an agent’s actions: exogenous processes (e.g., water heating,
dominoes cascading) unfold concurrently with the agent’s actions. We propose
a framework for abstract world models that jointly learns (i) symbolic state rep-
resentations and (ii) causal processes for both endogenous actions and exogenous
mechanisms. Each causal process models the time course of a stochastic cause-
effect relation. We learn these world models from limited data via variational
Bayesian inference combined with LLM proposals. Across five simulated tabletop
robotics environments, the learned models enable fast planning that generalizes to
held-out tasks with more objects and more complex goals, outperforming a range
of baselines.

1 INTRODUCTION

For an agent to think about the future consequences of its actions, does it need to simulate the world
pixel-by-pixel, frame-by-frame, or can it reason more abstractly? Consider planning a flight to an-
other country: we can reason about buying tickets, changing airplanes, and crossing borders without
committing to the color of the airplane or the milliseconds before takeoff. Absent abstraction, plan-
ning over long time horizons would be intractable, because every minute detail of the world would
need to be simulated. This intuition is captured by abstract world models, (Konidaris, 2019; Wong
et al., 2025) which retain information essential for decision-making, while hiding irrelevant details.

Recent work on learning abstract world models (e.g., (Liang et al., 2024; Athalye et al., 2024))
assumes that the world changes only by direct, instantaneous actions. But in the real world, our
actions are not instantaneous, and are only half the story: the external world has its own causal
mechanisms, which unfold continuously in time concurrent with our own actions. For instance,
consider boiling water (Figure 1). After switching on a kettle, the water’s temperature continuously
rises independently of the agent’s subsequent actions until it finally boils. A good abstract world
model must therefore abstract not just the states, but also the temporal granularity: decision-makers
should know that switching on a kettle triggers another causal mechanism, which eventually results
in boiling, without reasoning about the exact timecourse of the water’s temperature (i.e., a robot
could chop vegetables while waiting for the water to boil). Such abstraction is conceptually separate
from options/skills/high-level actions, which abstract the timecourse of one’s own actions, but do
not abstract the timecourse of external causal processes in the outside world.

The standard planning representation used for decades, PDDL, also fails to capture this: it only mod-
els the effects of one’s own actions, and treats each action as instantaneous. Learning a symbolic
PDDL planning model (Silver et al., 2023; Liang et al., 2024) combinatorially explodes with respect
to temporal granularity. Vision-language models (VLMs) and vision-language-action models (Team
et al., 2023; Black et al., 2025) could in principle reason about external causal mechanisms, but gen-
eralize poorly to novel situations, particularly when reasoning about temporal physical constraints.

To address these challenges, we introduce a framework for learning world models that abstract both
the state space, and the timecourse of causal processes. We contribute the following: (1) A symbolic
yet learnable representation of abstract world models for environments with temporal dynamics and
external causal processes. (2) A state abstraction learner that leverages the commonsense knowledge
of foundation models. (3) An efficient Bayesian inference method for learning the parameters and
structures of these causal models. (4) A fast planner for reasoning with the proposed representation.
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Figure 1: Dynamic environments include both endogenous processes (actions under the agent’s
direct control, such as Switch On Faucet) and exogenous processes (e.g., Jug Filling with Water)
that evolve on their own. Planning requires reasoning about both kinds of processes.

2 BACKGROUND AND PROBLEM FORMULATION

We consider learning abstract world models for robot planning in environments whose causal mech-
anisms include both the agent’s own action space, and external mechanisms not directly under the
agent’s control. The actual environment operates frame-by-frame (high temporal granularity), and
exposes a state space with object tracking features and pixel-level visual appearance (high-resolution
perception). We assume built-in motor skills, such as Pick/Place, a common assumption (Ku-
mar et al., 2024; Silver et al., 2021). The goal is to learn a world model abstractly describing the
timecourse of causal processes, and to generalize to held-out decision-making tasks.

Environments. An environment E is a tuple ⟨X ,U , C, f,Λ⟩ where X is a state space, U ⊆ Rm is a
low-level action space (e.g. motor torques), C is a set of controllers for skills (e.g. Pick/Place),
f : X × U → X is a transition function, and Λ is a set of object types (object classifier outputs).

Tasks. Within an environment, a task T is a tuple ⟨O, x0, g⟩ of objects O, initial state x0, and goal
g. The allowed states depend on the objectsO, so we write the state space as XO (or sometimes just
X when the objects are clear from context). Each state x ∈ XO includes associated object features,
such as 3D object position. The environment is shared across tasks.

3 ABSTRACTING STATES, TIME, AND CAUSAL PROCESSES

Environments present a high-dimensional observation space that evolves frame-by-frame. Abstract
world models hide this complexity behind a state abstraction, which distills a small set of features
from observations, together with causal processes, which describe temporal dynamics (Figure 2).

State Abstraction with Predicates. A predicate ψ – after being parameterized by specific objects
– is a Boolean feature of states. A predicate is represented as a Python function that queries a VLM
to inspect the robot’s visual input. We treat this as function ψ : Om → (X → B) that given m
objects predicts whether a predicate holds in a state. A set of predicates Ψ induces an abstract state
s corresponding to all the predicate/object combinations (ground atoms) that hold in that state:

s := ABSTRACTΨ(x) = {(ψ, o1, ..., om) : ψ(o1, ..., om) holds in state x, for ψ ∈ Ψ and oj ∈ O}

Thus an abstract state is the collection of symbolic facts the agent believes about the world. This
style of state abstraction is standard in robot task planning (Garrett et al., 2021). We write S for the
set of possible abstract states.

Causal Processes: Informal intuition. A causal process coarsely models a cause-effect relation.
For example, opening a faucet above a bucket triggers a chain of cause-effect relations: a stopper
opens, hidden pipes fill with water, water rises in the bucket, and eventually the bucket is filled. For
decision making, many such details are irrelevant, or omitted from the state abstraction. A causal
process therefore abstracts away such details by saying that certain conditions (the “cause”) later lead
to other conditions (the “effect”). We further distinguish two kinds of causal processes. Endogenous
processes correspond to the agent’s high-level actions or skills. They represent operations that are
under the agent’s direct control, such as switching a faucet on. Exogenous processes describe the
background dynamics of the environment. They represent processes that unfold autonomously once
certain conditions hold, independent of whether the conditions were created by the agent or by some
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Figure 2: Raw input maps to a state abstraction via predicates: short Python programs detecting
binary features. Learning the state abstraction means synthesizing these programs. Temporal dy-
namics of abstract states are governed by causal processes: either endogenous processes (actions),
or exogenous processes in the outside world. Causes realize their effects only after a delay, and can
be interleaved. Learning causal processes allows planning by breaking frame-by-frame dynamics
into discrete jumps between abstract states. (Illustration simplified; see text.)

external mechanism, such as a kettle filling with water after being placed under a running tap. This
separation allows the agent to reason about the consequences of its actions while also anticipating
changes initiated by the environment itself. Figure 2 (top right) shows concrete examples of such
causal processes (e.g., switching a burner on, filling a jug), with their conditions, delayed effects,
and whether they are endogenous or exogenous.1

Causal Processes: Formalization. Abstract world models are equipped with a set of causal pro-
cesses L. Each causal process L ∈ L is defined by a schema tuple, ⟨PAR, C,O,E,W, pdelay⟩ (see
fig. 2, top right, for concrete schema examples), where:

• PAR (parameters) is a list of typed variables present in the condition or effect of the process.

• C is the condition at start, a set of atoms that must be true for the process to be activated.

• O is the condition overall, a set of atoms that must remain true throughout the process’s duration.

• E is the effect, an add and a delete set of atoms describing the state change upon completion.

• W ∈ R (log strength) quantifies how likely the effect will happen when the conditions are satis-
fied.

• pdelay is a probability distribution over the delay between the process’s activation and effect (Ap-
pendix C.2).

Endogenous processes further include a skill c ∈ C. A schema is instantiated into a ground causal
process L = ⟨PAR, C,O,E,W, pdelay⟩ (and optionally c) by substituting its parameters with specific
objects. For example, the endogenous process SwitchBurnerOn has parameters ?robot and
?burner. Its conditionC requires that the burner is off and the robot’s hand is free. Once executed,
its effect E (the burner being on) occurs after a delay sampled from pdelay.

1Our terminology differs from standard definitions in causality (Pearl, 2009) and recent RL literature (e.g.,
Efroni et al. (2021)), where “exogenous” typically refers to variables that are determined outside the system
or are irrelevant to the task. In contrast, our exogenous processes are task-relevant and can be triggered by
the agent (and are thus causally downstream), but differ in that they evolve autonomously without requiring
continuous agent actuation. This aligns with the definition of “processes” in temporal planning frameworks
like PDDL+ (Fox & Long, 2002)
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Interdependence of state abstraction and causal processes. The right abstractions depend on
downstream tasks, as our goal is generalization to unseen planning problems. Tasks demanding
a more detailed state abstraction will generally require modeling more temporal dynamics. This
couples the causal processes to the state abstraction.

Probabilistic Semantics. The causal processes define how abstract states evolve over time. Math-
ematically, L defines a probabilistic generative model over sequences of abstract states {st} at fine-
grained timesteps t ∈ N. At each step, active causal processes contribute pressure for their effect
atoms to change, while a separate frame term prefers all atoms to remain as they are. To write this
compactly, we use indicator functions for the conditions at start: CL(s1:t) is 1 iff all atoms in the
condition-at-start set C of ground process L are satisfied at state st but not satisfied at state st−1,
and 0 otherwise; similarly, OL(st′+1:t−1) is 1 iff all atoms in the overall-condition set O hold at
every step between t′ + 1 and t− 1. We probabilistically model the effect of ground process L as a
potential Ej

L upon each feature j of the abstract state:

logEj
L(s

j) =


WL × sj if j ∈ EL.Add
WL × (1− sj) if j ∈ EL.Del
0 otherwise.

We similarly define a frame axiom potential logF (sjt |s
j
t−1) =WF × 1

[
sjt = sjt−1

]
, which encour-

ages states to stay constant over time; WF is a learnable parameter. Because causal processes have
stochastic delays, we associate each ground causal process L with random variables {∆L

t } for the
delay should the process trigger at time t, i.e. ∆L

t ∼ pdelay
L . With these definitions in hand, the joint

distribution over delays and abstract states is

p(s1:t, {∆L
1:t} | s0) =

∏
t

p
(
st | s<t, {∆L

<t}
)∏

L

p(∆
L
t |s≤t) (autoregressive)

p
(
st | s<t, {∆L

<t}
)
=
∏
j

p
(
sjt | s<t, {∆L

<t}
)

(next-state factorizes over features)

p
(
sjt | s<t, {∆L

<t}
)
∝ F (sjt |s

j
t−1)

∏
L∈L
t′<t

Ej
L(s

j
t )

CL(s1:t′ )OL(st′+1:t−1)1[t=t′+∆
L

t′ ] (cause-effect)

p(∆
L
t |s≤t) = pdelay

L (∆
L
t )

CL(s1:t) (delay distribution for when condition at start holds)
But this formalization simulates every fine-grained timestep: reasoners should abstract away tem-
poral details like the milliseconds before a domino falls. We describe next how to do that.

4 PLANNING WITH CAUSAL PROCESSES

We model the world as changing abruptly in discrete “jumps” between abstract states. Planning
can clump together stretches of time where the abstract state remains constant. We define a big-step
transition function, Tbig, which runs the world model until the abstract state changes, and optionally
takes as input an action to initiate. The agent doesn’t always need to manipulate an object directly; it
can also choose to wait for an exogenous process to unfold on its own (such as waiting for water to
boil). The agent achieves this by initiating a special NoOp (no operation) action, which terminates
as soon as the abstract state changes. Formalizing Tbig is relatively technical; see Appendix A.1.

This big-step function allows a planner to perform forward search in the space of high-level ac-
tions, simulating the concurrent and delayed effects of both its own actions and the environment’s
exogenous dynamics. Given causal processes L and a task, the agent performs an A* search over se-
quences of ground endogenous processes. The search uses Tbig to determine successor states and we
design a version of the fast-forward heuristic (Hoffmann, 2001) to guide the search (Appendix A.2).

5 PROCESS LEARNING AND PREDICATE INVENTION

Our goal is to learn how the outside world works: we assume an unfamiliar environment, but not
an unfamiliar body. We therefore equip the agent with some basic predicates (such as whether
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Figure 3: The online learning loop, where the agent repeatedly uses its current model to plan and
interact with the world, then refines that model by learning new predicates and causal processes from
the experience. The figure shows an example where the agent’s initial model in iteration i leads to a
failed plan (Water Spilled!). After observing this failure and updating its knowledge (“Diff Learned
Model”), the agent creates a successful plan in iteration i+ 1 (“Diff plan after learning”).

it is holding an object) and endogenous causal processes defining its own action space, such as
Pick/Place (Appendix B), and learn the remaining causal processes and state abstractions.

We initialize with 1-2 demonstration trajectories, and then perform online learning (Figure 3). On-
line learning involves planning to solve training tasks to collect further trajectories (when planning
fails, random actions are taken). At each stage of online learning, we have a dataset of state-action
trajectories Dlow = {(x0, c0, . . . , cT−1, xT )}. Given predicates Ψ, this generates a dataset of ab-
stract state-action trajectories Dabs = {(s0, c0, . . . , cT−1, sT )}. Given this dataset, we learn predi-
cates (Section 5.3), exogenous processes (section 5.2), and continuous parameters (Section 5.1)—
described in a reverse order, because each component is used in the previous component during
learning.

5.1 PARAMETER LEARNING VIA VARIATIONAL INFERENCE

Each causal process has continuous parameters for the delay distribution pdelay
L and the proba-

bilistic weight WL, and we have a global parameter WF for the frame axiom. Fixing all dis-
crete structure—including the predicates—we seek parameters maximizing the marginal likelihood
p(Dabs) = p(s1:t|s0) =

∑
{∆L

1:t} p(s1:t, {∆
L
1:t}|s0). This is intractable because there are combina-

torially many ways of timing the cause-effects.

We therefore approximate the marginal likelihood by introducing variational distributions over the
time at which each process realizes its effect: categorical distribution qLt (A

L
t ) encodes belief about

A
L
t , the “arrival time” of the effect coming from the process L due to its activation at time t. This

is a change of basis from delays to absolute times, AL
t = ∆

L
t + t, which leads to a tidier ELBO

decomposition. We provide the full expression and derivation of the following variational lower
bound on the marginal likelihood in Appendix A.3, which we optimize using Adam (Kingma, 2014).

log p(s1:t) ≥ Eq

[
log p

(
{AL

t }
)]

︸ ︷︷ ︸
delay model

+ Eq

[
log p

(
{st} | {AL

t }
)]

︸ ︷︷ ︸
abstract dynamics

+ Hq

[
{AL

t }
]

︸ ︷︷ ︸
entropy regularizer

5.2 LEARNING EXOGENOUS PROCESSES: BAYESIAN MODEL SELECTION, LLM GUIDANCE

We learn causal processes by assuming a fixed set of predicates Ψ (which fixes the abstract state
space SΨ): we segment the trajectories into shorter clips, where each clip consists of a sequence of
constant abstract states followed by a final state in which one or more atoms change value; cluster
segments according to which features in the abstract state were changed; then learn one process per
cluster by optimizing Bayesian criteria. To make optimization tractable, we use an LLM to propose
different symbolic forms for processes and then score them with our Bayesian objective.
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Given a set of trajectories Dabs, we would ideally learn the causal processes L⋆ maximizing

L⋆ = argmax
L

p(L|Dabs) = argmax
L

p(Dabs|L)p(L) (intractable)

where p(L) is a minimum description length prior and p(Dabs|L) is approximated by Section 5.1.
As this optimization is intractable, we learn a separate process LC for each cluster C:

L⋆ =
⋃

C∈CLUSTER(Dabs)

{LC} where LC = argmax
L

p(C|L)p(L) (still intractable)

But computing argmaxL p(C|L)p(L) means optimizing over combinatorially many discrete struc-
tures for L. To narrow down the discrete search, we prompt a language model with the cluster and
ask it to propose a small number of candidate processes:

L⋆ =
⋃

C∈CLUSTER(Dabs)

{LC} where LC = argmax
L∈PROMPT(C)

p(C|L)p(L) (tractable)

Appendix A.4 fully specifies this algorithm, which builds on Chitnis et al. (2022).

5.3 LEARNING STATE ABSTRACTIONS: PROGRAM SYNTHESIS AND LOCAL SEARCH

The abstract state space is defined by a collection of short Python programs (predicates) which check
for an abstract feature within the raw perceptual input. Learning the state abstraction therefore means
synthesizing that set of programs. One strategy for learning the predicates is to propose a large set
of candidate predicates and then use discrete search to select a subset optimizing certain objectives
(Silver et al., 2023) In our setting, we propose predicates by prompting an LLM with trajectories,
and seek a subset of those predicates, Ψ⋆, maximizing:

Ψ⋆ = argmax
Ψ∈P(PROMPT(Dlow))

p(Dlow | L⋆(Ψ))p(L⋆(Ψ))p(Ψ)

where P (·) is the powerset, p(Ψ) is a prior favoring fewer predicates, and we have made explicit
the dependence of L⋆ upon the predicates Ψ (Section 5.2). But the above objective is intractable for
two reasons, which we address as follows (Appendix A.5):

• Expensive outer loop: The powerset is exponentially large. Rather than exhaustively enumerate
every subset of predicates, we do a local hill-climbing search starting from Ψ = ∅ and greedily
adding new predicates from the LLM (Silver et al., 2023).

• Expensive inner loop: Scoring a candidate subset of predicates is expensive, requiring varia-
tional inference and causal process structure learning (Sections 5.1 and 5.2). We therefore run
structure learning and parameter estimation only once, using all proposed predicates, and cache
the resulting processes and parameters for reuse when scoring different subsets of predicates.

6 EXPERIMENTS

We design our experiments to answer the following questions: (Q1) How does ExoPredicator per-
form compared to state-of-the-art methods, including hierarchical reinforcement learning (HRL),
VLM planning, and operator learning approaches, in terms of overall solve rate and sample effi-
ciency? (Q2) How do the learned abstractions perform relative to manually engineered abstractions,
and relative to the case where no learning is performed? (Q3) How useful are the Bayesian model
selection and the LLM-guidance components in model learning?

Experimental Setup. We evaluate eight approaches across five simulated robotics environments,
illustrated in Figure 4, using the PyBullet physics engine (Coumans & Bai, 2016). All results are
averaged across three random seeds. For each seed, we train the agent with one or two training tasks,
each of which includes one demonstration. We then evaluate their performance on 50 held-out test
tasks, which include more objects and more complex goals. In each online learning iteration, the
agent performs 8 rollouts in a training task with each rollout lasting a maximum of 300 timesteps.

Environments. We describe the environments and their corresponding predefined closed-loop
skills, which are shared across all approaches. All environments have a NoOp skill in addition
to the ones listed for each environment. See Appendix B for more details.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Tr
ai

n
Ta

sk
s

Coffee Grow Boil Domino Fan

E
va

l.
Ta

sk
s

Figure 4: Environments. Top row: train task examples. Bottom row: evaluation task examples.

Figure 5: Successful ExoPredicator trajectories in the Domino (top) and Fan (bottom) environ-
ments. The code highlights the key learned exogenous processes, describing how dominoes cascade
and how the fan’s wind moves the ball. These processes incorporate predicates invented by the
agent, like NOT-IsImmovable and FanFaces, which enable efficient and effective planning.

1. Coffee. The agent is asked to fill the cups with coffee. To do so, the agent needs first to get
coffee from the coffee machine, then pour it into cups, both of which are exogenous processes.
The environment provides 4 skills: Pick, Place, Push, and Pour.

2. Grow. The agent is tasked with watering plants in pots. A plant will only grow when watered by
a jug that has the same color as its pot. The provided skills include Pick, Place and Pour.

3. Boil. A cooking domain where the agent is asked to fill jugs with water using the faucet and boil
it with the burner, without overspilling any water, which may happen when the faucet is on and
no jug is under it or the jug underneath is full, which are all exogenous processes. Four skills are
defined in this domain, including Pick, Place, and Switch On/Off.

4. Domino. A domino puzzle environment with two types of tasks. The agent is tasked to only
move the blue dominos and push the green dominoes such that all the purple target dominoes are
toppled. Additionally, there are “impossible” tasks, where there are red target dominoes whose
mass is too large to be toppled in a cascade. Impossible tasks are “solved” if the agent predicts
that the goal is unachievable. Inter-domino dynamics are exogenous processes. The included
skills are Pick, Place, and Push.

7
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5. Fan. A maze environment where a ball is blown by fans. The agent must control the fans in each
cardinal direction to move the ball to the green target location while avoiding obstacles. The
provided skills are turning the Switch On/Off.

Approaches.

1. Manual. A planning agent with manually engineered predicates and processes for each domain.

2. Ours. Our ExoPredicator approach.

3. MAPLE (Nasiriany et al., 2022). An HRL baseline that learns to select ground controllers by
learning an action-value function, but does not explicitly learn abstract world models and perform
lookahead planning. This approach is provided with 1000 training tasks and given a budget of
10000 interaction rollouts per online learning iteration.

4. ViLA (Hu et al., 2023). A VLM planning baseline that prompts a VLM (Gemini-2.5-Pro) to plan
a sequence of ground skills. We experiment with two variants, which either exclude (zero-shot;
zs) or include (few-shot; fs) the demonstrations. Both this and MAPLE are provided with the full
set of predicates in Manual, which they can use as termination conditions for the NoOp action.

5. VisPred (VisualPredicator) (Liang et al., 2024). An online STRIPS-style operator learning and
planning agent. We provide it with all the necessary predicates used in Manual, which sidestep
the challenge of predicate learning, to highlight the difference between our causal processes
representation with traditional STRIPS-style representations.

6. No Bayes. An ablation that uses an LLM to learn processes without Bayesian model selection.

7. No LLM. An ablation that replaces the LLM condition proposer with a fast-to-compute heuristic.
Note that we still use an LLM for predicate proposal.

8. Manual-d (Manual minus tuned delay parameters). A planning agent that uses the Manual
abstraction, but has the same delay parameter (e.g., 1) across all processes.

9. No invent. An ablation that uses the initial abstractions and does not perform any learning.

(a) Percentage solved in different domains (↑) by different agents.

(b) Learning curves of different online learning agents.

Figure 6: Performance metrics for various agents across different domains. The error bars/shaded
regions show ± 1 standard deviation.

Results and Discussion. Figure 6 shows the evaluation solve rate for all approaches and the learning
curve of our online learning agents.

(Q1). Our approach consistently outperforms the VLM planning (ViLa), HRL (MAPLE) and
STRIPS-style operator learning and planning (VisPred) approaches, achieving a near-perfect score
across all domains. For each environment, ExoPredicator learns 1-4 exogenous processes and con-
verges after at most three online interaction iterations (fig. 6b). Once trained, it can solve nearly all
tasks in Coffee, Domino, and Fan, and over 80% in Boil and Grow. In comparison, we find
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that MAPLE is unable to achieve a high level of success even with 1000 times more interactions
and evaluated only on the training distribution. We hypothesize that this is largely due to the chal-
lenge of exploration with sparse rewards. ViLa (zero-shot) was not able to do well in any domains.
The few-shot variant achieves good performance in simple domains where satisficing plans share
significant similarity with the demonstration plan (e.g., in Coffee, one simply needs to perform
Pour and NoOp more times than in the demonstration). We observe that its performance degrades
significantly in other domains where it must identify additional rules through trial and error (e.g.,
the requirement of matching colors in Grow) or domains that require compositional generalization
(sequencing skills in potentially new ways). VisPred also struggles in these tasks because it learns
in a highly constrained model space. It attempted to learn the exogenous processes as different op-
erators for the NoOp skill, but fell short due to an overly strong inductive bias. This bias restricts
preconditions to only include atoms with variables already present in an operator’s effects or option,
which is especially limiting for the NoOp skill, where “robot” is the only variable. Moreover, it
does not learn about the varying delays for different processes, a feature crucial for effective and
efficient planning (e.g., in Boil). We note that ExoPredicator is unable to solve all tasks in Boil,
partly because it failed to recognize the full disjunctive condition under which a spill can happen:
it learned a process for water spilling when there is nothing under the faucet, but not when the jug
underneath is full.

(Q2). Ours achieves the same (in Coffee and Fan) or better (in Grow and Domino) performance
as Manual which uses manually engineered abstractions. We attribute this to the parameters learned
via variational inference instead of being manually tuned. Furthermore, the near-zero performance
of No invent and Manual-d underscores the importance of model learning and parameter learning.
For example, in Domino their incomplete knowledge of the environment’s dynamics and delay
caused them to classify most tasks as unsolvable.

(Q3). Both the Bayesian model learning and the LLM guidance play a critical role in efficient,
effective, and robust model structure learning. Without LLM guidance, the size of the search space
for each process becomes astronomically large (sometimes reaching 250), making it intractable to
score all possible conditions. Without computing the Bayesian posterior of the data and model, the
selection is based entirely on the prior in the LLM, which is not always reliable, especially with
uncommon or unseen environment dynamics.

7 RELATED WORKS

Temporal Planning. Classical planners handle effects after a delay with durative actions (PDDL
2.1) (Fox & Long, 2003) and with autonomous processes and events (PDDL+) (Fox & Long, 2002);
(RDDL) (Sanner et al., 2010), while heuristic search–based temporal planners such as COLIN
(Coles et al., 2012) or OPTIC (Benton et al., 2012) support numeric fluents and deadlines. These
works assume the full domain description is given. Our contribution is complementary: we learn
models—including conditional stochastic delays—directly from a small number of trajectories.

Hierarchical Reinforcement Learning. HRL uses temporally extended actions to address long-
horizon decision-making (Barto & Mahadevan, 2003). While many skill-learning approaches exist,
they typically adopt the (semi-)Markov assumption at the option level: the distribution over out-
comes depends only on the initiation state and the chosen option (Masson et al., 2016; Nasiriany
et al., 2022; Mishra et al., 2023). This fails to explicitly model exogenous dynamics or variable
delays, attributing all changes to the agent’s actions. We relax this assumption by learning a model
for these external dynamics and stochastic delays, allowing a fixed set of skills to be flexibly used
as the environment evolves.

Hierarchical Reinforcement Learning. HRL uses temporally extended actions to address long-
horizon decision-making (Barto & Mahadevan, 2003). While many skill-learning approaches exist,
they typically adopt the (semi-)Markov assumption at the option level: the distribution over out-
comes depends only on the initiation state and the chosen option (Masson et al., 2016; Nasiriany
et al., 2022; Mishra et al., 2023). This fails to explicitly model exogenous dynamics or variable
delays, attributing all changes to the agent’s actions. In such formulations, environment-driven or
exogenous dynamics can be absorbed into the option’s transition model, but are not usually rep-
resented as separate causal processes with their own activation conditions and delay distributions.
We relax this assumption by learning a model for these external dynamics and stochastic delays,

9
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allowing a fixed set of skills to be flexibly used as the environment evolves. Our approach is com-
plementary: we learn an explicit model for these external dynamics and stochastic delays, allowing
a fixed set of skills to be used more flexibly as the environment evolves and enabling more general-
izable planning.

Large Foundation Models for Robotics. Approaches such as SayCan (Ahn et al., 2022), RT-2
(Brohan et al., 2023), Inner Monologue (Huang et al., 2022), Code-as-Policy (Liang et al., 2023),
ViLA (Hu et al., 2023), and π0 (Black et al., 2025) treat planning as prompting: a pretrained
LLM/VLM selects or synthesizes the next action at each step. These approaches inherit strong
general-language priors, but—because they do not learn a world model—struggle to reason about
concurrent processes (e.g. water keeps heating) or about actions whose effects materialize only if
certain conditions persist. Our method calls foundation models for predicate invention (as in Visu-
alPredicator) and model learning, yet it grounds their suggestions in experience and learns symbolic
world models that supports look-ahead search.

Causal Reasoning and Causal RL. Structural causal models (SCMs) (Pearl, 2009) and their dy-
namic extensions form the foundation of various recent causal-RL algorithms (Buesing et al., 2019;
Hammond et al., 2023; Zeng et al., 2025). These approaches assume that the underlying causal graph
is either known or learnable at the feature level, but they do not tackle the challenges of symbolic
abstraction or planning over durative processes. In contrast, ExoPredicator learns a causally consis-
tent SCM (Rubenstein et al., 2017) whose variables are invented predicates and whose mechanisms
are the learned causal processes, which enables reasoning at a higher level of abstraction.

Learning Abstractions for Planning. Early work learned STRIPS or NDR transition rules from
demonstrations given a fixed predicate set (Pasula et al., 2007; Silver et al., 2021; 2022; Chitnis
et al., 2022). Recent methods invent new predicates to improve generalisation (Silver et al., 2023;
Liang et al., 2024); however, all assume instantaneous deterministic effects they typically abstract
dynamics through agent-centric actions, without explicitly modeling exogenous causal processes
that unfold over time in the background,. ExoPredicator extends predicate-invention to environments
with exogenous dynamics and delayed causal effect.

8 CONCLUSION

We presented ExoPredicator, an integrated approach for learning and planning with causal processes
in environments with exogenous dynamics and delayed effects. Our method demonstrates the ability
to learn abstract world models from limited data, generalizing to new tasks with unseen objects and
goals across various simulated environments, and outperforming key baselines. Future work will
scale the framework to more complex, noisier, larger-scale environments, enhance learning with
foundation models, and explore the interplay between skill and world modeling.
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A ADDITIONAL APPROACH DETAILS

A.1 CAUSAL PROCESS SEMANTICS

We formalize the semantics of our causal process model, which underpins the planner described in
section 4. We begin by defining a small-step transition function that describes the world’s evo-
lution at the finest temporal granularity, advancing one discrete timestep at a time. This detailed
model allows us to precisely specify how and when processes are activated and their effects are ap-
plied. We then build upon this to define the big-step transition function, Tbig, which abstracts away
these fine-grained details. This function enables the planner to efficiently jump between significant
changes in the abstract state, which is crucial for tractable long-horizon planning.

Small-Step Semantics. We model the world’s evolution in discrete timesteps t ∈ N. A complete
snapshot of the world, or the world state, is a tuple wt = ⟨st, Qt, Ht⟩, where:

• st is the set of ground atoms that are currently true.

• Qt is the event dictionary, a dictionary of scheduled effects of the form ⟨L, tstart⟩, keyed by their
end time tend.

• Ht is the history of all past atomic states, [s0, s1, . . . , st−1].

The world’s fundamental dynamics are defined by a small-step transition function,
Tsmall(wt, αt) 7→ wt+1, which advances the world by a single timestep. The transition given a
potential agent command αt (which may be an ground endogenous process or None) occurs in
three stages:

1. Event Execution: Effects from events due at time t are applied. We initialize st+1 ← st. For
every event ⟨L, tstart⟩ in Qt scheduled for time t, if its overall condition OL held from the step
after activation up to the previous step, (i.e., for all si ∈ Ht where i > tstart), its effects are
applied: st+1 ← (st+1 \ EL.Del) ∪ EL.Add.

2. Process Activation: New events are scheduled based on the state st+1 and the agent’s command.
• Endogenous Activation: If the agent issues a command αt = Len and the process’s start con-

dition Cstart,Len
is satisfied in st+1, a delay d ∼ pdelay

Len
is sampled (with d ≥ 1). A new event

⟨Len, t⟩ is added to the queue for time t+ d.
• Exogenous Activation: For every exogenous process Lex, if its start condition Cstart,Lex

is satis-
fied in st+1 but was not satisfied in the previous state st−1 (i.e., it is edge-triggered), a delay
d ∼ pdelay

Lex
is sampled. A new event ⟨Lex, t⟩ is added to the queue for time t+ d.

3. State Finalization: The next world state is wt+1 = ⟨st+1, Q
′
t, Ht ∪ {st}⟩, where Q′

t is the
updated event dictionary.

Big-Step Semantics. We define a big-step transition function, Tbig(wt, Len), which computes
the resulting world state after executing a single ground endogenous process Len starting from world
state wt, or after simply waiting for the world to change (Len = NoOp).

This function simulates the environment forward by applying the small-step transition function Tsmall
iteratively. The simulation proceeds until the chosen action Len has completed or a maximum hori-
zon Kmax is reached.

The transition Tbig(wt, Len) 7→ wt+k is computed as follows:

1. Initialization:
• Initialize a step counter: k ← 0.
• Set the initial world state for the simulation: w′

k ← wt.
• The endogenous process Len is set as the command for the first step. Let the command for

step i be denoted αi. So, αk ← Len. For all subsequent steps i > 0, the command is null:
αi ← None.

2. Simulation Loop: While the action Len is still considered active and k < Kmax:
• Apply the small-step transition: w′

k+1 ← Tsmall(w
′
k, αk).

• Increment the step counter: k ← k + 1.

14
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• The action Len is considered complete if its corresponding event has been executed within the
simulation. This is tracked implicitly by the simulator state. A special case is the NoOp action,
which is considered complete if any atom changes in the state, allowing the agent to wait for
exogenous events.

3. Final State: The resulting world state is the state at the end of the simulation loop: wt+k ← w′
k.

A.2 FAST FORWARD HEURISTIC FOR CAUSAL PROCESSES

The Fast-Forward (FF) heuristic (Hoffmann, 2001) is a domain-independent planning heuristic that
estimates the distance to goal by solving a relaxed version of the planning problem. We adapt
this heuristic to our causal process framework, accounting for both endogenous and exogenous
processes, as well as derived predicates.

Relaxed Planning Graph Construction The FF heuristic constructs a Relaxed Planning Graph
(RPG) by iteratively applying all applicable processes without considering delete effects. Given a
state with atoms s, the heuristic proceeds as follows:

1. Initialization: Start with the current atoms s, augmented with any derived predicates that hold
given those atoms.

2. Forward Propagation: For each layer i:
• Find all processes whose C (condition at start) is satisfied by facts in layer i− 1

• Add all add effectsE.Add from these processes to create layer i (ignoring delete effectsE.Del)
• Incrementally compute new derived predicates based on newly added primitive facts

3. Termination: Stop when the goal atoms g ⊆ layer i, or when a fixed point is reached (no new
facts can be added).

Incremental Derived Predicate Computation To efficiently handle derived predicates, we main-
tain a dependency map from auxiliary predicates to derived predicates. When new primitive facts
are added to a layer, we:

1. Identify which derived predicates might be affected based on their auxiliary predicate dependen-
cies

2. Incrementally evaluate only those derived predicates on the updated state

3. Propagate newly derived facts through the dependency chain until a fixed point is reached

This avoids redundant recomputation of derived predicates that cannot be affected by the new facts.

Relaxed Plan Extraction Once the RPG is built, we extract a relaxed plan via backward search:

1. Start with the goal atoms as subgoals to achieve

2. For each layer i from n to 1:
• For each subgoal appearing for the first time in layer i:

– If it’s a derived predicate, replace it with its supporting auxiliary predicates
– If it’s a primitive predicate, find a process from layer i− 1 that achieves it

• Add the preconditions of selected processes as new subgoals
• Count only endogenous processes toward the heuristic value

Heuristic Value The heuristic value hFF(s) is the number of endogenous processes in the ex-
tracted relaxed plan. Exogenous processes are treated as having zero cost, reflecting that they occur
automatically when their conditions are met. Formally:

hFF(s) = |{L ∈ RelaxedPlan : L is endogenous}| (1)

This provides an admissible estimate when all action costs are uniform, and guides the search toward
states that require fewer agent interventions to reach the goal.
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Implementation Notes The implementation uses several optimizations:

• Add-effect indexing: We maintain a map from atoms to processes that add them, enabling effi-
cient backward search during plan extraction

• Early termination: If the RPG reaches a fixed point without achieving the goal, we return h =∞
• Zero-cost exogenous processes: These are included in the RPG construction but not counted in

the final heuristic value, allowing the planner to leverage environmental dynamics

A.3 PROBABILISTIC MODEL AND ELBO DERIVATION

The derivation for the probabilistic model is:

p({st}, {∆L
t })

= (the law of conditional probability)
T∏

t=1

p
(
st, {∆L

t }|s1:t−1, {∆L
1:t−1}

)
= (the law of conditional probability)
T∏

t=1

p
(
{∆L

t }|s1:t, {∆
L
1:t−1}

)
× p

(
st|s1:t−1, {∆L

1:t−1}
)

= (conditional independence of the delay vars.) T∏
t=1

∏
L

p
(
∆

L
t |s1:t

)×( T∏
t=1

p
(
st|s1:t−1, {∆L

1:t−1}
))

= (by the structure of our model) T∏
t=1

∏
L

pdelay
L (∆

L
t )

CL(s1:t)

×
 T∏

t=1

1

Zt
F (st|st−1)

∏
L

t−1∏
t′=1

EL(st)
CL(s1:t′ )OL(st′+1:t−1)1[t=t′+∆

L

t′ ]
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2
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∏
L

t−1∏
t′=1

Ej
L(s

j
t )

CL(s1:t′ )OL(st′+1:t−1)1[t=t′+∆
L

t′ ]

With the change of basis, our model becomes:

p({st}, {AL
t }) = T∏

t=1

∏
L

pdelay
L (A

L
t − t)CL(s1:t)

×
 T∏

t=1

J∏
j=1

1

Zj
t

F (sjt |s
j
t−1)

∏
L

t−1∏
t′=1

Ej
L(s

j
t )

CL(s1:t′ )OL(st′+1:t−1)1[A
L

t′=t]


where Zj

t =
∑

ŝjt∈Sj

F (ŝjt |s
j
t−1)

∏
L

t−1∏
t′=1

Ej
L(ŝ

j
t )

CL(s1:t′ )OL(st′+1:t−1)1[A
L

t′=t]
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The derivation for the ELBO is:

log p ({st})

= log

∫
q({AL

t })
q({AL

t })
p({st}, {AL

t })d{A
L
t }

= logEq

[
p({st}, {AL

t })
q({AL

t })

]

≥Eq

[
log

p({st}, {AL
t })

q({AL
t })

]
=Eq

[
log p({st}, {AL

t }))
]
+Hq

[
{AL

t }
]

=

T∑
t=1

∑
L

Eq

[
CL(s1:t) log

(
pdelay
L (A

L
t − t)

)]
︸ ︷︷ ︸

expected log delay probability

+

T∑
t=1

J∑
j=1

log
(
F (sjt |s

j
t−1)

)
+
∑
L

t−1∑
t′=1

Eq

[
CL(s1:t′)OL(st′+1:t−1)1[A

L
t′ = t] log

(
Ej

L(s
j
t )
)]

︸ ︷︷ ︸
unnormalized expected log state probability

−

T∑
t=1

J∑
j=1

Eq

log
 ∑

ŝjt∈Sj

F (ŝjt |s
j
t−1)

∏
L

t−1∏
t′=1

Ej
L(ŝ

j
t )

CL(s1:t′ )OL(st′+1:t−1)1[A
L

t′=t]


︸ ︷︷ ︸

Zj
t

+Hq

[
{AL

t }
]

≥ (reverse bound the expected normalization constant; independence of AL
t )

T∑
t=1

∑
L

Eq

[
CL(s1:t) log

(
pdelay
L (A

L
t − t)

)]
+

T∑
t=1

J∑
j=1

log
(
F (sjt |s

j
t−1)

)
+
∑
L

t−1∑
t′=1

Eq

[
CL(s1:t′)OL(st′+1:t−1)1[A

L
t′ = t] log

(
Ej

L(s
j
t )
)]
−

T∑
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J∑
j=1

log
∑
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F (ŝjt |s
j
t−1)

∏
L

t−1∏
t′=1

Eq

[
Ej

L(ŝ
j
t )

CL(s1:t′ )OL(st′+1:t−1)1[A
L

t′=t]
]
+Hq

[
{AL

t }
]

= (expand the expectation out independently)
T∑

t=1

∑
L

CL(s1:t)

T∑
A

L
t =t+1

q
L
t (A

L
t ) log

(
pdelay
L (A

L
t − t)

)
+

T∑
t=1

J∑
j=1

log
(
F (sjt |s

j
t−1)

)
+
∑
L

t−1∑
t′=1

q
L
t′(A

L
t′ = t)CL(s1:t′)OL(st′+1:t−1) log

(
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j
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)
−

T∑
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J∑
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log
∑
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j
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qLt′(AL
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j
t )

OL(st′+1:t−1)︸ ︷︷ ︸
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]
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Evaluating this objective is computationally intensive due to the nested loops, but can be simplified
by some algebraic refactoring. In the first term, the second sum only needs to loop through the
non-zero terms, which are laws whose conditions are satisfied at time t.

In the second term, the sum over j and L can be reduced to a sum over sjt s that are in the effects
of some laws, and thus have non-zero log

(
Ej

L(s
j
t )
)

plus the log frame strength from unchanged
atoms, and the sum over t′ can be reduced to just steps where the law is activated, similar to the first
term above.

For experiments, we use a categorical variational distribution over the discrete support of the delays.
The variational parameters are initialized to be uniform over this support.

A.4 PROCESS LEARNING DETAILS

Given a set of trajectories Dabs, a set of predicates Ψ, and the agent’s known endogenous processes
Len, we learn the set of exogenous processes Lex. Our method follows Chitnis et al. (2022) in
assuming that for any given effect (a unique pair of add/delete atoms), there is at most one exogenous
process that causes it. While this prevents learning multiple distinct causes for the same outcome,
it significantly simplifies the search problem. Any lost expressivity can be recovered by inventing
more nuanced predicates. The learning algorithm proceeds in five steps:

1. Segment. First, we split each raw trajectory into shorter segments based on changes in the ab-
stract state. Specifically, a new segment begins whenever the set of true predicates changes. Each
segment therefore contains a sequence of constant abstract states followed by a single timestamp
where the state changes.

2. Filter. Next, we filter out any segments where the observed state change can be explained by one
of the agent’s known endogenous processes. For example, if the agent executes the Pick action
and the Holding predicate becomes true, that segment is attributed to an endogenous process
and removed from consideration. This ensures we only attempt to learn models for effects caused
by the environment’s own dynamics.

3. Cluster. We then cluster the remaining segments based on their effects. We assume that each
exogenous process has a single, atomic effect (e.g., one predicate changing from false to true).2
If a segment involves multiple predicate changes, we duplicate it into multiple clusters—one for
each change—allowing us to learn a separate process for each atomic effect. This induces a de-
terministic partition of segments by effect, so the step introduces no clustering hyperparameters.

4. Intersect. For each cluster, we identify a set of potential preconditions for the associated ef-
fect. This is done by taking the set intersection of all predicates that were true at the start of
every segment in the cluster. This step produces a superset of candidate atoms for the process’s
conditions.

5. Select. The intersection from the previous step often contains many irrelevant atoms. To find the
true preconditions, we first use an LLM to propose a small number of plausible condition sets
from this large superset (the prompt is detailed in the end of this section). We then use Bayesian
model selection to score each candidate condition set Ci and select the one that maximizes the
posterior probability:

LC∗,E = argmax
LCi,E

log p(LCi,E |Dabs) = argmax
LCi,E

(log p(Dabs|LCi,E) + log p(LCi,E))

where log p(Dabs|LCi,E) is the approximate marginal likelihood from the previous section and
log p(LCi,E) is a minimum description length prior that penalizes overly complex conditions.

Process condition proposal prompt

2This imposes no loss of generality, because separate processes can be learned for each changed predicate.
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You are an expert in automated planning and causal reasoning. Your
task is to propose the most likely sets of conditions for
specific process effects to occur.

Given a process with specific add effects and delete effects, you
need to propose multiple coherent sets of candidate atoms that
could serve as necessary conditions for the process to
successfully achieve its effects.

Key principles for proposing condition sets:
1. **Causal Relevance**: Each set should contain atoms that are

causally necessary for the effects to occur
2. **Physical Constraints**: Include atoms representing physical

constraints or requirements
3. **Domain Knowledge**: Use common sense about how processes work

in the real world
4. **State Dependencies**: Include atoms that represent

prerequisite states for the effects
5. Terminal-Progress Exclusion: If an add effect is a

terminal/complete state within a progression family, do not
include any intermediate/progress predicates from the same
family as preconditions (e.g., Partially*, Started, InProgress,
HasSome).

Available predicates in the candidate atoms are:
{PREDICATE_LISTING}

For each process, I will provide:
- Add effects: What the process makes true
- Delete effects: What the process makes false
- Candidate atoms: Potential precondition atoms to choose from

{PROCESS_EFFECTS_AND_CANDIDATES}

Please propose as many likely condition sets as you deem suitable
for each process. Each condition set should be a coherent
combination of atom indices that together form a plausible set
of preconditions. It’s possible that there is a large number of
atoms in a condition set in some cases.

Think step by step if it’s helpful before outputting your final
response, formatted strictly as:

<answer>
Process 0:
Set 1: [2, 0, 4]
Set 2: [1, 3, 0, 5]
Set 3: [2, 4]
Process 1:
Set 1: [1, 3]
Set 2: [0, 1, 3]
...
</answer>

A.5 PREDICATE LEARNING DETAILS

Our approach to predicate learning follows the general methodology of prior work (Liang et al.,
2024; Silver et al., 2023), where a foundation model (Gemini 2.5 Pro) is prompted to synthesize a set
of candidate predicates adhering to a predefined API. The final subset of predicates is then selected
by maximizing an approximate planning metric; a subset receives a higher score if it enables the
planner to find plans that are similar to successful demonstrations while requiring fewer planning
resources.
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Our proposal process involves two stages. First, we prompt a VLM with a trajectory from the
environment to propose a set of high-level, symbolic concepts that could be useful for planning. We
use different prompts depending on whether the provided trajectory was successful or resulted in
failure. In the second stage, these concepts are translated into executable Python code that matches
our predicate object API.

Since the primary focus of this work is on learning abstract models in a more expressive and com-
plex model space, we simplify the perception problem. We assume the agent has access to a state
representation containing all the necessary object features to evaluate any relevant predicate, without
needing to ground them directly in image data.

In our experiments, we found it sufficient to generate a pool of candidate predicates only once,
based on the initial demonstration trajectories. This set of candidates is then retained and made
available for the agent to select from during all subsequent online learning iterations. The full
prompt templates used for predicate invention are provided below.

Predicate invention from successful trajectory prompt template

Context: You are an expert AI planning researcher. Your task is to
design task-specific predicates that can be used in a PDDL-like
model to facilitate effective and efficient robot planning.

### Types and Features
The environment has the following types, each with some features:

{TYPES_IN_ENV}

### Existing Predicates
You should consider the following existing predicates:

{PREDICATES_IN_ENV}

### Robot’s Goal
The robot’s ultimate goal in this environment is to make the

predicate {GOAL_PREDICATE} true.

### Demonstration Trajectory
The demonstrator performs a sequence of actions, ending with the

goal being achieved. The state-feature-action trajectory is
provided below.

{EXPERIENCE_IN_ENV}

### Your Task
Invent a small set of the *most essential* new predicates. These

should be simple, primitive concepts that represent critical
**subgoals**, **conditions for subgoals**, or *any conditions
that must be maintained to prevent failure, even if failure is
not shown in the demonstration*.

Note:
- If a continuous feature represents progress toward a subgoal,

define exactly one terminal predicate for its end state (with a
high threshold near the value observed when the goal is
achieved) and ignore intermediate progress states.

- Geometry/affordance guardrail: Do not invent predicates that
rely on pose or derived geometry (distance, proximity,
alignment, path, line-of-sight, "within theta", abs() < tau),
or on capabilities (Can*, AbleTo*, Near*), unless such
relations are already provided as explicit non-pose features.
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- There maybe some risk or violation condition that must remain
safe for the goal to succeed, even if failure is not shown. For
such features include a maintenance predicate that keeps it
within a safe bound (e.g., T_low <= 0.1 for normalized
features).

### Constraints
- Do *not* propose any new predicates that are purely pose-based

(i.e., based on raw x, y, z coordinates or ’rot’, ’tilt’
angles).

- Avoid composite predicates (no negation/AND/OR of other
predicates). Each proposal should state one primitive property
or relation that can be verified from the given features.

- Assertions must be clear and unambiguous, describing the
relationship or properties of variables ?<var1>, ?<var2>, etc.,
so an external observer could label truth values from the
provided object features alone.

- Replace placeholders like <predicate1_name>, <var1>, etc., with
actual names; <type1> and <obj1> with actual names and types
from the state dictionary provided. *Do not* use types that are
not present in the states (e.g., int or float).

- Do not use bold or italic fonts in your response.
- Respond only with the output section outlined below.

### Output Format
Provide your predicate proposals in the following format:

‘‘‘plaintext
# Predicate Proposals
* <predicate1_name>(?<var1>:<type1>, ?<var2>:<type2>, ...): <The

assertion this predicate is making>.
* ...
‘‘‘

Predicate invention from failed trajectory prompt template

Context: You are an expert AI planning researcher. Your task is to
design task-specific predicates that can be used in a PDDL-like
model to (a) detect unreachable goals early and (b) avoid
futile plans.

### Types and Features
The environment has the following types, each with some features:

{TYPES_IN_ENV}

### Existing Predicates
You should consider the following existing predicates:

{PREDICATES_IN_ENV}

### Robot’s Goal
The robot’s goal in this environment is to make the predicate

{GOAL_PREDICATE} true.

### Demonstration Trajectory
The demonstrator performs a sequence of actions, which they

thought would achieve the goal but did not. The
state-feature-action trajectory is provided below.
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{EXPERIENCE_IN_ENV}

### Your Task
Invent a small set of the most essential new predicates whose

primary purpose is to expose **blocking conditions**:
primitive, easily-checkable properties that must hold somewhere
in the environment for the goal to be achievable. If a blocking
condition is true (or a required enabling condition is false),
a rational planner can conclude that the goal is unreachable
under the available actions.

Prioritize:
- Necessary preconditions for success that the demonstrator

overlooked.
- Irreversible or static properties (e.g., object class, material,

color category) that make certain transitions impossible.
- Local checks that can be evaluated from the provided object

features without simulating dynamics.

Note: Features such as colors may encode latent material or
affordance classes. You may want to propose predicates that
identify such classes when they impose hard constraints on
feasible state transitions or interactions (e.g.,
non-deformable, too-heavy, low-friction, brittle, sealed,
non-activatable).

For every new predicate, explicitly state how its truth value is
decided from the listed non-pose features. Use a deterministic
rule with concrete feature names and numeric thresholds or
categorical equalities (no vague phrases like "such as mass").
If invoking a latent property, tie it to an explicit feature
pattern.

### Constraints
- Geometry/pose prohibition (hard): Do not use or derive from pose

fields (x, y, z, yaw, roll, tilt, wrist) or any geometric
constructs (distance, proximity, alignment, vector, path,
line-of-sight, "within theta", abs()<tau). Predicates
mentioning these are invalid.

- Soft blacklist (names/definitions to avoid): aligned, path,
near, distance, airstream, obstructed, adjacency (unless given
as a non-pose feature).0

- Avoid composite predicates (no negation/AND/OR of other
predicates). Each proposal should state one primitive property
or relation that can be verified from the given features.

- Assertions must be clear and unambiguous, describing the
relationship or properties of variables ?<var1>, ?<var2>, etc.,
so an external observer could label truth values from the
provided object features alone.

- Replace placeholders like <predicate1_name>, <var1>, etc., with
actual names; use only types present in the states.

- Do not use bold or italic fonts.
- Respond only with the Output section below.

### Output Format
Provide your predicate proposals in the following format:

‘‘‘plaintext
# Predicate Proposals
* <predicate1_name>(?<var1>:<type1>, ?<var2>:<type2>, ...): <The

assertion this predicate is making>.
* ...
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Predicate implementation prompt template

Context: You are an expert AI researcher tasked with inventing
task-specific state abstraction predicates for effective and
efficient robotic planning.

I will describe the API you should use for writing predicates and
the environment the robot is in.

# The API for ‘Predicate‘ and ‘State‘ is:
{STRUCT_DEFINITION}

The environment includes the following object-type variables with
features:

{TYPES_IN_ENV}
where ‘bbox_left‘, ‘bbox_lower‘, ..., corresponds to the pixel

index of the left, lower boundary of the object bounding box in
the image starting from (0, 0) at the bottom left corner of the
image.

‘pose_x‘, ‘pose_y‘, and ‘pose_z‘ correspond to the 3d object
position in the world frame, so these are not comparable to the
bbox values.

The existing predicates are:
{PREDICATES_IN_ENV}

The states the predicates have been evaluated on are:
{LISTED_STATES}

Please implement the following predicates which would have
evaluation values that matches the following specification:

{PREDICATE_SPECS}

Implement each predicate in a seperate Python block as follows:
‘‘‘python
def _<predicate_name>_holds(state: State, objects:

Sequence[Object]) -> bool:
# Implement the boolean classifier function here
...

# Define the predicate name here
name: str = ...

# A list of object-type variables for the predicate, using the
ones defined in the environment

param_types: List[Type] = ...
<predicate_name> = Predicate(name, param_types, classifier)
‘‘‘

- When writing the proposals, strictly adhere to the following
guidlines:
- Use only object-type variables defined in the environment
when defining ‘param_types‘.
- Don’t use any undefined constants;
- Don’t use object features that are not present in the
definition of that object type.
- Adhere to the type hints in the predicate definition
template.
- Make use of helper functions such as the classifier function
in the existing predicates, if they’re helpful.
- Your don’t need to import anything.
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B ADDITIONAL ENVIRONMENT DETAILS

We describe the predicates and endogenous processes that we provide to ExoPredicator at the be-
ginning of learning. In contrast, the baselines (Manual, ViLa, MAPLE and VisualPredicator) are
provided with an expanded set of predicates that we intend our approach to discover autonomously.

B.1 COFFEE

Train/Test split The training tasks for this environment involve filling a single cup with coffee.
The held-out test tasks require the agent to fill two or three cups. In both distributions, the size and
color of the cups may vary.

Goal predicates. {CupFilled}

Initial predicates and endogenous processes. {JugAboveCup, OnTable, NotAboveCup,
CupFilled, Holding, MachineOn, JugInMachine, HandEmpty}

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 1.0000
Delay Distribution: ConstantDelay(1.0000)
Option Spec: NoOp(?robot:robot),

EndogenousProcess-PickJugFromMachine:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [HandEmpty(?robot:robot), JugInMachine(?jug:jug,
?machine:coffee_machine)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugInMachine(?jug:jug, ?
machine:coffee_machine)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

EndogenousProcess-PickJugFromTable:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), OnTable(?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), OnTable(?jug:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

EndogenousProcess-PlaceJugInMachine:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Add Effects: [HandEmpty(?robot:robot), JugInMachine(?jug:jug, ?
machine:coffee_machine)]
Delete Effects: [Holding(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(4.0000, 0.1000)
Option Spec: PlaceJugInMachine(?robot:robot, ?jug:jug, ?machine:
coffee_machine),

EndogenousProcess-PourFromCup:
Parameters: [?robot:robot, ?jug:jug, ?to_cup:cup, ?from_cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?from_cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?to_cup:cup)]
Delete Effects: [JugAboveCup(?jug:jug, ?from_cup:cup), NotAboveCup(?
robot:robot, ?jug:jug)]
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: Pour(?robot:robot, ?jug:jug, ?to_cup:cup),

EndogenousProcess-PourFromNotAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?cup:cup)]
Delete Effects: [NotAboveCup(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: Pour(?robot:robot, ?jug:jug, ?cup:cup),

EndogenousProcess-TurnMachineOn:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [HandEmpty(?robot:robot), JugInMachine(?jug:jug,
?machine:coffee_machine)]
Conditions overall: []
Conditions at end: []
Add Effects: [MachineOn(?machine:coffee_machine)]
Delete Effects: []
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: TurnMachineOn(?robot:robot, ?machine:coffee_machine)

Additional predicates. {JugFilled}

B.2 GROW

Train/Test split. In the training tasks, the agent must grow plants in two pots. For each pot, at least
one jug of a matching color is available, with a maximum of two jugs present in the environment
overall. The test tasks increase in complexity, requiring the agent to grow plants in three pots, again
with at least one matching jug available for each and a maximum of two jugs in total.

Goal predicates. {Grown}
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Initial predicates and endogenous processes. {NotAboveCup, JugOnTable, Holding}

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(1.0000, 0.1000)
Option Spec: NoOp(?robot:robot),

EndogenousProcess-PickJugFromTable:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), JugOnTable(?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugOnTable(?jug:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

EndogenousProcess-PlaceJugOnTable:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugOnTable(?jug:jug),
NotAboveCup(?robot:robot, ?jug:jug)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?jug:
jug, ?cup:cup)]
Ignore Effects: [HandEmpty, Holding, JugAboveCup, JugOnTable,
NotAboveCup]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: Place(?robot:robot, ?jug:jug),

EndogenousProcess-PourFromAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?from_cup:cup, ?to_cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?from_cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?to_cup:cup)]
Delete Effects: [JugAboveCup(?jug:jug, ?from_cup:cup)]
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: Pour(?robot:robot, ?jug:jug, ?to_cup:cup),

EndogenousProcess-PourFromNotAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?cup:cup)]
Delete Effects: [NotAboveCup(?robot:robot, ?jug:jug)]
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Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: Pour(?robot:robot, ?jug:jug, ?cup:cup)

Additional predicates. {SameColor}

B.3 BOIL

Train/Test split. Training tasks require the agent to boil a single jug of water. The evaluation
includes tasks that involve boiling either one or two jugs.

Goal predicates. {HumanHappy}

Initial predicates and endogenous processes. { FaucetOn, FaucetOff, HumanHappy,
JugAtBurner, Holding, JugAtFaucet, NoJugAtBurner, BurnerOff, HandEmpty,
BurnerOn, NoJugAtFaucet, JugNotAtBurnerOrFaucet}

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: ConstantDelay(1.0000)
Option Spec: NoOp(?robot:robot),

EndogenousProcess-PickJugFromBurner:
Parameters: [?robot:robot, ?jug:jug, ?burner:burner]
Conditions at start: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug,
?burner:burner)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner(?burner:
burner)]
Delete Effects: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug, ?
burner:burner)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(4.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

EndogenousProcess-PickJugFromFaucet:
Parameters: [?robot:robot, ?jug:jug, ?faucet:faucet]
Conditions at start: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug,
?faucet:faucet)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet(?faucet:
faucet)]
Delete Effects: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug, ?
faucet:faucet)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(4.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),
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EndogenousProcess-PickJugFromOutsideFaucetAndBurner:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet
(?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet(?jug
:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PickJug(?robot:robot, ?jug:jug),

EndogenousProcess-PlaceOnBurner:
Parameters: [?robot:robot, ?jug:jug, ?burner:burner]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner
(?burner:burner)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug, ?burner:
burner)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner(?
burner:burner)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(5.0000, 0.1000)
Option Spec: PlaceOnBurner(?robot:robot, ?burner:burner),

EndogenousProcess-PlaceOutsideFaucetAndBurner:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [Holding(?robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet(?jug:
jug)]
Delete Effects: [Holding(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PlaceOutsideBurnerAndFaucet(?robot:robot),

EndogenousProcess-PlaceUnderFaucet:
Parameters: [?robot:robot, ?jug:jug, ?faucet:faucet]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet
(?faucet:faucet)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug, ?faucet:
faucet)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet(?
faucet:faucet)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: PlaceUnderFaucet(?robot:robot, ?faucet:faucet),

EndogenousProcess-SwitchBurnerOff:
Parameters: [?robot:robot, ?burner:burner]
Conditions at start: [BurnerOn(?burner:burner), HandEmpty(?robot:
robot)]
Conditions overall: []
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Conditions at end: []
Add Effects: [BurnerOff(?burner:burner)]
Delete Effects: [BurnerOn(?burner:burner)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(1.0000, 0.1000)
Option Spec: SwitchBurnerOff(?robot:robot, ?burner:burner),

EndogenousProcess-SwitchBurnerOn:
Parameters: [?robot:robot, ?burner:burner]
Conditions at start: [BurnerOff(?burner:burner), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [BurnerOn(?burner:burner)]
Delete Effects: [BurnerOff(?burner:burner)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: SwitchBurnerOn(?robot:robot, ?burner:burner),

EndogenousProcess-SwitchFaucetOff:
Parameters: [?robot:robot, ?faucet:faucet]
Conditions at start: [FaucetOn(?faucet:faucet), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [FaucetOff(?faucet:faucet)]
Delete Effects: [FaucetOn(?faucet:faucet)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(1.0000, 0.1000)
Option Spec: SwitchFaucetOff(?robot:robot, ?faucet:faucet),

EndogenousProcess-SwitchFaucetOn:
Parameters: [?robot:robot, ?faucet:faucet]
Conditions at start: [FaucetOff(?faucet:faucet), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [FaucetOn(?faucet:faucet)]
Delete Effects: [FaucetOff(?faucet:faucet)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(1.0000, 0.1000)
Option Spec: SwitchFaucetOn(?robot:robot, ?faucet:faucet)

Additional predicates. NoWaterSpilled, WaterBoiled, JugFilled,
NoJugAtFaucetOrAtFaucetAndFilled

B.4 DOMINO

Train/Test split. The training tasks takes place in a compact 3x2 grid, where the agent must
arrange one movable domino to successfully topple a single target domino. The test tasks are more
complex in three ways: the workspace is enlarged to a 4x3 grid, the number of movable dominoes
is increased to two, and the goals may require toppling either one or two target dominoes.

Goal predicates. Toppled
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Initial predicates and endogenous processes. Upright, InFrontDirection,
InitialBlock, MovableBlock, Toppled, AdjacentTo, DominoAtPos, Holding,
DominoAtRot, HandEmpty, Tilting, PosClear

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear]
Log Strength: 1.0000
Delay Distribution: ConstantDelay(1.0000)
Option Spec: NoOp(?robot:robot),

EndogenousProcess-PickDomino:
Parameters: [?robot:robot, ?domino:domino, ?pos:loc, ?rot:angle]
Conditions at start: [DominoAtPos(?domino:domino, ?pos:loc),
DominoAtRot(?domino:domino, ?rot:angle), HandEmpty(?robot:robot),
MovableBlock(?domino:domino), Upright(?domino:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?domino:domino), PosClear(?pos:
loc)]
Delete Effects: [DominoAtPos(?domino:domino, ?pos:loc), DominoAtRot(?
domino:domino, ?rot:angle), HandEmpty(?robot:robot)]
Ignore Effects: [DominoAtPos, DominoAtRot, PosClear, Tilting, Toppled
, Upright]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(4.0000, 0.1000)
Option Spec: Pick(?robot:robot, ?domino:domino),

EndogenousProcess-PlaceDomino:
Parameters: [?robot:robot, ?domino1:domino, ?domino2:domino, ?pos1:
loc, ?rot:angle]
Conditions at start: [AdjacentTo(?pos1:loc, ?domino2:domino), Holding
(?robot:robot, ?domino1:domino), PosClear(?pos1:loc), Upright(?
domino2:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [DominoAtPos(?domino1:domino, ?pos1:loc), DominoAtRot(?
domino1:domino, ?rot:angle), HandEmpty(?robot:robot)]
Delete Effects: [Holding(?robot:robot, ?domino1:domino), PosClear(?
pos1:loc)]
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear,
Tilting]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(3.0000, 0.1000)
Option Spec: Place(?robot:robot, ?domino1:domino, ?domino2:domino, ?
pos1:loc, ?rot:angle),

EndogenousProcess-PushStartBlock:
Parameters: [?robot:robot, ?domino:domino]
Conditions at start: [HandEmpty(?robot:robot), InitialBlock(?domino:
domino), Upright(?domino:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [Tilting(?domino:domino)]
Delete Effects: [Upright(?domino:domino)]
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear]
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(1.0000, 0.1000)
Option Spec: Push(?robot:robot, ?domino:domino)
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Additional predicates. {NotHeavy}

B.5 FAN

Train/Test split. Training tasks are conducted on a small 3x3 grid containing a single wall obsta-
cle. In contrast, test tasks feature a larger 6x4 grid and more intricate mazes constructed with either
two or three walls.

Goal predicates. {BallAtLoc}

Initial predicates and endogenous processes. {SideOf, BallAtLoc, ClearLoc, FanOn,
FanOff }
EndogenousProcess-NoOp:

Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: ConstantDelay(1.0000)
Option Spec: NoOp(?robot:robot),

EndogenousProcess-TurnFanOff:
Parameters: [?robot:robot, ?fan:fan]
Conditions at start: [FanOn(?fan:fan)]
Conditions overall: []
Conditions at end: []
Add Effects: [FanOff(?fan:fan)]
Delete Effects: [FanOn(?fan:fan)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: SwitchOff(?robot:robot, ?fan:fan),

EndogenousProcess-TurnFanOn:
Parameters: [?robot:robot, ?fan:fan]
Conditions at start: [FanOff(?fan:fan)]
Conditions overall: []
Conditions at end: []
Add Effects: [FanOn(?fan:fan)]
Delete Effects: [FanOff(?fan:fan)]
Ignore Effects: []
Log Strength: 1.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)
Option Spec: SwitchOn(?robot:robot, ?fan:fan)

Additional predicates. {FanFacingSide, OppositeFan}

C ADDITIONAL EXPERIMENT DETAILS

C.1 LEARNED CAUSAL PROCESSES

We show example learned predicates and causal processes in each domain.

C.1.1 COFFEE

Learned predicates and processes. {JugFilled}
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EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: -0.0113
Delay Distribution: ConstantDelay(-0.0115)
Option Spec: NoOp(?robot:robot)

EndogenousProcess-PickJugFromMachine:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [HandEmpty(?robot:robot), JugInMachine(?jug:jug,
?machine:coffee_machine)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugInMachine(?jug:jug, ?
machine:coffee_machine)]
Ignore Effects: []
Log Strength: 4.8335
Delay Distribution: DiscreteGaussianDelay(13.8455, 5.3512)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PickJugFromTable:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), OnTable(?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), OnTable(?jug:jug)]
Ignore Effects: []
Log Strength: 1.5300
Delay Distribution: DiscreteGaussianDelay(23.8392, 6.6450)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PlaceJugInMachine:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugInMachine(?jug:jug, ?
machine:coffee_machine)]
Delete Effects: [Holding(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: 1.6979
Delay Distribution: DiscreteGaussianDelay(20.0003, 6.5394)
Option Spec: PlaceJugInMachine(?robot:robot, ?jug:jug, ?machine:
coffee_machine)

EndogenousProcess-PourFromCup:
Parameters: [?robot:robot, ?jug:jug, ?to_cup:cup, ?from_cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?from_cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?to_cup:cup)]
Delete Effects: [JugAboveCup(?jug:jug, ?from_cup:cup), NotAboveCup(?
robot:robot, ?jug:jug)]
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Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 0.0012
Delay Distribution: DiscreteGaussianDelay(1.0125, 1.0112)
Option Spec: Pour(?robot:robot, ?jug:jug, ?to_cup:cup)

EndogenousProcess-PourFromNotAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?cup:cup)]
Delete Effects: [NotAboveCup(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: 1.7079
Delay Distribution: DiscreteGaussianDelay(7.4837, 5.0596)
Option Spec: Pour(?robot:robot, ?jug:jug, ?cup:cup)

EndogenousProcess-TurnMachineOn:
Parameters: [?robot:robot, ?jug:jug, ?machine:coffee_machine]
Conditions at start: [HandEmpty(?robot:robot), JugInMachine(?jug:jug,
?machine:coffee_machine)]
Conditions overall: []
Conditions at end: []
Add Effects: [MachineOn(?machine:coffee_machine)]
Delete Effects: []
Ignore Effects: []
Log Strength: 1.7298
Delay Distribution: DiscreteGaussianDelay(18.3430, 6.4795)
Option Spec: TurnMachineOn(?robot:robot, ?machine:coffee_machine)

ExogenousProcess-Op3:
Parameters: [?x0:coffee_machine, ?x2:jug]
Conditions at start: [JugInMachine(?x2:jug, ?x0:coffee_machine),
MachineOn(?x0:coffee_machine)]
Conditions overall: [JugInMachine(?x2:jug, ?x0:coffee_machine),
MachineOn(?x0:coffee_machine)]
Conditions at end: []
Add Effects: [JugFilled(?x2:jug)]
Delete Effects: []
Log Strength: 1.7168
Delay Distribution: DiscreteGaussianDelay(17.3098, 6.4991)

ExogenousProcess-Op5:
Parameters: [?x1:cup, ?x2:jug, ?x3:robot]
Conditions at start: [Holding(?x3:robot, ?x2:jug), JugAboveCup(?x2:
jug, ?x1:cup), JugFilled(?x2:jug)]
Conditions overall: [Holding(?x3:robot, ?x2:jug), JugAboveCup(?x2:jug
, ?x1:cup), JugFilled(?x2:jug)]
Conditions at end: []
Add Effects: [CupFilled(?x1:cup)]
Delete Effects: []
Log Strength: 1.7250
Delay Distribution: DiscreteGaussianDelay(4.5577, 1.8173)

C.1.2 GROW

Learned predicates and processes. {ColorMatches}
EndogenousProcess-NoOp:

Parameters: [?robot:robot]
Conditions at start: []
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Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: -0.0113
Delay Distribution: DiscreteGaussianDelay(25.6750, 6.9284)
Option Spec: NoOp(?robot:robot)

EndogenousProcess-PickJugFromTable:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), JugOnTable(?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugOnTable(?jug:jug)]
Ignore Effects: []
Log Strength: 2.3222
Delay Distribution: DiscreteGaussianDelay(32.9836, 6.9427)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PlaceJugOnTable:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugOnTable(?jug:jug),
NotAboveCup(?robot:robot, ?jug:jug)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?jug:
jug, ?cup:cup)]
Ignore Effects: [HandEmpty, Holding, JugAboveCup, JugOnTable,
NotAboveCup]
Log Strength: 1.9316
Delay Distribution: DiscreteGaussianDelay(24.9979, 6.6815)
Option Spec: Place(?robot:robot, ?jug:jug)

EndogenousProcess-PourFromAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?from_cup:cup, ?to_cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), JugAboveCup(?
jug:jug, ?from_cup:cup)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?to_cup:cup)]
Delete Effects: [JugAboveCup(?jug:jug, ?from_cup:cup)]
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: -0.0126
Delay Distribution: DiscreteGaussianDelay(1.0035, 1.0031)
Option Spec: Pour(?robot:robot, ?jug:jug, ?to_cup:cup)

EndogenousProcess-PourFromNotAboveCup:
Parameters: [?robot:robot, ?jug:jug, ?cup:cup]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NotAboveCup(?
robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [JugAboveCup(?jug:jug, ?cup:cup)]
Delete Effects: [NotAboveCup(?robot:robot, ?jug:jug)]
Ignore Effects: [JugAboveCup, NotAboveCup]
Log Strength: 2.2282
Delay Distribution: DiscreteGaussianDelay(28.9585, 6.9970)
Option Spec: Pour(?robot:robot, ?jug:jug, ?cup:cup)
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ExogenousProcess-Op0:
Parameters: [?x1:cup, ?x3:jug, ?x4:robot]
Conditions at start: [ColorMatches(?x3:jug, ?x1:cup), CupOnTable(?x1:
cup), Holding(?x4:robot, ?x3:jug), JugAboveCup(?x3:jug, ?x1:cup)]
Conditions overall: [ColorMatches(?x3:jug, ?x1:cup), CupOnTable(?x1:
cup), Holding(?x4:robot, ?x3:jug), JugAboveCup(?x3:jug, ?x1:cup)]
Conditions at end: []
Add Effects: [Grown(?x1:cup)]
Delete Effects: []
Log Strength: 1.2238
Delay Distribution: DiscreteGaussianDelay(30.6220, 6.7903)

C.1.3 BOIL

Learned predicates and processes. {JugIsHot, JugIsFull, NotSpilling}
EndogenousProcess-NoOp:

Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: -0.0113
Delay Distribution: ConstantDelay(-0.0115)
Option Spec: NoOp(?robot:robot)

EndogenousProcess-PickJugFromBurner:
Parameters: [?robot:robot, ?jug:jug, ?burner:burner]
Conditions at start: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug,
?burner:burner)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner(?burner:
burner)]
Delete Effects: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug, ?
burner:burner)]
Ignore Effects: []
Log Strength: -0.0043
Delay Distribution: DiscreteGaussianDelay(1.0085, 1.0069)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PickJugFromFaucet:
Parameters: [?robot:robot, ?jug:jug, ?faucet:faucet]
Conditions at start: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug,
?faucet:faucet)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet(?faucet:
faucet)]
Delete Effects: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug, ?
faucet:faucet)]
Ignore Effects: []
Log Strength: 1.9823
Delay Distribution: DiscreteGaussianDelay(23.5668, 6.6476)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PickJugFromOutsideFaucetAndBurner:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet
(?jug:jug)]
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Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?jug:jug)]
Delete Effects: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet(?jug
:jug)]
Ignore Effects: []
Log Strength: 1.1899
Delay Distribution: DiscreteGaussianDelay(43.4278, 6.8760)
Option Spec: PickJug(?robot:robot, ?jug:jug)

EndogenousProcess-PlaceOnBurner:
Parameters: [?robot:robot, ?jug:jug, ?burner:burner]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner
(?burner:burner)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugAtBurner(?jug:jug, ?burner:
burner)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtBurner(?
burner:burner)]
Ignore Effects: []
Log Strength: 2.1507
Delay Distribution: DiscreteGaussianDelay(21.9568, 6.6072)
Option Spec: PlaceOnBurner(?robot:robot, ?burner:burner)

EndogenousProcess-PlaceOutsideFaucetAndBurner:
Parameters: [?robot:robot, ?jug:jug]
Conditions at start: [Holding(?robot:robot, ?jug:jug)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugNotAtBurnerOrFaucet(?jug:
jug)]
Delete Effects: [Holding(?robot:robot, ?jug:jug)]
Ignore Effects: []
Log Strength: -0.0025
Delay Distribution: DiscreteGaussianDelay(0.9866, 0.9832)
Option Spec: PlaceOutsideBurnerAndFaucet(?robot:robot)

EndogenousProcess-PlaceUnderFaucet:
Parameters: [?robot:robot, ?jug:jug, ?faucet:faucet]
Conditions at start: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet
(?faucet:faucet)]
Conditions overall: []
Conditions at end: []
Add Effects: [HandEmpty(?robot:robot), JugAtFaucet(?jug:jug, ?faucet:
faucet)]
Delete Effects: [Holding(?robot:robot, ?jug:jug), NoJugAtFaucet(?
faucet:faucet)]
Ignore Effects: []
Log Strength: 1.9426
Delay Distribution: DiscreteGaussianDelay(41.1660, 6.8798)
Option Spec: PlaceUnderFaucet(?robot:robot, ?faucet:faucet)

EndogenousProcess-SwitchBurnerOff:
Parameters: [?robot:robot, ?burner:burner]
Conditions at start: [BurnerOn(?burner:burner), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [BurnerOff(?burner:burner)]
Delete Effects: [BurnerOn(?burner:burner)]
Ignore Effects: []
Log Strength: 5.6200
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Delay Distribution: DiscreteGaussianDelay(9.8894, 4.0791)
Option Spec: SwitchBurnerOff(?robot:robot, ?burner:burner)

EndogenousProcess-SwitchBurnerOn:
Parameters: [?robot:robot, ?burner:burner]
Conditions at start: [BurnerOff(?burner:burner), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [BurnerOn(?burner:burner)]
Delete Effects: [BurnerOff(?burner:burner)]
Ignore Effects: []
Log Strength: 1.9554
Delay Distribution: DiscreteGaussianDelay(32.0574, 6.7500)
Option Spec: SwitchBurnerOn(?robot:robot, ?burner:burner)

EndogenousProcess-SwitchFaucetOff:
Parameters: [?robot:robot, ?faucet:faucet]
Conditions at start: [FaucetOn(?faucet:faucet), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [FaucetOff(?faucet:faucet)]
Delete Effects: [FaucetOn(?faucet:faucet)]
Ignore Effects: []
Log Strength: 1.4501
Delay Distribution: DiscreteGaussianDelay(27.5714, 6.7946)
Option Spec: SwitchFaucetOff(?robot:robot, ?faucet:faucet)

EndogenousProcess-SwitchFaucetOn:
Parameters: [?robot:robot, ?faucet:faucet]
Conditions at start: [FaucetOff(?faucet:faucet), HandEmpty(?robot:
robot)]
Conditions overall: []
Conditions at end: []
Add Effects: [FaucetOn(?faucet:faucet)]
Delete Effects: [FaucetOff(?faucet:faucet)]
Ignore Effects: []
Log Strength: 1.7156
Delay Distribution: DiscreteGaussianDelay(35.2949, 6.7557)
Option Spec: SwitchFaucetOn(?robot:robot, ?faucet:faucet)

ExogenousProcess-Op0:
Parameters: [?x1:faucet, ?x2:jug]
Conditions at start: [FaucetOn(?x1:faucet), JugAtFaucet(?x2:jug, ?x1:
faucet)]
Conditions overall: [FaucetOn(?x1:faucet), JugAtFaucet(?x2:jug, ?x1:
faucet)]
Conditions at end: []
Add Effects: [JugIsFull(?x2:jug)]
Delete Effects: []
Log Strength: 1.2791
Delay Distribution: DiscreteGaussianDelay(33.1148, 6.7873)

ExogenousProcess-Op1:
Parameters: [?x0:burner, ?x2:jug]
Conditions at start: [BurnerOn(?x0:burner), JugAtBurner(?x2:jug, ?x0:
burner), JugIsFull(?x2:jug)]
Conditions overall: [BurnerOn(?x0:burner), JugAtBurner(?x2:jug, ?x0:
burner), JugIsFull(?x2:jug)]
Conditions at end: []
Add Effects: [JugIsHot(?x2:jug)]
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Delete Effects: []
Log Strength: 1.9391
Delay Distribution: DiscreteGaussianDelay(17.6401, 6.4452)

ExogenousProcess-Op2:
Parameters: [?x0:burner, ?x1:faucet, ?x2:human, ?x3:jug, ?x4:robot]
Conditions at start: [BurnerOff(?x0:burner), FaucetOff(?x1:faucet),
HandEmpty(?x4:robot), JugIsFull(?x3:jug), JugIsHot(?x3:jug),
NotSpilling(?x1:faucet)]
Conditions overall: [BurnerOff(?x0:burner), FaucetOff(?x1:faucet),
HandEmpty(?x4:robot), JugIsFull(?x3:jug), JugIsHot(?x3:jug),
NotSpilling(?x1:faucet)]
Conditions at end: []
Add Effects: [HumanHappy(?x2:human, ?x3:jug, ?x0:burner)]
Delete Effects: []
Log Strength: 1.9474
Delay Distribution: DiscreteGaussianDelay(5.5717, 4.1486)

ExogenousProcess-Op3:
Parameters: [?x1:faucet]
Conditions at start: [FaucetOn(?x1:faucet), NoJugAtFaucet(?x1:faucet)
, NotSpilling(?x1:faucet)]
Conditions overall: [FaucetOn(?x1:faucet), NoJugAtFaucet(?x1:faucet),
NotSpilling(?x1:faucet)]
Conditions at end: []
Add Effects: []
Delete Effects: [NotSpilling(?x1:faucet)]
Log Strength: -0.0029
Delay Distribution: DiscreteGaussianDelay(1.0005, 1.0052)

C.1.4 DOMINO

Learned predicates and processes. {NOT-IsImmovable}

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear]
Log Strength: 1.0000
Delay Distribution: ConstantDelay(1.0000)
Option Spec: NoOp(?robot:robot)

EndogenousProcess-PickDomino:
Parameters: [?robot:robot, ?domino:domino, ?pos:loc, ?rot:angle]
Conditions at start: [DominoAtPos(?domino:domino, ?pos:loc),
DominoAtRot(?domino:domino, ?rot:angle), HandEmpty(?robot:robot),
MovableBlock(?domino:domino), Upright(?domino:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [Holding(?robot:robot, ?domino:domino), PosClear(?pos:
loc)]
Delete Effects: [DominoAtPos(?domino:domino, ?pos:loc), DominoAtRot(?
domino:domino, ?rot:angle), HandEmpty(?robot:robot)]
Ignore Effects: [DominoAtPos, DominoAtRot, PosClear, Tilting, Toppled
, Upright]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(14.0000, 0.1000)
Option Spec: Pick(?robot:robot, ?domino:domino)
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EndogenousProcess-PlaceDomino:
Parameters: [?robot:robot, ?domino1:domino, ?domino2:domino, ?pos1:
loc, ?rot:angle]
Conditions at start: [AdjacentTo(?pos1:loc, ?domino2:domino), Holding
(?robot:robot, ?domino1:domino), PosClear(?pos1:loc), Upright(?
domino2:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [DominoAtPos(?domino1:domino, ?pos1:loc), DominoAtRot(?
domino1:domino, ?rot:angle), HandEmpty(?robot:robot)]
Delete Effects: [Holding(?robot:robot, ?domino1:domino), PosClear(?
pos1:loc)]
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear,
Tilting]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(8.0000, 0.1000)
Option Spec: Place(?robot:robot, ?domino1:domino, ?domino2:domino, ?
pos1:loc, ?rot:angle)

EndogenousProcess-PushStartBlock:
Parameters: [?robot:robot, ?domino:domino]
Conditions at start: [HandEmpty(?robot:robot), InitialBlock(?domino:
domino), Upright(?domino:domino)]
Conditions overall: []
Conditions at end: []
Add Effects: [Tilting(?domino:domino)]
Delete Effects: [Upright(?domino:domino)]
Ignore Effects: [AdjacentTo, DominoAtPos, DominoAtRot, PosClear]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(8.0000, 0.1000)
Option Spec: Push(?robot:robot, ?domino:domino)

ExogenousProcess-Op0:
Parameters: [?x1:domino, ?x2:domino, ?x11:direction]
Conditions at start: [InFrontDirection(?x1:domino, ?x2:domino, ?x11:
direction), NOT-IsImmovable(?x1:domino), NOT-IsImmovable(?x2:domino),
Tilting(?x1:domino), Upright(?x2:domino)]
Conditions overall: [InFrontDirection(?x1:domino, ?x2:domino, ?x11:
direction), NOT-IsImmovable(?x1:domino), NOT-IsImmovable(?x2:domino),
Tilting(?x1:domino), Upright(?x2:domino)]
Conditions at end: []
Add Effects: [Tilting(?x2:domino)]
Delete Effects: []
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)

ExogenousProcess-Op1:
Parameters: [?x1:domino, ?x2:domino, ?x11:direction]
Conditions at start: [InFrontDirection(?x1:domino, ?x2:domino, ?x11:
direction), NOT-IsImmovable(?x1:domino), NOT-IsImmovable(?x2:domino),
Tilting(?x1:domino), Upright(?x2:domino)]
Conditions overall: [InFrontDirection(?x1:domino, ?x2:domino, ?x11:
direction), NOT-IsImmovable(?x1:domino), NOT-IsImmovable(?x2:domino),
Tilting(?x1:domino), Upright(?x2:domino)]
Conditions at end: []
Add Effects: []
Delete Effects: [Upright(?x2:domino)]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(2.0000, 0.1000)

ExogenousProcess-Op2:
Parameters: [?x1:domino]
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Conditions at start: [Tilting(?x1:domino)]
Conditions overall: [Tilting(?x1:domino)]
Conditions at end: []
Add Effects: []
Delete Effects: [Tilting(?x1:domino)]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(5.0000, 0.1000)

ExogenousProcess-Op3:
Parameters: [?x1:domino]
Conditions at start: [Tilting(?x1:domino)]
Conditions overall: [Tilting(?x1:domino)]
Conditions at end: []
Add Effects: [Toppled(?x1:domino)]
Delete Effects: []
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(5.0000, 0.1000)

C.1.5 FAN

Learned predicates and processes. {FanFaces}

EndogenousProcess-NoOp:
Parameters: [?robot:robot]
Conditions at start: []
Conditions overall: []
Conditions at end: []
Add Effects: []
Delete Effects: []
Ignore Effects: []
Log Strength: 0.0000
Delay Distribution: ConstantDelay(0.0000)
Option Spec: NoOp(?robot:robot)

EndogenousProcess-TurnFanOff:
Parameters: [?robot:robot, ?fan:fan]
Conditions at start: [FanOn(?fan:fan)]
Conditions overall: []
Conditions at end: []
Add Effects: [FanOff(?fan:fan)]
Delete Effects: [FanOn(?fan:fan)]
Ignore Effects: []
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(11.0000, 0.1000)
Option Spec: SwitchOff(?robot:robot, ?fan:fan)

EndogenousProcess-TurnFanOn:
Parameters: [?robot:robot, ?fan:fan]
Conditions at start: [FanOff(?fan:fan)]
Conditions overall: []
Conditions at end: []
Add Effects: [FanOn(?fan:fan)]
Delete Effects: [FanOff(?fan:fan)]
Ignore Effects: []
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(13.6667, 2.0817)
Option Spec: SwitchOn(?robot:robot, ?fan:fan)

ExogenousProcess-Op1:
Parameters: [?x0:ball, ?x2:fan, ?x3:fan, ?x14:loc, ?x15:loc, ?x16:
side]
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Conditions at start: [BallAtLoc(?x0:ball, ?x14:loc), ClearLoc(?x15:
loc), FanFaces(?x2:fan, ?x16:side), FanOff(?x3:fan), FanOn(?x2:fan),
SideOf(?x15:loc, ?x14:loc, ?x16:side)]
Conditions overall: [BallAtLoc(?x0:ball, ?x14:loc), ClearLoc(?x15:loc
), FanFaces(?x2:fan, ?x16:side), FanOff(?x3:fan), FanOn(?x2:fan),
SideOf(?x15:loc, ?x14:loc, ?x16:side)]
Conditions at end: []
Add Effects: [BallAtLoc(?x0:ball, ?x15:loc)]
Delete Effects: [BallAtLoc(?x0:ball, ?x14:loc)]
Log Strength: 0.0000
Delay Distribution: DiscreteGaussianDelay(21.5000, 8.2407)

C.2 FURTHER LEARNING AND PLANNING STATISTICS

Each online learning iteration of ExoPredicator takes approximately 30–360 seconds wall-clock
time depending on the domain, using 32 CPU cores and no GPU. In comparison, the HRL baseline
requires on average about 600 seconds per online iteration, and its runtime increases as it accumu-
lates more data (taking longer to converge), reaching up to 3200 seconds in some cases. The VLM
planning baseline does not perform online learning, but can incur substantial test-time cost because
it issues computationally expensive VLM calls every time it generates a plan.

Monetaryly, assuming Gemini 2.5 Pro with standard pricing, a representative online iteration con-
suming a combined 10,000 input tokens and 1,000 output tokens would cost approximately $0.0225
in total: $0.0125 for inputs (10,000 / 1,000,000 × 1.25) and $0.01 for outputs (1,000 / 1,000,000 ×
10).

The following table lists the success rate and planning time statistics.

Manual Ours No invent
Environment Succ Time Succ Time Succ Time
Coffee 99.3 0.612 99.3 0.851 0.0 –
Grow 92.0 0.608 93.3 0.922 0.0 –
Boil 100.0 15.467 92.7 12.204 0.0 –
Domino 97.3 31.710 98.7 21.299 62.0 0.000
Fan 97.3 16.143 97.3 58.244 0.0 –

C.3 PRIORS AND DISTRIBUTIONS

In all experiments, we model process delays with a truncated discrete Gaussian distribution over
positive integers {1, . . . , 300}. The distribution is parameterized by a log-mean and a log-standard-
deviation.

The log-mean, log-standard-deviation, and log-process-weights are initialized from a normal distri-
bution with mean 0 and standard deviation 0.01.
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