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ABSTRACT

We propose a general-purpose variational algorithm that forms a natural analogue
of Stein variational gradient descent (SVGD) in function space. While SVGD
successively updates a set of particles to match a target density, the method intro-
duced here of Stein functional variational gradient descent (SFVGD) updates a set
of particle functions to match a target stochastic process (SP). The update step is
found by minimizing the functional derivative of the Kullback-Leibler divergence
between SPs. SFVGD can either be used to train Bayesian neural networks (BNNs)
or for ensemble gradient boosting. We show the efficacy of training BNNs with
SFVGD on various real-world datasets.

1 INTRODUCTION

Bayesian inference can be treated as a powerful framework for data modeling and reasoning under
uncertainty. However, this assumes that we can encode our prior knowledge in a meaningful manner.
Typically, this is done by specifying the prior distribution of the model parameters. However, in
machine learning (ML), models potentially consist of millions of parameters with potentially highly
complex interactions (e.g., very large neural networks (NNs)). Furthermore, the parameter structure
of the models itself is allowed to change during training, e.g., the number of parameter grows when
using gradient boosting (GB). This makes defining meaningful prior assumptions for parameter spaces
difficult or nearly (practically) infeasible. As we usually do not care about single parameters but the
complete resulting function, it seems intuitive to directly express our prior knowledge in hypothesis
function space by, e.g., specifying the characteristic length scale, periodicity, or smoothness in
general. Fortunately, Bayesian inference can also be formulated in function space. In this case, the
prior and posterior distributions are stochastic processes (SPs). The most prominent representative
is the Gaussian process (GP), for which the posterior GP can be analytically computed. However,
training GPs scale cubically in the number of observations, and the implicit Gaussian likelihood
assumption is often violated in reality. In this paper, we introduce Stein functional variational gradient
descent (SFVGD). This method provides a general gradient descent method in function space that
enables practitioners to train ML models to approximate the posterior SP, assuming certain regularity
conditions of the prior SP and the likelihood function hold.

1.1 RELATED WORK

Kernelized Stein Methods These methods combine Stein’s identity with a reproducing kernel
Hilbert space (RKHS) assumption. Based on a finite particle set, they can either be used to find the
optimal transport direction to match a target density or to estimate the score gradient of the empirical
distribution of the particles. The former is called Stein variational gradient descent (SVGD) Liu
& Wang (2016), and approaches of the latter category are called (non-parametric) score estimators
(Zhou et al., 2020). Our method internally uses SVGD and forms a natural analogue in function
space. Several extensions to SVGD exist, e.g., approaches incorporating second-order information
such as Leviyev et al. (2022) and the more general matrix-kernel valued approach by Wang et al.
(2019a). While these extensions usually outperform SVGD, their computational costs are also higher.
Bayesian Neural Networks (BNNs) Typically, BNNs are NNs with weight priors that are trained
via variational inference. The prominent representatives are BNNs using Bayes by Backprop (Blundell
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et al., 2015) and scalable probabilistic backpropagation (Hernandez-Lobato & Adams, 2015). Re-
cently, Immer et al. (2020) proposed transforming BNNs into generalized linear models with inference
based on a Gaussian process equivalent to the model. While Markov Chain Monte Carlo (MCMC)
methods often are prohibitively expensive to be used for BNNs, some variants, e.g., Chen et al.
(2014) account for noisy gradient evaluations and can be used in this setting. However, MCMC-based
methods are still usually employed for relatively low-dimensional problems.
Functional BNNs (FBNNs) Sun et al. (2019) proposed to use functional priors to train BNNs.
Training BNNs with our descent is closely related to their method, but while they use a score-based
approach for the estimation of the derivative of the Kullback-Leibler divergence DKL between the
prior SP and the variational SP, we estimate this derivative directly via SVGD. Wang et al. (2019b)
also use SVGD for FBNNs but apply SVGD directly to the DKL between the posterior SP and the
variational SP. Furthermore, their work does not show that this in fact maximizes a lower bound for
the log marginal likelihood. Recently, Ma & Hernández-Lobato (2021) and Rudner et al. (2021)
proposed different FBNN approaches that also build upon the results of Sun et al. (2019), but while
their methods are specific to training NN function generators, our method can be used to update a set
of particle functions in general.
Repulsive Deep Ensembles Repulsive Deep Ensembles are deep ensembles that incorporate repul-
sive terms in their gradient update, forcing their members’ weights apart. A variety of repulsive
terms are presented in (D’Angelo & Fortuin, 2021) and (D’Angelo et al., 2021), outperforming the
approach by Wang et al. (2019b). However, these approaches mainly focus on weight priors, and
empirical findings also only relate to the weight space. In contrast to our work, functional priors can
only be applied if a posterior SP with analytical marginal density exists.
GB with Uncertainty The closest neighbor of our approach applied to GB is the ensemble GB
scheme proposed by Malinin et al. (2021), which is based on Bayesian ensembles. In contrast to our
functional approach, their method is based on approximating the posterior of the model parameters.
Another GB-based method is NGBoost proposed by Duan et al. (2019), which directly learns the
predictive uncertainty; however, prior knowledge can not be taken into account.

1.2 OUR CONTRIBUTION

We propose a novel natural extension of SVGD in function space (Section 3), which enables the
practitioner to match a target SP. This approach can be implemented in a BNN or as GB routine
(Section 3.3). Using real-world benchmarks, we show that the resulting generator training algorithm is
competitive while having less computational costs than the approach of Sun et al. (2019). In contrast
to other existing uncertainty-aware GB algorithms, a GB ensemble, when trained via SFVGD, can
naturally incorporate prior functional information. These versatile applications of our framework are
made possible by providing a unifying view of NNs and GB from a functional analysis perspective.

2 BACKGROUND

2.1 SUPERVISED ML FROM A FUNCTIONAL ANALYSIS PERSPECTIVE

Given a labeled dataset D ∈ (X × Y)n ∼ Pn
xy of n ∈ N independent and identically distributed

(i.i.d.) observations from an unknown data generating process Pxy, a supervised ML algorithm
tries to construct a risk optimal model f under a pre-specified loss L. In this case, the function
f defines a mapping from the feature space X to the target space Y . The learning algorithm I
to construct f is a function mapping from the set of all datasets

⋃
n∈N(X × Y)n to a hypothesis

space H, which is a subset of the set of all functions mapping from X to the model output space1

Ỹ ⊂ Rg with g ∈ N. In order to specify the goodness-of-fit of a function f , one can define a loss
function L : Y × Ỹ → R, (y, f(x)) 7→ L(y, f(x)), which measures how well the output of a fixed
model f ∈ H fits an observation (x, y) ∼ Pxy. In the following, we present supervised ML from a
functional analysis perspective. Here, we fix the observation and associate the loss L with the loss
functionalL(x,y)[f ] : H → R, f 7→ L(y, f(x)). Based on this loss functional, we can define the risk
functional of a model f ,

R[f ] = E(x,y)∼Pxy
L(x,y)[f ], (1)

1If Y is numeric, Ỹ = Y . Otherwise, Ỹ is a numerical encoding of Y .
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which measures the expected loss of f , and is used to theoretically identify optimal models. In the
following, we will assume that the expectation in Eq. (1) exists and is finite. If we knew the usually
unknown data generating process and hence the risk functional, we could update any model f ∈ H in
the direction of the steepest descent in H w.r.t. R by following the negative functional gradient of R.
The negative functional gradient of R, −∇fR[f ], is itself a mapping from X to Ỹ . For every input
location x, this gradient returns the direction in model output space Ỹ , which points to the locally
steepest descent w.r.t. R. In the following, unless otherwise stated, the functional derivative is taken
in the L2 space.

Proposition 2.1 Assuming sufficient regularity and that L(y, f(x)) is partially continuously differ-
entiable w.r.t. f(x), we observe for numeric inputs and model output that

−∇fR[f ](x) = −px(x) · Ey∼Py|x

∂L(y, f(x))

∂f(x)
, (2)

where px is the marginal density of x.

The proof is given in A.1.1. In practice, we usually do not know px, and since our dataset D is finite,
we only have access to n realizations of ∂L(y,f(x))

∂f(x) . If the feature space is at least partially continuous,
its size |X | = ∞, and we thus cannot estimate −∇fR[f ](x) without additional assumptions.
However, we have access to the functional empirical risk Remp,D[f ] :=

∑
(xi,yi)∈D L(xi,yi)[f ], for

which we assume that it converges in mean to R as n → ∞. Its negative functional gradient can be
expressed via the chain rule such that

−∇fRemp,D[f ](x) = −
∑

(xi,yi)∈D

∂L(yi, f(xi))

∂f(xi)
· ∇f [f(xi)] (x), (3)

where ∇f [f(xi)] is the functional gradient of the evaluation functional of f at xi, which evaluates
to the Dirac delta function δxi

. However, since we take the functional gradient in H, ∇f [f(xi)]
becomes the projection of δxi into H. For example, if H is an RKHS with associated kernel
k, then ∇f [f(xi)] (x) = k(xi,x), i.e., our choice of H directly influences the “bumpiness” of
∇fRemp,D[f ]. Furthermore, we can interpret ∇fRemp,D[f ] as a (jump-)continuous functional
representation of the dataset ∂DL,f := {(xi,−∂L(yi,f(xi))

∂f(xi)
)
∣∣ (xi, yi) ∈ D} ⊂ (X × Ỹ)n, which

also implicitly defines a learner. In the following, we show how two core supervised ML algorithms
(gradient boosting and neural networks) naturally incorporate this functional gradient while training.

Gradient Boosting (GB) For GB (Friedman, 2001), the situation is usually reversed, and we choose
a (base) learner Ib that implicitly defines H and with which we fit a model to the data set ∂DL,f . GB
uses these approximations of the negative functional gradient of the empirical risk to successively
update a model f [0] such that

f [t+1] = f [t] + η[t]b[t] with b[t] = Ib(∂DL,f [t]), (4)

where η[t] ∈ R>0 is the learning rate and possibly depends on the iteration t ∈ N. For further details
see Appendix (A.2).

Neural Networks (NNs) If f is an NN with parameters ϕ, then the parameter gradients w.r.t. the
empirical risk functional needed for backpropagation can be obtained via the chain rule such that

∇ϕRemp,D[f ] =

∫
X
∇fRemp,D[f ](x) · ∇ϕf(x)dx =

∑
(xi,yi)∈D

∂L(yi, f(xi))

∂f(xi)
· ∇ϕf(xi), (5)

where the second equality holds, since here we do not restrict H, i.e., ∇f [f(xi)] = δxi .

However, these procedures only assure that we can find an optimal model f ∈ H w.r.t. Remp, which
does not imply that f is optimal w.r.t. R. In practice, we tune the hyperparameters of the algorithms –
i.e., use data withheld from learning for subsequent model selection – and apply early stopping to
find a model f approximately optimal w.r.t. R.
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2.2 STOCHASTIC PROCESSES

In this section, we will shortly introduce stochastic processes (SPs) that can be used to represent
distributions over functions and thereby allow us to express the uncertainty of models independent of
their specific parameter structure. We will regard X as an index set and let (Y,G) be a measurable
space with σ-algebra G on the state space Y. For x ∈ X and a given probability space (Ω,F ,P) based
on the sample space Ω, F is a σ-algebra on Ω and probability measure P. Let Q(x) be a random
variable projecting from Ω to Y . An SP Q is the family {Q(x); x ∈ X} of all random variables
Q(x) (Lamperti, 1977). With this, we can define a sample function fω : X → Y,x 7→ Q(x)(ω) for
a fixed ω ∈ Ω. Often, it is easier to look at SPs from this sample function view: For every A ∈ F , a
set of functions {fω; ω ∈ A} with an associated measure P(A) can be identified – i.e., SPs define
a distribution over functions projecting from X to Y . For a finite index set X := x1:m ∈ Xm, we
denote the finite-dimensional marginal joint distribution over function values {Q(x1), . . . , Q(xm)}
as QX. In the following, we assume that for every QX exists a corresponding density function
pQX

: Ym → R≥0, f
X 7→ pQX

(fX), where fX := (f(x1), . . . , f(xm)) are the function values at
x1:m based on a sample function f where we suppressed the ω to ease the following notation. We
will denote the associated functional to this density function with pQX

[f ].

The DKL is a measure of distance between two distributions over the same probability space. Since
SPs are distributions over functions, the DKL can also be used for distances between two SPs.
Unfortunately, computing this quantity is non-trivial (Matthews et al., 2015). However, for two
consistent and ergodic SPs Q and P , i.e., Q and P can be characterized by marginals over all finite
index sets (e.g., GPs), Sun et al. (2019) showed that the DKL between these SPs can be solely
expressed in terms of their marginals, i.e.,

DKL(Q||P ) = sup
m∈N,X∈Xm

DKL(QX∥PX). (6)

This expression enables us to find a differentiable distance measure between two stochastic processes.

2.3 STEIN VARIATIONAL GRADIENT DESCENT

SVGD (Liu & Wang, 2016) is a variational Bayesian method. Variational methods can be used to
approximate the generally intractable posterior density of a continuous random variable θ

pθ|D(θ) =
pD|θ(D|θ)pθ(θ)∫
pD|θ(D|θ)pθ(θ)dθ

, (7)

where pD|θ and pθ are the likelihood and the prior density function, respectively. SVGD tries to
match the posterior pθ|D with a density q represented via a fixed number r ∈ N of pseudo-samples –
so-called particles – and iteratively updates them by minimizing DKL(q∥pθ|D) =

∫
q(θ) log(q(θ))pθ|D(θ) dθ.

In an RKHS with associated kernel k, the optimal update direction is found by considering the
negative functional derivative

−∇fDKL(q[T ]∥pθ|D)
∣∣
f=0

= Eθ∼q

[
∇θ log pθ|D(θ)k(θ, ·) +∇θk(θ, ·)

]
, (8)

where T (θ) = θ + f(θ), and q[T ] is the density of θ′ = T (θ) when θ ∼ q. We can estimate this
functional gradient based on the particles in an unbiased manner, as we are able to evaluate the score
function of pθ|D (i.e., ∇θ log pθ|D), although log pθ|D might be intractable.

3 STEIN FUNCTIONAL VARIATIONAL GRADIENT DESCENT

In this section, we develop a functional version of SVGD which we will call Stein functional
variational gradient descent (SFVGD). While SVGD can be used to approximate the posterior
distribution of a continuous random variable, SFVGD can be applied when we are interested in the
posterior SP Pf |D defined by its Radon-Nikodym derivative (Schervish, 1995) w.r.t. the prior SP Pf ,

dPf |D

dPf
[f ] =

pD|f [D|f ]∫
pD|f [D|f ]dPf [f ]

, (9)

where pD|f is the likelihood functional, which measures how likely it is to observe D, given a sample
function f . In the following, we assume that the posterior Pf |D exists and also that it is an ergodic and
consistent SP. Analogously to SVGD, we try to approximate Pf |D with a distribution Q represented
by pseudo-samples. However, for SFVGD, these particles are now functions.
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3.1 OBJECTIVE FUNCTION

Since analytical solutions for the differential Eq. (9) only exist in special cases (e.g., if the prior
Pf is a GP and the likelihood is also Gaussian), we use the DKL between two SPs to formulate an
optimization objective. More specifically, the goal of our framework is to construct an approximating
measure Q∗ for which it holds that

Q∗ ∈ argmin
Q∈Q

DKL(Q∥Pf |D), (10)

where Q is the set of representable variational posterior processes. Here, we represent Q via
r ∈ N sample functions f1, . . . , fr from Q, which act as pseudo-samples and which we also call
particle functions. It can be shown (Matthews et al., 2015) that minimizing Eq. (10) is equivalent to
maximizing the functional evidence lower bound (ELBO) LD, i.e.,

Q∗ ∈ argmax
Q∈Q

Ef∼Q [ℓ[D|f ]]−DKL(Q∥Pf )︸ ︷︷ ︸
=:LD(Q)

, (11)

where ℓ[D|f ] := log pD|f [D|f ]. The advantage of formulation (11) over (10) is that Eq. (11) only
depends on known quantities. In the following, we apply Eq. 6, i.e., the results of Sun et al. (2019)
regarding the DKL of ergodic and consistent SPs, yielding

Q∗ ∈ argmax
Q∈Q

inf
m∈N,X∈Xm

Ef∼Q[ℓ[D|f ]]−DKL(QX∥PfX)︸ ︷︷ ︸
=:LD,X(Q)

. (12)

In contrast to Sun et al. (2019), however, we do not unfold the DKL term, since we are able to
directly take its functional gradient via SVGD. The resulting maximin game formulation of Eq. (12)
proves to be challenging to solve, especially since we need to minimize over discrete sets X and the
infimum also does not ensure a finite m. Hence, we follow Sun et al. (2019) by replacing the inner
minimization with a sampling-based approach, i.e.,

Q∗ ∈ argmax
Q∈Q

EDs
EXM∼CX

[
LDs,[XDs ,XM ](Q)

]
, (13)

where Ds is a random subsample of size |Ds| = s drawn from D. XDs
are the associated feature

vectors of Ds, and XM = [x1, . . . ,xM ]⊤ ∈ XM are M stacked random feature vectors drawn
from a sampling distribution CX with support X . If X is bounded, Sun et al. (2019) proposes a
uniform distribution for CX . It has been shown in Sun et al. (2019) for Ds = D and M > 1 that
LD,[XD,XM ] is a lower bound for the log marginal likelihood log p(D), i.e., the maximization in
Eq. 13 implies the minimization in Eq. 10. Although, as noted by Burt et al. (2020), if Q is a
parametric family, the objective is ill-defined, we did not encounter any problems in practice. Also,
we could straightforwardly use the grid functional DKL proposed by Ma & Hernández-Lobato (2021),
which fixes some of these theoretical shortcomings. However, note that SFVGD itself does not
assume Q to be parametric.

3.2 FUNCTIONAL DERIVATIVE OF THE OBJECTIVE

When using conventional gradient descent methods, we want to apply a map to update the parameters
of our model such that our loss is reduced. In SFVGD, we proceed in a similar manner but update
functions towards a loss-minimizing direction. A map that takes a function as an argument and
returns another function is called an operator. Hence, we want to express how our objective value
Eq. 13 changes when an operator F : H → H, f 7→ fF is applied to every f ∼ Q. This means that
the objective value changes with F such that

LDs,X(Q[T ]) = Ef̃∼Q[T ]
ℓ[Ds|f ]−DKL(Q[T ]X

∥PfX), (14)

where T (f) = f + F (f) and Q[T ] is the distribution of f̃ = T (f) when f ∼ Q. Naturally, we are
interested in the functional derivative of Eq. 14 w.r.t. to F , since this gives us the direction of the
steepest ascent in operator space regarding the functional ELBO. However, in order to make our
computations tractable, we must limit the space of feasible operators:
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Definition 3.1 Let F : H → H, f 7→ fF be a continuous operator with the property that for all
m ∈ N and each X ∈ Xm exists a function FX : Ym → Ym such that fXF = FX(fX) for any
f ∈ H.We call such an operator “evaluation-only dependent”.

Thus, F does not depend on derivatives of f (which is not a restriction, since we only assumed f to
be continuous); we can also treat F as a construction rule of FX for arbitrary m and X. Now, we can
state the functional gradient of the objective functional w.r.t. an evaluation-only dependent operator
F , for X = [XDs ,XM ] and X̃ = XDs

∇FLDs,X(Q[T ]) = ∇FEf̃∼Q[T ]
ℓ[Ds|f̃ ]−∇FDKL(Q[T ]X

∥PfX)

= ∇FEỹ∼Q[T ]X̃
ℓ(Ds, ỹ)−∇FDKL(Q[T ]X

∥PfX),
(15)

where we assumed that there exists a log-likelihood function ℓ :
⋃

s∈N (X × Y)
s × Ys → R such

that ℓ[Ds|f ] = ℓ(Ds, f
X̃) for every Ds. If we set F = 0, then T becomes the identity operator, i.e.

Q[T ] = Q. Since we want to iteratively update our particle functions, we must only consider small
perturbations around F = 0.

Proposition 3.1 For an evaluation-only dependent operator F , the functional derivative of the
functional ELBO at F = 0 evaluated for a function f

∇FLDs,X(Q[T ])
∣∣
F=0

(f) = Eỹ∼QX̃

[
∇ỹℓ(Ds, ỹ) · δỹ(f X̃)

]
·
[
δX̃1

(·), . . . , δX̃s
(·)

]⊤
+ Ey∼QX

[
∇y log pPfX

(y)kY(y, fX) +∇ykY(y, fX)
]

·
[
δX1(·), . . . , δXs+M

(·)
]⊤

,

(16)

where we assume that HY ⊂ {f : Ys+M → Ys+M} is an RKHS with associated kernels kY.

The proof is given in A.1.2, where we also show the following corollary.

Corollary 3.1.1 For an evaluation-only dependent operator F , the functional derivative of the
functional ELBO at F = 0 evaluated for a function f

∇FLDs,X(Q[T ])
∣∣
F=0

(f) = Eỹ∼QX̃

[
∇ỹℓ(Ds, ỹ) · kỸ(ỹ, f X̃)

]
·
[
δX̃1

(·), . . . , δX̃s
(·)

]⊤
+ Ey∼QX

[
∇y log pPfX

(y)kY(y, fX) +∇ykY(y, fX)
]

·
[
δX1

(·), . . . , δXs+M
(·)

]⊤
,

(17)

where we assume that HY ⊂ {f : Ys+M → Ys+M},HỸ ⊂ {f : Ys → Ys} are RKHSs with
associated kernels kY, kỸ, respectively.

We call ∇FLDs,X(Q[T ])
∣∣
F=0

the Stein functional variational gradient operator. It inherits its name
from SVGD, which internally is used to find the functional derivative of the DKL term. The key idea
of SFVGD is that by updating every particle function f ∼ Q via functional gradient descent in the
direction of ∇FLDs,X(Q[T ])

∣∣
F=0

(f), we carry out a gradient step in the distribution space. This
increases the current overall functional ELBO value we want to maximize by pulling Q closer to Q∗

and consequently also closer to the true posterior stochastic process Pf |D.

3.3 ALGORITHMS

Based on the particle functions f1, . . . , fr, we can find an estimator of Eq. 16

∇̃FLDs,X(Q[T ])
∣∣
F=0

(f) =
1

r

r∑
i=1

[
∇

fiX̃
ℓ(Ds, fi

X̃)δ
fiX̃

(f X̃)
]
·
[
δX̃1

(·), . . . , δX̃s
(·)

]⊤
+

λ

r

r∑
i=1

[
∇fiX log pPfX

(fi
X)kY(fi

X, fX) +∇fiXkY(fi
X, fX)

]
·
[
δX1(·), . . . , δXs+M

(·)
]⊤

,
(18)
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Algorithm 1: Stein Functional Variational Gradient Descent Step sfvgd_step

Hyperparameters: Dataset D, log likelihood ℓ, prior SP Pf , number of measure points M , sampling
distribution CX over X , regularization parameter λ

Input: Set of particle functions {fi}ri=1 treated as multi-output function f
Output: Input locations to update X, Stein functional variational gradient (of f evaluated at X) ∆fX

XM ∼ CX ;Ds = (X̃, ỹ) ⊂ D
X =

[
X̃,XM

]
for j = 1, . . . , r do

∆j,ℓ =
1
r

∑r
i=1

[
∇

fi
X̃ℓ(Ds, fi

X̃)δ
fi

X̃(fj
X̃)

]
·
[
δX̃1

(·), . . . , δX̃s
(·)

]⊤
∆j,KL = 1

r

∑r
i=1

[
∇fi

X log pPfX
(fi

X)kY(fi
X, fj

X) +∇fi
XkY(fi

X, fj
X)

]
·
[
δX1(·), . . . , δXs+M (·)

]⊤
end
∆fX = (∆ℓ + λ ·∆KL)(X)

Algorithm 2: Stein Functional Variational Neural Network
Hyperparameters: Same as for sfvgd_step
Input: Variational posterior g(·), optimizer opt
Output: Variational posterior g(·), which approximates the target distribution
while ϕ not converged do

fi = g(hϕ(X, ξi)), ξi ∼ p(ξ), i = 1, . . . , r
X,∆fX = sfvgd_step(f)
ϕ = opt(ϕ,X,∆fX)

end

where we introduce a regularization parameter λ ∈ R≥0. Furthermore, if we set λ = 1, the estimator
becomes an unbiased estimator of Eq. (16). Since LD,X is a lower bound of the log marginal likeli-
hood log p(D), it would be preferable to update the particle functions via ∇̃FLD,X(Q[T ])

∣∣
F=0

.
However, the major computation bottleneck in Eq. 18 is the calculation of the score gradient
∇fiX log pPfX

(fi
X) for all particle functions fi, i = 1, . . . , r evaluated at X. For example, if Pf is a

GP, then the costs of computing ∇fiX log pPfX
(fi

X) are O((s+M)3r). In addition, the computation
of all kernel values kY(fi

X, fj
X), i = 1, . . . , r, j = 1, . . . , r required in Eq. 18 costs O(r2). How-

ever, this is usually small compared to the cost of computing the score gradient for the functional prior.
We choose for M a small constant number, since LD,[XD,XM ] is a lower bound for the log marginal
likelihood log p(D) for M > 1, and we set r to a number of particle functions that can represent
the posterior SP reasonably well. Thus, we are interested in estimating ∇̃FLD,X(Q[T ])

∣∣
F=0

with

mini-batches. In principle, an unbiased estimate of ℓ(D, fi
XD ) is n/s · ℓ(Ds, fi

X̃), which suggests
that λ = s/n. Although (in general) LDs,X is not a lower bound of log p(D), we found in a practice
setting that λ to s/n still results in reasonable performance. However, our theoretical framework gives
the reassuring guarantee that if we use full-batch training, we would, in fact, maximize a lower bound
of log p(D). In the following, we present two algorithms, namely Stein functional variational NNs
and Stein functional variational gradient boosting (A.3.1), based on the estimated Stein functional
variational gradient – i.e., they depend on the score gradient of the functional prior evaluated at X. If
there exists no analytical score gradient, we can use a score gradient estimator, as suggested in Sun
et al. (2019). This only requires function samples of the prior process evaluated at X, but estimating
the score gradient is usually computationally expensive (Zhou et al., 2020). Since our approach builds
upon SVGD, there exists an additional approach in our framework based on a gradient-free SVGD
(Han & Liu, 2018) that only requires the evaluation of the marginal densities of the prior process.

Stein Functional Variational Neural Network (SFVNN) Sun et al. (2019) proposed to train neural
networks (NNs) acting as function generators with the negative functional ELBO as loss, which
they call Bayesian Functional Variational Neural Networks (BFVNNs). Such a function generator
can be modeled via an NN with stochastic weights, which can be represented as a differentiable
function g : Z → Y, z 7→ g(z), where z ∈ Z consists of the deterministic input x and stochastic
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inputs, i.e., we can model z as a random variable z ∼ p(z|x). These NNs are applicable as long
as the reparameterization trick (Kingma & Welling, 2014) can be used, i.e., there exists a random
variable ξ ∈ Ξ with ξ ∼ p(ξ) and a differentiable function hϕ : X × Ξ → Z parametrized by ϕ
such that hϕ(x, ξ) ∼ p(z|x). With this, we can sample a function by sampling ξ ∼ p(ξ) and defining
fξ : X → Y,x 7→ g(hϕ(x, ξ)). In this case, we can write the gradient of Eq. 14 w.r.t. ϕ as

∇ϕLDs,X(Q[T ]) = Eξ∼p(ξ)

[
∇

fξX̃ℓ(Ds, fξ
X̃)∇ϕfξ

X̃
]

− Eξ∼p(ξ)

[(
∇fξX log pQX

(fξ
X)−∇fξX log pPfX

(fξ
X)

)
∇ϕfξ

X
]
.

This is also the result obtained in Sun et al. (2019), where they then use a score estimator (namely, the
spectral stein gradient estimator (SSGE; Shi et al., 2018)) to approximate ∇y log pQX

(fξ
X). SSGE

estimates the score gradient in an RKHS, i.e., the entropy gradient ∇fξX log pQX
(fξ

X). Hence, the
entropy gradient and the cross entropy gradient ∇fξX log pPfX

(fξ
X) are taken in different functional

spaces. Our SFVNN is based on the parameter gradient

∇ϕLDs,X(Q[T ]) = Eξ∼p(ξ)

[
∇FLDs,X(Q[T ])

∣∣
F=0

(fξ)(X) · ∇ϕfξ
X
]
− EfX∼QX

∇ϕ log pQX,ϕ(f
X)︸ ︷︷ ︸

=0

,

where we use the general Stein functional variational gradient from Eq. 16. In contrast to Sun et al.
(2019), we thereby directly take the functional gradient of the DKL term in an RKHS, and our score
gradients of the prior process are also subject to the implicit kernel smoothing.
Runtime comparison between SVFNN and FVBNN While FVBNN scales as O(r3+r2(s+M))
(because of SSGE), our approach scales only quadratically in r (because of SVGD), allowing for a
larger number of sample functions (see Appendix B).

3.4 ILLUSTRATIVE EXAMPLE

(a) Data, sample functions (b) Samples from prior GP (c) log p(y1, y2, 0.5) (d) log p(y1, 0.5, y3)

(e) Step functions fitted to gradients (f) Updated sample functions (g) Converged sample functions (h) Samples from posterior GP

Figure 1: Illustrative example of SFVGB. The points in (a) represent the given data points, and the dashed lines
represent all x values that define the marginal prior density in (c,d) w.r.t. the prior GP shown in (b). The arrows
in (c) show the resulting SFVGD gradients.

Given three sample functions and two data points {(0.75, 1.0), (2.0, 0.0)} (1a), we want to ap-
proximate the posterior GP (Figure 1h) w.r.t. the prior GP shown in Figure 1b and a Gaussian
likelihood via SFVGB. Hence, we also sample a necessary measure point xM = 1.5. The resulting
three-dimensional marginal density is defined by the prior GP. SVGD gives us the optimal update
direction for the sample function values to fit this marginal density (Figures 1c, 1d). We fit a kernel
ridge regression to these directions after adding the log likelihood gradients at the two data points
(Figure 1e). The resulting updated function samples after this SFVGD step can be seen in Figure 1f
and the converged function samples in Figure 1g. Qualitatively comparing these converged sample
functions in Figure 1g with sample functions from the exact posterior GP in Figure 1h reassures that
we are are able to approximate the posterior GP in this toy example reasonably well.
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Table 1: Comparison of different methods (columns) on small benchmark data sets (rows) using the average
NLL (smaller is better) and RMSE over 10 train-test data splits with standard deviation in brackets. The best
performing method for each data set is highlighted in bold.

Test negative log-likelihood Test root-mean-square error
SFVNN FVBNN BNN GP SFVNN FVBNN BNN GP

Airfoil 2.10 (0.17) 2.29 (0.04) 2.62 (0.12) 2.50 (0.14) 1.82 (0.20) 1.97 (0.19) 3.40 (0.40) 2.77 (0.25)
Concrete 2.99 (0.19) 3.07 (0.05) 3.25 (0.04) 3.06 (0.05) 4.58 (0.34) 4.64 (0.54) 6.18 (0.34) 5.13 (0.40)
Diabetes 5.42 (0.08) 5.49 (0.03) 5.41 (0.04) 6.19 (0.38) 54.57 (3.74) 57.1 (2.48) 52.7 (2.88) 57.45 (6.6)
Energy 0.62 (0.10) 0.70 (0.09) 2.26 (0.32) 2.38 (0.05) 0.44 (0.05) 0.43 (0.08) 2.37 (0.65) 2.34 (0.23)
ForestF 2.38 (0.44) 1.84 (0.05) 1.83 (0.05) 4.65 (0.45) 1.76 (0.31) 1.51 (0.07) 1.51 (0.08) 1.56 (0.08)
Wine 1.96 (1.45) 1.47 (1.07) -0.03 (0.07) -0.04 (0.06) 0.11 (0.02) 0.14 (0.02) 0.21 (0.03) 0.16 (0.03)
Yacht 1.06 (0.30) 1.11 (0.24) 1.35 (0.19) 2.86 (0.15) 0.67 (0.26) 0.61 (0.25) 0.96 (0.28) 3.95 (1.03)
Mean rank 1.86 2.43 2.57 3.14 1.86 1.79 3.07 3.29

Table 2: Comparison of different methods (columns) on large benchmark data sets (rows) using the average
NLL (smaller is better) and RMSE over 10 train-test data splits with standard deviation in brackets. The best
performing method for each data set is highlighted in bold.

Test negative log-likelihood Test root-mean-square error
SFVNN FVBNN BNN SFVNN FVBNN BNN

GPU 4.73 (0.04) 4.80 (0.03) 4.73 (0.02) 27.67 (1.26) 29.6 (0.9) 27.5 (0.67)
NavalT -6.91 (0.06) -6.85 (0.08) -5.03 (0.24) 1.70E-4 (2.5E-5) 1.94E-4 (3.3E-5) 6.50E-4 (6.5E-5)
NavalC -6.53 (0.01) -6.41 (0.05) -6.44 (0.11) 1.35E-4 (1.1E-4) 2.39E-4 (3.5E-5) 2.15E-4 (3.9E-5)
Protein 2.85 (0.01) 2.87 (0.01) 2.96 (0.01) 4.19 (0.04) 4.27 (0.04) 4.65 (0.05)
VideoMem 11.39 (0.39) 11.3 (0.10) 11.4 (0.03) 21119 (4910) 20800 (2320) 21800 (788)
VideoTime 2.29 (0.05) 2.53 (0.36) 2.86 (1.02) 2.51 (0.16) 3.14 (0.88) 3.83 (2.08)
Mean rank 1.25 2.17 2.58 1.33 2.17 2.50

4 BENCHMARK STUDY

We further investigate the competitiveness of our approach using its neural network variant (SFVNN)
with its closest neighbor, the functional variational Bayesian neural network (FVBNN) from Sun
et al. (2019). We also include one well-established BNN baseline (Blundell et al., 2015) and the
standard Gaussian Process for the small data sets (where analytical computation is feasible). For
results from SVFGB we refer to Section A.3.2 in the Appendix. For most of the datasets, however,
the NN provides a better fit to the data. Further details and a contextual bandits experiment can be
found in Appendix A.5.

Data and experimental setup All data sets are standardized prior to model fitting and split into
90% training data and 10% test data. For the comparisons, this splitting process is repeated 10 times
based on 10 different splits to also evaluate the variability of each method. Further details on data
sets, data set-specific pre-processing, and their references can be found in the Appendix.
Details on methods and comparisons In order to provide a fair comparison between methods, we
reproduce the best results reported by Sun et al. (2019) for FVBNN and BNN, and also use the same
hyperparameters for our method except that while Sun et al. (2019) use λ = 1, we set λ to s/n.
Details for each procedure are given in the Appendix. We compare methods based on the negative
log-likelihood (NLL) and the root mean squared error (RMSE) on each test data set and calculate the
mean and standard deviation across all 10 data splits.
Results Results are summarized in Tables 1 and 2, indicating that SFVNN is competitive with other
existing approaches for both small and large data sets. As the two functional approaches (SFVNN,
FVBNN) optimize the same objective, we would expect them to perform similarly, which is confirmed
by the results. We further observe that a weight space approach (the BNN) seems to work better
than the functional approaches for a few datasets (in particular, for the Wine dataset, where this is
expected as the outcome is of discrete nature).

5 CONCLUSION

We introduced a novel gradient descent in distribution space that allows us to update a set of particle
functions in a general manner to resemble sample functions from a target process. SFVNN was found
to be competitive with or to outperform FBVNN while having less computational costs.
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A APPENDIX

A.1 PROOFS

A.1.1 FUNCTIONAL DERIVATIVE OF THE RISK FUNCTIONAL

Assuming that p(x, y)L(x,y)[f ] ∈ L1 using Fubini’s theorem, we find that

R[f ] = E(x,y)∼Pxy
L(x,y)[f ] =

∫
X×Y

p(x, y)L(x,y)[f ]dx dy (19)

=

∫
X
p(x)

∫
Y
p(y|x)L(x,y)[f ]dy︸ ︷︷ ︸
=:L(x,f(x))

dx. (20)

Assuming that L is sufficiently smooth using the Euler-Lagrange derivative, we find that

∇fR[f ](x) =
∂ (L(x, f(x)))

∂f(x)
(21)

= p(x)

∫
Y
p(y|x)

∂L(x,y)[f ]

∂f(x)
dy (22)

= p(x) · Ey∼Py|x

∂L(x,y)[f ]

∂f(x)
. (23)

A.1.2 FUNCTIONAL DERIVATIVE OF THE FUNCTIONAL ELBO

Let F be an operator that depends on evaluation only with associated maps FX̃ : Ys → Ys, FX :

Ys+M → Ys+M . Further, let F [F ] = LDs,X(Q[T ]) = Eỹ∼Q[T ]X̃
ℓ(Ds, ỹ)︸ ︷︷ ︸

=F1[FX̃]

−DKL(Q[T ]X
∥PfX)︸ ︷︷ ︸

=F2[FX]

.

In general, and under the assumption that ℓ is sufficiently smooth, we find that

∇FX̃
F1[FX̃] = ∇FX̃

Eỹ∼QX̃
ℓ(Ds, ỹ + FX̃(ỹ)) = Eỹ∼QX̃

[
∇ỹℓ(Ds, ỹ + FX̃(ỹ)) · δỹ(·)

]
. (24)

Under the assumption that HỸ ⊂ {f : Ys → Ys} is an RKHS with associated kernels kỸ, we find
that

F1[FX̃ + εGX̃]−F1[FX̃] = Eỹ∼QX̃

[
ℓ(Ds, ỹ + FX̃(ỹ) + εGX̃(ỹ))− ℓ(Ds, ỹ + FX̃(ỹ))

]
(25)

= ε Eỹ∼QX̃

[
∇ỹℓ(Ds, ỹ + FX̃(ỹ)) ·GX̃(ỹ)

]
+O(ε2) (26)

= ε Eỹ∼QX̃

[
∇ỹℓ(Ds, ỹ + FX̃(ỹ)) · ⟨kỸ(ỹ, ·), GX̃⟩

]
+O(ε2) (27)

= ε ⟨Eỹ∼QX̃

[
∇ỹℓ(Ds, ỹ + FX̃(ỹ)) · kỸ(ỹ, ·)

]
, GX̃⟩+O(ε2), (28)

from which it follows that

∇FX̃
F1[FX̃]

∣∣
FX̃=0

= Eỹ∼QX̃

[
∇ỹℓ(Ds, ỹ + FX̃(ỹ)) · kỸ(ỹ, ·)

] ∣∣
FX̃=0

(29)

= Eỹ∼QX̃

[
∇ỹℓ(Ds, ỹ) · kỸ(ỹ, ·)

]
. (30)

Under the assumption that HY ⊂ {f : Ys+M → Ys+M} is an RKHS with associated kernels kY, it
has been shown in Liu & Wang (2016) that

∇FX
F2[FX]

∣∣
FX=0

= −Ey∼QX

[
∇y log pPfX

(y)kY(y, ·) +∇ykY(y, ·)
]
. (31)

Using the chain rule, we obtain

∇FLDs,X(Q[T ])
∣∣
F=0

(f) = ∇FX̃
F1[FX̃](f X̃)∇F

[
FX̃

]
(f)

∣∣∣
F=0

(32)

−∇FX
F2[FX](fX)∇F [FX] (f)

∣∣∣
F=0

. (33)

(34)
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Algorithm 3: Stein Functional Variational Gradient Boosting
Hyperparameters: Same as for sfvgd_step
Input: number of iterations tmax, learning rate η[t] in the t-th iteration, set of initial particle functions

{f [0]
i }ri=1 treated as multi-output function f [0], multi-output base learner Ib

Output: Set of particle functions {f [tmax]
i }ri=1, which approximate the target distribution

for t = 0, . . . , tmax − 1 do
X,∆fX = sfvgd_step(f [t])

f [t+1] = f [t] + η[t] · Ib(X,∆fX)
end

Since F is evaluation-only dependent, we observe that ∇F

[
F{x}

]
(f) = δx(·) and conclude that

∇FLDs,X(Q[T ])
∣∣
F=0

(f) = ∇FX̃
F1[FX̃](f X̃)

∣∣∣
FX̃=0

·
[
δX̃1

(·), . . . , δX̃s
(·)

]⊤
(35)

−∇FX
F2[FX](fX)

∣∣∣
FX=0

·
[
δX1

(·), . . . , δXs+M
(·)

]⊤
. (36)

If H is assumed to be an RKHS with associated kernel kX (x, ·) then this becomes

∇FLDs,X(Q[T ])
∣∣
F=0

(f) = ∇FX̃
F1[FX̃](f X̃)

∣∣∣
FX̃=0

·
[
kX (X̃1, ·), . . . , kX (X̃s, ·)

]⊤
(37)

−∇FX
F2[FX](fX)

∣∣∣
FX=0

· [kX (X1, ·), . . . , kX (Xs+M , ·)]⊤ . (38)

A.2 GRADIENT BOOSTING

GB (Friedman, 2001) is a powerful supervised learning algorithm where, iteratively, the residuals are
minimized via so-called weak learners. The resulting model consists of a weighted ensemble of these
weak learners. In its original form, tree-based learners were used as weak learners, which proved to
be effective, especially in the presence of heterogeneous features. XGBoost (Chen & Guestrin, 2016)
is a highly efficient algorithm that builds upon the GB paradigm, which proves to be a strong baseline
for many structured, supervised regression and classification tasks.

A.3 SFVGB

A.3.1 SFVGB ALGORITHM

We treat the r particle functions mapping from X to Y as a single function f [0] mapping from
X to Yr – i.e., we identify the i-th sample function f

[0]
i , i = 1, . . . , r with the i-th component of

f [0]. Analogously to standard GB, we choose a base learner Ib which defines a hypothesis space
H ⊂ {f : X → Yr}. While this requires the base learner Ib to be a multi-output learner, it is
always possible to use an ensemble of single-output learners. With this, SFVGB is vanilla GB of a
multi-output function f where the loss is the negative functional ELBO. Consequently, we update
f [t] in the t-th iteration via

f [t+1] = f [t] + η[t]Ib
(
X,

[
∇̃FLDs,X(Q[T ])

∣∣
F=0

(f
[t]
1 )(X), . . . , ∇̃FLDs,X(Q[T ])

∣∣
F=0

(f [t]
r )(X)

]⊤)
,

using Eq. 18 and a (potentially adaptive) learning rate η[t].

A.3.2 SFVGB REGRESSION EXPERIMENTS

We also test SFVGB on the small regression datasets and compare it to 1) the approach proposed in
Malinin et al. (2021), i.e., uncertainty quantification approaches by randomly subsampling the data
in every iteration of a stochastic gradient boosting (SGB) model and 2) boosting generalized linear
model (GLMB Buehlmann, 2006) as a baseline approach. As base learners, SGB uses trees and
GLMB uses linear models. Our model uses a Nadaraya-Watson kernel regression variant, which does
not scale the resulting sum of kernel functions. This is the natural learner if the hypothesis space H is
assumed to be an RHKS, as discussed in section 2.1. The hyperparameters of the SFVGD step are the
same as the ones we used for SFVNN. The results after 1000 iterations are summarized in Table 4.
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Table 3: Comparison of boosting approaches on the small benchmark data sets (columns) using the average NLL
(smaller is better) over 10 train-test data splits with standard deviation in brackets. The best performing method
for each data set is highlighted in bold.

Airfoil Concrete Diabetes Energy ForestF Wine Yacht
SFVGB 2.87 (0.18) 3.41 (0.13) 7.04 (0.67) 2.16 (0.10) 6.31 (0.69) 2.37 (2.00) 3.21 (0.52)
GLMB 3.10 (0.03) 3.93 (0.03) 5.50 (0.03) 3.28 (0.01) 1.84 (0.07) 0.72 (0.02) 3.80 (0.04)
SGB 1.98 (0.05) 3.06 (0.10) 5.51 (0.07) 0.79 (0.49) 1.86 (0.08) 0.11 (0.44) 0.36 (0.23)

Table 4: Comparison of boosting approaches on the small benchmark data sets (columns) using the average
RMSE (smaller is better) over 10 train-test data splits with standard deviation in brackets. The best performing
method for each data set is highlighted in bold.

Airfoil Concrete Diabetes Energy ForestF Wine Yacht
SFVGB 3.31 (0.26) 6.71 (0.52) 57.8 (0.67) 1.93 (0.14) 1.53 (0.07) 0.18 (0.04) 4.83 (1.24)
GLMB 4.85 (0.27) 10.5 (1.03) 53.3 (3.42) 3.07 (0.21) 1.51 (0.09) 0.27 (0.04) 8.51 (1.18)
SGB 2.06 (0.21) 5.06 (0.53) 57.6 (2.71) 0.57 (0.09) 1.52 (0.09) 0.29 (0.14) 0.85 (0.45)

Further experimental details Model tuning of SGB is done as explained in Malinin et al. (2021).
Here, different tree depths ∈ {3, 4, 5, 6}, learning rates {0.001, 0.01, 0.1}, and numbers of samples
∈ {0.25, 0.5, 0.75} of approaches are trained on the first 80% of the training data and evaluated
on the latter 20%. The GLMB approach is tuned using a 10-fold cross-validation to determine the
number of stopping iterations, which is the only hyperparameter of the model.

Results Results show that the SFVGB can often improve over the GLMB baseline but still yields
inferior performance on some data sets. This is, in particular, the case if there is a rather discrete
outcome space (e.g., Wine which only consists of values 0, 1, and 2). The SGB model, in turn,
works better than both the SFVGB and GLMB in most cases. This is likely due to the much more
flexible base learner structure (as SGB like most of the state-of-the-art boosting approaches uses
trees, whereas GLMB uses linear regression and ours uses kernel regression).

A.4 NUMERICAL EXPERIMENTS: FURTHER DETAILS

A.4.1 FURTHER DATA DETAILS

We use the benchmark data setup proposed by Hernandez-Lobato & Adams (2015) and Sun et al.
(2019) for evaluating probabilistic regression approaches. This setup includes selected data sets from
the UCI repository – namely, the four smaller data sets Concrete, Energy, Wine, Yacht, and the four
larger data sets Naval, Protein, Video (Memory and Time), and GPU. In addition to Sun et al. (2019),
we also compare our approaches on three additional smaller data sets (Airfoil, Diabetes, Forest Fire)
and further investigate the second task on the Naval data set (i.e., we examine both the compressor
decay and the turbine decay state coefficient, referred to as NavalC and NavalT, respectively). In
Table 5, the data characteristics and pre-processing steps are listed.

A.4.2 FURTHER EXPERIMENTAL DETAILS

BNN approaches are fitted using the recommended architecture and tuning parameters by Sun et al.
(2019). We reduced the epochs from 10,000 to 1,000 epochs for the smaller data sets to reduce the
computational runtime. This did not negatively impact the BNN’s performance. In all our benchmark
experiments, we follow the setup for BNNs and FVBNNs described by Sun et al. (2019).

A.5 FURTHER RESULTS

Here, we provide further results using the application of probabilistic methods for contextual bandits.

Contextual Bandits One important application of uncertainty-aware models is for exploration,
as in Bayesian optimization, reinforcement learning, or bandits. Following Sun et al. (2019), we
evaluate SFVNN using the contextual bandits benchmark by Riquelme et al. (2018) by re-runing the
settings investigated in Sun et al. (2019) and report the cumulative regret based on the best expected
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Table 5: Data set characteristics, additional pre-processing and references.

Dataset # Obs. # Feat. Pre-processing Reference
Airfoil 1503 5 - Dua & Graff (2017)

Concrete 1030 8 - Yeh (1998)
Diabetes 442 10 - Dua & Graff (2017)
Energy 768 8 - Tsanas & Xifara (2012)
ForestF 517 12 logp1 transformation for area;

numerical representation for
month and day

Cortez & Morais (2007)

Wine 178 13 - Dua & Graff (2017)
Yacht 308 6 - Dua & Graff (2017)
GPU 241600 14 only use run 1 as outcome Ballester-Ripoll et al. (2017)

NavalT 11934 15 drop features with zero variance Coraddu et al. (2014)
NavalC 11934 15 drop features with zero variance Coraddu et al. (2014)
Protein 45730 9 - Dua & Graff (2017)
Video 68784 19 drop highly correlated features;

drop id and b_size; use
dummy-coding for codec and
o_codec

Dua & Graff (2017)

Table 6: Relative contextual bandits regret (relative to the cumulative regret of Uniform sampling) for different
data sets (columns) and methods (rows). Numbers in brackets of methods indicate the network sizes. Reported
numbers are the mean (and standard derivation in brackets) over 5 trials. The best algorithms per data set are
highlighted in bold.

Adult Census Covertype Jester Mushroom Statlog Wheel
BNN (50) 95.79 (1.33) 66.12 (5.10) 61.18 (1.91) 83.70 (3.31) 7.81 (9.39) 29.2 (4.05) 82.94 (22.2)
BNN (500) 99.16 (1.47) 94.38 (11.9) 74.55 (7.32) 79.08 (5.84) 9.31 (11.1) 64.5 (13.3) 8.892 (15.0)
BootRMS 82.74 (8.16) 53.40 (18.0) 36.95 (10.3) 63.3 (10.74) 7.11 (5.61) 1.81 (2.70) 119.16 (3.7)
Dropout 85.46 (4.74) 37.27 (12.3) 39.55 (5.84) 65.11 (9.62) 4.43 (6.83) 2.89 (4.26) 28.61 (12.1)
FVBNN (50, 50, 50) 72.84 (11.5) 30.46 (28.4) 24.29 (14.7) 50.45 (20.0) 2.92 (10.3) 3.46 (3.75) 13.62 (14.7)
FVBNN (50) 75.05 (7.66) 40.65 (14.9) 46.57 (3.99) 57.28 (17.8) 2.39 (6.24) 1.58 (2.09) 24.24 (22.0)
ParamNoise 89.00 (5.24) 57.86 (15.5) 48.18 (9.84) 66.52 (13.1) 6.74 (5.89) 7.69 (3.57) 21.93 (15.4)
SFVNN (50, 50, 50) 71.99 (7.29) 36.65 (30.3) 28.47 (16.4) 50.09 (21.2) 7.81 (9.35) 4.52 (4.12) 44.12 (27.7)
SFVNN (50) 79.62 (5.44) 30.05 (13.1) 29.24 (11.4) 55.61 (18.0) 6.88 (7.99) 4.01 (2.19) 91.95 (33.2)
Uniform Sampling 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00)

reward. Following Riquelme et al. (2018), we use the benchmark data sets Adult, Census, Covertype,
Financial, Jester, Mushroom, Statlog, and Wheel. For these, the rewards are deterministic, and the
regret is equal to the best realized reward. As in previous works, we report the regret as a relative value,
relative to a random uniform sampling procedure that emulates Thompson Sampling (see Riquelme
et al., 2018). As comparison methods, we use the BNN (with 50 and 500 units), three spinnoffs of the
NeuralLinear algorithm (namely, the Bootstrapped NN trained with RMSprop (BootRMS), Parameter
Noise (ParamNoise), and Dropout (see Riquelme et al., 2018, for more details)), as well as two
variants of the FVBNN (with one and three layers each with 50 units). Experiments are run 5 times
with shuffled contexts, for which we report mean and standard deviation of the relative cumulative
regret.

Results are given in Table 6, suggesting that both FVBNN and SFVBNN are well- and particularly
similar-performing methods in the application of contextual bandits.

B RUNTIME EXPERIMENT

B.1 SETUP

We trained FVBNN and SVFNN 5 times on the Energy data set for each number of particle functions
r ∈ {50, 100, 150} and plotted the resulting runtimes in Figure 2. It becomes apparent that the
number of particle functions influences the runtime of FVBNN more substantially than SFVNN, as
we expect from our computational complexity analysis.
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Figure 2: Comparision of the runtimes of FVBNN and SVFNN on the Energy data set with 5 repetitions for
each number of particle functions

B.2 COMPUTATIONAL ENVIRONMENT

All experiments and benchmarks were carried out on an internal cluster with Intel(R) Xeon(R) CPU
E5-2650 v2 @ 2.60GHz, 32 cores, 64 GB Random-access memory, and operating system Ubuntu
20.04.1 LTS.
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