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ABSTRACT

Diffusion models have recently emerged as a potent tool in generative modeling,
although their inherent iterative nature often results in sluggish image generation
due to the requirement for multiple model evaluations. Recent progress has un-
veiled the intrinsic link between diffusion models and Probability Flow Ordinary
Differential Equations (ODEs), thus enabling us to conceptualize diffusion models
as ODE systems. Simultaneously, Physics Informed Neural Networks (PINNs)
have substantiated their effectiveness in solving intricate differential equations
through implicit modeling of their solutions. Building upon these foundational
insights, we introduce Physics Informed Distillation (PID), a novel approach that
employs a student model to represent the solution of the ODE system correspond-
ing to the teacher diffusion model, akin to the principles employed in PINNs. Our
approach demonstrates remarkable results, such as achieving an FID score of 3.92
on CIFAR-10 for single-step image generation. Additionally, we establish the
stability of our method under conditions involving a sufficiently high discretization
number, paralleling observations found in the PINN literature, thus highlighting
its potential as a streamlined single-step distillation approach without the need for
additional methodology-specific hyperparameters. The code will be made available
upon acceptance.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al. (2015); Song et al. (2020b); Ho et al. (2020)) have demon-
strated remarkable performance in various tasks, including image synthesis (Dhariwal & Nichol
(2021); Nichol et al. (2021); Ramesh et al. (2022); Saharia et al. (2022a)), semantic segmenta-
tion (Baranchuk et al. (2021); Wolleb et al. (2022); Kirillov et al. (2023)), and image restoration (Sa-
haria et al. (2022b); Whang et al. (2022); Li et al. (2022); Niu et al. (2023)). With a more stable
training process, it has achieved better generation results that outperform other generative mod-
els, such as GAN (Goodfellow et al. (2020)), VAE (Kingma & Welling (2013)), and normalizing
flows (Kingma & Dhariwal (2018)). The success of diffusion models can mainly be attributed to their
iterative sampling process which progressively removes noise from a randomly sampled Gaussian
noise. However, this iterative refinement process comes with the huge drawback of low sampling
speed, which strongly limits its real-time applications (Salimans & Ho (2022); Song et al. (2023)).

Recently, (Song et al. (2021)) and (Karras et al. (2022)) have proposed viewing diffusion models from
a continuous time perspective. In this view, the forward process that takes the distribution of images to
the Gaussian distribution can be viewed as a stochastic differential equation (SDE). On the other hand,
diffusion models learn the associated backward SDE through score matching. Interestingly, (Song
et al. (2021); Karras et al. (2022)) demonstrate that diffusion models can also be used to model a
probability flow ODE system that is equivalent in distribution to the marginal distributions of the SDE.
In addition, Physics Informed Neural Networks (PINNs) have proven effective in solving complex
differential equations (Raissi et al. (2019); Cuomo et al. (2022)) by learning the underlying dynamics
and relationships encoded in the equations.

Building upon these developments, we propose a novel distillation method for diffusion models called
Physics Informed Distillation (PID), a method that takes a PINN-like approach to distill a single-step
diffusion model. Our method trains a model to predict the trajectory at any point in time given the
initial condition relying solely on the ODE system. During training, we view the teacher diffusion
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model as an ODE system to be solved by the student model in a physics-informed fashion. In this
framework, the student model approximates the ODE trajectories, as illustrated in Figure 1, without
explicitly observing the images in the trajectory. In detail, our contributions can be summarized as
follows:

• We propose Physics Informed Distillation (PID), a knowledge distillation technique heavily
inspired by PINNs that enables single-step image generation.

• Through experiments on CIFAR-10 and ImageNet 64x64, we showcase our approaches’
effectiveness in generating high-quality images with only a single forward pass.

• We demonstrate that similar to PINNs where the performance improvements saturate at a
sufficiently large number of collocation points, our approach with a high enough discretiza-
tion number performs best, showcasing its potential as a knowledge distillation approach
that does not need additional tuning of method specific hyperparameters.

• We empirically showcase our methods ability to perform model compression, training with
student models of less than a quarter of the original teacher model.

Figure 1: An overview of the proposed method, which involves training a model xθ(z, ·) to approxi-
mate the true trajectory x(z, ·).

2 RELATED WORKS

The remarkable performance of diffusion models in various image generation tasks has garnered
considerable attention. Nevertheless, the slow sampling speed associated with these models remains
a significant drawback. Consequently, researchers have pursued two primary avenues of exploration
to tackle this challenge: training-free and training-based methods.

Training-free methods. Several training-free methods have been proposed in the field of diffusion
model research to expedite the generation of high-quality images. Notably, (Lu et al. (2022))
introduced DPM-Solver, a high-order solver for diffusion ODEs. This method significantly accelerates
the sampling process of diffusion probabilistic models by analytically computing the linear part
of the solution. With only ten steps, DPM-Solver achieves decent performance compared to the
usual requirement of hundreds to thousands of function evaluations. Another noteworthy approach is
DEIS (Zhang & Chen (2022)), which also exploits the semilinear structure of the empirical probability
flow ODE, as in DPM-Solver, to enhance sampling efficiency. These methods demonstrate the
surprising ability to significantly reduce the number of model evaluations while remaining training-
free. However, it is important to note that they only mediate the core issue of the iterative sampling
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nature of diffusion Models without eliminating it entirely. In contrast to these training-free methods,
training-based approaches have been proposed to perform single-step inference while aiming to
maintain the performance of the teacher diffusion model. Our paper focuses on this particular field of
study.

Training-based methods. In the domain of diffusion model distillation, training-based strategies can
be broadly classified into two primary groups: those relying on synthetic data and those trained with
original data. Among the former, noteworthy methods such as Knowledge Distillation (Luhman &
Luhman (2021)), DSNO (Zheng et al. (2022)), and Rectified Flow (Liu et al. (2022)). have recently
exhibited their efficacy in distilling single-step student models. However, a notable drawback inherent
in these approaches is the computationally costly nature of generating such synthetic data, which
presents scalability challenges, particularly for larger models. In response, methods using only the
original dataset such as (Salimans & Ho (2022)) and (Song et al. (2023)) have emerged as solutions
to this issue. Progressive Distillation adopts a multi-stage distillation approach, while Consistency
Models employ a self-teacher model, reminiscent of self-supervised learning techniques.

3 PRELIMINARIES

3.1 DIFFUSION MODELS

Physics Informed Knowledge Distillation is heavily based on the theory of continuous time diffusion
models by (Song et al. (2021); Karras et al. (2022)). These models describe the dynamics of a
diffusion process through a stochastic differential equation:

dx = f(x, t)dt+ g(t)dwt, (1)

where t ∈ [0, T ], wt is the standard Brownian motion (Uhlenbeck & Ornstein (1930); Wang &
Uhlenbeck (1945)) (a.k.a Wiener process), f(·, ·) and g(·) denote the drift and diffusion coefficients,
respectively. The distribution of x is denoted as pt(x) with the initial distribution p0(x) corresponding
to the data distribution, pdata.

As proven in (Song et al. (2021)), this diffusion process has a corresponding probability flow ODE
with the same marginal distributions pt(x) of the form:

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt, (2)

where∇x log pt(x) denotes the score function. Diffusion models learn to generate images through
score matching (Song et al. (2020b)), approximating the score function as ∇x log pt(x) ≈ sϕ(x, t)
with sϕ(x, t) being the score model parameterized by ϕ. As such, diffusion models learn to model
the probability flow ODE system of the data while relying on iterative finite solvers to approximate
the modeled ODE.

3.2 PHYSICS INFORMED NEURAL NETWORKS (PINN)

PINNs are a scientific machine-learning technique that can solve any arbitrary known differential
equation (Raissi et al. (2019); Cuomo et al. (2022)). They rely heavily on the universal approximation
theorem (Hornik et al. (1989)) of neural networks to model the solution of the known differential
equation (Cuomo et al. (2022)). To better explain the learning scheme of PINNs, let us first consider
an ODE system of the form:

dx

dt
= u(x, t),

x(T ) = x0,
(3)

where t ∈ [0, T ], u(·, ·) is an arbitrary continuous function and x0 is an arbitrary initial condition
at the time T . To solve this ODE system, Physics Informed Neural Networks (PINNs) can be
divided into two distinct approaches: a soft conditioning approach (Cuomo et al. (2022)), in which
boundary conditions are sampled and trained, and a hard conditioning approach, (Lagaris et al. (1998);
Cuomo et al. (2022)) where such conditions are automatically satisfied through the utilization of skip
connections. For the sake of simplicity, we exclusively focus on the latter easier approach, where the
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PINNs output is represented as follows:

xθ(t) = cskip(t)x0 + cout(t)Xθ(t),

where cskip(T ) = 1 and cout(T ) = 0,
(4)

here Xθ denotes a neural network parametrized by θ and the functions, cskip and cout, are chosen such
that the boundary condition is always satisfied. Following this, PINNs learn by reducing the residual
loss denoted as:

L = ∥dxθ(t)

dt
− u(xθ(t), t)∥2. (5)

Through this, they can model physical phenomena represented by such ODE systems. Inspired by
PINNs ability to solve complex ODE systems (Lagaris et al. (1998); Cuomo et al. (2022)), we use
a PINN-like approach to perform Physics Informed Distillation. This distillation approach uses
the residual loss in PINNs to solve the probability flow ODE system modeled by diffusion models.
Through this distillation, the student trajectory function in Figure 1 can perform fast single-step
inference by querying the end points of the trajectory.

4 PHYSICS INFORMED KNOWLEDGE DISTILLATION

4.1 TRAJECTORY FUNCTIONS

From this point onwards, we adopt the configuration introduced in EDM (Karras et al. (2022)). The
configuration utilizes the empirical probability flow ODE on the interval t ∈ [ϵ, T ] of the following
form:

dx

dt
= −tsϕ(x, t)

=
x−Dϕ(x, t)

t
,

(6)

where x(T ) ∼ N (0, T 2I) , ϵ = 0.002, T = 80 and Dϕ(x, t) is the teacher diffusion model. Under
the assumption that Diffusion Models are Lipschitz continuous on the given time interval, this ODE
system exhibits a unique solution (Grant (1999)). As such, we can conceptualize each noise as
having its uniquely associated trajectory function, as illustrated in Figure 1. We denote this trajectory
function as x(z, t), where z represents the noise’s initial condition at time T . Our objective is to train
a model xθ(z, t) that precisely captures the actual trajectories x(z, t) for any arbitrary noise, z. To
achieve this, we adopt a PINN-like approach to learn the trajectory functions x(z, t). Specifically, we
can minimize the residual loss, similar to the methodology employed in PINNs.

Similar to in PINNs, we require our solution function, xθ(·, ·), to satisfy the boundary condition
xθ(z, T ) = z. In PINN literature, the two common approaches to achieve this is either by using a soft
condition (Cuomo et al. (2022)), in which boundary conditions are sampled and trained or through
a strict condition (Lagaris et al. (1998)) where these conditions are arbitrarily satisfied using skip
connections. Since the use of skip connections is also common in diffusion training (Karras et al.
(2022)), we take inspiration from both fields and parametrize our model as:

xθ(z, t) = cskip(t) z+ cout(t)Xθ (cin(T ) z, cnoise(t)) ,

where cskip(t) =
t

T
, cout(t) =

T − t

T
, cin(T ) =

1√
0.52 + T 2

and cnoise(t) =
ln t

4
.

(7)

Here, Xθ denotes the neural network to be trained (insight into the choice of skip connection functions
are provided in Appendix A.2.) Using the vanilla PINN loss on the probability flow ODE, the loss is
given as:

LPINN = Ei,z

[
d

(
dxθ(z, ti)

dti
,
xθ(z, ti)−Dϕ (xθ(z, ti), ti)

ti

)]
(8)

where d(·, ·) is any arbitrary distance metric (e.g. L2 and LPIPS). In diffusion models, the Lipschitz
constant of the ODE systems they model tend to explode to infinity near the origin (Yang et al.
(2023)). For instance, in Equation 6, it can be seen that the ODE system explodes as t approaches
0. Consequently, training a solver in a vanilla physics informed fashion may yield suboptimal
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performance, as it involves training the gradients of our student model to correspond with an
exploding value. To alleviate this, we shift the variables as:

LPINN = Ei,z

[
d

(
xθ(z, ti)− ti

dxθ(z, ti)

dti
, Dϕ (xθ(z, ti), ti)

)]
. (9)

Through this, we can obtain a stable training loss that does not explode when time values near the
origin are sampled.By performing this straightforward variable manipulation, we can interpret the
residual loss as the process of learning to match the composite student model, parametrized by θ,
on the left portion of the distance metric with the output of the teacher diffusion model on the right
portion of the distance metric. Since the output of the teacher diffusion model on the right is also
dependent on the student model, we can also view this from a self-supervised perspective. In this
perspective, it is often conventional to stop the gradients flowing from the teacher model (Grill et al.
(2020); Caron et al. (2021); Chen et al. (2020)). In line with this, we also stop the gradients flowing
from the teacher diffusion model during training.

4.2 NUMERICAL DIFFERENTIATION

Regrettably, the residual loss in PINNs requires computing gradients of the trajectory function with
respect to its inputs, which can be computationally expensive using forward-mode backpropagation
and may not be readily available in certain packages. Furthermore, studies such as (Chiu et al. (2022))
have demonstrated that training PINNs using automatic differentiation can lead to convergence to
unphysical solutions. To address these challenges, we employ a different approach by relying on
a straightforward numerical differentiation method to approximate the gradients. Specifically, we
utilize a first-order upwind numerical approximation, given as:

dxθ(z, t)

dt num
=

xθ(z, t)− xθ(z, t−∆t)

∆t
. (10)

By employing this numerical differentiation scheme, we can efficiently estimate the gradients
needed for the training process. This approach offers a simpler alternative to costly forward-mode
backpropagation and mitigates the issues related to convergence to unphysical solutions observed in
automatic differentiation-based training of PINNs.

Algorithm 1 Physics Informed Distillation
Training
Input: Trained teacher model Dϕ, PID model
xθ, LPIPS loss d(·, ·), learning rate η, discretiza-
tion number N ,

1: // Initialize student from teacher
2: θ ← ϕ
3: repeat
4: // sample time index
5: i ∼ U [0, 1, ..., N ]
6: // sample data
7: z ∼ N (0, T 2I)
8: // numerical gradient approximation
9: dx

dt ←
xθ(z,ti)−xθ(z,ti+1)

ti−ti+1

10: xteacher ← sg (Dϕ (xθ(z, ti), ti))
11: //Loss calculation
12: L ← d

(
xteacher,xθ(z, ti)− ti ∗ dx

dt

)
13: // update weights
14: θ ← θ − η∇θL
15: until model converged

Algorithm 2 Physics Informed Distillation
Sampling
Input: Trained PID model xθ, end point ϵ

1: z← N (0, T 2I)
2: x0 ← xθ(z, ϵ)

4.3 PHYSICS INFORMED DISTILLATION

Replacing the exact gradients with the proposed numerical differentiation and setting ∆t = ti − ti+1,
we obtain the Physics Informed Distillation loss:

LPID = Ei,z

[
d

(
xθ(z, ti)− ti

xθ(z, ti)− xθ(z, ti+1)

ti − ti+1
, sg (Dϕ(xθ(z, ti), ti))

)]
(11)

where sg(·) denotes the stop gradient operation. For the time-space discretization scheme, we follow
the same scheme as in EDM (Karras et al. (2022)). We choose the LPIPS distance metric motivated
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by Rectified Flow Distillation (Liu et al. (2022)) and Consistency Model’s (Song et al. (2023)) recent
successes with this metric. The discretization error added in such a scheme is bounded as shown in
the following theorem:
Theorem 1. Assuming Dϕ(x, t) is Lipchitz continuous with respect to x, if LPID = 0, ||xθ(z, t)−
x(z, t)||2 ≤ O(∆t), where ∆t = maxi∈[0,N−1] |ti+1 − ti|.

Proof. When LPID loss goes to 0, since the distance metric has the property,

x = y ⇐⇒ d(x, y) = 0. (12)

We have the following equality ∀z ∼ N (0, T 2I),∀i ∈ [0, 1, ..., N − 2],

xθ(z, ti)− ti
xθ(z, ti)− xθ(z, ti+1)

ti − ti+1
= Dϕ(xθ(z, ti), ti)

∆tixθ(z, ti)− tixθ(z, ti) + tixθ(z, ti+1) = ∆tiDϕ(xθ(z, ti), ti) where ∆ti = |ti+1 − ti|

xθ(z, ti+1) = xθ(z, ti)−∆ti
−Dϕ(xθ(z, ti), ti)

ti

(13)

Since this equality holds ∀z ∼ N (0, T 2I),∀i ∈ [0, 1, ..., N − 2], the trajectory model xθ(z, ti) will
have equivalent trajectories as that obtained through a euler solver. As such, it will have the same
discretization error bound, O(∆t).

An intriguing aspect of this theorem lies in its connection to Euler solvers and first-order numerical
gradient approximations. Specifically, when our model achieves a loss of 0, the approximate
trajectories traced by the PID-trained model, denoted as xθ(z, t), effectively mirrors those obtained
using a simple Euler solver employing an equivalent number of steps, denoted as N . Moreover, as
indicated in Theorem 1, the discretization error is well controlled and diminishes with an increasing
number of discretization steps, N . This observation suggests that by employing a higher number of
discretization steps, we can effectively minimize the error associated with the discretization process,
achieving improved performance.

By employing the PID training scheme, the resulting model can effectively match the trajectory
function x(z, t) within the specified error bound mentioned earlier. Single-step inference can be
performed by simply querying the value of the approximate trajectory function xθ(z, t) at the endpoint
ϵ, xθ(z, ϵ). With this, we observe that by treating the teacher diffusion model as an ODE system, we
can theoretically train a student model to learn the trajectory function up to a certain discretization
error bound without data and perform fast single-step inference. Algorithm 1 provides the pseudo-
code describing our Physics Informed Distillation training process, while algorithm 2 presents the
pseudo-code for the sampling of our method previously described.

5 RESULTS

In this section, we empirically validate our theoretical findings through various experiments on CIFAR-
10 (Krizhevsky (2009)) and ImageNet 64x64 (Deng et al. (2009)). The results are compared according
to Frechet Inception Distance (FID) (Heusel et al. (2017b)) and Inception Score (IS) (Salimans et al.
(2016)). All experiments were initialized with the EDM teacher model. In addition, unless stated
otherwise, a discretization of 250 and LPIPS metric was used during training. More information on
the training details can be seen in Appendix A.1.

We quantitatively compare the sample quality of our PID for diffusion models with other training-free
and training-based methods for diffusion models, including Knowledge Distillation (Luhman &
Luhman (2021)), DSNO (Zheng et al. (2022)), Rectified Flow (Liu et al. (2022)), PD (Salimans &
Ho (2022)), and CD (Song et al. (2023)). In addition to the baseline EDM (Karras et al. (2022))
model, we make comparisons with other sampler-based fast generative models, such as DDIM (Song
et al. (2020a)), DPM-solver (Lu et al. (2022)), and 3-DEIS (Zhang & Chen (2022)). In Table 1 we
show our results on CIFAR 10 dataset. In this, PID maintains a competitive result in both FID and
IS with the most recent single-step generation methods, achieving an FID of 3.92 and IS of 9.13,
while outperforming a few. In particular, we outperform Knowledge Distillation (Luhman & Luhman
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Table 1: FID and IS table comparisons for various sampler based and distillation based methods
on CIFAR-10. The asterisk (*) denotes methods that require the generation of synthetic dataset.
The neural function evaluations (NFE), FID score and IS values reported where obtained from the
respective papers.

METHOD NFE FID IS
(↓) (↓) (↑)

EDM (Karras et al. (2022)) 36 2.04
EDM+Euler Solver (Karras et al. (2022)) 250 2.10
DDPM Ho et al. (2020) 1000 3.17 9.46
DDIM (Song et al. (2020a)) 10 13.36

50 4.67
DPM-Solver-2 (Lu et al. (2022)) 12 5.28
DPM-Solver-3 (Lu et al. (2022)) 12 6.03
DPM-Solver-Fast (Lu et al. (2022)) 10 4.70
3-DEIS (Zhang & Chen (2022)) 10 4.17

Teacher DDPM
Knowledge Distillation* (Luhman & Luhman (2021)) 1 9.36
Progressive Distillation (Salimans & Ho (2022)) 1 8.34 8.69
DSNO* (Zheng et al. (2022)) 1 3.78 -
Teacher Rectified Flow
1-Rectified Flow (+ distill)* (Liu et al. (2022)) 1 6.18 9.08
2-Rectified Flow (+ distill)* (Liu et al. (2022)) 1 4.85 9.01
3-Rectified Flow (+ distill)* (Liu et al. (2022)) 1 5.21 8.79
Teacher EDM
Consistency Model (Song et al. (2023)) 1 3.55 9.48
TRACT (Berthelot et al. (2023)) 1 3.78 -
BOOT (Gu et al. (2023)) 1 4.38 -
Diff-Instruct (Luo et al. (2023)) 1 4.12 9.89
Equilibrium (Geng et al. (2023)) 1 6.91 9.16
PID (Ours) 1 3.92 9.13

Table 2: FID table comparisons for various distillation based methods on ImageNet 64x64. The
asterisk (*) denotes methods that require the generation of a synthetic dataset.

Method NFE (↓) FID (↓)
ADM (Dhariwal & Nichol (2021)) 250 2.07
EDM (Karras et al. (2022)) 79 2.44
EDM+Euler Solver (Karras et al. (2022)) 250 2.41
BigGAN-deep (Brock et al. (2019)) 1 4.06
Teacher DDPM
Progressive Distillation (Salimans & Ho (2022)) 1 15.39
DSNO* (Zheng et al. (2022)) 1 7.83
Teacher EDM
Consistency Model (Song et al. (2023)) 1 6.20
TRACT (Berthelot et al. (2023)) 1 7.43
BOOT (Gu et al. (2023)) 1 12.3
Diff-Instruct (Luo et al. (2023)) 1 4.24
PID (Ours) 1 9.49

(2021)), Rectified Flow (Liu et al. (2022)) and PD (Salimans & Ho (2022)) by a decent margin on
CIFAR-10. On the other hand, we maintain a competitive performance with DSNO (Zheng et al.
(2022)) and CD (Song et al. (2023)), only losing to it by a small margin.

Table 2 presents the results obtained from experiments conducted on ImageNet 64x64. Analyzing
Table 2, we observe that our method surpasses PD (Salimans & Ho (2022)), achieving an FID of 9.49.
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(a) Random samples from EDM (b) Random samples from PID

Figure 2: Conditional image generation comparison on ImageNet 64×64 for the same seed with the
same class label "Siberian husky". Left panel: random samples generated by teacher model EDM.
Right panel: generated by student PID model.

Nevertheless, echoing our observations from the CIFAR-10 experiments, our approach lags behind
DSNO (Zheng et al. (2022)) and CD (Song et al. (2023)), which achieves a lower FID of 7.83 and
6.20 respectively. Despite this, it is worth emphasizing that our method does not entail the additional
costs associated with generating expensive synthetic data, which is a characteristic feature of DSNO.
This cost-effective aspect represents a notable advantage of our approach in the context of ImageNet
64x64 experiments despite its poorer performance.

In Figure 2, we compare qualitatively between the images generated from the teacher EDM model
and the student model. From this, we observe that in general, the student model aligns with the
teacher model images, generating similar images for the same noise seed. Additional samples from
Imagenet and CIFAR-10 are provided in Appendix A.5.

Figure 3: Training curve with different discretiza-
tions number on CIFAR-10.

Figure 4: Training curve for different distance
metrics, L2 and LPIPS, on CIFAR-10.

6 ABALATION STUDY

6.1 COMPARING DISCRETIZATION NUMBERS

To properly understand the effect of discretization number, N , on our method, the experiment
on CIFAR-10 was repeated with different discretization values. The experiments conducted
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in this section were performed with the same hyperparameter setup as in the main results ex-
cept with changing discritization number. The discretization values investigated here were
{35, 80, 100, 120, 150, 200, 250, 500, 1000}.
In Figure 3, we can observe that the performance of our single step image generation model steadily
increases with increasing discritization. This behaviour aligns well with the theoretical expecta-
tions according to Theorem 1 where the discritization error decreases with higher discritization.
Additionally, this behaviour is also common to PINNs (Raissi et al. (2019)) where increasing the
collocation of points on a trajectory improves model performance. This stable and predictable trend
with respect to discretization justifies our choice of setting our discritization number to 250 where the
performance has plateaued, achieving good performance despite not tuning any methodology-specific
hyperparameters.

6.2 L2 VS LPIPS COMPARISON

To thoroughly investigate the influence of different distance metrics on model performance, we
conducted experiments on CIFAR-10 using the L2 and LPIPS metrics. These experiments were
carried out following the same experimental setup described in the main results. Analyzing the results
depicted in Figure 4, we observe a similar trend to previous studies utilizing LPIPS metric (Song
et al. (2023); Liu et al. (2022)), wherein a slower convergence rate with L2 compared to LPIPS
was observed. This difference between L2 and LPIPS persists even up till convergence with the L2
metric obtaining an FID of 5.85 and the LPIPS metric achieving an FID of 3.92. Consequently, this
reinforces the validity and suitability of the LPIPS metric in our training approach.

6.3 TRAINING EFFICIENCY COMPARISON

Due to the incorporation of numerical differentiation in our approach, we regrettably require two
model evaluations, in contrast to the single model evaluations employed by other methods. In this
section, we provide a detailed comparison of the training time efficiency of our method with recent
works, CD (Song et al. (2023)) and PD (Salimans & Ho (2022)). The analysis presented in Table 3
reveals an intriguing finding: despite the necessity of two functional evaluations, our approach incurs
only a 35% higher training cost compared to doubling, as might be expected. This discrepancy arises
from the fact that, while our method uses only a single teacher model evaluation, recent methods
instead requires two iterative teacher model evaluations, thus incurring additional training expenses.
It is worth emphasizing that despite the additional training cost per iteration attributed to our approach,
the consistent and stable trend we observe concerning the discretization number allows us to train
our model without the need to fine-tune any methodology-specific hyperparameters. This, in turn,
significantly reduces the cost associated with hyperparameter optimization.

Table 3: Training time comparisons between PID and recent works on CIFAR 10.

Method Training Time (second per 10 iteration)
PD 5.15
CD 5.21

PID (ours) 7.13

7 CONCLUSION

In this paper, we introduce Physics Informed Distillation (PID), a method designed to train a single-
step diffusion model that draws significant inspiration from Physics Informed Neural Networks
(PINNs). Through a combination of empirical evaluations and theoretical underpinnings, we have
demonstrated the robustness and competitiveness of our method in comparison to the majority
of existing techniques. While it falls slightly behind DSNO and CD, it distinguishes itself by
eschewing the need for costly synthetic data generation or meticulous tuning of methodology-
specific hyperparameters. Instead, our approach achieves competitive performance with constant
methodology-specific hyperparameters.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENT DETAILS

Model Architectures All pre-trained models utilized in our experiments were obtained from the
EDM framework (Karras et al. (2022)). Specifically, for the CIFAR-10 dataset, we employed the
NCSN++ model architecture as described by (Song et al. (2021)). For experiments conducted on
the ImageNet 64x64 dataset, we followed the architecture detailed by (Dhariwal & Nichol (2021)).
For small student distillation experiment on CIFAR-10, the same architecture as the teacher model
in (Song et al. (2021)) was used with the number of channels reduced from 128 to 64.

Evaluation Metrics For Frechet inception distance (FID, lower is better) (Heusel et al. (2017a))
and Inception Score (IS, higher is better) (Salimans et al. (2016)), 50,000 generated images were
compared against their respective ground truth datasets. Three different seeds were employed, and
the best result was selected since FID values typically exhibit approximately 2% variance between
measurements (Karras et al. (2022)).

Training details For both CIFAR-10 and ImageNet, we use a pretrained EDM model (Karras et al.
(2022)) as our teacher model. Unless stated otherwise, all the student models Xθ were initialized
with the same weight as the pretrained EDM teacher model Dϕ. In the experiment involving the
smaller student model, the student model was randomly initialized. Rectified Adam optimizer (Liu
et al. (2020)) was used for distillation with weight decay of 0 and a constant learning rate throughout
the training iteration. Following (Karras et al. (2022)), we use the EMA weights of student model for
inference. The EMA decay value for both CIFAR-10 and ImageNet is same, 0.99995. Additional
details on training hyperparameters are shown in Table 4.

Unless explicitly stated otherwise, we utilized LPIPS as the default distance metric for training.
When utilizing LPIPS as the distance metric d(·, ·), the input images were rescaled to 244x244 using
bilinear upsampling before being fed into the VGG model (Simonyan & Zisserman (2014)).

Table 4: Hyperparameters used for the training runs.

Hyperparameter CIFAR-10 ImagetNet 64x64
Number of GPUs 8xA100 32xA100
Batch size 512 2048
Gradient clipping - ✓
Mixed-precision (FP16) - ✓
Learning rate ×10−4 2 1
Dropout probability 0% 0%
EMA student model 0.99995 0.99995

A.2 INSIGHT ON PARAMETRIZATION CHOICE FOR PHYSICS INFORMED DISTILLATION

To satisfy the boundary condition, we require a parametrization choice such that:

xθ(z, t) =cskip(t) z+ cout(t)Xθ (cin(T ) z, cnoise(t)) ,

where cout(T ) = 0.
(14)

A straightforward selection for this would be a linear function, such as T − t. However, for cases
where T of the forward diffusion process is large, as in the case of EDM (Karras et al. (2022)), such
a choice would amplify the model outputs which may cause poor performance. As such, we choose:

cout(t) =
T − t

T
(15)

to ensure that the model is multiplied by a factor no larger than 1. For the skip connection function,
cout(t), let’s begin by examining the solution for the provided Probability Flow ODE system:

xt = z+

∫ t

T

x′
t −Dϕ(x

′
t, t

′)

t′
dt′. (16)
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Given that the constant function, cskip(t) = 1, already meets its boundary condition at T , it might
appear to be the obvious choice for the skip function. However, when considering Equation 16 and
Equation 14, it can be seen that the model, Xθ, when it solves the ODE system is such that:

Xθ(z, t) =
1

cout(t)

∫ t

T

x′
t −Dϕ(x

′
t, t

′)

t′
dt′

=
T

T − t

∫ t

T

x′
t −Dϕ(x

′
t, t

′)

t′
dt′.

(17)

At time t = 0,

Xθ(z, 0) =

∫ 0

T

x′
t −Dϕ(x

′
t, t

′)

t′
dt′

= x0 − z.

(18)

Given the contrasting magnitudes of x0 within the range [−1, 1] and z which has significantly larger
values due to its high variance, aligning our model, Xθ(z, 0), with x0 at t = 0 emerges as a superior
choice. More specifically:

Xθ(z, 0) = x0

= z+

∫ 0

T

x′
t −Dϕ(x

′
t, t

′)

t′
dt′.

(19)

Thus, for any arbitrary time, t, we desire our model to be expressed as:

Xθ(z, t) = z+
T

T − t

∫ t

T

x′
t −Dϕ(x

′
t, t

′)

t′
dt′. (20)

By plugging in the above formula into Equation 14, considering the choice of cout as well as the
solution of the probability flow ODE in Equation 16, we obtain the given skip connection:

cskip(t) =
t

T
(21)

For the choice of functions, cin(t) and cnoise(t), we opted to use the same functions utilized in the
teacher EDM model. Additionally, the time value of the in function, cin(T ), is set to T , given that the
input consists of noise, representing the distribution corresponding to time T .

Table 5: FID table comparisons for small student model and large student model on CIFAR 10.

Model Parameters FID (↓)
Teacher (EDM) 55.7M 2.04
Student (PID) 55.7M 3.93
Student (PID) 13.9M 8.29

A.3 KNOWLEDGE DISTILLATION

As is common in Knowledge Distillation literature, this field often involves model compression
where a teacher model is used to produce a student model with comparable performance. In line with
this paradigm, we train our model with the same hyperparameters as in the CIFAR-10 main results
with less than a quarter of the model parameters. The small student architecture was constructed by
reducing all the channels in the teacher models by half. More details on the small student architecture
are provided in Appendix A.1. From Table 5, we can observe that despite the student model’s
significantly smaller size, it is still able to generate decent images, achieving an FID score of 8.29.
Despite its drop in performance in contrast to the bigger student models, this result showcases the
promising potential of Knowledge Distillation approaches in model compression and not just NFE
reduction.
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Figure 5: Trajectory comparisons on ImageNet with EDM teacher (top) and PID student (bottom).

A.4 TRAJECTORY COMPARISONS

In Figure 5, we present a comparison of the trajectories obtained from both the teacher EDM model
and the student PID model. Notably, for the same noise seed, we observe that the trajectories
represented by xθ(z, ·) in the student model align remarkably well with those of the teacher model,
with only minor aberrations. This demonstration underscores the ability of our model to predict all
points along the trajectory in a continuous manner and not only the origin.

A.5 ADDITIONAL RANDOM SAMPLES

In this section, we provide additional samples from our PID model for ImageNet 64x64 and CIFAR-
10. The images are obtained by employing the same class for ImageNet 64x64 and applying the same
noise seed to both the teacher EDM and student PID models.

A.5.1 CIFAR-10
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(a) Random samples from EDM (b) Random samples from PID (c) Random samples from PID
(small student)

Figure 6: Unconditional image generation comparison on CIFAR-10 for the same seed. Left panel:
random samples generated by EDM teacher model. Middle panel: generated by PID student model.
Right panel: generated by small PID student model.

(a) Random samples from EDM (FID=2.04)
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(b) Random samples from PID (FID=3.92)

(c) Random samples from PID small student (FID=8.29)

Figure 7: Unconditional image generation comparison on CIFAR-10 for the same seed.
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A.5.2 IMAGENET 64X64

(a) Random samples from EDM on ImageNet (FID=2.44)

(b) Random samples from PID on ImageNet (FID=9.49)

Figure 8: Conditional image generation comparison on ImageNet 64×64 for the same seed.
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