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Abstract

We study a problem of gradual batch distribution drift motivated by several ap-1

plications, which consists of determining an accurate predictor for a target time2

segment, for which a moderate amount of labeled samples are at one’s disposal,3

while leveraging past segments for which substantially more labeled samples are4

available. We give new algorithms for this problem guided by a new theoretical5

analysis and generalization bounds derived for this scenario. Additionally, we6

report the results of extensive experiments demonstrating the benefits of our drifting7

algorithm, including comparisons with natural baselines.8

1 Introduction9

The standard assumption in learning theory and algorithm design is that training and test distributions10

coincide and that the distributions are fixed over time. However, in many applications, the learning11

environment is non-stationary and subject to a continuous drift over time. These include tasks such12

as political sentiment analysis, news stories, spam detection, fraud detection, network intrusion13

detection, sales prediction, and many others.14

In such tasks, the distribution gradually changes over time. For example, sales or fraud patterns are15

relatively stable within a time segment, which may be a month or two long, but they may change at16

the subsequent period. We here study prediction in such gradual distribution drift scenarios, which17

are distinct from and more favorable than the most general scenarios of time series prediction where18

more drastic changes of the distributions may occur (Engle, 1982; Bollerslev, 1986; Brockwell and19

Davis, 1986; Box and Jenkins, 1990; Hamilton, 1994; Meir, 2000; Kuznetsov and Mohri, 2015).20

The problem of predicting in a distribution drift setting has been studied both in the on-line and batch21

learning settings. This paper deals with the batch setting. For a discussion of related work in both the22

online and offline setting, see Appendix A.23

This paper studies a frequent batch scenario of distribution drift where distribution time segments are24

known to the learner and one can expect to receive i.i.d. data from the same distribution within each25

period. The task consists of making use of the data from the previous time segments to make accurate26

predictions for a new segment for which there can be a moderate amount of labeled data. This could27

for example correspond to the first few days of a month-long time segment. If the segments are not28

known apriori, we provide in Appendix E an algorithm for detecting the segments.29

Our analysis and algorithm make use of the discrepancy, as in (Mohri and Muñoz, 2012). However, our30

discrepancy-based generalization bounds are novel and distinct. Also, that study relies on an online31

learning algorithm to generate hypotheses in a first stage and then determines weights in the second32

stage to form an average of the hypotheses. In contrast, our algorithm DRIFT simultaneously learns33

both the weights and the hypothesis. Our analysis and algorithm also hold for general hypothesis sets34
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Figure 1: Illustration of the learning scenario: distributions Dt, samples St ∼Dmt
t , and discrepancies

dis(DT+1,Dt), where ∣St∣ =mt and ∑T+1s=1 ms =m.

and are expressed in terms of a weighted Rademacher complexity of the hypothesis set used. In the35

following, we present our new bounds, our DRIFT algorithm and extensive experimental results.36

2 Learning scenario37

Let X denote the input space, Y the output space, and H a hypothesis set of functions mapping from38

X to Y. We will consider a loss function `∶Y × Y → R assumed to take values in [0,1]. For any39

distribution P over X × Y, we denote by L(P, h) the expected loss of h ∈ H for the distribution P:40

L(P, h) = E(x,y)∼P[`(h(x), y)].41

We study the following distribution drift problem. Let D1, . . . ,DT+1 be (T + 1) distributions over42

X × Y. The learner receives a labeled i.i.d. sample St = ((xnt+1, ynt+1), . . . , (xnt+mt , ynt+mt)) of43

size mt from each distribution Dt, t ∈ [T + 1], with nt = ∑t−1s=1ms, see Figure 1. We will also use44

the shorthand m = nT+2 = ∑T+1t=1 mt for the total sample size. We will be particularly interested in45

cases where mT+1 is significantly smaller than the total sample encountered in the first T segments,46

with mT+1 ≪∑Tt=1mt. For any t, will denote by D̂t the empirical distribution defined by the sample47

St and will denote by Dt,X the margin distribution of Dt on X. The goal is to use these samples48

to learn a hypothesis h for the target distribution DT+1 with small expected loss L(DT+1, h). Of49

course, one could use just the sample ST+1 available from the target to train a predictor. However,50

when the distributions Dt, t ∈ [T ], are somewhat similar to the target distribution, using the samples51

St, t ∈ [T ], may help select a more accurate predictor.52

An appropriate measure of the distance between distributions is necessary to tackle the distribution53

drifting problem. Mohri and Muñoz (2012) argued that a suitable measure is that of discrepancy,54

previously used in the context of adaptation (Kifer et al., 2004; Ben-David et al., 2006; Mansour et al.,55

2009; Cortes and Mohri, 2014; Cortes et al., 2019b), as it takes into account both the loss function56

and the hypothesis set. It can also be estimated from a finite sample and upper bounded by other57

divergence measures such as the relative entropy and total variation (Mansour et al., 2021).58

We call dis(Di,Dj) the labeled discrepancy between Di and Dj :59

dis(Di,Dj) = sup
h∈H

E
(x,y)∼Di

[`(h(x), y)] − E
(x,y)∼Dj

[`(h(x), y)]. (1)

In all the definitions above, we also allow Di and Dj to be finite signed measures over X × Y, thus60

the weights may not sum to one. In addition, we (abusively) allow distributions over sample indices:61

given a sample S and a distribution q over its [m] indices, we define the discrepancy dis(D̂,q)62

dis(D̂,q) = sup
h∈H

1

m

m

∑
i=1
`(h(xi), yi) −

m

∑
i=1

qi`(h(xi), yi).

3 Generalization bounds for batch drifting scenarios63

In this section, we give new generalization bounds for the distribution drift problem, using the notion64

of discrepancy. For a non-negative vector q in [0,1][m], we denote by qt the total weight on the65

points in sample St, t ∈ [T + 1]: q = ∑mti=1 qnt+i and by Rq(` ○H) the q-weighted Rademacher66

complexity, an extension of Rademacher complexity taking into account the weights q:67

Rq(` ○H) = E
S,σ

[sup
h∈H

m

∑
i=1
σiqi`(h(xi), yi)], (2)

where σis are independent and uniform random variables taking values in {−1,+1}. For this result,68

we consider a reference distribution p0, which can be thought of as a reasonable first estimate for q.69
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A natural choice is the uniform distribution over just the target points. We then derive a bound that70

holds uniformly for all q in {q∶0 < ∥q − p0∥1 < 1}. The proof is given in Appendix B.71

Theorem 1. For any δ > 0, with probability at least 1 − δ over the choice of a sample S drawn from72

Dm1

1 ⊗⋯⊗DmT+1
T+1 , the following holds for all h ∈H and q ∈ {q∶0 ≤ ∥q − p0∥1 < 1}:73

L(DT+1, h) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt) + dis(q,p0) + 2Rq(` ○H) + 5∥q − p0∥1

+ [∥q∥2 + 2∥q − p0∥1][
√

log log2
2

1−∥q−p0∥1 +
√

log 2
δ

2
].

Analysis of bounds. Theorem 1 gives a guarantee on the expected loss based on a q-weighted sample,74

the labeled discrepancy, the q-weighted Rademacher complexity, and ∥q∥2. When q is a distribution75

a term to minimize is ∑Tt=1 qtdis(DT+1). The bound thus recommends less allocation of weight76

(indicated by qt) to samples that have a large discrepancy with the target – they do not contain as77

useful training points. Another way to see this is by looking at the loss from an arbitrary sample,78

∑nt+mti=nt qi[`(h(xi), yi) + dis(DT+1,Dt)], which shows the loss from each point being enlarged by79

the appropriate discrepancy. There is also a natural balance between the q-weighted empirical loss80

and ∥q∥2 terms: we are interested in minimizing the former, but not at the expense of giving most81

points a weight of zero and thus increasing ∥q∥2 too much. The last term also lends itself to an82

interpretation of an effective sample size gleaned from q, as we can compare ∥q∥2 to the inverse of83

square-root of the sample size from other bounds. Theorem 1 additionally contain ∥q − p0∥1 and84

dis(q,p0) terms, which both suggest that the q should not be too far from the reference p0. The global85

insight suggested by this bound is that a balance of all these terms is important for generalization to86

be successful in drifting. We next describe our DRIFT algorithm based on these observations.87

4 DRIFT Algorithm88

Theorem 1 suggests minimizing the right-hand side of the inequality with an ideal choice of h ∈H89

and q ∈ [0,1]m. If we assume that H is a subset of a normed vector space and that the Rademacher90

complexity term can be upper-bounded on the norm squared ∥h∥2, the optimization problem with λ1,91

λ2 and λ∞ as non-negative hyperparameters is as follows:92

min
h∈H,q∈[0,1]m

m

∑
i=1

qi[`(h(xi), yi)] +
T

∑
t=1

qtdis(DT+1,Dt) + dis(q,p0)

+ λ∞∥q∥∞∥h∥2 + λ1∥q − p0∥1 + λ2∥q∥22,
where the weighted Rademacher complexity is upper-bounded as by Lemma 1, Appendix B. For93

p0 we make the natural choice of the uniform distribution over just ST+1, the empirical distribution94

without any points from previous distributions. We call DRIFT the algorithm seeking to solve this95

optimization problem. We also introduce a simpler algorithm SDRIFT, used for all experiments, where96

the dis(q,p0) term is upper-bounded by ∥q − p0∥1, allowing it to be absorbed into λ1. In Appendix F97

we also introduce a Naive-DRIFT algorithm where segments S1, . . . , ST are combined in one.98

Note that dis(q,p0) is a convex function of q since it is a supremum of convex functions of q:99

dis(q,p0) = suph∈H{∑mi=1(qi − p0i )`(h(xi), yi)}. Thus, when the loss function ` is convex with100

respect to its first argument, the objective function is convex in q and convex in h. In general,101

however, it is not jointly convex. To minimize the objective, we use alternating minimization or102

DC-programming. Here, alternating minimization alternates between optimizing with respect to h or103

with respect to q, each time solving a convex optimization problem. The method admits convergence104

guarantees under certain assumptions (Grippo and Sciandrone, 2000; Li et al., 2019; Beck, 2015).105

The description and guarantees for DC-programming are discussed in Appendix C. In Appendix D106

and Appendix E we also discuss how to estimate discrepancies and automatically detect segments.107

5 Experimental evaluation108

We compare SDRIFT to several baseline algorithms in real-world regression and classification settings.109

In Appendix G we further provide experimental results on sythetic data illustrating a number of110

favorable qualities of SDRIFT such as automatically honing in on segments of low discrepancy.111
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Table 1: Performance of the SDRIFT algorithm against baselines. For regression (top 5 rows) we
report relative errors normalized so that training on target has an MSE of 1.0. For classification
(bottom 4 rows) we report relative accuracies normalized so training on just target has an accuracy of
1.0. Best results in boldface, ties in italics.

Dataset KMM DM MM EXP BSTS SDRIFT

Wind 1.19 ± 0.07 1.12 ± 0.06 1.19 ± .07 0.98 ± 0.04 0.98 ± 0.01 0.95 ± 0.02
Airline 2.45 ± 0.17 1.78 ± 0.11 1.41 ± 0.28 0.98 ± 0.03 0.945 ± 0.01 0.94 ± 0.03
Gas 0.45 ± 0.02 0.42 ± 0.02 0.47 ± 0.04 0.94 ± 0.03 1.02 ± 0.2 0.4 ± 0.01
News 1.1 ± 0.02 1.13 ± 0.01 1.1 ± 0.03 0.98 ± 0.02 1.00 ± 0.02 0.97 ± 0.004
Traffic 2.3 ± 0.12 2.2 ± 0.11 0.99 ± 0.12 0.996 ± 0.008 0.98 ± 0.03 0.96 ± 0.006

STAGGER 0.69 ± 0.006 0.73 ± 0.05 0.74 ± 0.01 1.02 ± 0.03 0.98 ± 0.02 1.05 ± 0.03
Electricity 0.95 ± 0.01 0.93 ± 0.02 0.84 ± 0.02 1.09 ± 0.02 1.02 ± 0.07 1.13 ± 0.02
Room Occupancy 0.62 ± 0.02 0.63 ± 0.01 0.72 ± 0.03 1.02 ± 0.04 1.07 ± 0.01 1.02 ± 0.02
Adult Income 0.97 ± 0.007 0.98 ± 0.01 0.99 ± 0.005 1.00± 0.01 1.00 ± 0.02 1.01 ± 0.004

Baseline algorithms112

We compare with the following baseline algorithms, modified to incorporate the labeled sample ST+1:113

KMM (Huang et al., 2006): The algorithm assigns weights to the sample points in S1, S2, . . . , ST114

so that the kernelized mean feature vector of each segment matches that of ST+1 in terms of mean115

squared error. We run linear KMM for each segment to derive the qi-weights. We then minimize a116

squared error loss using these weights, adding in the target points with uniform weights.117

DM (Cortes and Mohri, 2014): This method also performs a two-stage optimization, but uses the118

unlabeled discrepancy to determine weights per segment. These weights and uniform 1/(mT+1)119

weights for the target points are then used for training a squared error loss.120

MM (Mohri and Muñoz, 2012): In an online learning phase this algorithm first generates multiple121

hypotheses. In a second phase it determines weights to form a weighted average of the hypotheses.122

EXP: This method often used in drifting and time-series modeling exponentially down-weights past123

samples. For our comparisons, we keep the weights fixed within each past segment.124

BSTS (Scott and Varian, 2014): A state-of-the-art time-series modeling technique that incorporates125

drift as well as segment indicators.126

Regression and classification tasks127

We compare the SDRIFT algorithm to that of the baselines on a number of regression and classification128

tasks. For pointers to the dataset and details on the experimental procedure, see Appendix G. For129

regression we report performance in terms of MSE and normalize so training only on the target gives130

an MSE of 1. Thus, well-performing algorithms have an MSE < 1. For classification, we use accuracy131

and well-performing algorithms have an accuracy > 1. Table 1 reports our results. The KMM and132

DM algorithms admit no principled mechanism for down-weighting segments that are too far from133

the target, thus all segments are assigned the same total mass in the loss function. In contrast, as can134

be seen from Figures 6 -7 in Appendix G, the SDRIFT algorithm effectively discards many segments135

and assigns them little or no q-mass. In addition, KMM and DM do not make use of any labels to136

match distributions. The MM algorithm does incorporate the performance of the hypotheses found137

in the online training phase, and hence in its final training it puts most weight on the hypotheses138

from the target segment. However, the simple online hypotheses are weaker than the result from139

batch training on the target and as a result, this method also obtains poorer performance. The EXP140

algorithm is competitive and ties in some instances with SDRIFT, for example when past segments141

receive very little from SDRIFT. Finally, we compare to the BSTS algorithm. For dataset with a clear142

time component: wind (month), news (weekday), airline (hour), traffic (hour) Room (hour)143

it provides a strong baseline, but proves sub-optimal for general drifting problems. In preliminary144

results we also outperform the MDAN soft-max algorithm (Zhao et al., 2018).145

6 Conclusion146

We presented a detailed study of a distribution drift problem that arises in many applications, and we147

derived an algorithm based on a detailed theoretical analysis. Our experimental results suggest that148

this algorithm is of practical use with significant benefits in several tasks, although it requires careful149

tuning of three hyperparameters. Our analysis and theory are likely to be useful in the study of other150

drifting problems and adaptation tasks.151
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A Related work329

A.1 Online setting330

In on-line learning, the benchmark typically adopted is that of external regret, which measures the331

cumulative loss of the algorithm against that of the best static expert in hindsight (Cesa-Bianchi and332

Lugosi, 2006). This framework was extended by Herbster and Warmuth (2001), who studied the333

scenario where the best expert could shift over time at most a finite number of times. The analysis was334

later improved to account for broader expert classes (Gyorgy et al., 2012) and to deal with unknown335

parameters (Monteleoni and Jaakkola, 2003). It was further generalized (Vovk, 1999; Cesa-Bianchi336

et al., 2012; Koolen and de Rooij, 2013) and used to extend the perceptron algorithm (Cavallanti337

et al., 2007). A more general theoretical and algorithmic analysis of online learning with dynamic338

sequences of experts based on weighted automata was given by Mohri and Yang (2018), which339

comprehensively covers past competitor classes considered in the literature. An alternative study340

of dynamic environments based on the notion of adaptive regret was also suggested by Hazan and341

Seshadhri (2009), which was later strengthened and generalized (Adamskiy et al., 2012; Daniely342

et al., 2015). Bartlett et al. (2000) considered other settings allowing arbitrary but infrequent changes,343

such as sequences corresponding to slow walks. Crammer et al. (2010) analyzed an intermediate344

model of drift based on a near function, where consecutive distributions could change arbitrarily,345

provided that the region of disagreement between nearby functions were assigned limited distribution346

mass at any time. Ensemble learning was suggested as a solution technique for drifting in Tsymbal347

(2004). In a somewhat related work, Zhao et al. (2020) introduced an algorithm based on model reuse348

and weight updating. Finally, a study of active learning in the online setting with drifting distributions349

was presented by Yang (2011).350

A.2 Offline setting351

For offline or batch learning, Helmbold and Long (1994) provided learning bounds in the case352

where only the target was allowed to drift. Bartlett (1992) presented an analysis for a drifting of the353

joint distribution based on the total variation as the distance between distributions, and Barve and354

Long (1997) gave a tight bound for this scenario. Under a persistent or even rapid rate of change355

assumption, Freund and Mansour (1997) improved these theoretical learning results. However, such356

studies for the batch learning make a rather strong assumption about the rate of drift, which implies357

that training only on the most recent examples is sufficient for a certain period of time. This approach358

therefore does not benefit from all older examples that are at the learner’s disposal. The results just359

discussed are also all based on the `1-distance as a measure of divergence between two consecutive360

distributions. As argued by Mohri and Muñoz (2012), tighter learning bounds can be achieved using361

a notion of discrepancy, which can be viewed as a more suitable divergence measure since it takes362

into account both the loss function and the hypothesis set. Concept drift has also been studied in both363

the online and offline setting for clustering, where labels are not available (Moulton et al., 2018).364

Finally, Zhao et al. (2018) provide generalization bounds and algorithms for domain adaptation with365

multiple source domains, but in an unsupervised setting that lacks a time component.366

A.3 Drift detection367

Much of the recent literature on drifting has been related to drift detection and subsequent model368

adaptation. The detection of a drift significant enough to warrant updating the model is critical,369

as retraining is computationally expensive. The theoretical results suggest the use of only a most370

recent set of training examples. Hence, it is important to identify a (changing) window of examples371

to train on. FLORA (Widmer and Kubat, 1996) was one of the original algorithms to train with a372

fixed window. Later versions of this algorithm study an adaptive window (using methods such as373

a Hoeffding statistical test in Gâlmeanu and Andonie (2021) which does not require subsequent374

entire model retraining) as well as gradual forgetting of data points (Gama et al., 2014; Klinkenberg,375

2004). An error-based method of drift detection is now one of the most popular approaches to drift376

detection, originating from the Drift Detection Method of Gama et al. (2004), which identifies an377

acceptable level of error for the most recent window of online examples. Other methods include378

distribution-based drift detection and more recently the use of multiple (parallel or hierarchical)379

hypothesis tests to detect drift (Lu et al., 2020). A Bayesian approach has also been studied (Bach and380

Maloof, 2010). In an application to financial markets and more specifically the Dow Jones, neural381
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networks have been used to detect concept drift (Silva et al., 2012). Analysis has also been extended382

to the active learning setting, where Tahmasbi et al. (2021) claim to outperform standalone drift383

detection.384

B Main theorems385

We first present a learning guarantee for batch drifting for fixed values of the weights q, expressed in386

terms of the discrepancy between DT+1 and a weighted sum of all segment distributions Dt.387

Theorem 2. Fix a vector q in [0,1][m]. Then, for any δ > 0, with probability at least 1 − δ over the388

choice of a sample S drawn from Dm1

1 ⊗⋯⊗DmT+1
T+1 , the following holds for all h ∈H:389

L(DT+1, h) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt) + 2Rq(` ○H) + ∥q∥2

√
log 1

δ

2
.

Furthermore, when q is a distribution, ∥q∥1 = 1, the inequality can be replaced with390

L(DT+1, h) ≤
m

∑
i=1

qi`(h(xi), yi) +
T

∑
t=1

qtdis(DT+1,Dt) + 2Rq(` ○H) + ∥q∥2

√
log 1

δ

2
.

The simplification of the second term when q is a distribution stems from the following steps:391

dis((1 − qT+1)DT+1,∑Tt=1 qtDt) = dis(∑Tt=1 qtDT+1,∑Tt=1 qtDt) = ∑Tt=1 qtdis(DT+1,Dt).392

Proof. Let LS(q, h) denote the q-weighted empirical loss: LS(q, h) = ∑mi=1 qt`(h(xi), yi). For any393

sample S drawn from Dm1

1 ⊗⋯⊗DmT+1
T+1 , we define Φ(S) as follows:394

Φ(S) = sup
h∈H

T+1
∑
t=1

qtL(Dt, h) − LS(q, h).

Changing point xi to some other point x′i affects Φ(S) at most by qi, as we consider loss functions395

`∶Y × Y→ R assumed to take values in [0,1]. Thus, by McDiarmid’s inequality, which only requires396

independent random variables and not the same distribution, for any δ > 0, with probability at least397

1 − δ, the following holds for all h ∈H:398

T+1
∑
t=1

qtL(Dt, h) ≤ LS(q, h) +E[Φ(S)] + ∥q∥2

√
log 1

δ

2
. (3)

We now analyze the expectation term. Observe that for any sample S, we can write:399

E
S
[LS(q, h)] =

m

∑
i=1

qiE[`(h(xi), yi)]

=
T+1
∑
t=1

mt

∑
i=1

qnt+iE[`(h(xnt+i), ynt+i)]

=
T+1
∑
t=1

mt

∑
i=1

qnt+iL(Dt, h)

=
T+1
∑
t=1

qtL(Dt, h).
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Thus, the expectation term can be expressed as follows:400

E[Φ(S)] = E
S
[sup
h∈H

T+1
∑
t=1

qtL(Dt, h) − LS(q, h)]

= E
S
[sup
h∈H

E
S′
[LS′(q, h) − LS(q, h)]]

≤ E
S,S′

[sup
h∈H
LS′(q, h) − LS(q, h)] (by the sub-additivity of the supremum operator)

= E
S,S′

[sup
h∈H

m

∑
i=1

qi`(h(x′i), y′i) − qi`(h(xi), yi)]

= E
S,S′,σ

[sup
h∈H

m

∑
i=1
σi(qi`(h(x′i), y′i) − qi`(h(xi), yi))]

(introducing Rademacher variables)

≤ E
S′,σ

[sup
h∈H

m

∑
i=1
σiqi`(h(x′i), y′i)] + E

S,σ
[sup
h∈H

m

∑
i=1
σiqi`(h(xi), yi)]

(by the sub-additivity of the supremum operator)

= 2 E
S,σ

[sup
h∈H

m

∑
i=1
σiqi`(h(xi), yi)] = 2Rq(` ○H).

Now, for any h ∈H, we have401

L(DT+1, h) −
T+1
∑
t=1

qtL(Dt, h) = L(DT+1, h) − L(
T+1
∑
t=1

qtDt, h) ≤ dis(DT+1,
T+1
∑
t=1

qtDt).

When q is a distribution, we have ∑T+1t=1 qt = 1 and402

dis(DT+1,
T+1
∑
t=1

qtDt) = max
h∈H

{L(DT+1, h) − L(
T+1
∑
t=1

qtDt, h)}

= max
h∈H

{L(DT+1, h) −
T+1
∑
t=1

qtL(Dt, h)}

= max
h∈H

{
T

∑
t=1

qt[L(DT+1, h) − L(Dt, h)]}

≤
T

∑
t=1

qtmax
h∈H

{[L(DT+1, h) − L(Dt, h)]}

=
T

∑
t=1

qtdis(DT+1,Dt).

This completes the proof.403

The following result shows that the bound is tight as a function of the weighted-discrepancy term.404

Theorem 3. Fix a distribution q in ∆m. Then, for any ε > 0, there exists h ∈ H such that, for any405

δ > 0, the following lower bound holds with probability at least 1 − δ over the choice of a sample S406

drawn from Dm1

1 ⊗⋯⊗DmT+1
T+1 :407

L(DT+1, h) ≥
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt) − 2Rq(` ○H) − ∥q∥2

√
log 1

δ

2
− ε.

In particular, for ∥q∥2,Rq(` ○H) ∈ O( 1√
m
), we have:408

L(DT+1, h) ≥
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt) −Ω( 1√
m

).

409
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Proof. Let L(q, h) denote ∑mi=1 qi`(h(xi), yi). By definition of discrepancy as a supremum, for any410

ε > 0, there exists h ∈ H such that L(DT+1, h) − L(∑T+1t=1 qtDt, h) ≥ dis(DT+1,∑T+1t=1 qtDt) − ε.411

For that h, we have412

L(DT+1, h) − dis(DT+1,
T+1
∑
t=1

qtDt) − L(q, h) ≥ L(
T+1
∑
t=1

qtDt, h) − L(q, h) − ε = E
S
[LS(q, h)] − L(q, h) − ε.

By McDiarmid’s inequality, with probability at least 1−δ, we have E[L(q, h)]−L(q, h) ≥ −2Rq(`○413

H) − ∥q∥2
√

log 1
δ

2
. Thus, we have:414

L(DT+1, h) − L(q, h) − qdis(DT+1,Q) ≥ −2Rq(` ○H) − ∥q∥2

√
log 1

δ

2
− ε.

The last inequality follows directly by using the assumptions and Lemma 1, see below.415

Lemma 1. Fix a distribution q over [m]. Then, the following holds for the q-weighted Rademacher416

complexity:417

Rq(` ○H) ≤ ∥q∥∞mRm(` ○H).

Proof. The result follows immediately Talagrand’s contraction lemma, by the ∥q∥∞-Lipschitness of418

each function x↦ qix.419

Note that the bound is tight since for q uniform, we have ∥q∥∞ = 1
m

and Rq(` ○H) =Rm(` ○H).420

The following theorem further extends this result to a bound that can be used to choose both h ∈H421

and q. For this result, we consider a reference distribution p0, which can be thought of as a reasonable422

first estimate for q. A natural choice is the uniform distribution over just the target points. We then423

derive a bound that holds uniformly for all q in {q∶0 < ∥q − p0∥1 < 1}.424

Theorem 1. For any δ > 0, with probability at least 1 − δ over the choice of a sample S drawn from425

Dm1

1 ⊗⋯⊗DmT+1
T+1 , the following holds for all h ∈H and q ∈ {q∶0 ≤ ∥q − p0∥1 < 1}:426

L(DT+1, h) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt) + dis(q,p0) + 2Rq(` ○H) + 5∥q − p0∥1

+ [∥q∥2 + 2∥q − p0∥1][
√

log log2
2

1−∥q−p0∥1 +
√

log 2
δ

2
].

Proof. Consider two sequences (εk)k≥0 and (qk)k≥0. By Theorem 2, for any fixed k ≥ 0, we have:427

P[L(DT+1, h) >
m

∑
i=1

qki `(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qktDt) + 2Rqk(` ○H) + ∥qk∥2√
2
εk] ≤ e−ε

2
k .

Choose εk = ε +
√

2 log(k + 1). Then, by the union bound, we can write:428

P[∃k ≥ 1∶ L(DT+1, h) >
m

∑
i=1

qki `(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qktDt) + 2Rqk(` ○H) + ∥qk∥2√
2
εk]

≤
+∞
∑
k=0

e−ε
2
k ≤

+∞
∑
k=0

e−ε
2−log((k+1)2) = e−ε

2
+∞
∑
k=1

1

k2
= π

2

6
e−ε

2

≤ 2e−ε
2

. (4)

We can choose qk such that ∥qk −p0∥1 = 1− 1
2k

. Then, for any q ∈ {q∶0 ≤ ∥q − p0∥1 < 1}, there exists429

k ≥ 0 such that ∥qk − p0∥1 ≤ ∥q − p0∥1 < ∥qk+1 − p0∥1 and thus such that430

√
2 log(k + 1) =

√
2 log log2

1

1 − ∥qk+1 − p0∥1
=
√

2 log log2

2

1 − ∥qk − p0∥1

≤
√

2 log log2

2

1 − ∥q − p0∥1
.
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Furthermore, for that k, the following inequalities hold:431

m

∑
i=1

qki `(h(xi), yi) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(qk,q)

≤
m

∑
i=1

qi`(h(xi), yi) + dis(qk,p0) + dis(p0,q)

≤
m

∑
i=1

qi`(h(xi), yi) + ∥qk − p0∥1 + dis(q,p0)

≤
m

∑
i=1

qi`(h(xi), yi) + ∥q − p0∥1 + dis(q,p0),

dis(DT+1,
T+1
∑
t=1

qktDt) ≤ dis(DT+1,
T+1
∑
t=1

qtDt) + ∥qkt − qt∥1

≤ dis(DT+1,
T+1
∑
t=1

qtDt) + ∥qk − p0∥1 + ∥p0 − q∥1

≤ dis(DT+1,
T+1
∑
t=1

qtDt) + 2∥p0 − q∥1,

Rqk(` ○H) ≤Rq(` ○H) + ∥qk − q∥1 ≤Rq(` ○H) + 2∥q − p0∥1,
and ∥qk∥2 ≤ ∥q∥2 + ∥qk − q∥2 ≤ ∥q∥2 + ∥qk − q∥1 ≤ ∥q∥2 + 2∥q − p0∥1.

Plugging in these inequalities in (4) concludes the proof.432

Corollary 1. For any δ > 0, with probability at least 1 − δ over the choice of a sample S drawn from433

Dm1

1 ⊗⋯⊗DmT+1
T+1 , the following holds for all h ∈H and q ∈ {q∶0 ≤ ∥q − p0∥1 < 1}:434

L(DT+1, h) ≤
m

∑
i=1

qi`(h(xi), yi) +
T

∑
t=1

qtdis(DT+1,Dt) + dis(q,p0) + 2Rq(` ○H) + 6∥q − p0∥1

+ [∥q∥2 + 2∥q − p0∥1][
√

log log2
2

1−∥q−p0∥1 +
√

log 2
δ

2
].

Proof. By definition of the discrepancy, we can write:435

dis(DT+1,
T+1
∑
t=1

qtDt) = dis([(1 − qT+1) +
T

∑
t=1

qt]DT+1,
T

∑
t=1

qtDt)

≤ (
T

∑
t=1

qtDT+1,
T

∑
t=1

qtDt) + ∣1 − ∥q∥1∣

=
T

∑
t=1

qt(DT+1,Dt) + ∣∥p∥1 − ∥q∥1∣

=
T

∑
t=1

qt(DT+1,Dt) + ∣∥p − q∥1∣.

Combining this inequality with the bound of Theorem 1 completes the proof.436

C DC-programming437

We can reduce the optimization problem of DRIFT to an instance of DC-programming (difference of438

convex) by writing the objective as a difference. Note that for any non-negative and convex function439

f , f2 is convex: for all (x,x′) ∈ X2 and α ∈ [0,1], by the convexity of f and the monotonicity of440

x↦ x2 on R+, we can write441

f2(αx + (1 − α)x′) ≤ [αf(x) + (1 − α)f(x′)]2 ≤ αf2(x) + (1 − α)f2(x′),
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Figure 2: Enhanced discrepancy estimation: d̂ts are original discrepancy estimates; dts are corrected
estimates leveraging the higher quality estimates δts and the sequentiality of the drifting distribution.

where the last inequality holds by the convexity of x ↦ x2. Thus, we can rewrite the non-jointly442

convex terms of the objective as the following DC-decompositions:443

qi`(h(xi), yi) =
1

2
[[qi + u]2 − [q2i + u2]] ∥q∥∞∥h∥2 = 1

2
[[∥q∥∞ + ∥h∥2]2 − [∥q∥2∞ + ∥h∥2]],

where u = `(h(xi), yi). We can then apply the DCA algorithm of Tao and An (1998), (see also Tao444

and An (1997)), which in our differentiable case coincides with the CCCP algorithm of Yuille and445

Rangarajan (2003) further analyzed by Sriperumbudur et al. (2007). The DCA algorithm does indeed446

guarantee convergence.447

D Discrepancy estimation448

The optimization problem for our DRIFT algorithm requires discrepancy values dt = dis(DT+1,Dt),449

which we can estimate from labeled samples. Here, we analyze this estimation problem in detail.450

We define the discrepancy with absolute values as: Dis(Di,Dj) = max{dis(Di,Dj),dis(Dj ,Di)}.451

An empirical estimate d̂t of the discrepancy dt can be obtained as the solution of the problem:452

d̂t = max
h∈H

⎧⎪⎪⎨⎪⎪⎩

1

mT+1

nT+1+mT+1
∑

i=nT+1+1
`(h(xi), yi) −

1

mt

nt+mt
∑

i=nt+1
`(h(xi), yi)

⎫⎪⎪⎬⎪⎪⎭
.

When the loss function ` is convex, the objective function is a difference of two convex functions.453

Thus, the problem can be cast as an instance of DC-programming, which can be tackled using the454

DCA algorithm (Tao and An, 1998), see also Appendix C. In the special case of the squared loss,455

the problem is an instance of the trust-region problem and a method based on the DCA algorithm456

is guaranteed to converge to the global optimum (Tao and An, 1998). More generally, the global457

optimum can be found by combining the DCA algorithm with a branch-and-bound or cutting plane458

method (Tuy, 1964; Horst and Thoai, 1999; Tao and An, 1997). Reformulating the maximization459

problem as a minimization, the DCA solution consists of solving the following sequence of convex460

optimizations with hk+1 the solution of kth problem, k ∈ [K], and h1 chosen at random:461

hk+1 ∈ −argmin
h∈H

⎧⎪⎪⎨⎪⎪⎩

1

mt

nt+mt
∑

i=nt+1
`(h(xi), yi) −

1

mT+1

nT+1+mT+1
∑

i=nT+1+1
∇`(hk(xi), yi) ⋅ (h − hk)

⎫⎪⎪⎬⎪⎪⎭
,

where the second term of the objective is obtained by linearization of the loss, with ∇` a sub-gradient462

of the loss. By McDiarmid’s inequality, with high probability, ∣dis(DT+1,Dt) − d̂t∣ can be upper-463

bounded by O(
√

1/mt + 1/mT+1) . Finer guarantees can be given when the discrepancy is relatively464

small, using relative deviation bounds or Bernstein-type bounds (Cortes et al., 2019a). When the465

sample ST=1 is large enough, we can reduce the hypothesis space H and have a more precise local466

discrepancy where the maximum is now taken over this smaller set. We reduce H by training a467

relatively accurate classifier hDT+1
on a fraction n of points from ST=1 so we can restrict H to a ball468

B(hDT+1
, r) of radius r ∼ 1/

√
n.469

We could use directly the discrepancy estimates d̂t in the optimization problem of our DRIFT algorithm.470

However, we can leverage the sequential aspect of our distribution drift problem to derive better471

estimates. Note that the width ∆t of the confidence interval guaranteed by our learning bounds is in472

O(
√

1/mt + 1/mT+1) and while we expect mt to be typically large, mT+1 could be only moderately473
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Figure 3: Illustration of how to automatically determine the distributions Dt with homogeneous
discrepancies dis(T + 1, t). A classifier h is determined by minimizing its loss on the data ST+1. Its
loss on the historic data is determined, and a step function fitted to the losses.

large and affect the accuracy of our estimation. First, note that, by the triangle inequality, for any474

t ∈ [T − 1], the following holds: dis(DT+1,Dt+1) −dis(DT+1,Dt) ≤ dis(Dt,Dt+1). Thus, we have475

∣dt+1 − dt∣ ≤ Dis(Dt,Dt+1). In many prior analyses of the drifting distribution problem, consecutive476

distributions are assumed to be δ-close (Helmbold and Long, 1994; Long, 1999; Mohri and Muñoz,477

2012) for the `1-distance or the two-sided discrepancy. Thus, we could adopt the assumption478

Dis(Dt,Dt+1) ≤ δ here. However, we can instead estimate accurately Dis(Dt,Dt+1) modulo an479

error in O(
√

1/mt + 1/mt+1) which would be small, since both mt and mt+1 are typically large.480

Let δ̂t denote that estimate, then this leads to searching our discrepancy estimated dt as the solution481

of the following optimization problem:482

min
d1,...,dT

T

∑
t=1

∣dt − d̂t∣
2

s.t. ∣dt+1 − dt∣ ≤ δt = δ̂t +
√

1
mt

+ 1
mt+1

. (5)

Note that, with high probability, the true discrepancies dt satisfy the constraints and are thus feasible483

solutions. The optimization problem above helps us derive better estimates as illustrated in Figure 2.484

E Automatic determination of distributions Dt485

The DRIFT algorithm hinges on the knowledge of the segments supporting the distributions Dt, which486

are used to estimate discrepancy and improve predictions on the target segment DT+1. Often, the487

distributions Dt admit an inherent time segmentation such as days, weeks, or months, but, for some488

other distributions, there may not be such a natural pattern, and one can ask how to determine the489

splits automatically from data. There is a wide literature on drift detection tackling this problem (see490

Appendix A). Here, we briefly describe a natural method related to discrepancy.491

The distributions Dt of the DRIFT algorithm are characterized by their discrepancy dis(DT+1,Dt).492

In the absence of the segmentation information, we cannot estimate these quantities. But, we can use493

a classifier trained on the target sample to identify the segments, using its losses on historical data.494

The difference of the expected loss of this classifier on the target and on any past segment provides495

a lower bound on the corresponding discrepancy. Thus, let h be a classifier trained on the target496

sample ST+1. We apply h to the historical data and record its losses, see Figure 3. One may then fit a497

piecewise constant function specifying a minimum number of points per region to ensure estimation498

accuracy. The knots determined in this way specify the split between the distributions. A discrepancy499

lower bound for the region can be found from the differences in losses of h on the regions.500

E.1 Extension to other algorithms501

There are several algorithms used in the context of drifting that consist of assigning weights, often502

fixed ones such as exponentially decaying ones, to the samples losses. Other reweighting algorithms503

originally designed for domain adaptation are also sometimes used in this context, including KMM504

(Huang et al., 2006), KLIEP (Sugiyama et al., 2007), importance weighting (Cortes et al., 2010),505

discrepancy minimization (Cortes and Mohri, 2014) and many others. Our learning bounds for506

weighted samples are general and can be applied to the analysis of these algorithms. Our analysis507

suggests however that an algorithm such as DRIFT, which seeks to minimize the bounds, benefits508

from a more favorable theoretical guarantee.509
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F Comparison of DRIFT and a naive-DRIFT solution510

A naive baseline to compare the DRIFT algorithm to is that of simply combining D1 to DT to form a511

single distribution D1, and then applying the DRIFT algorithm with the same target DT+1. We will512

refer to this method by naive-DRIFT, since ignores the differences between the first T distributions.513

Here, we present a simple case to illustrate how DRIFT can outperform this baseline.514

The DRIFT algorithm introduced in Section 4 optimizes the following objective515

min
h∈H,q∈[0,1]m

m

∑
i=1

qi[`(h(xi), yi)] +
T

∑
t=1

qtdis(DT+1,Dt) + dis(q,p0)

+ λ∞∥q∥∞∥h∥2 + λ1∥q − p0∥1 + λ2∥q∥22,

Let there be two distributions D1 and D2, which are alternating up until and including DT+1. Thus,516

we have the sequence D1,D2,D1,D2, . . . ,D2,D1 with DT+1 =D1 and dis(D1,D2) = 1. The only517

difference between the two approaches is then the term ∑Tt=1 qtdis(DT+1,Dt) from the optimization518

problem. In the naive approach of combining the T distributions, we have:519

T

∑
t=1

qtdis(DT+1,Dt) = qdis(DT+1,
1

T

T

∑
t=1

Dt) = qdis(D1,
1

2
(D1 +D2)) =

q

2
.

The last step comes from applying the following analysis. In general, we have:520

dis(Di,Dj) = max
h∈H

E
(x,y)∼
Di

[`(h(x), y)] − E
(x,y)∼
Dj

[`(h(x), y)] = max
h∈H ∑

(x,y)
[Di(x, y) −Dj(x, y)]`(h(x), y).

In our case, we have:521

dis(D1,
1

2
(D1 +D2)) = max

h∈H ∑
(x,y)

[D1(x, y) −
1

2
(D1(x, y) +D2(x, y))]`(h(x), y)

= 1

2
max
h∈H ∑

(x,y)
[D1(x, y) −D2(x, y)]`(h(x), y) =

1

2
dis(D1,D2) =

1

2
.

The first two terms of the objective of the DRIFT optimization can alternatively be written as522

m

∑
i=1

qi[`(h(xi), yi)] +
T

∑
t=1

qtdis(DT+1,Dt)

=
T

∑
t=1

nt+mt
∑

i=nt+1
qi[`(h(xi), yi) + dis(DT+1,Dt)] +

m

∑
i=nT+1+1

qi[`(h(xi), yi)].

For the naive approach, these terms simplify to523

T

∑
t=1

nt+mt
∑

i=nt+1
qi[`(h(xi), yi) + dis(DT+1,Dt)] +

m

∑
i=nT+1+1

qi[`(h(xi), yi)]

=
m−mt
∑
i=1

qi[`(h(xi), yi) +
1

2
] +

m

∑
i=nT+1+1

qi[`(h(xi), yi)].

The extra loss of 1/2 in the objective for any example from the first T distributions forces in the naive524

approach q to be quite small, allocating little weight to these points. As such, the naive approach does525

not allow us to benefit much from the training points from the samples from D1, while they are drawn526

from the same distribution as the target. In the more nuanced approach, since dis(D1,DT+1) = 0527

and ∑mi=1 qi = 1, the algorithm can allocate significantly more weight to the samples coming from528

D1, which should show an improvement over the naive approach.529

F.1 Extension to other algorithms530

There are several algorithms used in the context of drifting that consist of assigning weights, often531

fixed ones such as exponentially decaying ones, to the samples losses. Other reweighting algorithms532
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originally designed for domain adaptation are also sometimes used in this context, including KMM533

(Huang et al., 2006), KLIEP (Sugiyama et al., 2007), importance weighting (Cortes et al., 2010),534

discrepancy minimization (Cortes and Mohri, 2014) and many others. Our learning bounds for535

weighted samples are general and can be applied to the analysis of these algorithms. Our analysis536

suggests however that an algorithm such as DRIFT, which seeks to minimize the bounds, benefits537

from a more favorable theoretical guarantee.538
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Figure 4: Synthetic data: (Left) and (Middle) with label-flipping and three segments D1 =D3 ≠D2.
Left: MSE as a function of increasing discrepancy; Middle: the amount of q-mass assigned to D2 by
SDRIFT, in particularly the points with flipped labels. Right: MSE performance for k sources.

G Experimental results539

We here provide more experimental data and detail of the results reported in the main paper, Section 5.540

Our proposed SDRIFT algorithm requires computing the discrepancy values between the source541

segments and the target segment. Since for the squared loss and the logistic loss over linear models,542

the discrepancy equals the difference of two convex terms, we approximate the discrepancy value via543

DC programming (Tao and An, 1997, 1998). We use a fixed learning rate of 0.01 for regression tasks544

and a learning rate of 0.001 for classification tasks.545

G.1 Synthetic data546

Our synthetic data experiments demonstrate how the SDRIFT algorithm effectively and automatically547

hones in on low-discrepancy source segments to boost its performance. We predetermine the548

distributions to control the discrepancy between the distributions. All experiments are for the549

regression setting and use a linear hypothesis set and a squared error loss. For all examples, x ∈550

Rn, n = 20, is sampled from a normal distribution,N(0, In×n). The labels y are based on a randomly551

drawn weight vector w ∈ Rn of unit length, and y = w ⋅ x.552

The first scenario is with just two source segments with samples S1 and S2, and a target sample553

S3. To illustrate the benefit of SDRIFT, S1 and S3 are drawn from the same distribution, while we554

artificially control the discrepancy d2 by flipping the sign of a fraction of its labels.555

We estimate the empirical discrepancy, d̂2 as outlined in Appendix D, and then run algorithm SDRIFT556

by carrying out a grid search over the three hyperparameters, λ∞, λ1, and λ2. The best performance557

is determined by evaluation on an independent validation set of size 10∣Si∣, with ∣Si∣ = 120, and558

we report mean and standard deviations over 10 runs as measured on a test set of size 100∣Si∣.559

Performance in terms of MSE and amount of q-weight assigned to the sample S2 is illustrated in560

Figure 4. In the figure we compare the performance to that of Naive-DRIFT, see Appendix F, where561

the samples S1 and S2 are assumed to belong to just one distribution.562

In all regression experiments, we normalize the MSE by the one obtained from training on S3 only.563

Figure 4-Left illustrates how the samples from D1 and D2 aide learning. For low noise level, and564

hence low discrepancy, the algorithm obtains significantly better performance, MSE < 1. As the565

discrepancy d̂2 increases, the MSE increases. However, even when all the signs of the labels of S2566

are flipped, the algorithm is able to make use of the good samples of S1 and performs better than567

training just on S3. This left plot also demonstrates the performance gains over Naive-DRIFT, which568

cannot take advantage of the difference in distributions D1 ≠D2. The middle plot shows the amount569

of q-weight allocated by the SDRIFT algorithm to the points in S2, and also the points with noisy570

flipped labels. As the discrepancy increases, less total q-mass is allocated to the points in D2. Even571

as the label-flipping fraction becomes very small, SDRIFT detects the few noisy points and gives them572

almost no weight.573

Figure 4-Right also illustrates the performance of SDRIFT for a synthetic setting with T sources574

diverging away from ST+1. Higher values of T results in samples with smaller discrepancy to DT+1575

and the overall performance improves. For this setting a natural baseline is exponential decay of the576
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Figure 5: Left: Performance in the weight-mixing example of synthetic data with three distributions
D1 = D3 ≠ D2 as a function of increasing discrepancy. Right: Performance in the example with k
source distributions.

Table 2: MSE of the SDRIFT algorithm against baselines. We report relative errors normalized so that
training on target has an MSE of 1.0. Best results in boldface, ties in italics.

Dataset KMM DM MM EXP BSTS SDRIFT

Wind 1.19 ± 0.07 1.12 ± 0.06 1.19 ± .07 0.98 ± 0.04 0.98 ± 0.01 0.95 ± 0.02
Airline 2.45 ± 0.17 1.78 ± 0.11 1.41 ± 0.28 0.98 ± 0.03 0.945 ± 0.01 0.94 ± 0.03
Gas 0.45 ± 0.02 0.42 ± 0.02 0.47 ± 0.04 0.94 ± 0.03 1.02 ± 0.2 0.4 ± 0.01
News 1.1 ± 0.02 1.13 ± 0.01 1.1 ± 0.03 0.98 ± 0.02 1.00 ± 0.02 0.97 ± 0.004
Traffic 2.3 ± 0.12 2.2 ± 0.11 0.99 ± 0.12 0.996 ± 0.008 0.98 ± 0.03 0.96 ± 0.006

weights q, keeping them constant within a segment. However as the figure illustrates, SDRIFT also577

outperforms this baseline. For details and more experiments using synthetic data, see Appendix G.578

Figure 5 (left) illustrates the normalized MSE for a weight mixing example. We use the same579

experimental setup as for the example with three distributions, but here the labels of D2 are modified580

by mixing in an increasing fraction, α, of a different weight vector w2, also randomly drawn and with581

unit length, such that yD2 = (αw2 + (1 − α)w) ⋅ x. Again, we observe how the SDRIFT algorithm582

can effectively make use of the data from D2 and obtains a normalized MSE < 1 for a much larger583

range of label corruption than that of Naive-DRIFT.584

We also compare the performance of our proposed algorithm for varying number, T , of source585

segments. For each T ∈ {3,4, . . . ,10}, the labels are generated as y = w ⋅ x + N(0, σ2), with586

σ = 0.1. Each source segment is generated in the same manner and we artificially inject a varying587

amount of noise within each of them. For a source segment i ∈ {1,2, . . . , T}, an α = ((T − 1 + i)/T588

fraction of the predictions are flipped. That is, for D1, 100% of the labels are flipped. As can be589

seen in Figure 5(right), our proposed algorithm outperforms the baselines and its performance is590

unaffected across different values of T . For both Naive-DRIFT and SDRIFT the hyperparameters591

λ∞, λ1, λ2 were chosen via cross validation in the range {1e − 3,1e − 2,1e − 1} ∪ {0,1,2, . . . ,10} ∪592

{0,1000,2000,10000,50000,100000}. The h optimization step of alternate minimization was593

performed using sklearn’s linear regression method (Pedregosa et al., 2011). For the q optimization594

we used projected gradient descent and the step size was chosen via cross validation in the range595

{1e − 3,1e − 2,1e − 1}.596

G.2 Regression datasets597

Here, we provide details on the datasets used for regression. In the final version of the paper we will598

provide GitHub links to all datasets.599

The wind dataset (Haslett and Raftery, 1987) is related to wind speeds (in knots) in Ireland from600

1961 to 1987. Measurements were collected from 12 meterological stations, and we chose to predict601

the wind speed at the "Malin Head" station using the values as the 11 other stations as features. Our602

11 source segments consist of data from the first 11 months of the year, and our target is data from603
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wind airline

gas news

traffic

Figure 6: A plot of the total average probability mass assigned (in blue) to each segment by the
SDRIFT algorithm along side the corresponding (normalized) discrepancy values (in green).

the month of December. Each of the source segments is of size ∼500, and for the target we use a split604

of ∼150/∼200/∼200 for training/validation/test.605

The airline dataset was derived from Ikonomovska and contains information regarding flights into606

Chicago O’Haire International Airport (ORD) in 2008. We use as features the arrival time, distance,607

whether or not the flight was diverted, and the day of the week for predicting the amount of time the608

flight was delayed. Our source segments are comprised from the hours of the day, and our target609

segment is one of the busier hours. Each of the source segments is of size 800, and for the target we610

have sizes 200 train/300 validation/300 test.611

The gas dataset (Rodriguez-Lujan et al., 2014; Vergara et al., 2012; Dua and Graff, 2017) is a612

commonly used drift dataset with measurements from 16 chemical sensors at varying concentrations613

of 6 gases. The dataset has predetermined batches, and we reserved the seventh one as our target.614

The source batches vary in size from ∼150 to ∼3500, and for the target batch we have sizes ∼600615

train/∼1000 validation/∼2000 test.616

The news dataset (Fernandes, 2015; Dua and Graff, 2017) consists of data gleaned from articles on617

www.mashable.com, with the goal of predicting their popularity in terms of the number of shares.618

Our 6 source segments consist of the 6 days of the week from Monday to Saturday and our target is619

data from Sunday. The weekday source segments are of size ∼6000 and weekend of size ∼2500, and620

for the target we have sizes 737 train/1000 validation/1000 test.621

The traffic dataset from the Minnesota Department of Transportation (DOT; Dua and Graff, 2017)622

contains information about the weather and traffic volume on the Westbound Interstate 94, which is623

located between Minneapolis and St Paul. We split the data into segments by hour, and chose our624

target segment to be the one starting at 9am. The source segments are of size 100, and for the target625

we have sizes 200 train/400 validation/400 test.626
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To obtain standard deviations for the errors, we randomly sampled data from the target into627

train/validation/test 10 times.628

Table 2 (same as Table 1(top) in the main paper) provides results for 5 regression tasks in terms of629

MSE, normalized so that training only on the data from the target segment gives an error of MSE = 1.630

Hence, we are seeking algorithms achieving a better performance, that is MSE<1. The KMM and631

DM algorithms admits no principled mechanism for down-weighing segments that are too far from632

the target, thus all segments are assigned the same total mass in the loss function. In contrast, as can633

be seen from Figure 6, the SDRIFT algorithm effectively discards many segments and assigns them634

little or no q-mass, indicated by small blue segment bars. In addition, KMM and DM do not make635

use of any labels to match distributions.636

The MM algorithm does incorporate the performance of the hypotheses found in the online training637

phase, and hence in its final training it puts most weight on the hypotheses from the target segment.638

However, the simple online hypotheses are weaker than the result from batch training on the target639

and as a result, this method also obtains an MSE>1. Finally, we compare to the BSTS algorithm. For640

dataset with a clear time component: wind (month), news (weekday), airline (hour), traffic641

(hour) it provides a strong baseline, but proves sub-optimal for general drifting problems. BSTS falls642

short similarly for classification, see below.643

In Figure 6, we show in blue the average probability mass assigned by SDRIFT to each segment644

in the regression tasks. The green bars indicate the normalized discrepancy to the target segment.645

It is noticeable how the SDRIFT algorithm assigns more probability mass to segments of lower646

discrepancy.647

G.3 Classification datasets648

Here, we provide details on the datasets used for classification tasks. In the final version of the paper649

we will provide GitHub links to all dataset.650

The STAGGER dataset (López Lobo, 2020) is a common synthetic dataset used for concept drift651

detection. It contains 4 concepts, and the drifts are abrupt. The data exhibits 3 numeric features for a652

binary classification setting. We artificially added noise to the target (last) training sample by flipping653

the class for 20% of the points. The source segments are of size 10,000, and for the target we have654

sizes 2000 train/4000 validation/4000 test.655

The Electricity dataset (Harries and Wales, 1999; Gama et al., 2004) is a popular dataset used for656

predicting the price movement (up or down compared to a 24 hour moving average) for the price of657

electricity in the Australian New South Wales Electricity Market. The data comes from May 1996 to658

December 1998, and we split it into segments of roughly two months each, with the target being the659

most recent one. Each of the source segments is of size ∼3000, and for the target we have sizes ∼400660

train/∼600 validation/∼600 test.661

The Room dataset (Candanedo and Feldheim, 2016; Dua and Graff, 2017) presents a binary classi-662

fication problem (occupied or not) of an office room given features such as the light, temperature,663

humidity and CO2 measurements. Our segments consisted of one for each of the 24 hours of the day,664

and our target was the data from the 8am hour, which is occupied about 10% of the time (not the665

busiest, but nevertheless sometimes occupied unlike hours in the night-time). Each of the source666

segments is of size ∼100, and for the target we have sizes ∼100 train/∼100 validation/∼100 test.667

The Adult Income dataset (Dua and Graff, 2017) is a popular dataset for predicting whether or not668

the income of an adult is greater than $50,000 from features such as their education and sex. Our669

source segments came from 15 of the 16 specified education levels, and our target was that of adults670

who had only completed 10th grade of high school. The source batches vary in size from ∼100 to671

∼8000, and for the target batch we have sizes ∼200 train/∼400 validation/∼400 test.672

Similar to the regression datasets, to obtain standard deviations for the accuracies, we randomly673

sampled data from the target into train/validation/test 10 times.674

G.4 Experimental details for real-world data675

For each dataset, we form T source segments and define a target distribution. We estimate the676

discrepancy d̂i, i ∈ [T ], as outlined in Appendix D, determine the best hyper-parameters via cross-677
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Table 3: Accuracy of the SDRIFT against baselines for classification tasks. We report relative
accuracies normalized so training on just target has an accuracy of 1.0. Best results are in boldface.

Dataset KMM DM MM EXP BSTS SDRIFT

STAGGER 0.69 ± 0.006 0.73 ± 0.05 0.74 ± 0.01 1.02 ± 0.03 0.98 ± 0.02 1.05 ± 0.03
Electricity 0.95 ± 0.01 0.93 ± 0.02 0.84 ± 0.02 1.09 ± 0.02 1.02 ± 0.07 1.13 ± 0.02
Room Occupancy 0.62 ± 0.02 0.63 ± 0.01 0.72 ± 0.03 1.02 ± 0.04 1.07 ± 0.01 1.02 ± 0.02
Adult Income 0.97 ± 0.007 0.98 ± 0.01 0.99 ± 0.005 1.00± 0.01 1.00 ± 0.02 1.01 ± 0.004

STAGGER Electricity Room Occupancy Adult Income

Figure 7: Average probability mass assigned (in blue) to each segment by the SDRIFT algorithm
along side the corresponding (normalized) discrepancy values (in green).

validation on an independent validation set and measure the test error on a different and independent678

test set. Reported results are mean and standard deviations over ten different splits of the data. For679

the objective, we use the squared loss and the hypothesis set is that of linear functions.680

SDRIFT. The hyperparameters for SDRIFT were chosen via cross validation in the same range as the681

one used for synthetic data. For the h minimization step of the SDRIFT algorithm we used sklearn’s682

logistic regression method (Pedregosa et al., 2011).683

Baselines. For the exponential weighting heuristic the base value was chosen via cross validation684

in the range {1,2, . . . ,10}. For both discrepancy minimization (DM) (Cortes and Mohri, 2014) and685

Kernel Mean Matching (KMM) (Huang et al., 2006) a linear kernel was used. The DM algorithm686

was implemented via projected gradient descent and the learning rate was chosen via cross validation687

in the range {1e − 3,1e − 2,1e − 1}. For the algorithm of Mohri and Muñoz (2012) we used online688

gradient descent for regression tasks and the perceptron algorithm for the classification settings. The689

learning rates for online gradient descent and the second stage weight optimization were chosen via690

cross validation in the range {1e − 3,1e − 2,1e − 1}. To run the BSTS algorithm (Scott and Varian,691

2014) we used the CausalImpact python library (Brodersen et al., 2014) and the algorithm was run692

with the default parameters. For computational tractability, we sample 100 random points from each693

segment to form the time series data that was fed to the algorithm.694

G.5 Pseudocode for the alternate minimization procedure695

In Figure 8 we provide the algorithm description of our alternate minimization procedure for solving696

the batch distribution drift problem.697
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Input: Samples {(x1, y1), . . . (xm, ym)}, tolerance τ , distribution p0, max iterations N , hyperparameters
λ∞, λ1, λ2, discrepancy estimates d̂1, d̂2, . . . , d̂T .

1. Initialize q0 to be the uniform distribution over [m].

2. Let OPT (q, h) = ∑
m
i=1 qi[`(h(xi), yi)] +∑

T
t=1 qtd̂t + λ∞∥q∥∞∥h∥2

+ λ1∥q − p
0
∥1 + λ2∥q∥

2
2

3. Initialize h0 = argminh∈H OPT (q0, h).
4. For j = 1, . . .N ,

• Set curr_obj_val = OPT (qj−1, hj−1).
• Compute qj = argminq∈∆m

OPT (q, hj−1).
• Compute hj = argminh∈H OPT (qj , h).
• Set new_obj_val = OPT (qj , hj).
• If ∣curr_obj_val − new_obj_val∣ ≤ τ , return qj , hj

5. Print: AM did not converge in T iterations. Return qN , hN .

Figure 8: Alternate minimization procedure for weights and hypothesis estimation.
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