

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SID: MULTI-LLM DEBATE DRIVEN BY SELF SIGNALS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have exhibited impressive capabilities across diverse application domains. Recent work has explored Multi-LLM Agent Debate (MAD) as a way to enhance performance by enabling multiple LLMs to discuss and refine responses iteratively. Nevertheless, existing MAD methods predominantly focus on utilizing external structures, such as debate graphs, using LLM-as-a-Judge, while neglecting the application of self signals, such as token logits and attention, that arise during generation. This omission leads to redundant computation and potential performance degradation. In this paper, we shift the focus to the self signals of multi-LLM debate and introduce a Self-Signals Driven Multi-LLM Debate (SID), which leverages two types of self-signals: model-level confidence and token-level semantic focus, to adaptively guide the debate process. Our approach enables high-confidence agents to exit early at the model level and compress the redundant debate contents based on the attention mechanism. We evaluate our method on various LLMs and Multimodal LLMs across multiple challenging benchmarks. Experimental results demonstrate that our method not only outperforms existing MAD techniques in accuracy but also reduces token consumption, highlighting the effectiveness of utilizing self signals in enhancing both the performance and efficiency of multi-agent debate systems.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities (Brown et al., 2020; Kojima et al., 2023) across a wide range of domains, including science, technology, engineering, mathematics (STEM) questions (Hendrycks et al., 2021; Wang et al., 2024), and complex reasoning tasks (Rein et al., 2023). The emergence of Multimodal LLMs (MLLMs) further extends the potential to the visual input domain (Lu et al., 2022; Li et al., 2023; Liu et al., 2024a). However, current models still suffer from inherent limitations such as inaccuracies and hallucinations.

Multi agent debate (MAD) offers an orthogonal approach to enhancing model performance, in which multiple agents iteratively discuss and refine their answers accordingly (Du et al., 2024; Liu et al., 2024c; Sun et al., 2025). However, a challenge arises from the prevalence of redundant content and repeated consensus points during debate, which not only waste computational resources but also introduce informational noise, potentially impairing the agents' final judgments (Du et al., 2024; Li et al., 2024b). Moreover, this iterative discussion paradigm incurs substantial token overhead, which becomes increasingly incongruent with the growing capabilities of modern foundation models (OpenAI et al., 2025). This inherent contradiction between performance gains and token consumption cost presents a central dilemma in contemporary MAD research.

To alleviate this problem, several optimization strategies have been proposed. Broadly, these methods typically fall into two categories: (i) structural optimization, such as adopting various prompting skills (Liu et al., 2024c), reducing communication via sparse debate graphs or clustering agents into local debate groups (Liu et al., 2024b); and (ii) history management, including summarization of prior discussions or introducing agent self-generated confident score (Sun et al., 2025). Whereas these approaches improve the efficiency of information flow in *external* ways (*i.e.*, restructuring agent communication or using LLM-as-a-judge to interpret history), they often suffer from secondary errors such as hallucinations in judges or summaries as evident in (Xiong et al., 2023; Zhang et al., 2024; Tian et al., 2025)). This limitation motivates us to think: *can we avoid relying on error-prone external mechanisms, and instead leverage more reliable self signals from each agent's generative process to prevent unnecessary and potentially wasteful debate?*

Motivated by the above, in this work, we present a framework that leverages self signals available during LLM inference to improve debate efficiency and performance. In this framework, two types of signals: *model-level confidence* and *token-level semantic focus*, are extracted and used to provide complementary guidance for distinguishing essential information from redundancy, thereby enhancing overall debate quality and efficiency. The model-level confidence, estimated from the probability distribution over the initially generated answer, quantifies how certain the model is about its response. We leverage this signal to design an ***early-exit mechanism*** that avoids invoking debate when the model is already sufficiently confident, thereby reducing potential noise and redundancy. The token-level semantic focus, derived from attention patterns conditioned on disagreement-oriented prompts, identifies spans in the debate content that the model considers semantically relevant to the disagreement among different agents. We extract and reconstruct these high-attention spans to form a more compact context, thereby introducing a ***compression mechanism*** that preserves critical points of contention while significantly reducing token overhead.

By integrating these two mechanisms, each leveraging a different level of self signal, we propose a unified Self Signal Driven Debate framework (SID) to enhance LLM performance. This framework enables early exit for confident agents and extracts focused context for the remaining ones, dynamically adapting the debate process based on the model’s own epistemic signals. We evaluate our method across multiple LLMs and MLLMs on diverse benchmarks, including MMLUpro, Math, GPQA, ScienceQA, and MMstar. SID consistently outperforms existing MAD approaches in most scenarios, while also achieving up to a 40% reduction in token consumption. These results demonstrate the strong effectiveness of our approach and highlight the significant potential of leveraging internal belief signals in multi-agent systems to jointly optimize performance and efficiency. Our key contributions can be summarized as follows:

- We present **SID**, a multi-agent debate framework that leverages self signals from the LLM generation process to enhance agent debate.
- We instantiate two types of LLM self signals: model-level confidence and token-level semantic focus, and leverage them to design an early-exit and a compression mechanism, respectively, effectively reducing redundancy and enhancing debate performance.
- Integrating the two proposed mechanisms, we construct an effective and efficient debate framework, SID. Experiments across multiple benchmarks, on both LLMs and MLLMs, demonstrate the significant advantages of SID over existing methods.

2 RELATED WORK

Reasoning Augmentation To enhance the reasoning capabilities of LLMs, researchers have explored various techniques. Early work primarily focused on guiding the model through step-by-step reasoning through Chain-of-Thought (CoT) prompts (Wei et al., 2023) or generating multiple reasoning paths (self-refinement) and voting for the optimal solution through self-consistency or using multi-round self-reflection (Zhang et al., 2024; Yao et al., 2023). Additionally, subsequent research has found that the model’s self-correction capabilities are limited, leading to stagnation in reasoning quality (Zhang et al., 2024). This has partially motivated the rise of multi-agent collaborative paradigms, particularly multi-agent debate (MAD) (Du et al., 2024), which introduces external perspectives and dynamic feedback among agents to overcome the limits of self-reflection. Our work differs from these studies in that they focus primarily on improving reasoning ability through context prompts, whereas we propose to use self-signals from a model to optimize the context prompt at the token level, thus improving the effectiveness of performance and token ratio.

Uncertainty Analysis Uncertainty in LLMs is typically categorized into aleatoric (data-related) and epistemic (model-related) uncertainty (Kiureghian & Ditlevsen, 2009; Gawlikowski et al., 2023; Hu et al., 2023; Ye et al., 2025). Given the structured nature of current tasks (e.g., QA, math, science), recent works have focused on quantifying epistemic uncertainty. **Mainstream approaches include:** (i) probability-based metrics, such as token-level entropy or negative log-likelihood (Tu et al., 2025) on the level of the attention layer (Schuster et al., 2022; Laaouach, 2025; Corallo & Papotti, 2024) and reasoning chain (Yang et al., 2025); (ii) ensemble-based methods, e.g., Monte Carlo sampling (Metropolis et al., 1953; Hastings, 1970) and Bayesian methods (Kwon et al., 2020); and (iii) verbalization-based techniques that prompt the model to self-report confidence (Tian et al., 2023).

108 Among these, probability-based methods are especially attractive due to their seamless integration
 109 with the generation process, without requiring multiple generations, which incur significant token
 110 overhead. Recent work, such as ReConcile and DebUnc (Xiong et al., 2023; Chen et al., 2024a;
 111 Yoffe et al., 2025; Kirchhof et al., 2025) further explores agent-level uncertainty in interactive
 112 settings, emphasizing the role of uncertainty as a confident signal for learning and output control. Our
 113 method differs from theirs in model-level adaptive debate scheduling and token-level compression
 114 instead of passing the full history. Our method aligns with the uncertainty in the interactive setting,
 115 leveraging self-signals as dynamic indicators of agent-level uncertainty to control agent participation
 116 during debates.

117 **Multi LLM Debate Systems** Previous multi-LLM debate employs a role-playing setup (Liang
 118 et al., 2024), which has been demonstrated strengths in collaborative tasks. Subsequent research
 119 has shown that it is less suited for certain types of problem-solving scenarios. Multi Agent Debate
 120 (MAD) (Du et al., 2024) introduces external perspectives to enrich the system’s reasoning capabilities.
 121 DMAD (Liu et al., 2024c) proposes specialized prompt strategies to diversify agent behavior.
 122 S2-MAD (Zeng et al., 2025) introduces a selective sparsity mechanism, allowing agents to selec-
 123 tively participate based on internal cues. CortexDebate (Sun et al., 2025) constructs a dynamic sparse
 124 debate graph by letting agents serve as self-judges and output confidence scores. These works focus
 125 on improving performance via external states (e.g., optimizing structures, using LLM-as-a-Judge).
 126 **Compared to previous approaches (Zhang et al., 2025), our method can be orthogonal and comple-
 127 mentary, which provides a new angle by integrating self-signals into the debate process instead of
 128 optimizing communication structures.**

3 PRELIMINARIES

131 We first introduce the naive multi agent debate paradigm in this section. Let \mathcal{V} denote the vocabulary
 132 and Tok the tokenizer. Given a query (e.g., natural language, image, and text) Q , $\mathbf{x} = \text{Tok}(Q)$
 133 is the tokenized prompt. An casual LLM M produces a response sequence $\mathbf{y} = (y_1, \dots, y_m)$
 134 with per-step logits $\ell_t \in \mathbb{R}^{|\mathcal{V}|}$ and probabilities $\pi_t = \text{softmax}(\ell_t)$. A debate involves n agents
 135 $\mathcal{A} = \{1, \dots, n\}$ over rounds $t = 0, 1, \dots, T$. Let $\mathbf{y}_t^{(j)}$ be agent j ’s response at round t ; round 1
 136 is the initial answering round without debate context. The per-round input to agent j at round $t+1$
 137 concatenates the query, its own last response, and other agents’ last responses:

$$140 \quad \mathbf{x}_{t+1}^{(j)} = \text{Tok}\left(Q \parallel \mathbf{y}_t^{(j)} \parallel (\text{Concat}_{k \neq j} \mathbf{y}_t^{(k)})\right). \quad (1)$$

142 Here, both \parallel and Concat represent concatenation between prompt groups.

4 METHOD

144 The above naive framework suffers from several issues, such as excessive redundancy and low effi-
 145 ciency. To address these challenges, as shown in Algorithm 1 and Figure 1, we propose Self Signal
 146 Driven Debate (SID), a framework that leverages internal confidence signals readily available dur-
 147 ing inference to adaptively guide the multi-LLM debate process. Specifically, SID utilizes two types
 148 of self signals from the LLM: *model-level confidence* and *token-level semantic focus* (see exam-
 149 ples in Figure 3 and the Appendix F). *Model-level confidence*, derived from the token-wise output
 150 probability distribution (logits), reflects how confident an agent is in its initial answer. We leverage
 151 this signal in a newly designed early-exit mechanism to enhance debate efficiency. *Token-level se-
 152 mantic focus*, extracted from the self-attention maps conditioned on disagreement-oriented prompts,
 153 captures regions of high variability and knowledge density throughout the debate. This signal is
 154 incorporated into a compression mechanism to alleviate token redundancy. In the following two
 155 sections, we introduce these two components in detail.

4.1 EARLY-EXIT WITH MODEL-LEVEL CONFIDENCE

158 We first introduce an early-exit mechanism to mitigate redundant debate, motivated by the intuition
 159 that cross-LLM discussion is more necessary when a single model lacks confidence in its response.

```

162
163 Algorithm 1 Self-Signal Driven Debate (SID)
164 Require: Query  $Q$ ; LLM agents  $\{M_j\}_{j=1}^m$ ; rounds  $N$ ; confidence threshold
165  $\theta$ ; top- $p$  ratio  $\rho$ ;
166 1:  $Y_1 \leftarrow M_1(Q)$  ▷ Model-level Confidence(Sec. 4.1)
167 2:  $u \leftarrow \phi_U(U(Y_1))$ 
168 3: if  $u \leq \theta$  then
169 4:   return  $Y_1$  ▷ early exit
170 5: end if
171 6:  $Y_1 \leftarrow \{y_1\}$ ;  $y_1^{(j)} \leftarrow M_j(Q)$  for  $j=2..m$ 
172 7: for  $t = 2$  to  $N$  do
173 8:   for  $j = 1$  to  $m$  do
174 9:      $X_t^{(j)} \leftarrow (Q \parallel y_{t-1}^{(j)} \parallel [\text{PROMPT}] \parallel \text{Concat}_{k \neq j}(Y_{t-1}^k))$ 
175 10:     $A_t^{(j)} \leftarrow \text{FORWARDATTENTION}(M_j, X_t^{(j)})$  ▷ forward only
176 11:     $\hat{C}_t^{(j)} \leftarrow \text{TopP}(A_t^{(j)}, \rho)$ 
177 12:     $S_t^{(j)} \leftarrow \text{SemanticPreserve}(\hat{C}_t^{(j)})$  ▷ Sec. 4.2
178 13:     $y_t^{(j)} \leftarrow M_j(Q \parallel y_{t-1}^{(j)} \parallel S_t^{(j)})$  ▷ generate with compressed
179 14:    context
180 15:   end for
181 16: end for
182 17: return  $Y_N$ 
183
184
185
186
187
188
189
190
191
192
193

```

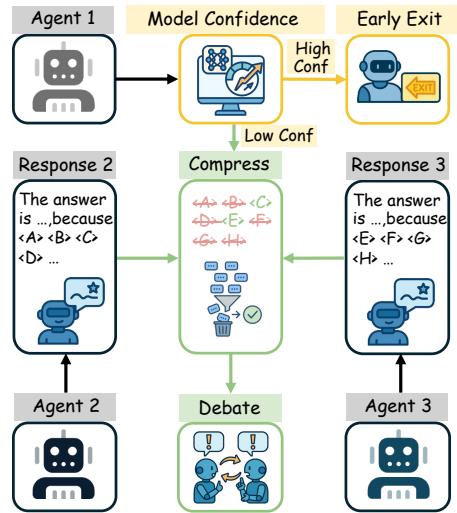


Figure 1: Overall framework of SID

The key to this mechanism lies in extracting an effective confidence score. Intuitively, the more peaked the model’s output distribution over the vocabulary (i.e., lower entropy), the more confident it is in its prediction. Based on this motivation and following conventional methods (Tu et al., 2025), we adopt two token-wise uncertainty metrics: entropy $\text{Ent}(\pi_t) = -\sum_{v \in \mathcal{V}} \pi_{t,v} \log \pi_{t,v}$ and negative log-likelihood $\text{NLL}_t = -\log \pi_{t,y_t}$, to estimate the confidence for a generated answer y . To aggregate token-level metrics into a sequence-level confidence score, we explore four aggregation strategies: (1) averaging over tokens (average), (2) taking the maximum value (max), (3) using the first token’s value (first), and (4) using the penultimate token’s value (penultimate). This yields eight confidence measures (four for entropy and four for NLL). Each variant captures different facets of uncertainty: e.g., max focuses on worst-case ambiguity, while penultimate emphasizes late-stage uncertainty often aligned with final reasoning steps in autoregressive generation. We concatenate these eight measures to form a vector $U(y)$, which we empirically find to be statistically significant in distinguishing incorrect answers (see Figure 2 for details).

After obtaining confidence scores, the next challenge lies in leveraging them to effectively guide model-level early exits during multi-LLM debates. To this end, we propose two different drop-in strategies that convert the agent’s confidence vector into a binary decision boundary:

Vocabulary-Adaptive Threshold We first tried a straightforward method by directly setting a fixed threshold on the confidence metrics across different types of models. However, this naive strategy yielded suboptimal performance, likely due to the inherent dependency of entropy and NLL magnitudes on the vocabulary size $|\mathcal{V}|$ of the underlying LLM. For example, under a uniform generation assumption, both entropy and NLL equal $\log |\mathcal{V}|$. Thus, larger vocabularies naturally induce higher values, while using a single threshold across models leads to unfairness and unreliability. Based on this motivation, we propose a vocabulary-adaptive threshold as follows:

$$\theta(V) = \alpha \log |\mathcal{V}|, \quad \text{and decide Terminate iff } \phi_U(U(y)) \leq \theta(V), \quad (2)$$

where $\alpha > 0$ is a hyper-parameter, ϕ_U is an operator to filter noisy metrics $U(y)$. This strategy ensures fair and consistent confidence evaluation across models with varying vocabulary sizes.

Calibrated Confidence While the aforementioned method provides a simple and robust solution, it relies on a uniformity assumption over token distributions that may not hold in practice. To capture more nuanced confidence signals, we introduce an alternative method, using a lightweight nonlinear classifier $C : \mathbb{R}^d \rightarrow [0, 1]$ trained over a small held-out set. This model takes the confidence vector as input and outputs a scalar confidence score, calibrated against correctness labels:

$$\text{Terminate iff } C(U(y)) \geq \tau_c, \quad \tau_c \in (0, 1). \quad (3)$$

216 **Confidence-Guided Early Exit** In practice, we adopt the vocabulary-adaptive threshold for gating
 217 due to its sufficiently strong performance and training-free simplicity. Specifically, gating is
 218 applied in the first round: if an agent’s confidence reaches a high value, it is terminated early, sig-
 219 nalling that the system is already sufficiently confident in its answer (see Appendix Figure 17–20
 220 for examples). Conversely, if the model exhibits low confidence, this suggests that the question is
 221 sufficiently challenging and unlikely to be resolved without additional reasoning, thereby motivating
 222 the initiation of a multi-agent debate with the input described in Eq.1.

223 4.2 ADAPTIVE COMPRESSION WITH TOKEN-LEVEL SEMANTIC FOCUS

225 In addition to model-level confidence, we further exploit another self signal from the LLM: token-
 226 level semantic focus, to improve debate efficiency. As a debate progresses, the accumulated context
 227 from multiple agents often becomes repetitive and redundant. We observe that this increasing re-
 228 dundancy can dilute the signal-to-noise ratio, potentially degrading the effectiveness and efficiency
 229 of the debate process. A common approach to mitigate this is to use LLM-as-a-judge to sum-
 230 marize past exchanges. However, this method is limited by the summarization capabilities of the base
 231 models, which can be prone to hallucination or information loss (Li et al., 2024a). To address this
 232 limitation, we instead leverage attention, an intrinsic mechanism of transformer-based models that
 233 naturally reflects the model’s focus and the debate’s salient region, as an internal signal to implement
 234 a token compression framework.

235 **Prompt-conditioned Attention Extraction** Given the query Q , the agent j ’s previous answer
 236 $\mathbf{y}_t^{(j)}$, and other agents’ responses $\{\mathbf{y}_t^{(k)} : k \neq j\}$, we construct a concatenated input:

$$239 \quad \mathbf{x}_{t+1}^{(j)} = \text{Tok} \left(Q \parallel \mathbf{y}_t^{(j)} \parallel [\text{PROMPT}] \parallel (Concat_{k \neq j} \mathbf{y}_t^{(k)}) \right), \quad (4)$$

241 where $[\text{PROMPT}]$ is a task instruction. Here, we use the prompt: "Identify the key
 242 points where they disagree with your own reasoning. Concentrate
 243 on those disagreements and decide which line of reasoning is
 244 better.", motivated by prior work demonstrating the benefits of identifying disagreements
 245 among agents (Du et al., 2024; Zeng et al., 2025). This prompt directs the model’s attention
 246 toward segments of the debate that involve semantic conflict, thereby enhancing its focus on
 247 critical reasoning divergences. We then define \mathcal{Q} as the set of token positions within the injected
 248 prompt, \mathcal{C} as the positions corresponding to other agents’ responses (i.e., $Concat_{k \neq j} \mathbf{y}_t^{(k)}$), and
 249 $A^{(l,h)} \in [0, 1]^{L \times L}$ as the attention score at layer l and head h . For $c \in \mathcal{C}$, a prompt-conditioned
 250 semantic focus score is computed by:

$$252 \quad s(c) = \max_{l,h} \max_{q \in \mathcal{Q}} A_{q,c}^{(l,h)}, \quad (5)$$

254 which represents the maximum attention weight from any prompt token to c across all heads and
 255 layers, capturing the extent to which c is considered relevant to the disagreement-focused instruction.

257 **Compression with Semantic Preservation** While token-level attention scores $s(c)$ enable fine-
 258 grained identification of salient contents, directly selecting individual tokens may result in frag-
 259 mented phrases or broken sentence structures. Such fragments hinder the model’s ability to interpret
 260 the compressed input coherently. To address this, we apply a semantic preservation heuristic that
 261 extends high-attention tokens to complete sub-sentential units. Concretely, we first select the top-
 262 p fraction of context tokens, forming $\hat{\mathcal{C}} = \text{Top}_p \{(c, s(c))\}_{c \in \mathcal{C}}$. Using the tokenizer’s offset map
 263 $\Psi : c \mapsto [T_a(c), T_b(c)]$, we merge overlapping spans and then expand to sentence boundaries to
 264 preserve semantics information. To ensure semantic completeness, we then expand each segment to
 265 align with syntactic boundaries, such as commas, periods, or coordinating conjunctions. We denote
 266 this process as the SemanticPreserve operation (see Appendix C.1, Figure 6 for implementation
 267 details), which produces a minimal set of semantically coherent text spans as follows:

$$268 \quad \mathcal{S} = \text{SemanticPreserve} \left(\text{Merge} \left(\{\Psi(c) : c \in \hat{\mathcal{C}}\} \right) \right). \quad (6)$$

270 We denote the compressed textual summary for agent j as $\text{Text}(\mathcal{S})$, and the next-round input in the
 271 debate process (Eq.1) becomes:
 272

$$273 \quad \hat{\mathbf{x}}_{t+1}^{(j)} = \text{Tok}\left(Q \parallel \mathbf{y}_t^{(j)} \parallel \text{Text}(\mathcal{S})\right). \quad (7)$$

274

275 In practice, replacing full histories by $\text{Text}(\mathcal{S})$ yields substantial token compression while preserving
 276 points of disagreement.
 277

278 4.3 OVERALL METHOD

279 Based on the aforementioned early-exit method with model-level confidence (Sec. 4.1) and adaptive
 280 compression mechanism with token-level semantic focus (Sec. 4.2), we then present the overall SID
 281 framework. As shown in Figure 1, after initial generation, each agent assesses its confidence using
 282 token-level uncertainty metrics derived from output logits. If the agent is sufficiently confident, it
 283 exits the debate early, avoiding unnecessary interaction. For less confident cases, the debate proceeds
 284 with a compression mechanism guided by the model’s own attention dynamics. A disagreement-
 285 oriented prompt steers the attention toward semantically relevant spans in other agents’ responses.
 286 These spans are then selected and reconstructed into a concise context for the next round, preserving
 287 key points of contention. By coupling generation-time uncertainty with attention-driven semantic
 288 focus, SID adapts the debate trajectory according to each agent’s internal belief state, achieving both
 289 high efficiency and robustness without additional training. Readers could refer to Algorithm 1 for a
 290 more detailed illustration of the overall implementation.
 291

292 5 EXPERIMENTS

293 5.1 EXPERIMENT SETUP

294 **Tasks and Benchmarks.** Results on both LLM and MLLM tasks are presented. For LLM tasks,
 295 we evaluate our method on MMLUpro (Wang et al., 2024), and Math (Hendrycks et al., 2021)
 296 datasets, as they represent a wide range of problem-solving tasks in different domains. For MLLM
 297 tasks, we evaluate on ScienceQA (Lu et al., 2022) and MMStar (Chen et al., 2024b) datasets. **Taken**
 298 **together, these four benchmarks span (i) text-only vs. multimodal inputs, (ii) factual, analytical and**
 299 **symbolic reasoning, and (iii) both LLM and MLLM settings, forming a compact yet diverse testbed**
 300 **for multi-agent debate methods. More expanded experiments can refer to Appendix D**. In consistent
 301 with previous methods, we randomly sample 100 questions from each dataset for evaluation. For
 302 the ScienceQA dataset, we utilize the lecture and hint as additional text information following (Liu
 303 et al., 2024c). For all other datasets, we adopt a zero-shot prompt setting by default.
 304

305 **Models.** To ensure representative coverage of different foundation models, we evaluate both
 306 general-purpose and reasoning-oriented models. For LLM tasks, we test on LLaMA-3.1-Instruct-
 307 8B (LLaMA3.1-8B) Grattafiori et al. (2024) and the recently released GPT-OSS-20B OpenAI et al.
 308 (2025). For MLLM tasks, we evaluate LLaVA-v1.6-Vicuna-13B (Hugging Face version, LLaVA1.6-
 309 13B) and the GLM4.1V-Thinking (GLM4.1V) reasoning model (Team et al., 2025).
 310

311 **Implementation Details** We follow the setup of prior work (Du et al., 2024; Liu et al., 2024c)
 312 to ensure fair comparison, using $n = 3$ agents and $N = 2$ debate rounds across all SID, MAD,
 313 and DMAD settings. The number of self-consistency samples is set to 3. Additionally, we incor-
 314 porate step-back prompting (Zheng et al., 2024) and self-contrast (Zhang et al., 2024) as reasoning
 315 augmentation methods in complement to IO (directly output) and COT methods. For model-level
 316 confidence, we set the NLL-max threshold α to 1.0 for reasoning-oriented models, 0.5 for general-
 317 purpose models, and 0.25 for MLLMs. To mitigate the impact of attention sinks and special tokens
 318 on specific token logits (Xiao et al., 2024), we empirically set $\phi(U)$ as the maximum of NLL and en-
 319 tropy, and exclude certain position metrics when computing model-level confidence. The confidence
 320 calibration method is trained on a held-out set of 50 samples with τ_c as 0.9. More implementation
 321 details are presented in Appendix C.
 322

323 **Evaluation Metrics** For the Math dataset (Hendrycks et al., 2021), we adopt the official exact
 324 match metric to evaluate agent responses. For all other question-answering datasets, which consist
 325 of multiple-choice questions, we use accuracy as the evaluation metric.
 326

324
 325 Table 1: Performance comparison across different LLMs for various datasets (Math subsets and
 326 MMLUpro). SID-v and SID-c denote our method using the vocabulary-adaptive threshold and cali-
 327 brated confidence, respectively, to implement the early-exit mechanism. (see Sec.4.1 for details)

Model	Method	Alg.	C&P	Geo.	Int.A.	Num	Pre.A	Pre.C.	MMLUpro	Avg
LLaMA3.1-8B	COT	61	38	34	14	37	54	28	39	38.13
	IO	65	37	35	15	46	59	28	25	38.75
	SBP (Zheng et al., 2024)	46	28	21	12	33	46	24	15	28.13
	Self-Consistency (Wang et al., 2023)	58	25	32	12	40	55	25	45	36.50
	Self-Contrast (Zhang et al., 2024)	54	36	27	11	31	53	27	36	34.38
	MAD (Du et al., 2024)	61	36	36	16	37	60	29	41	39.50
	DMAD (Liu et al., 2024c)	55	36	32	13	36	58	26	39	36.88
GPT-OSS-20B	SID-v	67	43	40	18	41	64	31	47	43.88
	SID-c	67	43	39	20	41	65	30	47	44.00
GPT-OSS-20B	COT	85	81	56	36	70	84	44	61	64.63
	IO	85	81	60	40	74	87	42	64	66.63
	SBP (Zheng et al., 2024)	65	64	44	37	16	73	11	26	42.00
	Self-Consistency (Wang et al., 2023)	75	67	44	31	70	79	23	69	57.25
	Self-Contrast (Zhang et al., 2024)	84	75	65	36	67	88	35	65	64.38
	DMAD (Liu et al., 2024c)	91	90	73	51	66	89	47	65	71.50
	SID-v	94	92	79	65	87	91	62	71	80.13
	SID-c	94	92	80	62	87	91	61	70	79.63

5.2 MAIN RESULTS

343
 344 **Overall Performance** Table 1 and Table 2 respectively present the overall performance across
 345 LLMs (including LLaMA3.1-8B and GPT-OSS-20B) and MLLMs (including LLaVA1.6-13B
 346 model and GLM4.1V) in different datasets. Our SID consistently achieves the best performance in
 347 most scenarios, demonstrating its strong effectiveness. Additionally, we observe that MAD methods
 348 outperform reasoning augmentation baselines such as self-consistency, which aligns with findings
 349 reported in (Liu et al., 2024c). Another notable observation is that both the vocabulary-adaptive
 350 threshold (SID-v) and calibrated confidence (SID-c) yield very similar performance when imple-
 351 menting the early-exit mechanism described in Sec.4.2. This suggests that the simple thresholding
 352 strategy can already approximate the learned decision boundary well. Given its training-free nature
 353 and practical effectiveness, we recommend SID-v as the preferred choice in real-world applications.

354
 355 **Accuracy and Efficiency** Figure 2(a) compares the performance and token efficiency of our SID
 356 framework against the baseline MAD method, reporting metrics of both the accuracy and the token
 357 consumption ratio. The token ratio is computed relative to the MAD setting (i.e., MAD has a to-
 358 ken ratio of 1). Results show that SID achieves up to a 30% reduction in token usage on science
 359 and reasoning datasets, while also attaining higher accuracy, demonstrating its significantly better
 360 efficiency and effectiveness. Note that on thinking models such as GPT-OSS and GLM4.1V, our
 361 method exhibits more significant token reduction, as their reasoning processes are inherently less
 362 amenable to token-level compression (see Figure 21,22 for examples). We also compare the *actual*
 363 *running times* in Figure 5 of the Appendix, where SID demonstrates substantially lower inference
 364 time, further underscoring its efficiency advantages. Additionally, Figure 2(b) presents accuracy
 365 curves across different debate rounds. SID consistently improves with additional rounds, highlight-
 366 ing its strong scalability under extended deliberation.

367
 368 **Statistical Significance Analysis** The statistical significance of our model-level confidence met-
 369 ric is illustrated in Figure 2(c) and Figure 7–16, where results for both the LLM (GPT-OSS-20B)
 370 and MLLM (LLaVA1.6-13B) are presented. In the figure, C and W denote correct and incorrect
 371 responses, respectively. Across two tasks of varying difficulty: GPQA and MMLUpro, our SID
 372 maintains a consistent confidence threshold within the correct group for the same model (e.g., NLL
 373 max ≈ 7.5), highlighting the stability and robustness of our model-level confidence signal.

5.3 ABLATION AND ANALYSIS

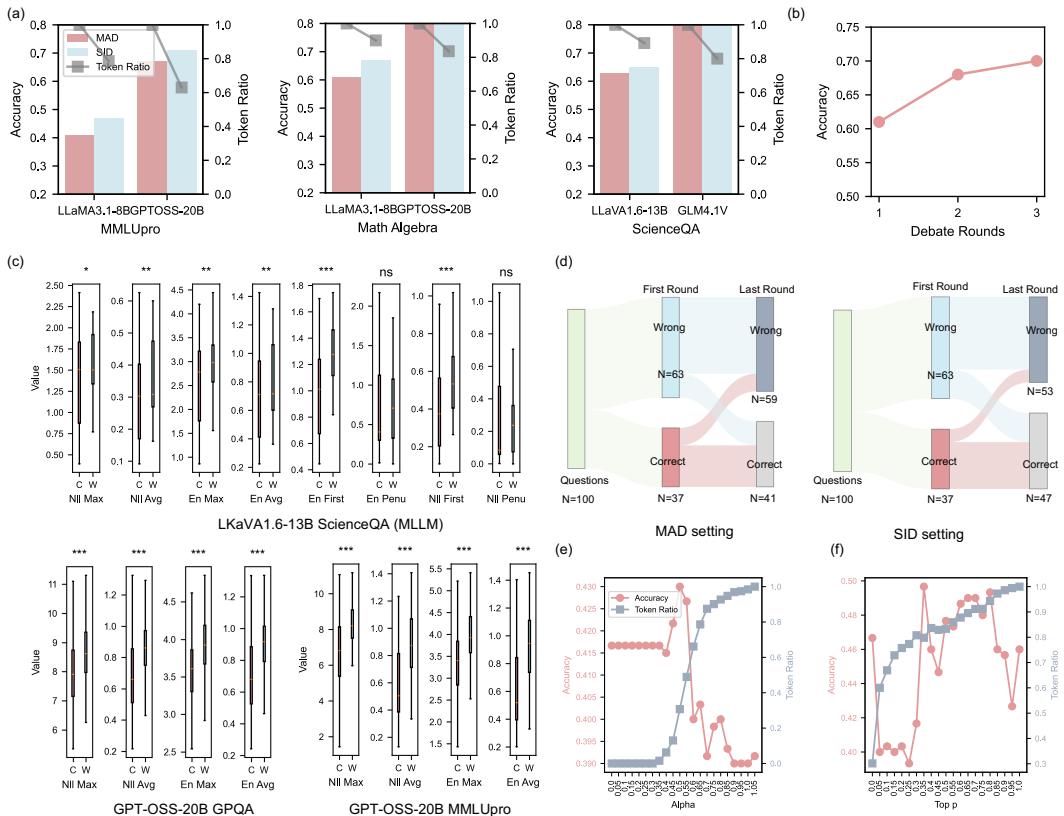
374
 375 **Ablation of Key Components** Using the LLaMA3.1-8B model and the MMLUpro dataset, we
 376 conduct a comprehensive ablation study to evaluate the key design components of our framework.
 377 As shown in Table 3, the baseline MAD setup yields suboptimal performance. In contrast, incor-
 378 porating our proposed early-exit mechanism based on model-level confidence (Section 4.1) and the
 379 compression mechanism guided by token-level semantic focus (Section 4.2) leads to substantial im-

378
379
380
Table 2: Performance on Sci.QA and MMStar based
on MLLMs LLaVA1.6-13B and GLM4.1V.

Model	Method	Sci.QA	MMStar	Model	Method	Sci.QA	MMStar
LLaVA1.6-13B	CoT	63	11	GLM4.1V	CoT	83	29
	IO	62	9		IO	83	32
	Self-Consis	63	11		Self-Consis	84	29
	MAD	65	12		MAD	90	47
	SID-v	65	14		SID-v	91	54
	SID-c	65	14		SID-c	91	54

378
379
380
Table 3: Ablation Study of SID on
MMLUpro based on LLaMA3.1-8B.

Method	Accuracy	Token Ratio
Baseline Single-round CoT	37.67	0.17
Baseline MAD	39.50	1.00
Baseline MAD + Compression	41.67	0.73
Baseline MAD + Compression + Early Exit	46.83	0.53
SID w/o Semantic Preservation	34.50	0.46
SID w/o Early Exit w/ Token-level Summary	39.50	0.68
SID	46.83	0.53

414
415
416
417
418
419
Figure 2: (a) Accuracy and token ratio comparison across strategies in MAD vs SID. (b) Performance
with more debate rounds in LLM and MLLM. (c) Significance tests on model-level confidence
signals. C means the correct group, and W means the wrong group. Statistical significance
is indicated as follows: $p < 0.05$ (*), $p < 0.01$ (**), and $p < 0.001$ (***). (d) Answer correction
flow in the MAD vs SID setting. (e) Ablation of the early-exit confidence threshold $\text{top-}p$ and (f) the
semantic-preservation ratio α on accuracy and token ratio.

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
10082

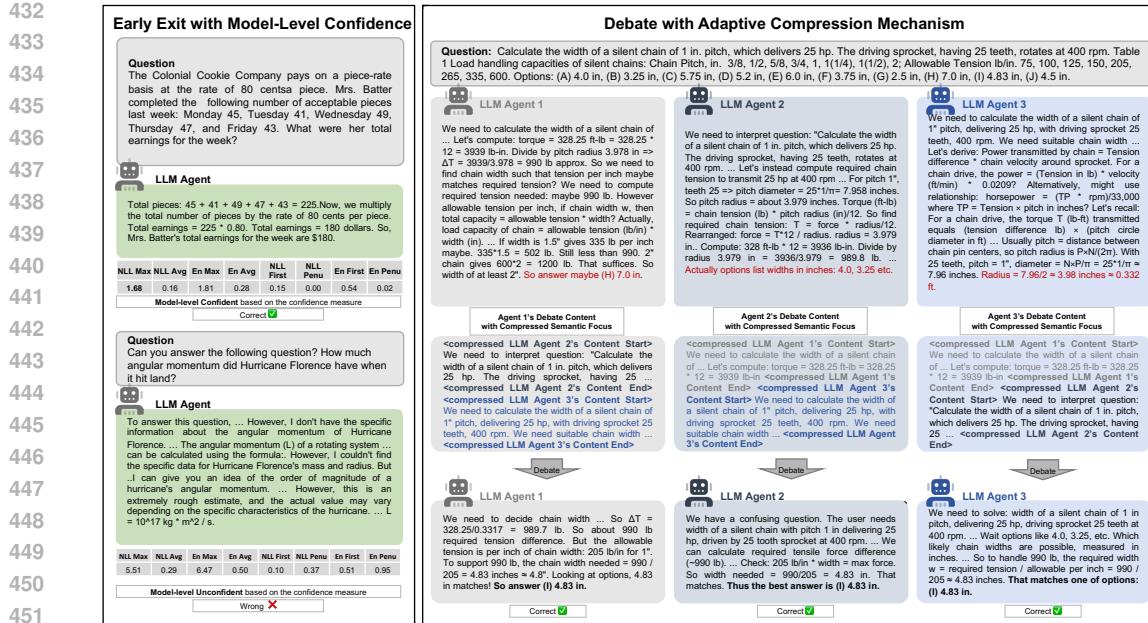


Figure 3: Case study of SID’s debate process. (Left) On MMLUpro, SID exits early for a simple arithmetic question with high confidence but fails on a complex physics question with low confidence. (Right) Three agents initially err but converge to the correct answer through debate guided by token-level semantic focus from adaptively compressed content.

produce a concise summary, which is used as the context for the next round instead of our attention-based compressed history. Empirically, this self-summarization approach leads to a 7.3% absolute accuracy drop and about a 15% increase in token usage compared to our full SID configuration. As shown in Table 3, the superior performance of our SID method validates the design choices of our framework and highlight the contribution of each component to the overall performance.

Ablation of Vocabulary Adaptive Threshold α We further conduct an ablation study on the vocabulary adaptive threshold α and early exit ratio based on the LLaMA3.1-8B. The results are presented in Figure 2 (e). Small α means all questions are unconfident, thus the exit ratio is 0, equivalent to traditional MAD, whereas large α means all questions are confident, thus the system stops at the first round, equivalent to only one LLM model. Our results show that $\alpha = 0.5$ is an optimal value for this LLaMA3.1-8B model.

Ablation of Semantic Preservation Ratio P In our semantic preservation framework, we select the top- p fraction of context tokens for further processing. The ablation study results for varying p are shown in Figure 2 (f). We observe that selecting the top tokens with p around 0.35 or 0.4 yields the best performance. It is interesting to find that when $p > 0$ but very small, performance can degrade compared to the case where no additional context is included. Conversely, when p is too large, which means retaining a broader range of content, including potentially redundant agreement, the performance also drops. These findings suggest that both incomplete and overly redundant context can negatively impact multi-LLM debate effectiveness.

5.4 VISUALIZATION RESULTS

To illustrate the mechanisms of our framework more intuitively, we present the visualizations of SID’s workflow in Figure 3. The left branch showcases the early-exit mechanism on a real-world economics question. After generating an answer, the model is assessed as highly confident (e.g., NLL Max = 1.68) by the model-level confidence module and exits early with a correct prediction. In contrast, for a more complex physics question, the model is flagged as low confidence (e.g., NLL Max = 5.51), thus prompting further debate. The right branch illustrates the debate process guided by our adaptive compression mechanism. When facing a challenging physics problem, all

486 three agents initially fail. However, by engaging in a debate using token-level compressed content
487 driven by semantic focus, the agents collaboratively refine their reasoning and successfully converge
488 on the correct answer. More case studies can be found in Appendix F, Figure 22. Furthermore,
489 Figure 2(d) compares the corrections made by the MAD and SID. Our method significantly reduces
490 the number of cases where debates drift from correct to incorrect answers, while increasing the
491 number of beneficial corrections, i.e., debates that shift from wrong to correct outcomes, further
492 demonstrating the high effectiveness of our method.

493

494 6 CONCLUSION

495

496 This work introduces SID, a multi-LLM debate framework that leverages self signals from the LLM
497 generation process to improve both performance and efficiency. SID integrates two types of inter-
498 nal signals: model-level confidence, which enables early exit for confident agents, and token-level
499 semantic focus, which compresses debate history by using attention scores to retain key points of
500 disagreement. Experiments across diverse benchmarks with various LLMs and MLLMs demon-
501 strate the high performance and efficiency of SID, underscoring the strong potential of leveraging
502 internal model states as effective signals for guiding collaborative problem-solving. These findings
503 point toward a promising direction for developing new paradigms in multi-agent systems.

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REPRODUCIBILITY STATEMENT
541

542 Significant efforts have been made to ensure the reproducibility of our results. The implementation
543 details of our framework are described in the main manuscript (Section 4, Algorithm 1, and 5.1), in-
544 cluding methods, baselines, benchmarks, model configurations, and evaluation settings. Additional
545 implementation details and the full algorithm are provided in Appendix C. To facilitate faithful repli-
546 cation of our method, we include detailed descriptions of the key prompts and instruction formats in
547 Table 4, Table 5, and Figure 4. We believe these materials are sufficient to enable reproducibility of
548 our study.

549
550 REFERENCES
551

552 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
553 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, and et al. Language Models
554 are Few-Shot Learners, July 2020.

555 Justin Chen, Swarnadeep Saha, and Mohit Bansal. ReConcile: Round-Table Conference Improves
556 Reasoning via Consensus among Diverse LLMs. In *Proceedings of the 62nd Annual Meet-
557 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7066–7085,
558 Bangkok, Thailand, 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.
559 acl-long.381.

560 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
561 Wang, Yu Qiao, Dahu Lin, and et al. Are We on the Right Way for Evaluating Large Vision-
562 Language Models?, April 2024b.

563 Giulio Corallo and Paolo Papotti. FINCH: Prompt-guided Key-Value Cache Compression for Large
564 Language Models. *Transactions of the Association for Computational Linguistics*, 12:1517–1532,
565 November 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00716.

566 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
567 factuality and reasoning in language models through multiagent debate. In *Proceedings of the
568 41st International Conference on Machine Learning*, volume 235 of *ICML’24*, pp. 11733–11763,
569 Vienna, Austria, July 2024. JMLR.org.

570 Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
571 Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, and et al. A survey
572 of uncertainty in deep neural networks. *Artificial Intelligence Review*, 56(S1):1513–1589, October
573 2023. ISSN 0269-2821, 1573-7462. doi: 10.1007/s10462-023-10562-9.

574 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
575 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, and et al. The Llama 3
576 Herd of Models, November 2024.

577 W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
578 *Biometrika*, 57(1):97–109, April 1970. ISSN 0006-3444. doi: 10.1093/biomet/57.1.97.

579 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
580 Song, and Jacob Steinhardt. Measuring Mathematical Problem Solving With the MATH Dataset,
581 November 2021.

582 Mengting Hu, Zhen Zhang, Shiwan Zhao, Minlie Huang, and Bingzhe Wu. Uncertainty in Natural
583 Language Processing: Sources, Quantification, and Applications, June 2023.

584 Michael Kirchhof, Gjergji Kasneci, and Enkelejda Kasneci. Position: Uncertainty Quantification
585 Needs Reassessment for Large-language Model Agents, May 2025.

586 Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? Does it matter? *Structural
587 Safety*, 31(2):105–112, March 2009. ISSN 0167-4730. doi: 10.1016/j.strusafe.2008.06.020.

588 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
589 Language Models are Zero-Shot Reasoners, January 2023.

594 Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho Paik. Uncertainty quantifi-
 595 cation using Bayesian neural networks in classification: Application to biomedical image segmen-
 596 tation. *Computational Statistics & Data Analysis*, 142:106816, February 2020. ISSN 0167-9473.
 597 doi: 10.1016/j.csda.2019.106816.

598 Yassir Laaouach. HALT-CoT: Model-Agnostic Early Stopping for Chain-of-Thought Reasoning via
 599 Answer Entropy. In *4th Muslims in ML Workshop Co-Located with ICML 2025*, June 2025.

600 Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun
 601 Liu. LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods, Decem-
 602 ber 2024a.

603 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping Language-Image
 604 Pre-training with Frozen Image Encoders and Large Language Models. In *Proceedings of the*
 605 *40th International Conference on Machine Learning*, pp. 19730–19742. PMLR, July 2023.

606 Yunxuan Li, Yibing Du, Jiageng Zhang, Le Hou, Peter Grabowski, Yeqing Li, and Eugene Ie. Im-
 607 proving Multi-Agent Debate with Sparse Communication Topology, June 2024b.

608 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
 609 Shi, and Zhaopeng Tu. Encouraging Divergent Thinking in Large Language Models through
 610 Multi-Agent Debate, October 2024.

611 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved Baselines with Visual In-
 612 struction Tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 613 *Recognition*, pp. 26296–26306, 2024a.

614 Tongxuan Liu, Xingyu Wang, Weizhe Huang, Wenjiang Xu, Yuting Zeng, Lei Jiang, Hailong Yang,
 615 and Jing Li. GroupDebate: Enhancing the Efficiency of Multi-Agent Debate Using Group Dis-
 616 cussion, September 2024b.

617 Yexiang Liu, Jie Cao, Zekun Li, Ran He, and Tieniu Tan. Breaking Mental Set to Improve Reasoning
 618 through Diverse Multi-Agent Debate. In *The Thirteenth International Conference on Learning*
 619 *Representations*, October 2024c.

620 Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 621 Peter Clark, and Ashwin Kalyan. Learn to Explain: Multimodal Reasoning via Thought Chains
 622 for Science Question Answering, October 2022.

623 Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Ed-
 624 ward Teller. Equation of State Calculations by Fast Computing Machines. *The Journal of Chemical*
 625 *Physics*, 21(6):1087–1092, June 1953. ISSN 0021-9606. doi: 10.1063/1.1699114.

626 OpenAI, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus,
 627 Rahul K. Arora, Yu Bai, Bowen Baker, and et al. Gpt-oss-120b & gpt-oss-20b Model Card,
 628 August 2025.

629 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 630 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A Graduate-Level Google-Proof Q&A
 631 Benchmark, November 2023.

632 Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
 633 Donald Metzler. Confident Adaptive Language Modeling, October 2022.

634 Yiliu Sun, Zicheng Zhao, Sheng Wan, and Chen Gong. CortexDebate: Debating Sparsely and
 635 Equally for Multi-Agent Debate. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
 636 hammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL*
 637 2025, pp. 9503–9523, Vienna, Austria, July 2025. Association for Computational Linguistics.
 638 ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.495.

639 GLM-V. Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang,
 640 Jiale Cheng, Ji Qi, Junhui Ji, and et al. GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile
 641 Multimodal Reasoning with Scalable Reinforcement Learning, August 2025.

648 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
 649 Finn, and Christopher D. Manning. Just Ask for Calibration: Strategies for Eliciting Calibrated
 650 Confidence Scores from Language Models Fine-Tuned with Human Feedback, October 2023.
 651

652 Zailong Tian, Zhuoheng Han, Yanzhe Chen, Haozhe Xu, Xi Yang, Richeng Xuan, Houfeng Wang,
 653 and Lizi Liao. Overconfidence in LLM-as-a-Judge: Diagnosis and Confidence-Driven Solution,
 654 August 2025.

655 Weijie Tu, Weijian Deng, Dylan Campbell, Yu Yao, Jiayang Zheng, Tom Gedeon, and Tongliang
 656 Liu. Ranked from Within: Ranking Large Multimodal Models Without Labels. In *Forty-Second*
 657 *International Conference on Machine Learning*, June 2025.

658 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
 659 heray, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language
 660 Models, March 2023.

661 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 662 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, and et al. MMLU-Pro: A More Robust and Challeng-
 663 ing Multi-Task Language Understanding Benchmark, November 2024.

664 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 665 Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,
 666 January 2023.

667 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient Streaming
 668 Language Models with Attention Sinks, April 2024.

669 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can LLMs
 670 Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs. In *The*
 671 *Twelfth International Conference on Learning Representations*, October 2023.

672 Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Minghui Chen,
 673 Zheng Lin, and Weiping Wang. Dynamic Early Exit in Reasoning Models, September 2025.

674 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
 675 Narasimhan. Tree of Thoughts: Deliberate Problem Solving with Large Language Models, De-
 676 cember 2023.

677 Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue Wang, Derek F. Wong, Emine Yilmaz, Shum-
 678 ing Shi, and Zhaopeng Tu. Benchmarking LLMs via uncertainty quantification. In *Proceedings*
 679 *of the 38th International Conference on Neural Information Processing Systems*, volume 37 of
NIPS '24, pp. 15356–15385, Red Hook, NY, USA, June 2025. Curran Associates Inc. ISBN
 979-8-3313-1438-5.

680 Zhangyue Yin, Qiushi Sun, Cheng Chang, Qipeng Guo, Junqi Dai, Xuanjing Huang, and Xipeng
 681 Qiu. Exchange-of-Thought: Enhancing Large Language Model Capabilities through Cross-
 682 Model Communication. In *Proceedings of the 2023 Conference on Empirical Methods in Natural*
683 Language Processing, pp. 15135–15153, Singapore, 2023. Association for Computational Lin-
 684 guistics. doi: 10.18653/v1/2023.emnlp-main.936.

685 Luke Yoffe, Alfonso Amayuelas, and William Yang Wang. DebUnc: Improving Large Language
 686 Model Agent Communication With Uncertainty Metrics, February 2025.

687 Yuting Zeng, Weizhe Huang, Lei Jiang, Tongxuan Liu, XiTai Jin, Chen Tianying Tiana, Jing Li,
 688 Xiaohua Xu, and et al. S2-MAD: Breaking the Token Barrier to Enhance Multi-Agent Debate
 689 Efficiency. In Luis Chiruzzo and Alan Ritter (eds.), *Proceedings of the 2025 Conference of*
690 the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
691 Language Technologies (Volume 1: Long Papers), pp. 9393–9408, Albuquerque, New Mexico,
 692 April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/
 693 v1/2025.naacl-long.475.

694 Hangfan Zhang, Zhiyao Cui, Xinrun Wang, Qiaosheng Zhang, Wang Zhen, Dinghao Wu, and
 695 Shuyue Hu. *If Multi-Agent Debate Is the Answer, What Is the Question?* February 2025. doi:
 696 10.48550/arXiv.2502.08788.

702 Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying Peng, Jun Wang, Yueting Zhuang, and Weim-
703 ing Lu. Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives, June 2024.
704

705 Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V. Le,
706 and Denny Zhou. Take a Step Back: Evoking Reasoning via Abstraction in Large Language
707 Models, March 2024.

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A USE OF LARGE LANGUAGE MODELS (LLMs)**
757758 Large Language Models (LLMs) were used solely for language refinement and proofreading pur-
759 poses. They were not involved in research ideation and methodology design. All scientific contribu-
760 tions and conceptual developments were carried out entirely by the authors. The LLM did not play
761 a substantive role in shaping the research content and should not be considered a contributor.
762763 **B LIMITATION**
764765 Our method relies on internal model signals such as logits and attention maps, which limit direct
766 applicability to public closed-source APIs. However, it remains well-suited for internal deployments
767 of proprietary models, especially in multi-agent systems, and can serve as an intermediate reasoning
768 layer prior to externalized API serving. Notably, many modern systems (e.g., GPT-5) already adopt
769 multi-agent or tool-augmented architectures, making our approach broadly applicable and increas-
770 ingly relevant.
771772 **C ALGORITHM AND IMPLEMENTATION**
773774 **C.1 SEMANTIC PRESERVATION**
775776 The semantic preservation module plays a key role in restoring the semantic cohesion from the top-
777 p selected sparse tokens based on a model’s self-signals (*i.e.*, attention mechanism). Specifically,
778 the method selects the most relevant textual spans based on attention distribution, but ensures that
779 these selections are semantically coherent when mapped back to natural language. The algorithm
780 below (Algorithm 2) shows the main pipeline, and the example (Figure 6) illustrates the comparison
781 between without and with semantic preservation.
782783 **Algorithm 2** Semantic-Preserving Compression
784785 **Require:** Prompt text x with marked spans `FOCUS`, `DISCUSSION`; offset map \mathcal{O} ; Top- p selected
786 attention score \mathcal{C}
787 **Ensure:** Compressed prompt x'
788 1: $\mathcal{U} \leftarrow \text{EXTRACTUNITS}(x, \text{DISCUSSION})$ ▷ Sentence/clause-level segments
789 2: $T \leftarrow \text{TOKENIZER}(x)$
790 3: $\mathcal{S} \leftarrow \text{MAPTOKENSTOUNITS}(\mathcal{C}, \mathcal{U}, \mathcal{O})$
791 4: $x' \leftarrow \text{REPLACESPAN}(x, \text{DISCUSSION}, \mathcal{S})$
792 5: **return** x'
793794 We begin by extracting semantically coherent units (e.g., sentences or clauses) from the
795 `DISCUSSION` span using lightweight parsing heuristics, including punctuation or newline segmen-
796 tation. This yields a set of candidate text fragments \mathcal{U} .
797798 We then use the Top- p selected attention score \mathcal{C} (from Algorithm 1) to select the top- p most relevant
799 tokens from T . To preserve semantic interpretability, we map these selected tokens back to their
800 enclosing segments in \mathcal{U} using the token-to-text offset map \mathcal{O} . The resulting set of informative
801 fragments \mathcal{S} is used to replace the original `DISCUSSION` span, yielding a compressed prompt x'
802 that retains critical disagreement signals while discarding redundant or low-relevance content.
803804 In the multi-modal setting (e.g., MLLMs), token offsets may shift due to image-text fusion. We
805 mitigate this by anchoring to stable textual markers in the `FOCUS` span to adjust \mathcal{O} and maintain
806 alignment.
807808 This compression module is integrated into the overall SID framework to support efficient and in-
809 terpretable multi-agent reasoning under token or latency constraints

810 C.2 PROMPT TEMPLATE
811

812 In multi-task evaluation settings, especially those involving factual or multiple-choice benchmarks,
813 we observe that models frequently generate semantically correct answers but fail to conform to
814 the expected output format. This discrepancy is particularly pronounced in open-ended LLMs,
815 where prior supervised fine-tuning (SFT) phases may introduce implicit formatting preferences (e.g.,
816 `\boxed` in math domains).

817 To mitigate this, we prepend a task-specific *system prompt* that explicitly enforces the desired answer
818 format. Our full prompting format is:

819 `<system prompt> + <question content> + <output instruction>`

820 This method proves especially helpful for models with weaker instruction-following capabilities
821 (e.g., LLaMA3.1-8B) and significantly reduces post-hoc answer parsing failures. Another example is the GLM4.1-V thinking model. The default multiple choice response uses
822 a special boxed token, such as `<|begin_of_box|>B<|end_of_box|>`. By emphasizing
823 the answer returning with brackets in the system prompt, GLM4.1V thinking yields
824 `<|begin_of_box|>(B)<|end_of_box|>`. This allows us to extract the result using brackets
825 in a unified way. Table 4 lists the dataset-specific system prompts and the enforced answer formats
826 used in our experiments.

827 Table 4: Dataset-specific system prompts and enforced output formats for answer extraction.
828

829 Dataset	830 System Prompt (Instruction)	831 Expected Output Format (for answer parsing)
832 MMLUpro	833 You are a trivia expert who knows everything. You 834 are tasked to answer the following question. Give 835 your final answer in the format of (X), e.g., (A).	(A), (B), etc.
836 Math	837 You are a math expert. You are tasked to 838 determine the answer to the following question. Give 839 your final answer in the form of 840 <code>\boxed{answer}</code> in the last sentence of your response, e.g., <code>\boxed{[1, 3]}</code> .	<code>\boxed{...}</code>
841 GPQA	842 You are an expert in graduate-level science and 843 mathematics. You will be presented with chal- 844 lenging questions designed to test your reasoning 845 abilities. Your last sentence should be “The cor- 846 rect answer is (insert answer here).”	“The correct answer is (A).”
847 ScienceQA	848 You are a trivia expert who knows everything. You 849 are tasked to answer the following question. Give 850 your final answer in the format of (X), e.g., (A).	(A), (B), etc.
851 MMStar	852 You are an expert in multimodal task under- 853 standing, and your task is to answer the following ques- 854 tions. Give your final answer in the format of (X), 855 e.g., (A)	(A), (B), etc.

856 Table 5: Dataset-specific output instruction prompts.
857

858 Dataset	859 Output Instruction
MMLUpro	Give your final answer in the format of '(X)'
Math	Give your final answer in the form of <code>\boxed{answer}</code> at the end of your response, e.g., <code>\boxed{[1, 3]}</code> .
GPQA	Your last sentence should be ‘The correct answer is (insert an- swer here).’ e.g., The correct answer is (A).
ScienceQA	Give your final answer in the format of '(X)'. You should only give one answer. For example, the answer is (A).
MMStar	Give your final answer in the format of '(X)'. You should only give one answer.

864
865
866
867

Reasoning Augmentation Prompt

```

868 <COT (zero-shot)>
869 <Generation 1/1>
870 Let's think step by step.

871 <IO>
872 <Generation 1/1>
873 Please directly give your answer.

874 <Self-Consistency>
875 <Generation N/N, i.e., after N-rounds generation>
876 <majority vote among multiple responses>

877 <Step-back prompting, SBP>
878 <Generation 1/2>
879 You are an expert at structured reasoning. Your task is to extract the subject concepts and
880 principles involved in solving the problem. In this step you don't need to give you final answer,
881 just extract the concepts and principles.
882 <Get Phase 1 Response>

883 <Generation 2/2>
884 Learned concepts and principles:
885 {Phase 1 Response}
886 Solve the problem step by step with your reasoning path, according to the concepts and principles
887 you have learned.

888 <Self-Contrast>
889 <Generation 1/4>
890 Let's think step by step

891 <Generation 2/4>
892 Please generate an alternative solution to this problem using a different approach or reasoning
893 method.

894 <Generation 3/4>
895 Now compare your original solution with the alternative solution:
896 1. What are the key differences between the two approaches?
897 2. Which approach seems more reliable and why?
898 3. Can you identify any weaknesses in either approach?
899 4. Based on this comparison, what is your final answer?

900 <Generation 4/4>
901 Based on your comparison of the different approaches, provide your final answer.

902
903
904
905
906
907
908
909
910
911

```

Figure 4: Details of reasoning augmentation prompt.

912 In terms of question content, we strictly follow the previous work (Du et al., 2024; Liu et al., 2024c)
913 in parsing the question to the chat template.914 Moreover, we list the reasoning augmentation prompt (Figure 4 used in our experiments. Notably,
915 Output Instructions should still be used after those prompts to enhance the ability to follow instruc-
916 tions.
917

918 D EXPANDED EXPERIMENTS

920 To further broaden our empirical coverage, we additionally evaluate SID on GPQA (Rein et al.,
 921 2023), a challenging benchmark targeting advanced science knowledge and reasoning. We follow
 922 the same evaluation protocol as in the main experiments and use GPT-OSS-20B as the base model,
 923 with SID-v as the default debate configuration.

925 Table 6: Results on the GPQA benchmark using GPT-OSS-20B under the same evaluation protocol
 926 as in the main text.

928 Method (GPQA)	929 CoT	929 IO	929 MAD	929 SID
930 Accuracy (%) \pm std	930 43.2 ± 1.7	930 41.4 ± 1.6	930 52.9 ± 2.0	930 54.8 ± 1.5

931 As shown in Table 6, SID achieves the best performance among all compared methods on GPQA,
 932 demonstrating that our SID framework generalizes to challenging scientific reasoning tasks beyond
 933 the benchmarks reported in the main paper.

935 Exchange-of-Thought (EoT) (Yin et al., 2023) derives a model-level confidence score post hoc from
 936 the final discrete answers (e.g., options A/B/C/D) across rounds and/or agents, for example, by
 937 measuring how frequently the most common answer appears. This effectively treats consistency
 938 of verbalized outputs as a proxy for confidence. To more concretely compare SID with EoT, we
 939 run both methods with LLaMA3.1-8B on the MMLUpro dataset. We follow the same evaluation
 940 protocol as in our main experiments and configure three agents and two debate rounds, computing
 941 the EoT confidence exactly as described in the original paper. The results are summarized in Table 7.

942 Table 7: Comparison with EoT on MMLUpro using LLaMA3.1-8B.

945 Method	946 CoT	946 MAD	946 EoT	946 SID
946 Accuracy (%)	946 39.5	946 41.5	946 42.7	946 46.8

948 As shown in Table 7, EoT improves over standard MAD, indicating that consistency-based aggre-
 949 gation can indeed be beneficial. SID, however, still yields a clear additional gain.

951 We further examine whether SID extends naturally to *heterogeneous* multi-model debate. To this
 952 end, we consider two base models on MMLUpro: LLaMA-3.1-8B (denoted as model A) and GPT-
 953 OSS-20B (denoted as model B). We instantiate homogeneous pairs (A+A and B+B) as well as
 954 a heterogeneous pair (A+B), and measure the accuracy of each agent’s final-round answer under
 955 MAD and SID.

956 Table 8: Heterogeneous multi-model debate on MMLUpro with LLaMA-3.1-8B (A) and GPT-OSS-
 957 20B (B). For the heterogeneous A+B setting, we report the final accuracy of each agent (A/B).

959 Setting	960 A+A MAD	960 A+A SID	960 B+B MAD	960 B+B SID	960 A+B MAD (A/B)	960 A+B SID (A/B)
961 Acc. (%)	961 41	961 47	961 65	961 71	961 65 / 65	961 64 / 72

963 As shown in Table 8, SID consistently improves performance over MAD in the homogeneous set-
 964 tings: the accuracy of A+A increases from 41% to 47%, and B+B from 65% to 71%. This mirrors
 965 the trends observed in the main experiments and indicates that SID’s model-level early exit and
 966 token-level semantic-focus mechanisms remain beneficial across different base models.

968 The heterogeneous configuration (A+B) provides additional insight. Under MAD, both A and B
 969 achieve roughly the same final accuracy (65%), suggesting that the weaker model A benefits from
 970 debating with the stronger model B, while the stronger model does not fully realize its potential
 971 within an unstructured debate protocol. Under SID, the stronger model B reaches 72% accuracy,
 which exceeds all homogeneous baselines (including B+B with MAD at 65% and even B+B with

972 SID at 71%), while model A remains competitive at 64%. These results indicate that SID can better
 973 exploit model complementarity in heterogeneous groups: the weaker model can still benefit from
 974 interaction, but the stronger model is less likely to be “dragged down” by unnecessary debate and
 975 can more reliably achieve (or slightly exceed) its best homogeneous performance.

976 Overall, this study suggests that SID is not only compatible with heterogeneous multi-model debate,
 977 but also capable of leveraging internal self-signals to coordinate agents of different strengths more
 978 effectively than standard MAD.

981 E MODEL-LEVEL CONFIDENCE ANALYSIS

984 In this section, we provide additional analyses of the model-level confidence signal used by SID,
 985 in order to clarify (i) how well it separates correct and wrong predictions, and (ii) what happens in
 986 over-confident failure cases.

987 Recall that for each agent, we compute a model-level confidence score from internal self-signals during
 988 generation. Concretely, given a sequence of output tokens $\{y_t\}_{t=1}^T$ and model log-probabilities
 989 $\log p_\theta(y_t \mid y_{<t}, x)$, we construct confidence metrics based on aggregated negative log-likelihood
 990 (NLL) and entropy over different token positions (e.g., all tokens, answer tokens, or reasoning
 991 tokens). These metrics are then calibrated via the vocabulary-adaptive threshold described in Sec-
 992 tion 4.1 to decide whether an agent should exit the debate early.

995 **Separation between correct and wrong predictions.** Figures 7–16 in the appendix, for multiple
 996 datasets and models, the empirical distributions of our confidence metrics for *correct* (C) vs. *wrong*
 997 (W) answers, together with significance tests. Across MMLU-Pro, MATH subsets, ScienceQA,
 998 MMStar, and GPQA, we consistently observe that the C group exhibits noticeably *lower* NLL /
 999 entropy than the W group, and these differences are statistically significant in most settings. In
 1000 parallel, the correction-flow plots in the same figures show that, under SID, the number of correct-to-
 1001 wrong (C→W) transitions across rounds is reduced, while wrong-to-correct (W→C) transitions are
 1002 maintained or increased compared to MAD. Taken together, these results indicate that our confidence
 1003 estimate, although not perfectly calibrated, is a useful ranking signal for debate scheduling: high-
 1004 confidence states are more likely to be correct and more likely to remain correct under SID.

1005
 1006 **Over-confident errors and failure cases.** We also explicitly examine cases where the model-level
 1007 confidence is high but the final answer may be incorrect. Figures 17–20 provide qualitative exam-
 1008 ples of such failure cases under our early-exit policy. In most of these examples, the intermediate
 1009 reasoning trajectory is largely sensible (e.g., correctly recalling definitions or setting up equations),
 1010 but the model makes a local slip in the last step, such as an arithmetic mistake or an incorrect option
 1011 mapping. Because our confidence is derived from token-level log-probabilities aggregated over the
 1012 entire reasoning sequence, these mostly plausible trajectories can still yield low NLL / entropy even
 1013 when the final box answer is wrong. These examples illustrate the limitations of our signal: it is not
 1014 an oracle and over-confident errors do occur.

1015 However, our quantitative analyses show that such over-confident wrong cases are relatively rare
 1016 compared to the large mass of high-confidence correct predictions. In addition, the correction-flow
 1017 statistics indicate that SID reduces harmful C→W transitions overall, while preserving beneficial
 1018 W→C transitions. Thus, even though the confidence signal can occasionally fail, on balance it
 1019 enables the early-exit mechanism to (i) protect many high-confidence correct answers from being
 1020 overturned by noisy debate and (ii) avoid spending additional tokens on debates that are unlikely to
 1021 change the outcome.

1022 In summary, our model-level confidence should be viewed as a ranking heuristic derived from in-
 1023 ternal self-signals. Empirically, it exhibits a clear and statistically meaningful separation between
 1024 correct and wrong predictions across benchmarks, and it leads to fewer C→W transitions and more
 1025 efficient use of debate rounds when integrated into SID. This supports its use as a practical gating
 signal for deciding when to continue or terminate multi-agent debate.

1026 **F MORE RESULTS**
10271028 In this section, we list many visualization results to illustrate the effectiveness of our SID methods.
10291030 Figure 6 Example comparison between w/o semantic preservation (red, brute-force token selec-
1031 tion) and w/ semantic preservation (green, semantically coherent expansion). It can be observed
1032 that token-level semantic focus deletes irrelevant points (for example, point 2 in the solution was
1033 deleted), and our semantic preservation retains the semantic cohesion from the selected tokens.1034 A series of model-level confidence examples below can demonstrate the stable early exit threshold
1035 in the same model, and the statistical significance between the correct and wrong groups. Moreover,
1036 we also provide the correction flow from the first round to the last round.1037 Figure 7 Top: Model-level Confidence result on the Math Algebra dataset with LLaMA3.1-8B.
1038 Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged
1039 between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.1040 Figure 8 Model-level Confidence result on the Math Counting and Probability dataset with
1041 LLaMA3.1-8B.

1042 Figure 9 Model-level Confidence result on the Math Geometry dataset with LLaMA3.1-8B.

1043 Figure 10 Model-level Confidence result on the Math Intermediate Algebra dataset with LLaMA3.1-
1044 8B.

1045 Figure 11 Model-level Confidence result on the Math Number Theory dataset with LLaMA3.1-8B.

1046 Figure 12 Model-level Confidence result on the Math Prealgebra dataset with LLaMA3.1-8B.

1047 Figure 13 Model-level Confidence result on the Math Precalculus dataset with LLaMA3.1-8B.

1048 Figure 14 Model-level Confidence result on the MMStar dataset with GLM4.1V.

1049 Figure 15 Model-level Confidence result on the MMLUpro dataset with GPT-OSS-20B. Bottom:
1050 Correction flow with 8 deltas of confidence metrics.1051 In addition, a number of model-level early exit cases are provided here to show the confident and
1052 overconfident cases. It can be observed that the model partially analyzes the problem in overconfi-
1053 dent cases.

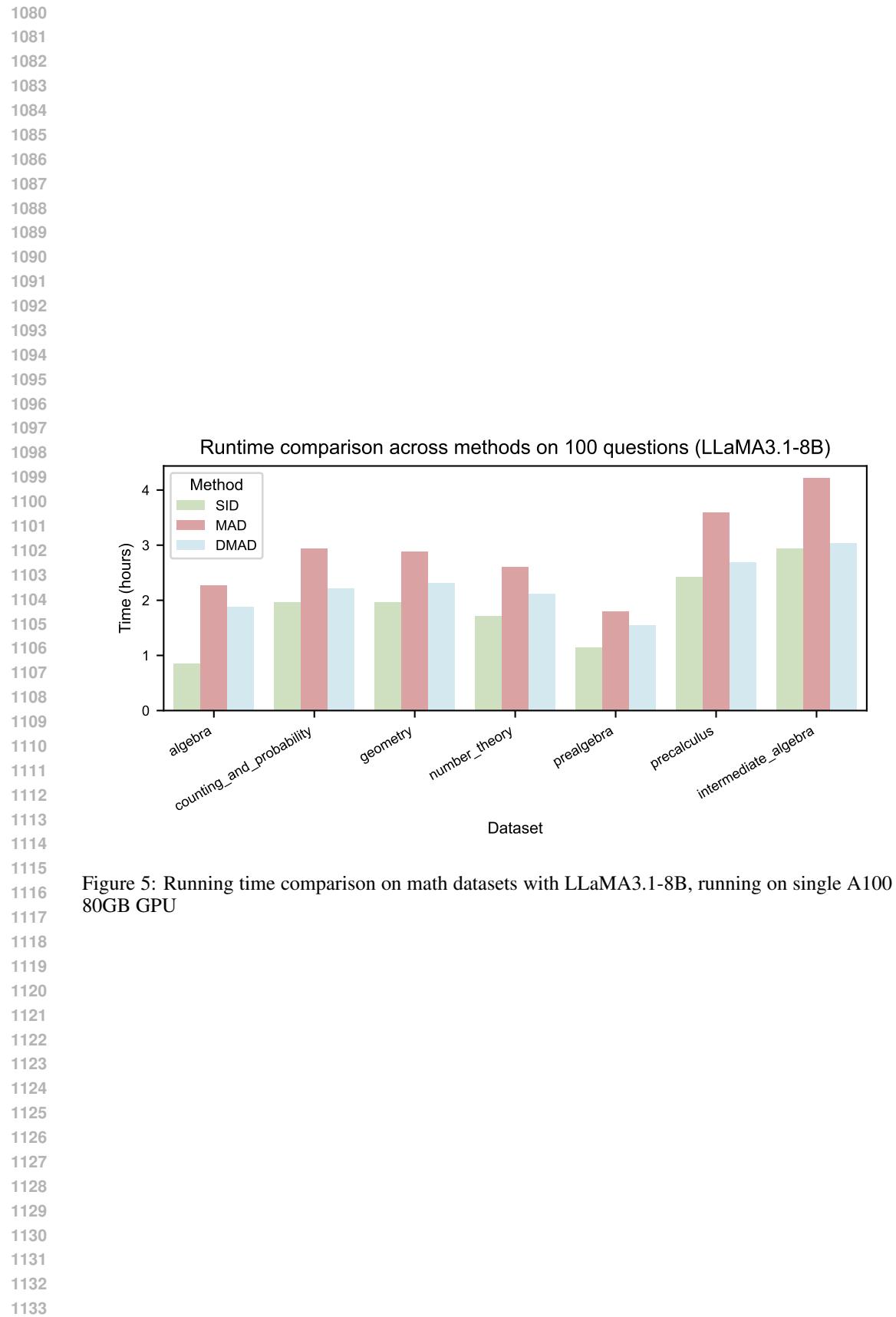
1054 Figure 17 Examples of model-level early exit cases in the MMLUpro dataset.

1055 Figure 18 Examples of model-level early exit cases in the ScienceQA dataset.

1056 Figure 19 Examples of model-level early exit cases in the Math dataset.

1057 Figure 20 Examples of model-level early exit cases in the GPQA dataset.

1058 Subsequently, Figure 21 and Figure 22 display that the token-level semantic focus module com-
1059 presses the contents and assists agents in correcting their answers.1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079



1134
 1135
 1136
 1137
 1138

Examples of Semantic Preservation

1139
 1140
 1141 **<Selected Text: w/o Semantic Preservation>**
 1142 One agent solution:
 1143 ```To solve this, let's break it down by step:
 1144 1. Both parents have the same meaning they are both they can only that also zy they can only).
 1144 3. Since are but not).
 1145 4 the probability that each of children will bezy is1or %), because they will only from both parents.
 1146 So, the correct answer is (F) 1.
 1147 ````
 1148 One agent solution:
 1149 ```To solve this let's consider the possibleotypes andotypes of the and both parents are we can
 1150 their the a
 1151 2 Theotypes of)
 1151 3 parents the possible can
 1152 4 The probability of each child is the of which is because each has of probability of2).
 1153 So, the probability that each children will be affected equals 4 or 25%. Therefore, the answer is
 1154 (I).
 1155 ````
 1156 **<Selected Text: w/ Semantic Preservation>**
 1157 One agent solution:
 1158 ```To solve this, let's break it down step by step:
 1159 1. Both parents have the same autosomal recessive disorder, meaning they are both homozygous
 1160 recessive (rr) for the disorder. When two homozygous recessive parents (rr) have children, they
 1160 can only produce offspring that are also homozygous recessive (rr) because they can only
 1161 contribute their recessive alleles (r).
 1162 3. Since the disorder is autosomal recessive, the parents are carriers of the recessive allele
 1162 (r) but do not express the disorder themselves because they are homozygous recessive (rr).
 1163 4. Therefore, the probability that each of their children will be affected (homozygous recessive,
 1164 rr) is 1 (or 100%), because they will only inherit the recessive allele from both parents. So,
 1165 the correct answer is (F) 1.````
 1166 One agent solution: ```To solve this, let's consider the possible genotypes and phenotypes of the
 1167 parents and their offspring. Since both parents are affected by an autosomal recessive disorder,
 1167 we can represent their genotype as 'rr' (assuming the disorder is caused by a recessive allele
 1168 'r' and the dominant allele is 'R').
 1169 2. The possible genotypes of their offspring are: - Rr (carrier) - Rr (carrier) 3. Since both
 1170 parents are affected, the possible genotypes of the parents can be rr.
 1171 4. The probability of each child being affected (rr) is the probability of inheriting two
 1171 recessive alleles, which is 1/4, because each parent has a 1/2 chance of contributing a recessive
 1172 allele, and the probability of both contributing a recessive allele is (1/2) * (1/2) = 1/4. So,
 1173 the probability that each of their children will be affected equals 1/4 or 25%. Therefore, the
 1174 answer is (I).````
 1175 **Legend: The red and green shaded text is an example pair for the w/o Semantic Preservation and w/
 1176 Semantic Preservation comparison.**
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184 Figure 6: Example comparison between w/o semantic preservation (red, brute-force token selection)
 1185 and w/ semantic preservation (green, semantically coherent expansion)
 1186
 1187

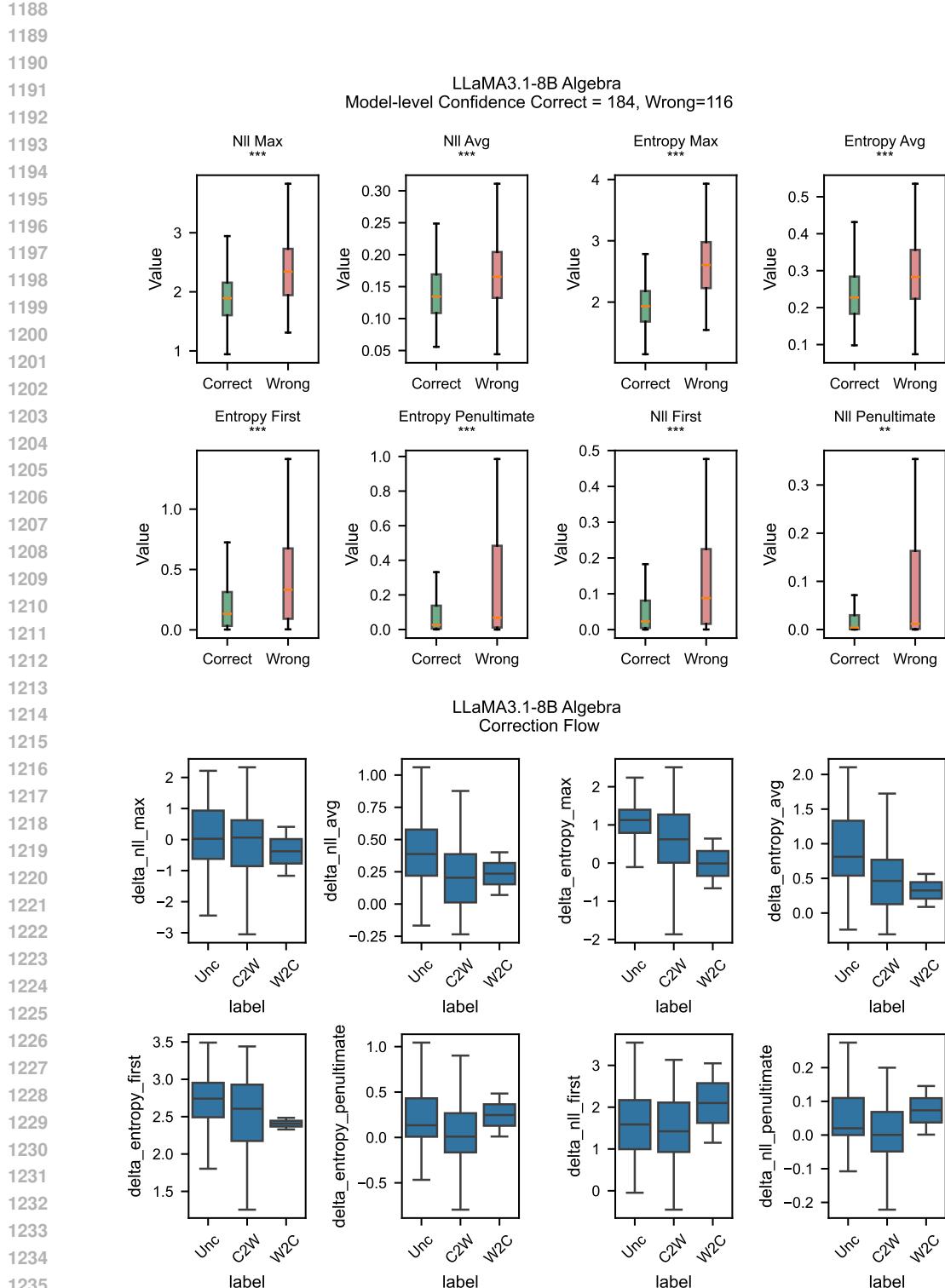


Figure 7: Top: Model-level Confidence result on the Math Algebra dataset with LLaMA3.1-8B. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

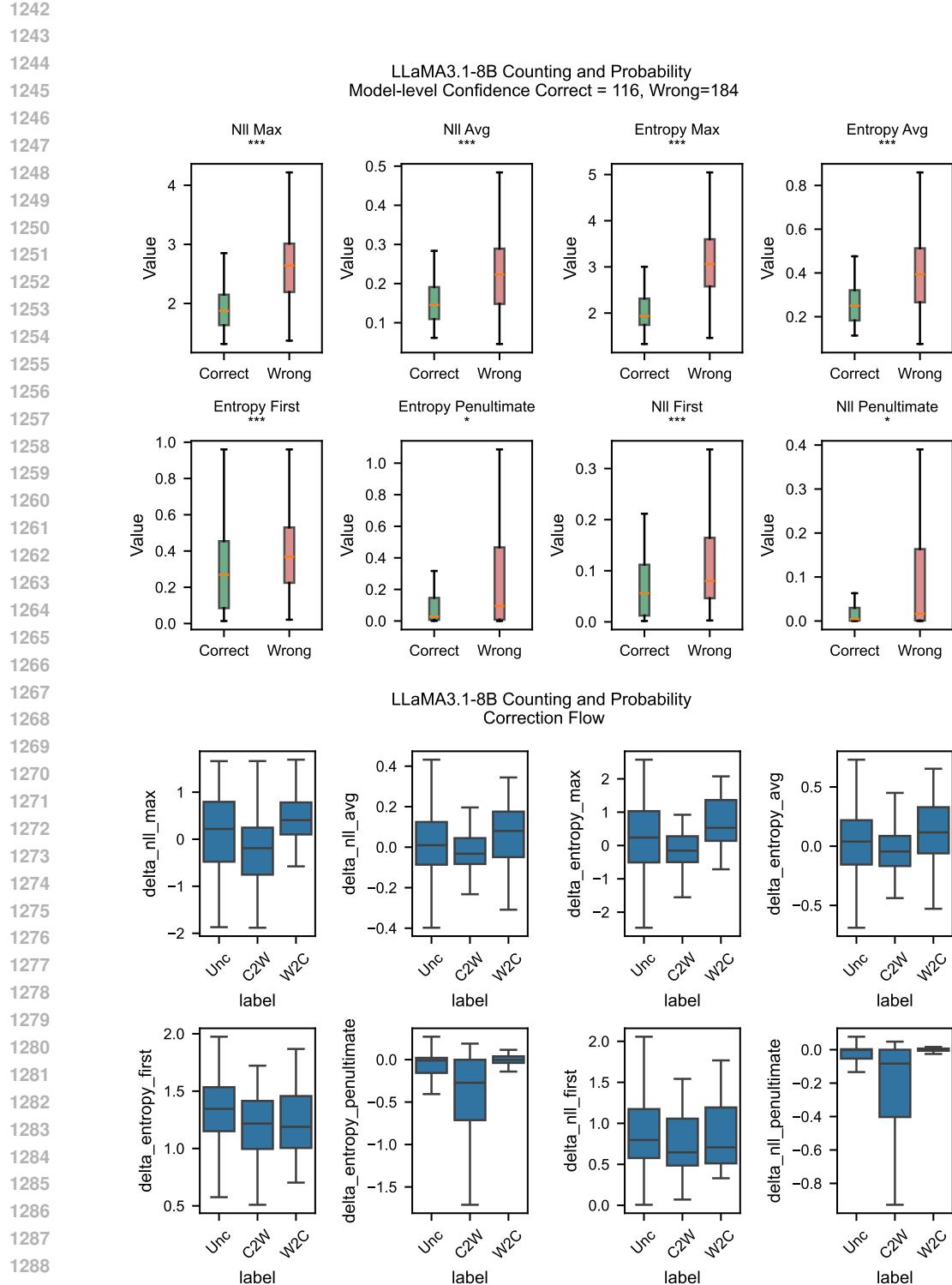


Figure 8: Top: Model-level Confidence result on the Math Counting and Probability dataset with LLaMA3.1-8B. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

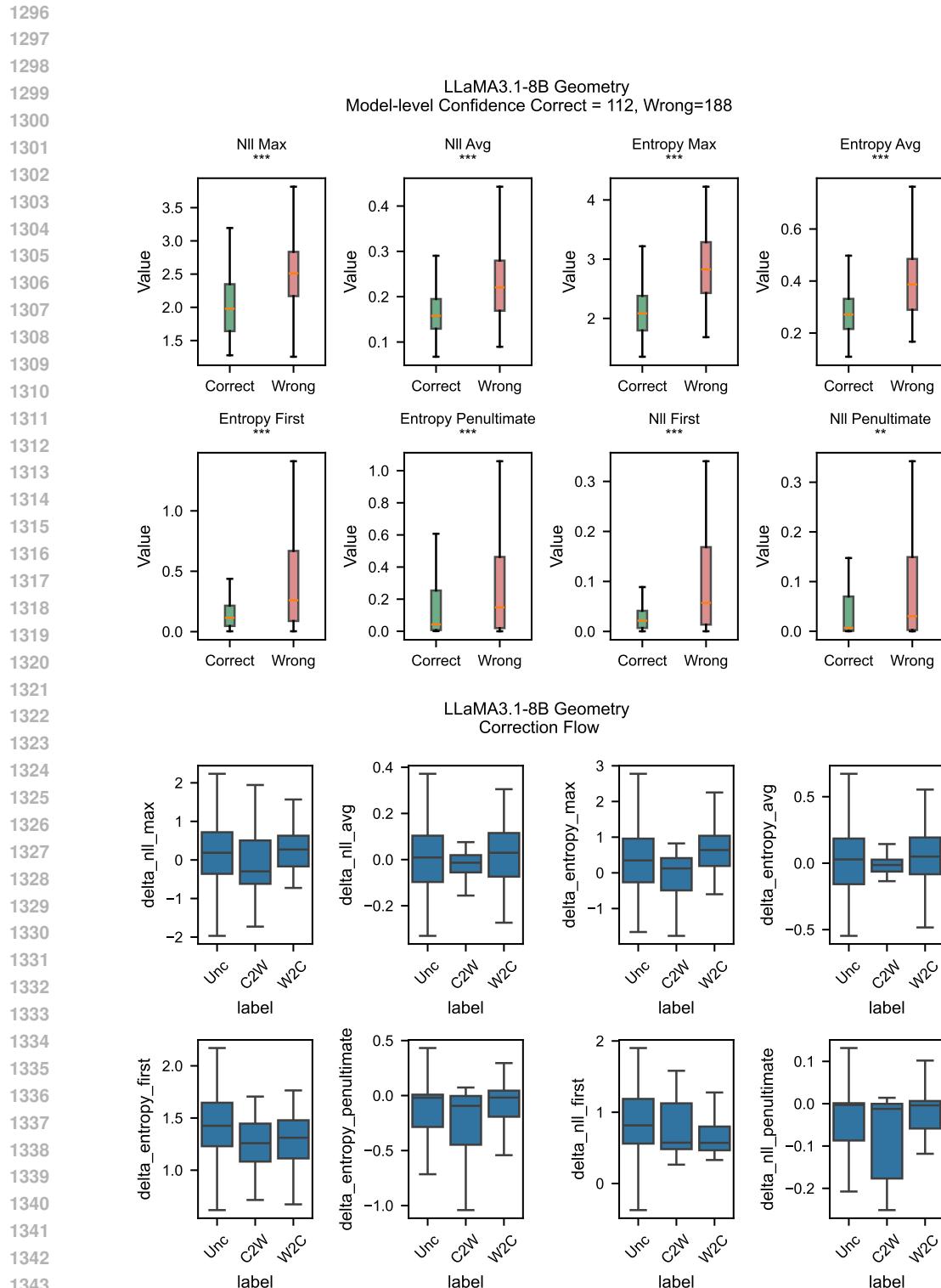


Figure 9: Top: Model-level Confidence result on the Math Geometry dataset with LLaMA3.1-8B. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

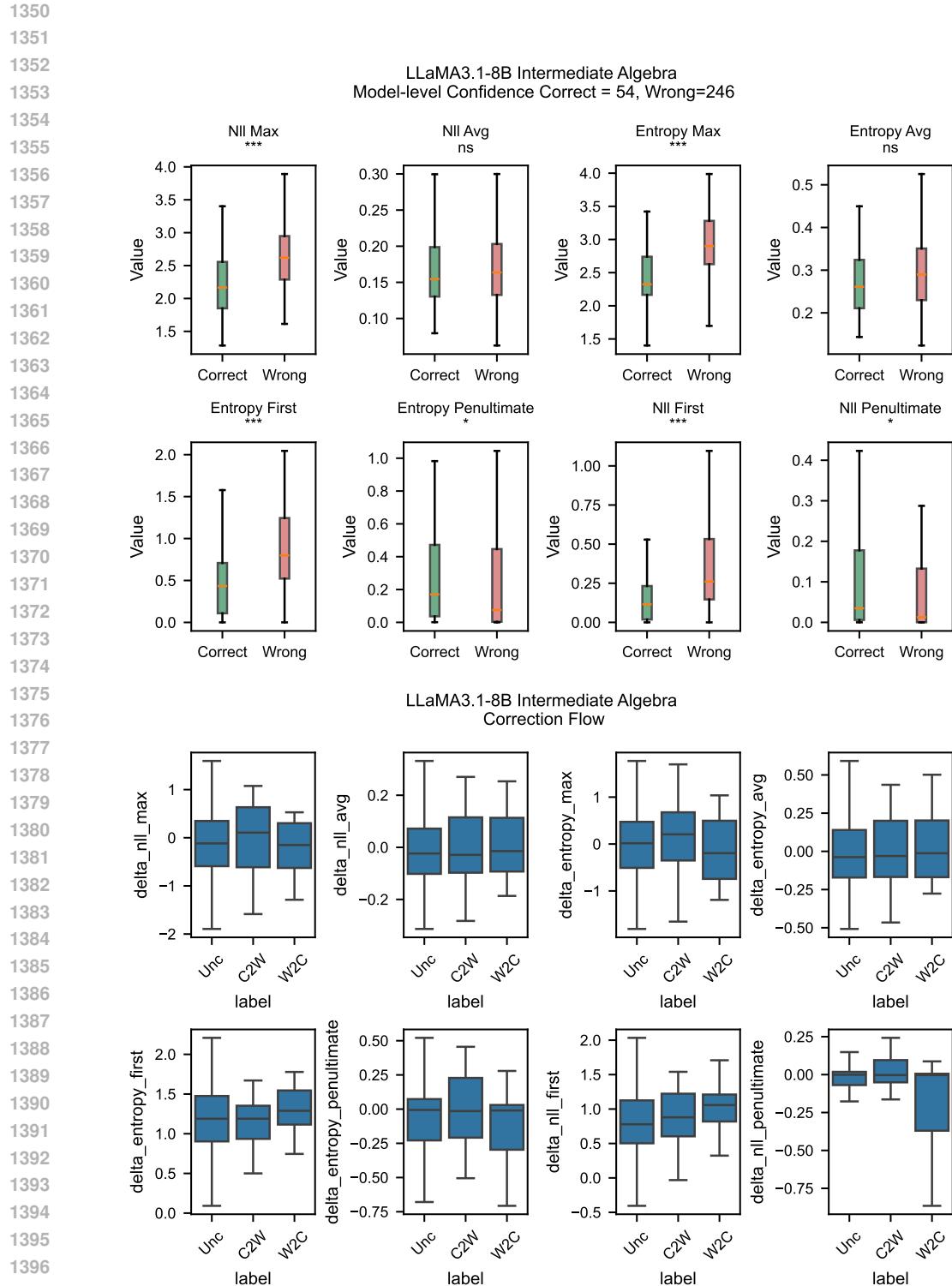


Figure 10: Top: Model-level Confidence result on the Math Intermediate Algebra dataset with LLaMA3.1-8B. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

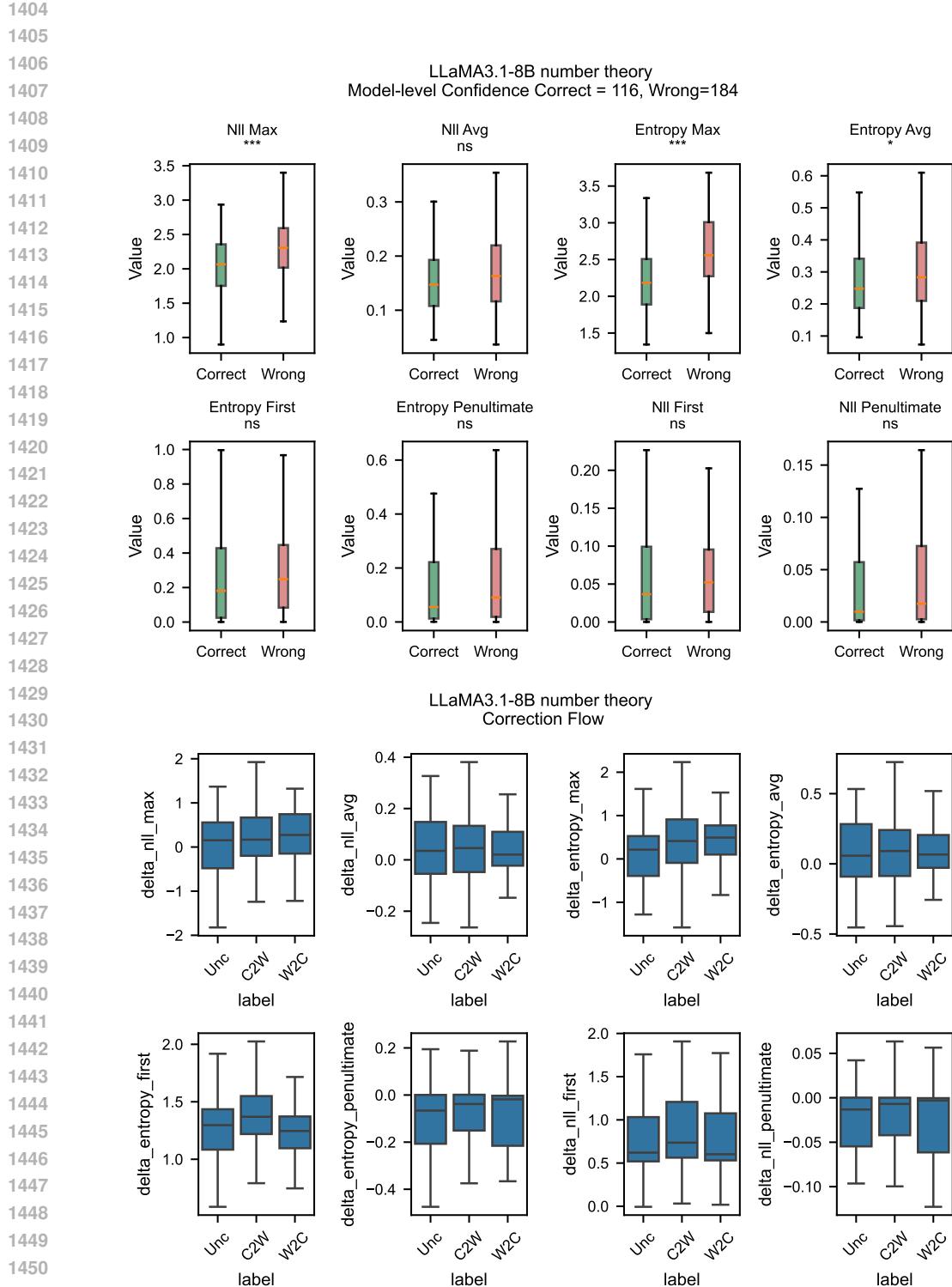


Figure 11: Top: Model-level Confidence result on the Math Number Theory dataset with LLaMA3.1-8B. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

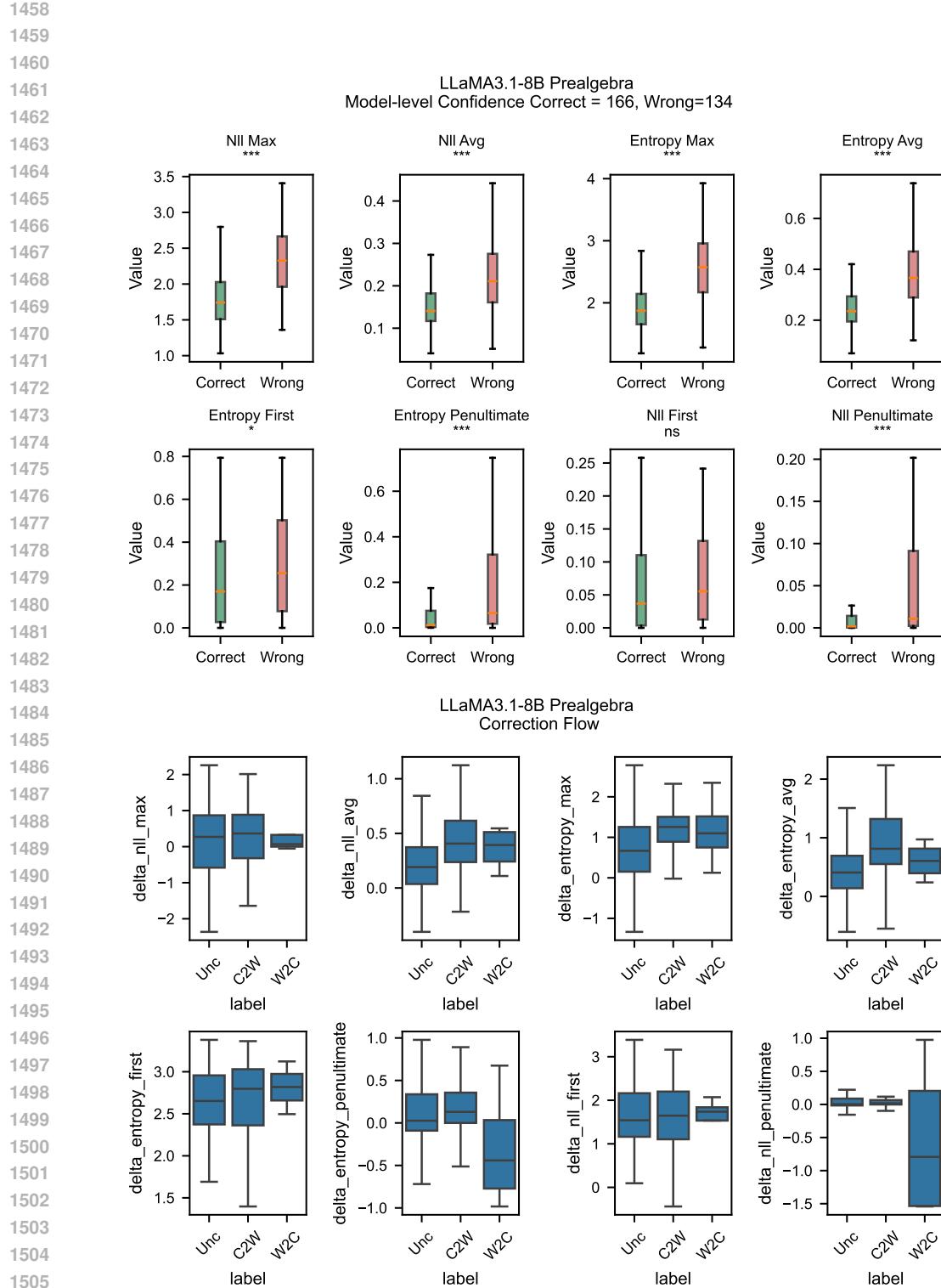


Figure 12: Top: Model-level Confidence result on the Math Prealgebra dataset with LLaMA3.1-8B. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

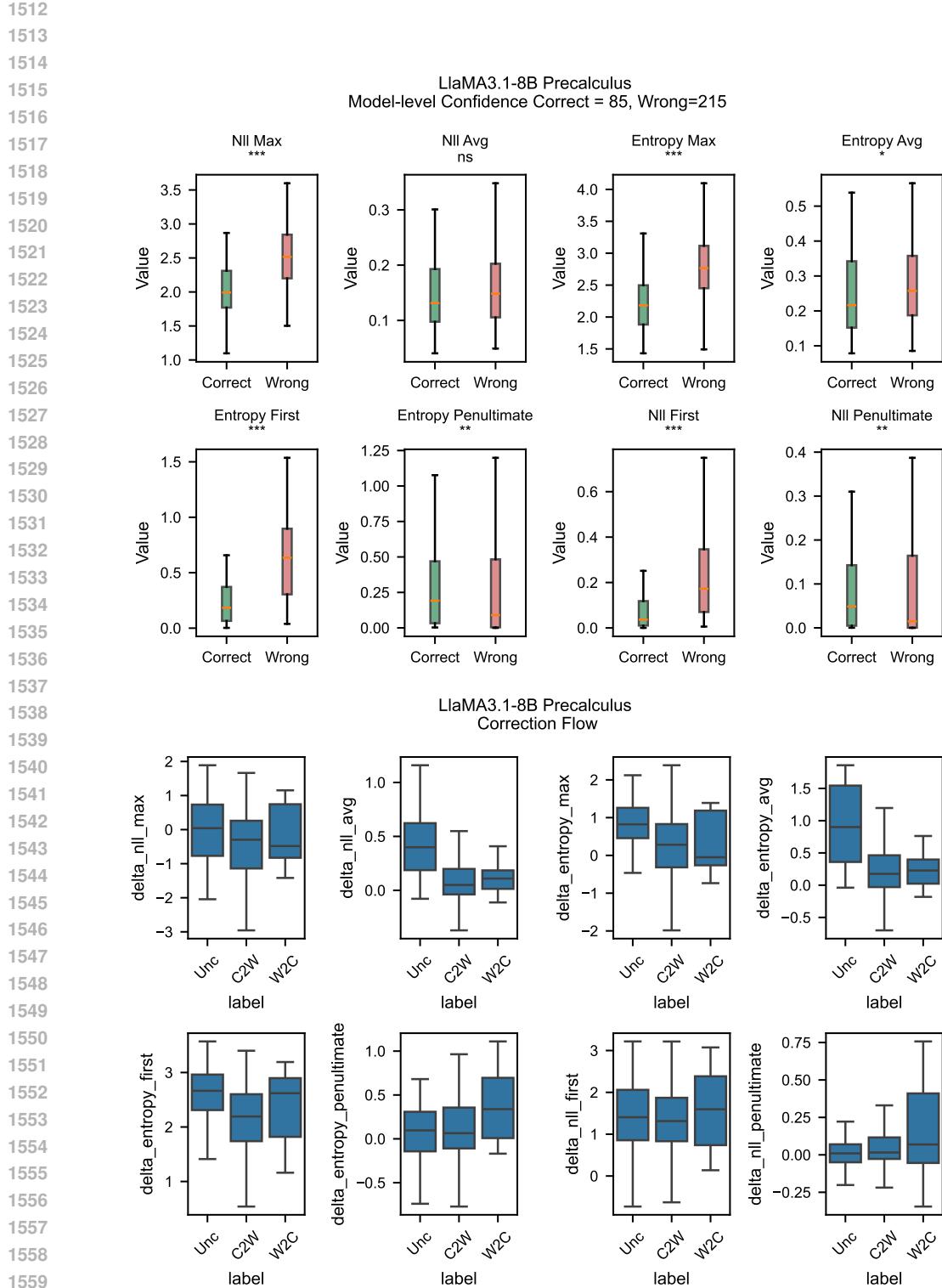


Figure 13: Top: Model-level Confidence result on the Math Precalculus dataset with LLaMA3.1-8B. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

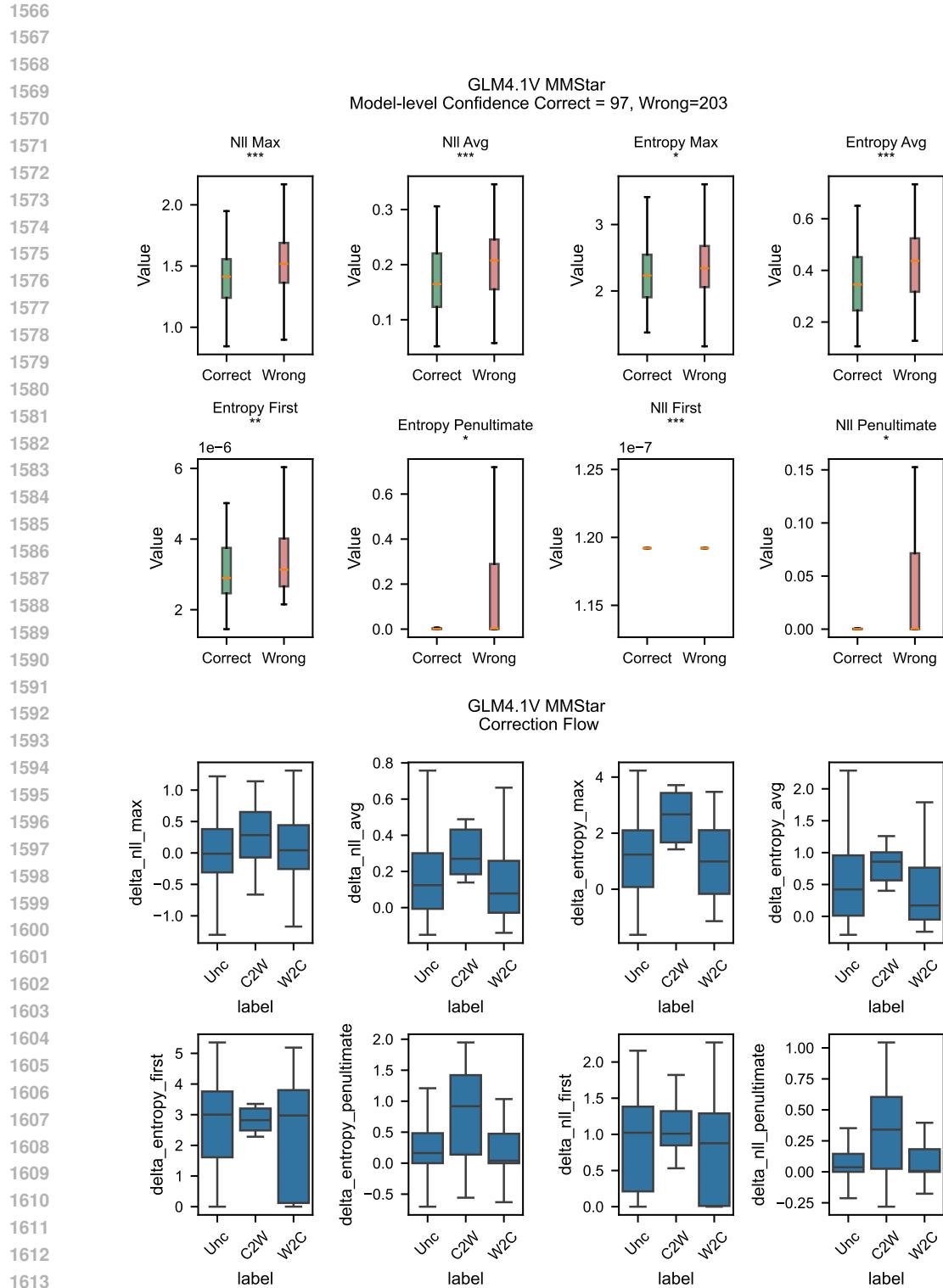


Figure 14: Top: Model-level Confidence result on the MMStar dataset with GLM4.1V. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

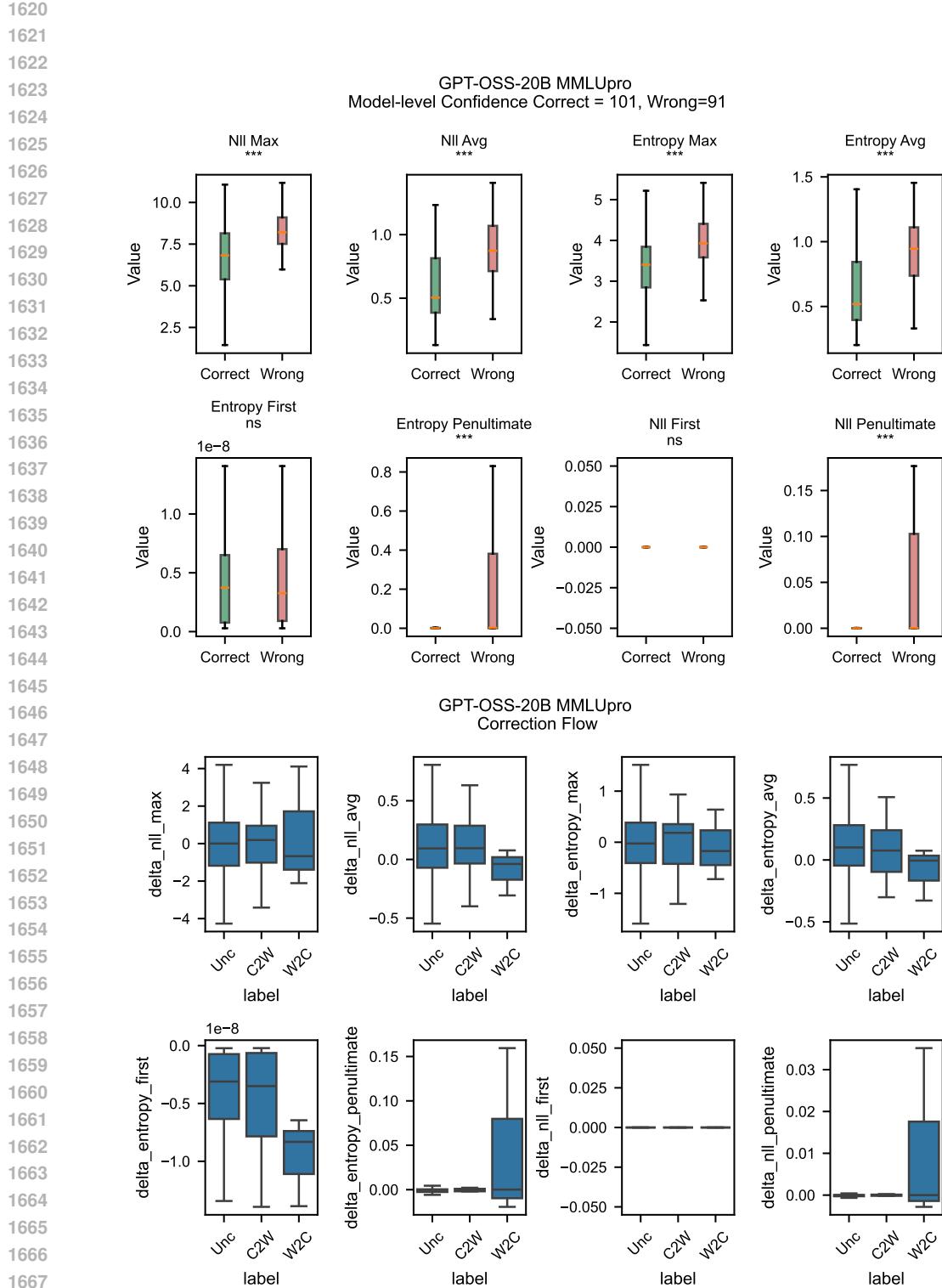


Figure 15: Top: Model-level Confidence result on the MMLUpro dataset with GPT-OSS-20B. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

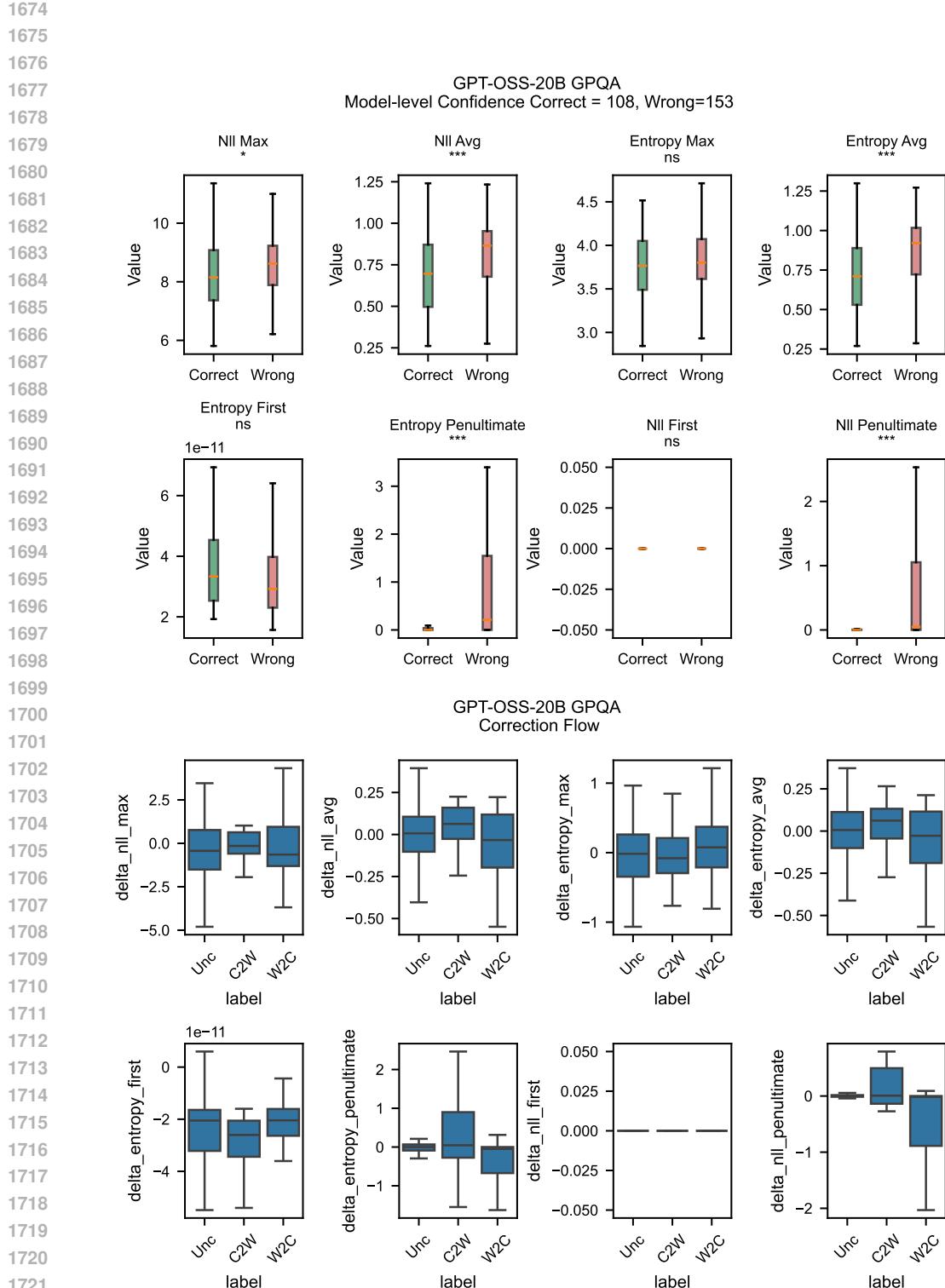


Figure 16: Top: Model-level Confidence result on the GPQA dataset with GPT-OSS-20B. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

1728
1729
1730
1731
1732
1733

Examples of Model-Level Confidence Exit on MMLUpro

1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

<Question, Correct Answer: B>

Can you answer the following question? If a freight train travels at a speed of 20 miles per hour for 6 hours, how far will it travel?: (A) 90 miles, (B) 120 miles, (C) 150 miles, (D) 140 miles, (E) 26 miles, (F) 100 miles, (G) 80 miles, (H) 110 miles, (I) 160 miles, (J) 12 miles.

**<Agent Answer: B> **

To find the distance traveled by the freight train, we need to multiply its speed by the time it traveled.
Speed = 20 miles per hour
Time = 6 hours
Distance = Speed x Time
= 20 miles/hour x 6 hours
= 120 miles
So, the freight train will travel 120 miles.
The correct answer is (B).

<Question, Correct Answer: E>

Can you answer the following question? A driver and passenger were driving to work in the former's automobile one morning. As they were traveling at a speed of 20 m. p. h. (which was within the posted speed limit), the passenger suddenly pointed to an overturned vehicle along the side of the highway and said, "Look at that car upside down." The driver turned to look at the overturned vehicle. As he was looking toward the side of the road, the driver failed to see an abandoned vehicle with a flat tire in the highway about 200 feet in front of his approaching auto. Seconds later, the driver crashed into the rear of the abandoned auto and was injured. The jurisdiction has a relevant comparative negligence statute in effect. If the driver asserts a claim against the owner of the abandoned auto, the most likely result is that the driver will: (A) recover nothing, because the passenger's act was a supervening cause., (B) recover only a portion of damages, because both the driver and the owner of the abandoned auto were negligent., (C) recover nothing, because he was distracted while driving., (D) recover all of his damages, because the owner of the abandoned auto was negligent., (E) recover only a portion of damages, because the abandoned auto was in plain view., (F) recover all of his damages, because the abandoned auto was a traffic hazard., (G) recover all of his damages, because the defendant created a dangerous condition., (H) recover nothing, because he was driving at a speed that didn't allow him to stop in time., (I) recover nothing, because he had the last clear chance to avoid the collision..

<Agent Answer: B> [But Judged by Gemini and GPT, both B and E are correct.]

(B) To determine the most likely result, let's break down the situation step by step:
1. The driver was driving at a speed of 20 m.p.h. within the posted speed limit.
2. The passenger pointed out the overturned vehicle, distracting the driver and causing him to take his eyes off the road.
3. As a result, the driver failed to see the abandoned vehicle with a flat tire in front of him.
4. The driver crashed into the abandoned vehicle.
Given the comparative negligence statute, the jurisdiction likely follows a modified comparative negligence system. In this system, a plaintiff can recover damages even if they were partially at fault, but their recovery is reduced by the percentage of their own negligence.
The driver's distraction caused by the passenger's comment likely contributed to the accident, making him partially responsible for the collision. However, the owner of the abandoned auto also created a hazard by leaving the vehicle on the road. Therefore, both parties contributed to the accident.
The most likely result is that the driver will recover only a portion of damages, as both the driver and the owner of the abandoned auto were negligent.

Figure 17: Examples of model-level early exit cases on MMLUpro datasets. The exit questions are correctly answered in principle.

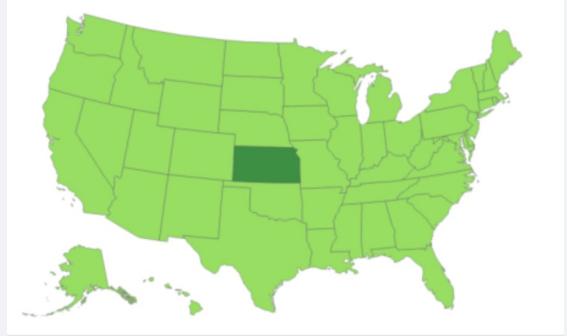
1782
1783
1784
1785
1786
1787

Examples of Model-Level Confidence Exit on ScienceQA

1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830

<Question, Correct Answer: C>
Question:
What is the capital of Kansas?
Options:
(A) Des Moines
(B) Wichita
(C) Topeka
(D) Lincoln
Lecture:

<Agent Answer: C>
The answer is (C) Topeka.



1831
1832
1833
1834
1835

<Question, Correct Answer: C>
Question:
Which country is highlighted?
Options:
(A) Barbados
(B) the Dominican Republic
(C) Saint Lucia
(D) Saint Vincent and the Grenadines
Lecture:

<Agent Answer: C>
The answer is (C) Saint Lucia

Figure 18: Examples of model-level early exit cases on ScienceQA datasets. The exit questions are correctly answered in principle.

1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843

Examples of Model-Level Confidence Exit on Math

1844 <Question, Correct Answer: [1, 4]>

1845 Question:

1846 Given a mathematics problem, determine the answer.

1847 Question: Compute the domain of the real-valued function $f(x) = \sqrt{1 - \sqrt{2 - \sqrt{x}}}$.

1848 Your final answer should be in the form `boxed{answer}`, at the end of your response.

1849 <Agent Answer: [1, 4]>

1850 To find the domain of the function $f(x) = \sqrt{1 - \sqrt{2 - \sqrt{x}}}$, we need to ensure that the expression under the
 1851 square roots is non-negative.
 1852 First, we start with the innermost expression, \sqrt{x} . Since the square root of a
 1853 number is non-negative, we know that $x \geq 0$.
 1854 Next, we consider the expression $\sqrt{2 - \sqrt{x}}$. For this to be non-negative, we need $2 - \sqrt{x} \geq 0$, which implies $x \leq 4$.
 1855 Finally, we consider the expression $\sqrt{1 - \sqrt{2 - \sqrt{x}}}$. For this to be non-negative, we need $1 - \sqrt{2 - \sqrt{x}} \geq 0$.
 1856 Solving for $\sqrt{2 - \sqrt{x}}$, we get $\sqrt{2 - \sqrt{x}} \leq 1$, which implies $2 - \sqrt{x} \leq 1$. Simplifying, we get $\sqrt{x} \geq 1$, which implies $x \geq 1$.
 1857 Combining the conditions, we have $1 \leq x \leq 4$. Therefore, the domain of the function is `boxed{[1, 4]}`.

1859 <Question, Correct Answer: 7>

1860 Given a mathematics problem, determine the answer.

1861 Question: Evaluate $\left\lceil \left(\frac{3}{2} \right)^2 + \left\lceil \left(\frac{3}{2} \right)^2 \right\rceil \right\rceil$.

1862 Your final answer should be in the form `boxed{answer}`, at the end of your response.

1863 <Agent Answer: 9>

1864 To evaluate this expression, we need to follow the order of operations (PEMDAS):
 1865 Evaluate the expressions inside the parentheses: $\left(\frac{3}{2} \right)^2 = \frac{9}{4} = 2.25$. Evaluate the ceiling function of the result: $\lceil 2.25 \rceil = 3$.
 1866 Evaluate the expression inside the other set of parentheses: $\lceil 3 \rceil = 3$.
 1867 Evaluate the ceiling function of the result: $\lceil 3 \rceil = 3$.
 1868 Square the result of step 3: $3^2 = 9$.
 1869 Add the results of steps 2 and 5: $3 + 9 = 12$.
 1870 Therefore, the final answer is `boxed{12}`.

1885 Figure 19: Examples of model-level early exit cases on Math datasets. The bottom overconfident
 1886 case shows the model partially analyzes the question, potentially leading to a high confidence.

1887
 1888
 1889

1890
1891
1892
1893
1894
1895
1896
1897

Examples of Model-Level Confidence Exit on GPQA

1898 <Question, Correct Answer: B>

Can you answer the following question? In the vacuum, we have the following mixture

$$\left| \nu_{\text{e}} \right\rangle = e^{i p_1 x} \cos \theta \left| \nu_{\text{e}} \right\rangle + e^{i p_2 x} \sin \theta \left| \nu_{\text{e}} \right\rangle$$
where θ is the mixing angle, and $\left| \nu_{\text{e}} \right\rangle$ and $\left| \nu_{\text{e}} \right\rangle$ are the basis of mass eigenstates.
At what value of the mixing angle we will obtain the transition probability $P(\left| \nu_{\text{e}} \right\rangle \rightarrow \left| \nu_{\mu} \right\rangle) = 1$.
Choices: (A) $\pi/2$ (B) $\pi/4$ (C) π (D) $\pi/3$.

1903 <Agent Answer: B>

analysis: We need to analyze neutrino flavor mixing: initial state is electron neutrino? They give general state $|\nu_{\text{e}}(x)\rangle = e^{i p_1 x} \cos \theta |\nu_{\text{e}}\rangle + e^{i p_2 x} \sin \theta |\nu_{\text{e}}\rangle$. The probability of transition from ν_{e} to $\nu_{\mu} = \sin^2 2\theta \sin^2(\Delta m^2 L / (4E))$. For maximum probability 1, we need $\sin^2 2\theta = 1$ AND \sin^2 phase term = 1 (i.e., argument = $\pi/2 + n\pi$). But question asks at what mixing angle we will obtain the probability 1 independent of oscillation? If you want probability 1, you need perfect mixing: $0 = \pi/4$ gives maximal mixing so $\sin^2 2\theta = \sin^2(\pi/2) = 1$. So answer (B) $\pi/4$. So "The correct answer is (B)". assistantFinalIn a two-flavor framework the transition probability is $\left| \langle \nu_{\text{e}} | \nu_{\mu} \rangle \right|^2$ where θ is the mixing angle and the second sine factor contains the usual oscillation phase. To make the probability equal to unity for some distance L we need both factors to be unity. The phase factor can become unity for suitable L (e.g. when $\Delta m^2 L / (4E) = \pi/2$). The remaining requirement is therefore $\sin 2\theta = 1$; $\sin 2\theta = \pi/2$. The number of stars per unit distance is $\propto \sin^2 2\theta$. Among the provided options, the value that gives complete mixing is $\pi/4$. Therefore the correct choice is (B). The correct answer is (B).'

1915 <Question, Correct Answer: B>

Can you answer the following question? In a specific region of the sky, astronomers have observed that the number of stars varies with parallax as $1/\text{plx}^5$. How does the number of stars in that region of the sky change with distance (per unit range of distance, r)? Choices: (A) $\sim r^4$ (B) $\sim r^3$ (C) $\sim r^2$ (D) $\sim r^5$.

1919 <Agent Answer: B>

analysis: We need to understand relationship between parallax and distance: parallax p (in arcseconds) approx $1/d(\text{pc})$ maybe? For small parallax: $p = 1/d$ in arcsec if distance in parsecs. So $d = 1/p$. Number of stars varying as $1/p^5$. Number of stars per parallax interval? They say number of stars varies with parallax as $1/\text{plx}^5$. That implies count $N(p) \sim 1/p^5$. We want how number per unit range of distance r behaves: $N(r)$ per unit distance? The distribution of stars per unit distance range: dN/dr . The relation between p and r : $p = 1/r$ (assuming p in arcsec, r in parsecs). So $r = 1/p$. So $p = 1/r$. So $N(p) \sim 1/p^5$. But $N(p)$ is number in certain parallax interval maybe? We need convert to $N(r)$. Suppose number per parallax interval dp is proportional to $1/p^5$. The number per unit r : $dN/dr = dN/dp * dp/dr$. $dN/dp = k * 1/p^5$. $dp/dr = d(1/r)/dr = -1/r^2$. We take magnitude: $|dp/dr| = 1/r^2$. Express p in terms of r : $p = 1/r$. So $(1/p^5) = 1/(1/r)^5 = r^5$. So $dN/dp = k * r^5$. Multiply by $|dp/dr| = 1/r^2$ gives $dN/dr = k * r^5 * (1/r^2) = k * r^3$. So number per unit distance $\sim r^3$. So answer (B). That matches typical uniform space density: $N(r) \sim r^3$. So the correct answer is (B). assistantFinalThe relationship between parallax p and distance r is $p = 1/r$ (with p in arcseconds and r in parsecs). The number of stars as a function of parallax is given as $N(p) \propto p^{-5}$. To find the differential number per unit distance we use the chain rule: $dN/dr = \frac{dN}{dp} \frac{dp}{dr} = \frac{dN}{dp} \frac{1}{r^2} = k * r^3$. From $(p = 1/r)$, we have $(dp/dr) = -1/r^2$; taking the magnitude, $|dp/dr| = 1/r^2$. Substitute $(p = 1/r)$ into $dN/dr = k * r^3$. Hence, the number of stars per unit range of distance r scales as r^3 . The correct answer is (B). (We did not find negative cases when using model-level early exit.)

1933
1934
1935
1936
1937
1938

1939 Figure 20: Examples of model-level early exit cases on GPQA datasets, where we did not find
1940 negative cases (i.e., the model is overconfident).

1941
1942
1943

1944
1945
1946
1947
1948
1949
1950

Examples of Token-Level Compression

1951 <Token-Level Semantic Focus Analysis>
1952 Below are the key points where other agents **disagree** with your own reasoning.*
1953 Concentrate on those disagreements and Keep or revise your answer accordingly.
1954
1955 <Copy the first agent message as the content is determined by internal attention that would be useful for current agent>
1956 **One agent solution:** ***analysisWe need interpret reaction: 9-fluorenone + 2 equivalents of Selectfluor under photochemical? 400nm? Then product
1957 observed via 19F NMR with two fluorine signals: +29.8 ppm and -115.7 ppm. Which product matches? We need consider structure of products.
1958 9-fluorenone has no fluorine. Fluorine signals appear from added fluorine atoms (from Selectfluor) presumably fluorination of the aromatic system. 19F
1959 NMR chemical shifts: +29.8 ppm is typical for aromatic fluorine attached to sp² carbon in aromatic ring (like fluorobenzene ~7-8 ppm? wait
1960 fluorobenzene is 7 ppm. Actually 19F NMR for fluoride attached to benzene ring: about -113 to -115 ppm. For CF₃ group ~ -65 ppm. For fluorines
1961 bound to carbonyl? Let's recall typical shifts: In 1,2-difluoro compounds, one signal can be upfield and one downfield depending on environment. For
1962 example, 2,4-difluoroaniline maybe at ~110 and -45? Hard.
1963 Let's analyze options:
1964 (A) 1,5-difluoro-9H-fluoren-9-one. This would be fluorine at positions 1 and 5 of the fluorenone core. Aromatic fluorine signals for 1,5-difluoro;
1965 symmetrical? Two identical signals? But 19F NMR would show one signal (if equivalent)? Actually if two fluorines are meta to each other? Might be
1966 equivalent? 1,5-difluoro: two positions are equivalent if molecule symmetrical (flipped). For 1,5-difluoro-9-fluorenone, the two fluorines would be in
1967 symmetric positions. Would give a single 19F signal. But question says two fluorine signals, so (A) unlikely.
1968 (C) 2,6-difluoro-9H-fluoren-9-one: also symmetrical? 2,6 are para on each phenyl ring? The two fluorines are in equivalent positions (mirror plane
1969 through center). Might again give single signal. So (C) unlikely.
1970 (B) 2-fluoro-[1,1'-biphenyl]-2-carbonyl fluoride. This is a different product: a biphenyl with fluorine on one ring and a carbonyl fluoride on other. This
1971 would have a single fluorine (the one at 2' position). Therefore only one 19F signal. So also unlikely.
1972 (D) 4'-fluoro-[1,1'-biphenyl]-2-carbonyl fluoride. Also single fluorine.
1973 ...
1974 **One agent solution:** ***analysisWe need to analyze the described reaction: 9-fluorenone (structure: a fluorenone: a fused ring (fluorene) with a
1975 carbonyl at center? Actually 9-fluorenone is a 9-carbonyl in fluorene. 2 equivalents of Selectfluor used in acetonitrile, irradiated with 400 nm light.
1976 Reaction product has two fluorine signals: +29.8 ppm and -115.7 ppm in 19F NMR. Need to identify which structure among the options is correct
1977 product. Let's parse the options:
1978 (A) 1,5-difluoro-9H-fluoren-9-one
1979 (B) 2'-fluoro-[1,1'-biphenyl]-2-carbonyl fluoride
1980 (C) 2,6-difluoro-9H-fluoren-9-one
1981 (D) 4'-fluoro-[1,1'-biphenyl]-2-carbonyl fluoride
1982
1983 <Delete useless background information>
1984 We need to consider the reaction conditions. Selectfluor is used as a fluorination agent. Selectfluor is known to be a strong oxidant and fluorinating
1985 reagent, can generate radical cation. 9-Fluorenone has a central carbonyl. But 2 equivalents of Selectfluor might produce two fluorine atoms.
1986
1987 <Keep useful induction>
1988 Looking at the product options: Both (B) and (D) are biphenyl derivatives with a carbonyl fluoride group at the 2-position of the biphenyl core. The
1989 difference is the position of a fluorine substituent on the biphenyl ring: 2' vs 4'.
1990
1991 <Cut out useless reasoning paths>
1992 Options (A) and (C) are difluoro-substituted fluorene-9-one. 1,5-difluoro vs 2,6-difluoro arrangement on the fluorene core. Those are fluorinated at the
1993 aromatic positions adjacent to the carbonyl (perhaps positions that are 1 and 5, or 2 and 6 referencing fluorene numbering). But do we expect
1994 difluorination of the aromatic ring? Maybe the reaction could be electrophilic aromatic substitution with electrophilic fluoride; but Selectfluor is a
1995 fluorinating agent, providing F⁻. With 9-fluorenone, electrophilic aromatic substitution would likely occur at positions ortho/para to the carbonyl? etc)
1996 perhaps the substituents on the ring positions adjacent to the central carbonyl. I need to draw structure:
1997 The numbering scheme: positions 1, 3, 5, 7 correspond to the outer ring carbons; Let's quickly sketch: The central carbonyl is at position 9. I need to
be precise. Let's step aside: We might not need exact numbering***
1998 Using the reasoning from other agents as additional advice, can you give an updated answer? Examine your solution and that other agents step by
1999 step. Let's think step by step. Your last sentence should be 'The correct answer is (insert answer here).' e.g., 'The correct answer is (A).'
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097

Figure 21: Detailed example of token-level semantic focus. There is content from two agents in the figure. The first agent's answer was largely adopted, whereas the second agent's answer was largely cropped. <comments> shows places that were adaptively compressed by the model's attention mechanism.

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036

Token-Level Semantic Focus Cases

Question: If Real GDP = \$200 billion and the price index = 200 Nominal GDP is:

LLM Agent 1

To find the Nominal GDP, we need to multiply the Real GDP by the price index. Real GDP = \$200 billion. Price Index = 200. Nominal GDP = Real GDP * Price Index. Nominal GDP = \$200 billion * 200. Nominal GDP = \$40,000 billion. However, none of the options match this calculation. This might be due to the fact that the question is based on a typical assumption that the price index is a percentage increase. In this case, the correct answer should be the Real GDP multiplied by $(1 + (\text{Price Index} / 100))$. Price Index = 200. Price Index Percentage = $(200 / 100) = 2$. Nominal GDP = Real GDP * $(1 + \text{Price Index Percentage})$. Nominal GDP = \$200 billion * $(1 + 2)$. Nominal GDP = \$200 billion * 3. Nominal GDP = \$600 billion.

Wrong

LLM Agent 2

To solve this, we need to understand the relationship between Real GDP and Nominal GDP. Real GDP is the value of goods and services produced in a country, adjusted for inflation. Nominal GDP, on the other hand, is the value of goods and services produced in a country, without adjusting for inflation. The formula to find Nominal GDP from Real GDP is: Nominal GDP = Real GDP * (Price Index / 100). Given that Real GDP = \$200 billion and the price index = 200, we can plug in the values: Nominal GDP = \$200 billion * $(200 / 100)$. Nominal GDP = \$200 billion * 2. Nominal GDP = \$400 billion
So, the correct answer is (I) \$400 billion.

Correct

LLM Agent 3

To find the nominal GDP, we need to multiply the real GDP by the price index. Nominal GDP = Real GDP * Price Index. Nominal GDP = \$200 billion * 200.
Nominal GDP = \$40 trillion * 5 (since $200/5 = 40$)
Nominal GDP = \$40 trillion * 10 (since $200/20 = 10$) is not correct but $200/5 = 40$ is correct.
Nominal GDP = \$40 trillion * 5 (since $200/5 = 40$)
Nominal GDP = \$40 trillion * 10 (since $200/20 = 10$) is not correct but $200/5 = 40$ is correct.
...

Wrong

Token-level Semantic Focus | Agent 1's Debate Content

<compressed LLM Agent 2's Content Start> To solve this, we need to understand the relationship between Real GDP and Nominal GDP. Real GDP is the value of goods and services produced in a country, ... <compressed LLM Agent 2's Content End> <compressed LLM Agent 3's Content Start> To find the nominal GDP, we need to multiply the real GDP by the price index. ... Nominal GDP = Real GDP * Price Index. Nominal GDP = \$200 billion * 200 <compressed LLM Agent 3's Content End>

Token-level Semantic Focus | Agent 3's Debate Content

<compressed LLM Agent 1's Content Start> To find the Nominal GDP, we need to multiply the Real GDP by the price index. ... Real GDP = \$200 billion. Price Index = 200. <compressed LLM Agent 1's Content End>
<compressed LLM Agent 2's Content Start> To solve this, we need to understand the relationship between Real GDP and Nominal GDP. Real GDP is the value of goods and services produced in a country, adjusted for inflation. ... <compressed LLM Agent 2's Content End>

LLM Agent 1

I see that they are all calculating the Nominal GDP by multiplying the Real GDP by the price index. However, one agent is using the correct formula to adjust for the price index, which is Nominal GDP = Real GDP * (Price Index / 100). Real GDP = \$200 billion. Price Index = 200 Nominal GDP = Real GDP * (Price Index / 100) Nominal GDP = \$200 billion * $(200 / 100)$. Nominal GDP = \$200 billion * 2. Nominal GDP = \$400 billion

Correct

LLM Agent 3

Upon reviewing my previous solution and the additional advice from other agents, I realize that I made an incorrect assumption about the price index. Let's re-evaluate the problem with the correct approach. ... Nominal GDP = Real GDP * (Price Index / 100). Given that Real GDP = \$200 billion and the price index = 200, we can plug in the values: Nominal GDP = \$200 billion * $(200 / 100)$. Nominal GDP = \$200 billion * 2. Nominal GDP = \$400 billion.

Correct

Figure 22: Visualization of token-level semantic focus helped agents correct their answers during the SID. Specifically, SID invokes a compressed debate round, highlighting disagreement-relevant spans across debate contents. Agent 1 and Agent 3 iteratively revise their reasoning based on focused inputs, ultimately correcting earlier errors and converging on the correct answer.

2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051