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ABSTRACT

Large Language Models (LLMs) have exhibited impressive capabilities across di-
verse application domains. Recent work has explored Multi-LLM Agent Debate
(MAD) as a way to enhance performance by enabling multiple LLMs to discuss
and refine responses iteratively. Nevertheless, existing MAD methods predomi-
nantly focus on utilizing external structures, such as debate graphs, using LLM-
as-a-Judge, while neglecting the application of self signals, such as token logits
and attention, that arise during generation. This omission leads to redundant com-
putation and potential performance degradation. In this paper, we shift the fo-
cus to the self signals of multi-LLM debate and introduce a Self-Signals Driven
Multi-LLM Debate (SID), which leverages two types of self-signals: model-level
confidence and token-level semantic focus, to adaptively guide the debate pro-
cess. Our approach enables high-confidence agents to exit early at the model level
and compress the redundant debate contents based on the attention mechanism.
We evaluate our method on various LLMs and Multimodal LLMs across multiple
challenging benchmarks. Experimental results demonstrate that our method not
only outperforms existing MAD techniques in accuracy but also reduces token
consumption, highlighting the effectiveness of utilizing self signals in enhancing
both the performance and efficiency of multi-agent debate systems.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities (Brown et al., 2020;
Kojima et al) 2023)) across a wide range of domains, including science, technology, engineering,
mathematics (STEM) questions (Hendrycks et al.||2021; |Wang et al.,|2024), and complex reasoning
tasks (Rein et al.||2023). The emergence of Multimodal LLMs (MLLMs) further extends the poten-
tial to the visual input domain (Lu et al., [2022} |Li et al.l 2023} [Liu et al., [2024a). However, current
models still suffer from inherent limitations such as inaccuracies and hallucinations.

Multi agent debate (MAD) offers an orthogonal approach to enhancing model performance, in which
multiple agents iteratively discuss and refine their answers accordingly (Du et al., [2024; [Liu et al.,
2024c¢; Sun et al., [2025). However, a challenge arises from the prevalence of redundant content and
repeated consensus points during debate, which not only waste computational resources but also
introduce informational noise, potentially impairing the agents’ final judgments (Du et al., [2024} |L1
et al.,|2024b). Moreover, this iterative discussion paradigm incurs substantial token overhead, which
becomes increasingly incongruent with the growing capabilities of modern foundation models (Ope-
nAl et al.l [2025). This inherent contradiction between performance gains and token consumption
cost presents a central dilemma in contemporary MAD research.

To alleviate this problem, several optimization strategies have been proposed. Broadly, these meth-
ods typically fall into two categories: (i) structural optimization, such as adopting various prompting
skills (Liu et al.} 2024c), reducing communication via sparse debate graphs or clustering agents into
local debate groups (Liu et al., 2024b); and (ii) history management, including summarization of
prior discussions or introducing agent self-generated confident score (Sun et al., 2025). Whereas
these approaches improve the efficiency of information flow in external ways (i.e., restructuring
agent communication or using LLM-as-a-judge to interpret history), they often suffer from sec-
ondary errors such as hallucinations in judges or summaries as evident in (Xiong et al., | 2023} Zhang
et al., 2024; [Tian et al., [2025)). This limitation motivates us to think: can we avoid relying on
error-prone external mechanisms, and instead leverage more reliable self signals from each agent’s
generative process to prevent unnecessary and potentially wasteful debate?



Under review as a conference paper at ICLR 2026

Motivated by the above, in this work, we present a framework that leverages self signals available
during LLM inference to improve debate efficiency and performance. In this framework, two types
of signals: model-level confidence and token-level semantic focus, are extracted and used to provide
complementary guidance for distinguishing essential information from redundancy, thereby enhanc-
ing overall debate quality and efficiency. The model-level confidence, estimated from the probabil-
ity distribution over the initially generated answer, quantifies how certain the model is about its re-
sponse. We leverage this signal to design an early-exit mechanism that avoids invoking debate when
the model is already sufficiently confident, thereby reducing potential noise and redundancy. The
token-level semantic focus, derived from attention patterns conditioned on disagreement-oriented
prompts, identifies spans in the debate content that the model considers semantically relevant to
the disagreement among different agents. We extract and reconstruct these high-attention spans to
form a more compact context, thereby introducing a compression mechanism that preserves critical
points of contention while significantly reducing token overhead.

By integrating these two mechanisms, each leveraging a different level of self signal, we propose a
unified Self Signal Driven Debate framework (SID) to enhance LLM performance. This framework
enables early exit for confident agents and extracts focused context for the remaining ones, dynam-
ically adapting the debate process based on the model’s own epistemic signals. We evaluate our
method across multiple LLMs and MLLMSs on diverse benchmarks, including MMLUpro, Math,
GPQA, ScienceQA, and MMstar. SID consistently outperforms existing MAD approaches in most
scenarios, while also achieving up to a 40% reduction in token consumption. These results demon-
strate the strong effectiveness of our approach and highlight the significant potential of leveraging
internal belief signals in multi-agent systems to jointly optimize performance and efficiency. Our
key contributions can be summarized as follows:

* We present SID, a multi-agent debate framework that leverages self signals from the LLM
generation process to enhance agent debate.

* We instantiate two types of LLM self signals: model-level confidence and token-level se-
mantic focus, and leverage them to design an early-exit and a compression mechanism,
respectively, effectively reducing redundancy and enhancing debate performance.

* Integrating the two proposed mechanisms, we construct an effective and efficient debate
framework, SID. Experiments across multiple benchmarks, on both LLMs and MLLMs,
demonstrate the significant advantages of SID over existing methods.

2 RELATED WORK

Reasoning Augmentation To enhance the reasoning capabilities of LLMs, researchers have ex-
plored various techniques. Early work primarily focused on guiding the model through step-by-step
reasoning through Chain-of-Thought (CoT) prompts or generating multiple rea-
soning paths (self-refinement) and voting for the optimal solution through self-consistency or using
multi-round self-reflection (Zhang et al.| 2024} [Yao et al.,[2023)). Additionally, subsequent research
has found that the model’s self-correction capabilities are limited, leading to stagnation in reason-
ing quality (Zhang et al, [2024). This has partially motivated the rise of multi-agent collaborative
paradigms, particularly multi-agent debate (MAD) 2024), which introduces external per-
spectives and dynamic feedback among agents to overcome the limits of self-reflection. Our work
differs from these studies in that they focus primarily on improving reasoning ability through context
prompts, whereas we propose to use self-signals from a model to optimize the context prompt at the
token level, thus improving the effectiveness of performance and token ratio.

Uncertainty Analysis Uncertainty in LLMs is typically categorized into aleatoric (data-related) and
epistemic (model-related) uncertainty (Kiureghian & Ditlevsen, [2009}; (Gawlikowski et al., 2023}
et all, 2023}, [Ye et al) 2025). Given the structured nature of current tasks (e.g., QA, math, sci-
ence), recent works have focused on quantifying epistemic uncertainty. Mainstream approaches in-
clude: (i) probability-based metrics, such as token-level entropy or negative log-likelihood (Tu et al ]
2025)) on the level of the attention layer (Schuster et all, 2022} [Caaouach| 2025} [Corallo & Papotti
2024) and reasoning chain (Yang et al] ; (i1) ensemble-based methods, e.g., Monte Carlo sam-
pling (Metropolis et al.| [T953} [Hastings| [I970) and Bayesian methods (Kwon et al.}, [2020); and (iii)
verbalization-based techniques that prompt the model to self-report confidence (Tian et al] [2023).
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Among these, probability-based methods are especially attractive due to their seamless integration
with the generation process, without requiring multiple generations, which incur significant token
overhead. Recent work, such as ReConcile and DebUnc (Xiong et al} 2023} [Chen et al] [2024a}
[Yoffe et al| 2025}, [Kirchhof et al [2023) further explores agent-level uncertainty in interactive set-
tings, emphasizing the role of uncertainty as a confident signal for learning and output control. Our
method differs from theirs in model-level adaptive debate scheduling and token-level compression
instead of passing the full history. Our method aligns with the uncertainty in the interactive setting,
leveraging self-signals as dynamic indicators of agent-level uncertainty to control agent participation
during debates.

Multi LLM Debate Systems Previous multi-LLM debate employs a role-playing setup
2024), which has been demonstrated strengths in collaborative tasks. Subsequent research
has shown that it is less suited for certain types of problem-solving scenarios. Multi Agent Debate
(MAD) [2024) introduces external perspectives to enrich the system’s reasoning capabili-
ties. DMAD (Liu et al., [2024c) proposes specialized prompt strategies to diversify agent behavior.
S2-MAD (Zeng et al., introduces a selective sparsity mechanism, allowing agents to selec-
tively participate based on internal cues. CortexDebate (Sun et al.,[2025) constructs a dynamic sparse
debate graph by letting agents serve as self-judges and output confidence scores. These works focus
on improving performance via external states (e.g., optimizing structures, using LLM-as-a-Judge).
Compared to previous approaches (Zhang et al}, [2025)), our method can be orthogonal and comple-
mentary, which provides a new angle by integrating self-signals into the debate process instead of
optimizing communication structures.

3 PRELIMINARIES

We first introduce the naive multi agent debate paradigm in this section. Let }V denote the vocabulary
and Tok the tokenizer. Given a query (e.g., natural language, image, and text) @, x = Tok(Q)
is the tokenized prompt. An casual LLM M produces a response sequence ¥ = (Y1,...,Ym)
with per-step logits £; € RVl and probabilities 7m; = softmax(#;). A debate involves n agents

A={1,...,n} overrounds t = 0,1,...,T. Let yij) be agent j’s response at round ¢; round 1
is the initial answering round without debate context. The per-round input to agent j at round ¢+1
concatenates the query, its own last response, and other agents’ last responses:

. ; k
X, = To(Q | v{” | (Concatizyy®)). W

Here, both || and C'oncat represent concatenation between prompt groups.

4 METHOD

The above naive framework suffers from several issues, such as excessive redundancy and low effi-
ciency. To address these challenges, as shown in Algorithm [I]and Figure[T} we propose Self Signal
Driven Debate (SID), a framework that leverages internal confidence signals readily available dur-
ing inference to adaptively guide the multi-LLM debate process. Specifically, SID utilizes two types
of self signals from the LLM: model-level confidence and token-level semantic focus (see exam-
ples in Figure [3|and the Appendix [F). Model-level confidence, derived from the token-wise output
probability distribution (logits), reflects how confident an agent is in its initial answer. We leverage
this signal in a newly designed early-exit mechanism to enhance debate efficiency. Token-level se-
mantic focus, extracted from the self-attention maps conditioned on disagreement-oriented prompts,
captures regions of high variability and knowledge density throughout the debate. This signal is
incorporated into a compression mechanism to alleviate token redundancy. In the following two
sections, we introduce these two components in detail.

4.1 EARLY-EXIT WITH MODEL-LEVEL CONFIDENCE

We first introduce an early-exit mechanism to mitigate redundant debate, motivated by the intuition
that cross-LLM discussion is more necessary when a single model lacks confidence in its response.
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Figure 1: Overall framework of SID

The key to this mechanism lies in extracting an effective confidence score. Intuitively, the more
peaked the model’s output distribution over the vocabulary (i.e., lower entropy), the more confident
it is in its prediction. Based on this motivation and following conventional methods (Tu et al.,
2025), we adopt two token-wise uncertainty metrics: entropy Ent(m;) = — > -y, 7, log s ,, and
negative log-likelihood NLL; = — log 7 4, , to estimate the confidence for a generated answer y. To
aggregate token-level metrics into a sequence-level confidence score, we explore four aggregation
strategies: (1) averaging over tokens (average), (2) taking the maximum value (max), (3) using the
first token’s value (first), and (4) using the penultimate token’s value (penultimate). This yields eight
confidence measures (four for entropy and four for NLL). Each variant captures different facets of
uncertainty: e.g., max focuses on worst-case ambiguity, while penultimate emphasizes late-stage
uncertainty often aligned with final reasoning steps in autoregressive generation. We concatenate
these eight measures to form a vector U (y), which we empirically find to be statistically significant
in distinguishing incorrect answers (see Figure 2] for details).

After obtaining confidence scores, the next challenge lies in leveraging them to effectively guide
model-level early exits during multi-LLM debates. To this end, we propose two different drop-in
strategies that convert the agent’s confidence vector into a binary decision boundary:

Vocabulary-Adaptive Threshold We first tried a straightforward method by directly setting a
fixed threshold on the confidence metrics across different types of models. However, this naive
strategy yielded suboptimal performance, likely due to the inherent dependency of entropy and NLL
magnitudes on the vocabulary size |V| of the underlying LLM. For example, under a uniform gen-
eration assumption, both entropy and NLL equal log [V|. Thus, larger vocabularies naturally induce
higher values, while using a single threshold across models leads to unfairness and unreliability.
Based on this motivation, we propose a vocabulary-adaptive threshold as follows:

(V) =alog|V|, and decide Terminate iff ¢y (U(y)) < 6(V), (2)

where o > 0 is a hyper-parameter, ¢y is an operator to filter noisy metrics U(y). This strategy
ensures fair and consistent confidence evaluation across models with varying vocabulary sizes.

Calibrated Confidence While the aforementioned method provides a simple and robust solution,
it relies on a uniformity assumption over token distributions that may not hold in practice. To capture
more nuanced confidence signals, we introduce an alternative method, using a lightweight nonlinear
classifier C' : R — [0, 1] trained over a small held-out set. This model takes the confidence vector
as input and outputs a scalar confidence score, calibrated against correctness labels:

Terminate iff C(U(y)) > 7., 7. € (0,1). 3)
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Confidence-Guided Early Exit In practice, we adopt the vocabulary-adaptive threshold for gat-
ing due to its sufficiently strong performance and training-free simplicity. Specifically, gating is
applied in the first round: if an agent’s confidence reaches a high value, it is terminated early, sig-
nalling that the system is already sufficiently confident in its answer (see Appendix Figure [17H20]
for examples). Conversely, if the model exhibits low confidence, this suggests that the question is
sufficiently challenging and unlikely to be resolved without additional reasoning, thereby motivating
the initiation of a multi-agent debate with the input described in Eq[T}

4.2 ADAPTIVE COMPRESSION WITH TOKEN-LEVEL SEMANTIC FOCUS

In addition to model-level confidence, we further exploit another self signal from the LLM: token-
level semantic focus, to improve debate efficiency. As a debate progresses, the accumulated context
from multiple agents often becomes repetitive and redundant. We observe that this increasing re-
dundancy can dilute the signal-to-noise ratio, potentially degrading the effectiveness and efficiency
of the debate process. A common approach to mitigate this is to use LLM-as-a-judge to summa-
rize past exchanges. However, this method is limited by the summarization capabilities of the base
models, which can be prone to hallucination or information loss (Li et al., 2024a). To address this
limitation, we instead leverage attention, an intrinsic mechanism of transformer-based models that
naturally reflects the model’s focus and the debate’s salient region, as an internal signal to implement
a token compression framework.

Prompt-conditioned Attention Extraction Given the query (), the agent j’s previous answer
ygj ), and other agents’ responses {yﬁk) : k # j}, we construct a concatenated input:

x| = Tok (Q |y || (PROMPT] || (Concatk#yi’“))) , @)

where [PROMPT] is a task instruction. Here, we use the prompt: "Identify the key
points where they disagree with your own reasoning. Concentrate
on those disagreements and decide which line of reasoning is
better.", motivated by prior work demonstrating the benefits of identifying disagreements
among agents (Du et al., |2024; Zeng et al. 2025). This prompt directs the model’s attention
toward segments of the debate that involve semantic conflict, thereby enhancing its focus on
critical reasoning divergences. We then define Q as the set of token positions within the injected

prompt, C as the positions corresponding to other agents’ responses (i.e., Concatk#ygk)), and

AR € 0,1]5%F as the attention score at layer [ and head h. For ¢ € C, a prompt-conditioned
semantic focus score is computed by:

s(c) = max max Ag{;:h), ®)

which represents the maximum attention weight from any prompt token to ¢ across all heads and
layers, capturing the extent to which c is considered relevant to the disagreement-focused instruction.

Compression with Semantic Preservation While token-level attention scores s(c) enable fine-
grained identification of salient contents, directly selecting individual tokens may result in frag-
mented phrases or broken sentence structures. Such fragments hinder the model’s ability to interpret
the compressed input coherently. To address this, we apply a semantic preservation heuristic that
extends high-attention tokens to complete sub-sentential units. Concretely, we first select the top-
p fraction of context tokens, forming C = Top,{(c, s(c))}cec. Using the tokenizer’s offset map
U : ¢ [Ta(c), Tp(c)], we merge overlapping spans and then expand to sentence boundaries to
preserve semantics information. To ensure semantic completeness, we then expand each segment to
align with syntactic boundaries, such as commas, periods, or coordinating conjunctions. We denote
this process as the SemanticPreserve operation (see Appendix Figure [6] for implementation
details), which produces a minimal set of semantically coherent text spans as follows:

S = SemanticPreserve (Merge({\II(C) ic€ 5})) (6)
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We denote the compressed textual summary for agent j as Text(S), and the next-round input in the
debate process (Eq[I)) becomes:

%)) = Tok(Q || v/ || Text(s)). ™)

In practice, replacing full histories by Text(S) yields substantial token compression while preserv-
ing points of disagreement.

4.3 OVERALL METHOD

Based on the aforementioned early-exit method with model-level confidence (Sec. and adaptive
compression mechanism with token-level semantic focus (Sec. [4.2)), we then present the overall SID
framework. As shown in Figure ] after initial generation, each agent assesses its confidence using
token-level uncertainty metrics derived from output logits. If the agent is sufficiently confident, it
exits the debate early, avoiding unnecessary interaction. For less confident cases, the debate proceeds
with a compression mechanism guided by the model’s own attention dynamics. A disagreement-
oriented prompt steers the attention toward semantically relevant spans in other agents’ responses.
These spans are then selected and reconstructed into a concise context for the next round, preserving
key points of contention. By coupling generation-time uncertainty with attention-driven semantic
focus, SID adapts the debate trajectory according to each agent’s internal belief state, achieving both
high efficiency and robustness without additional training. Readers could refer to Algorithm [I]for a
more detailed illustration of the overall implementation.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Tasks and Benchmarks. Results on both LLM and MLLM tasks are presented. For LLM tasks,
we evaluate our method on MMLUpro (Wang et al., [2024), and Math (Hendrycks et al.l [2021])
datasets, as they represent a wide range of problem-solving tasks in different domains. For MLLM
tasks, we evaluate on ScienceQA (Lu et al.| 2022)) and MMStar (Chen et al.,[2024b)) datasets. Taken
together, these four benchmarks span (i) text-only vs. multimodal inputs, (ii) factual, analytical and
symbolic reasoning, and (iii) both LLM and MLLM settings, forming a compact yet diverse testbed
for multi-agent debate methods. More expanded experiments can refer to Appendix[D]. In consistent
with previous methods, we randomly sample 100 questions from each dataset for evaluation. For
the ScienceQA dataset, we utilize the lecture and hint as additional text information following (Liu
et al.| 2024c). For all other datasets, we adopt a zero-shot prompt setting by default.

Models. To ensure representative coverage of different foundation models, we evaluate both
general-purpose and reasoning-oriented models. For LLM tasks, we test on LLaMA-3.1-Instruct-
8B (LLaMA3.1-8B)|Grattafiori et al.|(2024) and the recently released GPT-OSS-20B |OpenAl et al.
(2025). For MLLM tasks, we evaluate LLaVA-v1.6-Vicuna-13B (Hugging Face version, LLaVA1.6-
13B) and the GLM4.1V-Thinking (GLM4.1V) reasoning model (Team et al., 2025).

Implementation Details We follow the setup of prior work (Du et al., [2024} |Liu et al., [2024c])
to ensure fair comparison, using n = 3 agents and N = 2 debate rounds across all SID, MAD,
and DMAD settings. The number of self-consistency samples is set to 3. Additionally, we incor-
porate step-back prompting (Zheng et al., 2024) and self-contrast (Zhang et al.,[2024) as reasoning
augmentation methods in complement to IO (directly output) and COT methods. For model-level
confidence, we set the NLL-max threshold « to 1.0 for reasoning-oriented models, 0.5 for general-
purpose models, and 0.25 for MLLMs. To mitigate the impact of attention sinks and special tokens
on specific token logits (Xiao et al.,[2024), we empirically set ¢(U) as the maximum of NLL and en-
tropy, and exclude certain position metrics when computing model-level confidence. The confidence
calibration method is trained on a held-out set of 50 samples with 7. as 0.9. More implementation
details are presented in Appendix [C}

Evaluation Metrics For the Math dataset (Hendrycks et al., 2021, we adopt the official exact
match metric to evaluate agent responses. For all other question-answering datasets, which consist
of multiple-choice questions, we use accuracy as the evaluation metric.
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Table 1: Performance comparison across different LLMs for various datasets (Math subsets and
MMLUpro). SID-v and SID-c denote our method using the vocabulary-adaptive threshold and cali-
brated confidence, respectively, to implement the early-exit mechanism. (see Sec@ for details)

Model Method Alg. C&P Geo. IntA. Num PreA PreC. MMLUpro Avg
CoT 61 38 34 14 37 54 28 39 38.13
10 65 37 35 15 46 59 28 25 38.75
SBP (Zheng et al.[[2024) 46 28 21 12 33 46 24 15 28.13
Self-Consistency (Wang et al.||2023) 58 25 32 12 40 55 25 45 36.50
LLaMA3.1-8B  Self-Contrast (Zhang et al.[[2024) 54 36 27 11 31 53 27 36 34.38
MAD (Du et al.![2024) 61 36 36 16 37 60 29 41 39.50
DMAD (Liu et al.||2024c) 55 36 32 13 36 58 26 39 36.88
SID-v 67 43 40 18 41 64 31 47 43.88
SID-c 67 43 39 20 41 65 30 47 44.00
CoT 85 81 56 36 70 84 44 61 64.63
10 85 81 60 40 74 87 42 64 66.63
SBP (Zheng et al.[[2024) 65 64 44 37 16 73 11 26 42.00
Self-Consistency (Wang et al.|[2023) 75 67 44 31 70 79 23 69 57.25
GPT-0SS-20B Self-Contrast (Zhang et al.[|2024) 84 75 65 36 67 88 35 65 64.38
DMAD (Liu et al.|[2024c}) 91 90 73 51 66 89 47 65 71.50
SID-v 94 92 79 65 87 91 62 71 80.13
SID-c 94 92 80 62 87 91 61 70 79.63

5.2 MAIN RESULTS

Overall Performance Table |I| and Table [2| respectively present the overall performance across
LLMs (including LLaMA3.1-8B and GPT-OSS-20B) and MLLMs (including LLaVA1.6-13B
model and GLM4.1V) in different datasets. Our SID consistently achieves the best performance in
most scenarios, demonstrating its strong effectiveness. Additionally, we observe that MAD methods
outperform reasoning augmentation baselines such as self-consistency, which aligns with findings
reported in (Liu et al.| 2024c). Another notable observation is that both the vocabulary-adaptive
threshold (SID-v) and calibrated confidence (SID-c) yield very similar performance when imple-
menting the early-exit mechanism described in Secf4.2] This suggests that the simple thresholding
strategy can already approximate the learned decision boundary well. Given its training-free nature
and practical effectiveness, we recommend SID-v as the preferred choice in real-world applications.

Accuracy and Efficiency Figure 2(a) compares the performance and token efficiency of our SID
framework against the baseline MAD method, reporting metrics of both the accuracy and the token
consumption ratio. The token ratio is computed relative to the MAD setting (i.e., MAD has a to-
ken ratio of 1). Results show that SID achieves up to a 30% reduction in token usage on science
and reasoning datasets, while also attaining higher accuracy, demonstrating its significantly better
efficiency and effectiveness. Note that on thinking models such as GPT-OSS and GLM4.1V, our
method exhibits more significant token reduction, as their reasoning processes are inherently less
amenable to token-level compression (see Figure 21|22 for examples). We also compare the actual
running times in Figure [5] of the Appendix, where SID demonstrates substantially lower inference
time, further underscoring its efficiency advantages. Additionally, Figure [b) presents accuracy
curves across different debate rounds. SID consistently improves with additional rounds, highlight-
ing its strong scalability under extended deliberation.

Statistical Significance Analysis The statistical significance of our model-level confidence met-
ric is illustrated in Figure 2c) and Figure where results for both the LLM (GPT-OSS-20B)
and MLLM (LLaVA1.6-13B) are presented. In the figure, C and W denote correct and incorrect
responses, respectively. Across two tasks of varying difficulty: GPQA and MMLUpro, our SID
maintains a consistent confidence threshold within the correct group for the same model (e.g., NLL
max =~ 7.5), highlighting the stability and robustness of our model-level confidence signal.

5.3 ABLATION AND ANALYSIS

Ablation of Key Components Using the LLaMA3.1-8B model and the MMLUpro dataset, we
conduct a comprehensive ablation study to evaluate the key design components of our framework.
As shown in Table 3] the baseline MAD setup yields suboptimal performance. In contrast, incor-
porating our proposed early-exit mechanism based on model-level confidence (Section[4.1)) and the
compression mechanism guided by token-level semantic focus (Sectiond.2)) leads to substantial im-
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Table 2: Performance on Sci.QA and MMStar based Table 3: Ablation Study of SID on

on MLLMs LLaVA1.6-13B and GLM4.1V. MMLUpro based on LLaMA3.1-8B.
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Figure 2: (a) Accuracy and token ratio comparison across strategies in MAD vs SID. (b) Perfor-
mance with more debate rounds in LLM and MLLM. (c) Significance tests on model-level confi-
dence signals. C means the correct group, and W means the wrong group. Statistical significance
is indicated as follows: p < 0.05(*%), p < 0.01(**), and p < 0.001(***): (d) Answer correction
flow in the MAD vs SID setting. (e) Ablation of the early-exit confidence threshold top-p and (f) the
semantic-preservation ratio o on accuracy and token ratio.

provements in both effectiveness and token efficiency. We further evaluate semantic preservation
in our compression mechanism that helps enforce the completion of sub-sentential units when ex-
tracting semantic focus information. The significant performance degradation observed when this
component is excluded highlights its importance and effectiveness.

Additionally, when we further enable the model-level early-exit gate on top of compression (MAD
+ Compression + Early Exit, equivalent to SID under this configuration), we observe a substantial
additional gain: accuracy increases to 46.83% while the token ratio is further reduced to 0.53. This
indicates that early exit is not merely a cost-cutting heuristic: by allowing high-confidence correct
agents to stop debating early, it prevents over-debate that can otherwise corrupt correct answers,
while still allocating more tokens to genuinely ambiguous cases. We also include a prompt-based
self-summary variant (SID w/o Early Exit w/ Token-level Summary) as a representative LLM-as-
a-judge style baseline. In this setting, after each debate round, the model is asked, via an explicit
summary prompt, to first identify the key points of disagreement in the debate history and then
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Early Exit with Model-Level Confidence|

Question

The Colonial Cookie Company pays on a piece-rate
basis at the rate of 80 centsa piece. Mrs. Batter
completed the following number of acceptable pieces
last week: Monday 45, Tuesday 41, Wednesday 49,
Thursday 47, and Friday 43. What were her total
earnings for the week?

£ LLMAgent

Total pieces: 45 + 41 + 49 + 47 + 43 = 225.Now, we multiply
the total number of pieces by the rate of 80 cents per piece.
Total earnings = 225 * 0.80. Total earnings = 180 dollars. So,
Mrs. Batter's total earnings for the week are $180.

N Mox L Avg Entiax Enavg ML ML enrisd Enpens
168 0.16 1.81 0.28 0.15 0.00 054 0.02
Model-level Confident based on the confidence measure
Correct @

Question

Can you answer the following question? How much
angular momentum did Hurricane Florence have when
it hit land?

£ LLMAgent
To answer this question, ... However, | don't have the specific
information about the angular momentum of Hurricane
Florence. The angular momentum (L) of a rotating system
can be calculated using the formula:. However, | couidn' find
the specific data for Hurricane Florence's mass and radius. But
I can give you an idea of the order of magnitude of a
hurricane's angular momentum. ... However, this is an
extremely rough estimate, and the actual value may vary
depending on the specific characteristics of the hurricane. ... L
=10M7kg " m*2/s.

NULMax NWAvg EnMax EnAvg NLLFirst NLLPenu EnFirst EnPenu
551 029 647 050 010 037 051 095

Model-level Unconfident based on the confidence measure
Wrong X

Debate with Adaptive Compression Mechanism

Question: Calculate the width of a silent chain of 1 in. pitch, which delivers 25 hp. The driving sprocket, having 25 teeth, rotates at 400 rpm. Table
1 Load handling capacities of silent chains: Chain Pitch, in. 3/8, 1/2, 5/8, 3/4, 1, 1(1/4), 1(1/2), 2; Allowable Tension Ib/in. 75, 100, 125, 150, 205,
265, 335, 600. Options: (A) 4.0 in, (B) 3.25 in, (C) 5.75 in, (D) 5.2 in, (E) 6.0 in, (F) 3.75in, (G) 2.5 in, (H) 7.0 in, (1) 4.83 in, (J) 4.5 in.

‘g LLM Agent 1

We need to calculate the width of a silent chain of
.. Let's compute: torque = 328.25 ft-Ib = 328.25 *
12 = 3939 Ib-in. Divide by pitch radius 3.978 in =>
AT = 3939/3.978 = 990 Ib approx. So we need to
find chain width such that tension per inch maybe.
matches required tension? We need to compute
required tension needed: maybe 990 Ib. However
allowable tension per inch, if chain width w, then
total capacity = allowable tension * width? Actually,
load capacity of chain = allowable tension (Ibfin) *
width (in). If width is 1.5" gives 335 Ib per inch
maybe. 335*1.5 = 502 Ib. Still less than 990. 2"
chain gives 600°2 = 1200 Ib. That suffices. So
width of at least 2°. So answer maybe (H) 7.0 in.

Agent 1's Debate Content
with Compressed Semantic Focus
<compressed LLM Agent 2’s Content Start>
We need to interpret question: "Calculate the
width of a silent chain of 1 in. pitch, which delivers

25 hp. The driving sprocket, having 25
<compressed LLM Agent 2's Content End>
<compressed LLM Agent 3's Content Start>
We need to calculate the width of a silent chain of
1" pitch, delivering 25 hp, with driving sprocket 25
teeth, 400 rpm. We need suitable chain width
<compressed LLM Agent 3's Content End>

Debate

£y LM Agent 1

We need to decide chain width ... So
S ama 3T 2 ST . "So. about 980 b
required tension. diflerence. But thealowable
tension is per inch of chain width: 205 bfin for 1"
To support 990 Ib, the chain width needed = 990 /
205 = 483 nches = 48" Looking o opions, 483
in matches! So answer (1) 4.83 in.

Correct @

€ LM Agent2

We need to interpret question: "Calculate the width
of a silent chain of 1 in. pitch, which delivers 25 hp.
The diling sprocket, having 25 teeth, rotates at

rpm. ... Let's instead compute required chain

1ens\0n to transmit 25 hp at 400 rpm ... For pitch 17,
teeth 25 => pitch diameter = 25*1/1r= 7.958 inches.

So pitch radius = about 3.979 inches. Torque (ft-Ib)
= chain tension (Ib) * pitch radius (in)/12. So find
required chain tension: T = force * radius/12.
Rearranged: force = T12 / radius. radius = 3.979
in.. Compute: 328 ft-b * 12 = 3936 Ib-in. Divide by
radius 3.979 in = 3936/3.979 = 989.8 Ib. .

Actually options list widths in inches: 4.0, 3.25 etc.

Agent 2's Debate Content
with Compressed Semantic Focus

<compressed LLW Agent 1's Content Start>
We need to calculate the width of a sient chain
orque = 328.25 ft-lb = 328.25
-in <compressed LLM Agent 1's
<compressed LLM Agent 3's
Content Start> We need to calculate the width of
a silent chain of 1" pitch, delivering 25 hp, with
driving sprocket 25 teeth, 400 rpm. We need
suitable chain width ... <compressed LLM Agent
3's Content End>

@

£ LM Agent2

ReEE
Content

We have a confusing question. The user needs
width of a silent chain with pitch 1 in delivering 25
hp, driven by 25 tooth sprocket at 400 rpm. ... We
can calculate required tensile force difference
(~990 Ib). ... Check: 205 Ib/in * width = max force.
So width needed = 990/205 = 4.83 in. That
matches. Thus the best answer is (1) 4.83 in.

Correct @

m LLM Agent 3

/e need to calculate the width of a silent chain of
1" pitch, delivering 25 hp, with driving sprocket 25
teeth, 400 rpm. We need suitable chain width ...
Let's derive: Power transmitted by chain = Tension
difference * chain velocity around sprocket. For a
chain drive, the power = (Tension in Ib) * velocity
(fUmin) * 0.02097 Alternatively, might use
relationship: horsepower = (TP * rpm)/33,000
where TP = Tension x pitch in inches? Let's recall:
For a chain drive, the torque T (Ib-ft) transmitted
equals (tension difference Ib) x (pitch circle
diameter in ) ... Usually pitch = distance between
chain pin centers, so pitch radius is PxN/(2). With
25 teeth, pitch = 1", diameter = NxP/rr = 251/ =
7.96 inches. Radius = 7.96/2 = 3.98 inches = 0.332
t

Agent 3's Debate Content
with Compressed Semantic Focus

<compressed LLM Agent 1's Content Start>

need to calculate the width of a silent chain
mpute: torque = 328.25 ft-lb = 328.25
Ib-in <compressed LLM Agent 1’s
d> <compressed LLM Agent 2's
Content Start> We need to interpret question:
*Calculate the width of a silent chain of 1 in. pitch,
which delivers 25 hp. The driving sprocket, having
25 .. <compressed LLM Agent 2's Content

Debate

£ LM Agent3

We need to solve: width of a silent chain of 1 in
pitch, delivering 25 hp, driving sprocket 25 teeth at
400 rpm. .. Wait options like 4.0, 3.25, etc. Which
likely chain widths are possible, measured in
inches. ... So to handle 990 Ib, the required width
w = required tension / allowable per inch = 990 /
205 = 4.83 inches. That matches one of options:
(1) 4.83 in.

Correct @

Figure 3: Case study of SID’s debate process. (Left) On MMLUpro, SID exits early for a simple
arithmetic question with high confidence but fails on a complex physics question with low confi-
dence. (Right) Three agents initially err but converge to the correct answer through debate guided
by token-level semantic focus from adaptively compressed content.

produce a concise summary, which is used as the context for the next round instead of our attention-
based compressed history. Empirically, this self-summarization approach leads to a 7.3% absolute
accuracy drop and about a 15% increase in token usage compared to our full SID configuration. As
shown in Table 3] the superior performance of our SID method validates the design choices of our
framework and highlight the contribution of each component to the overall performance.

Ablation of Vocabulary Adaptive Threshold @ We further conduct an ablation study on the
vocabulary adaptive threshold o and early exit ratio based on the LLaMA3.1-8B. The results are
presented in Figure 2] (¢). Small o means all questions are unconfident, thus the exit ratio is 0,
equivalent to traditional MAD, whereas large v means all questions are confident, thus the system
stops at the first round, equivalent to only one LLM model. Our results show that « = 0.5 is an
optimal value for this LLaMA3.1-8B model.

Ablation of Semantic Preservation Ratio P  In our semantic preservation framework, we select
the top-p fraction of context tokens for further processing. The ablation study results for varying p
are shown in Figure [2] (f). We observe that selecting the top tokens with p around 0.35 or 0.4 yields
the best performance. It is interesting to find that when p > 0 but very small, performance can
degrade compared to the case where no additional context is included. Conversely, when p is too
large, which means retaining a broader range of content, including potentially redundant agreement,
the performance also drops. These findings suggest that both incomplete and overly redundant
context can negatively impact multi-LLM debate effectiveness.

5.4 VISUALIZATION RESULTS

To illustrate the mechanisms of our framework more intuitively, we present the visualizations of
SID’s workflow in Figure 3] The left branch showcases the early-exit mechanism on a real-world
economics question. After generating an answer, the model is assessed as highly confident (e.g.,
NLL Max = 1.68) by the model-level confidence module and exits early with a correct prediction.
In contrast, for a more complex physics question, the model is flagged as low confidence (e.g.,
NLL Max = 5.51), thus prompting further debate. The right branch illustrates the debate process
guided by our adaptive compression mechanism. When facing a challenging physics problem, all
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three agents initially fail. However, by engaging in a debate using token-level compressed content
driven by semantic focus, the agents collaboratively refine their reasoning and successfully converge
on the correct answer. More case studies can be found in Appendix [F| Figure 22] Furthermore,
Figure [2{d) compares the corrections made by the MAD and SID. Our method significantly reduces
the number of cases where debates drift from correct to incorrect answers, while increasing the
number of beneficial corrections, i.e., debates that shift from wrong to correct outcomes, further
demonstrating the high effectiveness of our method.

6 CONCLUSION

This work introduces SID, a multi-LLM debate framework that leverages self signals from the LLM
generation process to improve both performance and efficiency. SID integrates two types of inter-
nal signals: model-level confidence, which enables early exit for confident agents, and token-level
semantic focus, which compresses debate history by using attention scores to retain key points of
disagreement. Experiments across diverse benchmarks with various LLMs and MLLMs demon-
strate the high performance and efficiency of SID, underscoring the strong potential of leveraging
internal model states as effective signals for guiding collaborative problem-solving. These findings
point toward a promising direction for developing new paradigms in multi-agent systems.

10
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REPRODUCIBILITY STATEMENT

Significant efforts have been made to ensure the reproducibility of our results. The implementation
details of our framework are described in the main manuscript (Section[d] Algorithm [T} and[5.1), in-
cluding methods, baselines, benchmarks, model configurations, and evaluation settings. Additional
implementation details and the full algorithm are provided in Appendix[C| To facilitate faithful repli-
cation of our method, we include detailed descriptions of the key prompts and instruction formats in
Table[d] Table[5] and Figure[d We believe these materials are sufficient to enable reproducibility of
our study.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used solely for language refinement and proofreading pur-
poses. They were not involved in research ideation and methodology design. All scientific contribu-
tions and conceptual developments were carried out entirely by the authors. The LLM did not play
a substantive role in shaping the research content and should not be considered a contributor.

B LIMITATION

Our method relies on internal model signals such as logits and attention maps, which limit direct
applicability to public closed-source APIs. However, it remains well-suited for internal deployments
of proprietary models, especially in multi-agent systems, and can serve as an intermediate reasoning
layer prior to externalized API serving. Notably, many modern systems (e.g., GPT-5) already adopt
multi-agent or tool-augmented architectures, making our approach broadly applicable and increas-
ingly relevant.

C ALGORITHM AND IMPLEMENTATION

C.1 SEMANTIC PRESERVATION

The semantic preservation module plays a key role in restoring the semantic cohesion from the top-
p selected sparse tokens based on a model’s self-signals (i.e., attention mechanism). Specifically,
the method selects the most relevant textual spans based on attention distribution, but ensures that
these selections are semantically coherent when mapped back to natural language. The algorithm
below (Algorithm [2) shows the main pipeline, and the example (Figure[6) illustrates the comparison
between without and with semantic preservation.

Algorithm 2 Semantic-Preserving Compression

Require: Prompt text « with marked spans FOCUS, DISCUSSION; offset map O; Top-p selected
attention score C

Ensure: Compressed prompt x’

: U + EXTRACTUNITS (2, DISCUSSION) > Sentence/clause-level segments

T < TOKENIZER(z)

S + MAPTOKENSTOUNITS(C,U, O)

a’ <~ REPLACESPAN(z,DISCUSSION,S)

return 2z’

A

We begin by extracting semantically coherent units (e.g., sentences or clauses) from the
DISCUSSION span using lightweight parsing heuristics, including punctuation or newline segmen-
tation. This yields a set of candidate text fragments U.

We then use the Top-p selected attention score C (from Algorithm([I)) to select the top-p most relevant
tokens from T. To preserve semantic interpretability, we map these selected tokens back to their
enclosing segments in U/ using the token-to-text offset map O. The resulting set of informative
fragments S is used to replace the original DISCUSSION span, yielding a compressed prompt x’
that retains critical disagreement signals while discarding redundant or low-relevance content.

In the multi-modal setting (e.g., MLLMs), token offsets may shift due to image-text fusion. We
mitigate this by anchoring to stable textual markers in the FOCUS span to adjust O and maintain
alignment.

This compression module is integrated into the overall SID framework to support efficient and in-
terpretable multi-agent reasoning under token or latency constraints
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C.2 PROMPT TEMPLATE

In multi-task evaluation settings, especially those involving factual or multiple-choice benchmarks,
we observe that models frequently generate semantically correct answers but fail to conform to
the expected output format. This discrepancy is particularly pronounced in open-ended LLMs,
where prior supervised fine-tuning (SFT) phases may introduce implicit formatting preferences (e.g.,
\boxed in math domains).

To mitigate this, we prepend a task-specific system prompt that explicitly enforces the desired answer
format. Our full prompting format is:

<system prompt> 4 <question content> 4 <output instruction>

This method proves especially helpful for models with weaker instruction-following capabil-
ities (e.g., LLaMA3.1-8B) and significantly reduces post-hoc answer parsing failures. An-
other example is the GLM4.1-V thinking model. The default multiple choice response uses
a special boxed token, such as <|begin_of_box|>B<|end_of_box|> By empha-
sizing the answer returning with brackets in the system prompt, GLM4.1V thinking yields
<|begin_of_box|> (B)<|end_of_box|>. This allows us to extract the result using brackets
in a unified way.Table [ lists the dataset-specific system prompts and the enforced answer formats
used in our experiments.

Table 4: Dataset-specific system prompts and enforced output formats for answer extraction.

Dataset System Prompt (Instruction) Expected Output Format
(for answer parsing)
MMLUpzro You are a trivia expert who knows everything. You | (&), (B), etc.

are tasked to answer the following question. Give
your final answer in the format of (X), e.g., (A).

Math You are a math expert. You are tasked to | \boxed{...}
determine the answer to the following ques-
tion. Give your final answer in the form of
\boxed{answer} in the last sentence of your
response, e.g., \boxed{[1, 31}

GPOA You are an expert in graduate-level science and | “The correct answer is
mathematics. You will be presented with chal- | (A).”

lenging questions designed to test your reasoning
abilities. Your last sentence should be “The cor-
rect answer is (insert answer here).”

ScienceQA | Youare atrivia expert who knows everything. You | (&), (B), etc.
are tasked to answer the following question. Give
your final answer in the format of (X),e.g., (A).

MMStar You are an expert in multimodal task understand- | (A), (B), etc.
ing, and your task is to answer the following ques-
tions. Give your final answer in the format of (X),
e.g., (A)

Table 5: Dataset-specific output instruction prompts.

Dataset Output Instruction
MMLUpro Give your final answer in the format of *(X)’
Math Give your final answer in the form of \ \boxed{answer} at
the end of your response, e.g., \\boxed{ [1, 3]}.
GPQA Your last sentence should be 'The correct answer is (insert an-

swer here).” e.g., The correct answer is (A).

ScienceQA | Give your final answer in the format of ’(X)’. You should only
give one answer. For example, the answer is (A).

MMStar Give your final answer in the format of *(X)’. You should only
give one answer.
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Reasoning Augmentation Prompt

<COT (zero-shot)>
<Generation 1/1>
Let’s think step by step.

<l0>
<Generation 1/1>
Please directly give your answer.

<Self-Consistency>
<Generation N/N, i.e., after N-rounds generation>
<majority vote among multiple responses>

<Step-back prompting, SBP>

<Generation 1/2>

You are an expert at structured reasoning. Your task is to extract the subject concepts and
principles involved in solving the problem. In this step you don't need to give you final answer,
just extract the concepts and principles.

<Get Phase 1 Response>

<Generation 2/2>

Learned concepts and principles:

{Phase 1 Response}

Solve the problem step by step with your reasoning path, according to the concepts and principles
you have learned.

<Self-Contrast>
<Generation 1/4>
Let’s think step by step

<Generation 2/4>
Please generate an alternative solution to this problem using a different approach or reasoning
method.

<Generation 3/4>

Now compare your original solution with the alternative solution:
1. What are the key differences between the two approaches?

2. Which approach seems more reliable and why?

3. Can you identify any weaknesses in either approach?

4. Based on this comparison, what is your final answer?

<Generation 4/4>
Based on your comparison of the different approaches, provide your final answer.

Figure 4: Details of reasoning augmentation prompt.

In terms of question content, we strictly follow the previous work (Du et al., 2024} Liu et al.|[2024c)
in parsing the question to the chat template.

Moreover, we list the reasoning augmentation prompt (Figure 4 used in our experiments. Notably,
Output Instructions should still be used after those prompts to enhance the ability to follow instruc-
tions.
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D EXPANDED EXPERIMENTS

To further broaden our empirical coverage, we additionally evaluate SID on GPQA
2023)), a challenging benchmark targeting advanced science knowledge and reasoning. We follow
the same evaluation protocol as in the main experiments and use GPT-OSS-20B as the base model,
with SID-v as the default debate configuration.

Table 6: Results on the GPQA benchmark using GPT-OSS-20B under the same evaluation protocol
as in the main text.

Method (GPQA) CoT 10 MAD SID
Accuracy (%) £std 432+17 414+16 529+20 548+15

As shown in Table[6] SID achieves the best performance among all compared methods on GPQA,
demonstrating that our SID framework generalizes to challenging scientific reasoning tasks beyond
the benchmarks reported in the main paper.

Exchange-of-Thought (EoT) derives a model-level confidence score post hoc from
the final discrete answers (e.g., options A/B/C/D) across rounds and/or agents, for example, by
measuring how frequently the most common answer appears. This effectively treats consistency
of verbalized outputs as a proxy for confidence. To more concretely compare SID with EoT, we
run both methods with LLaMA3.1-8B on the MMLUpro dataset. We follow the same evaluation
protocol as in our main experiments and configure three agents and two debate rounds, computing
the EoT confidence exactly as described in the original paper. The results are summarized in Table[7}

Table 7: Comparison with EoT on MMLUpro using LLaMA3.1-8B.

Method CoT MAD EoT SID
Accuracy (%) 39.5 415 427 46.8

As shown in Table[7} EoT improves over standard MAD, indicating that consistency-based aggre-
gation can indeed be beneficial. SID, however, still yields a clear additional gain.

We further examine whether SID extends naturally to heterogeneous multi-model debate. To this
end, we consider two base models on MMLUpro: LLaMA-3.1-8B (denoted as model A) and GPT-
OSS-20B (denoted as model B). We instantiate homogeneous pairs (A+A and B+B) as well as
a heterogeneous pair (A+B), and measure the accuracy of each agent’s final-round answer under
MAD and SID.

Table 8: Heterogeneous multi-model debate on MMLUpro with LLaMA-3.1-8B (A) and GPT-OSS-
20B (B). For the heterogeneous A+B setting, we report the final accuracy of each agent (A/B).

Setting A+AMAD A+ASID B+BMAD B+BSID A+BMAD (A/B) A+B SID (A/B)

Acc. (%) 41 47 65 71 65/ 65 64/72

As shown in Table [8] SID consistently improves performance over MAD in the homogeneous set-
tings: the accuracy of A+A increases from 41% to 47%, and B+B from 65% to 71%. This mirrors
the trends observed in the main experiments and indicates that SID’s model-level early exit and
token-level semantic-focus mechanisms remain beneficial across different base models.

The heterogeneous configuration (A+B) provides additional insight. Under MAD, both A and B
achieve roughly the same final accuracy (65%), suggesting that the weaker model A benefits from
debating with the stronger model B, while the stronger model does not fully realize its potential
within an unstructured debate protocol. Under SID, the stronger model B reaches 72% accuracy,
which exceeds all homogeneous baselines (including B+B with MAD at 65% and even B+B with
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SID at 71%), while model A remains competitive at 64%. These results indicate that SID can better
exploit model complementarity in heterogeneous groups: the weaker model can still benefit from
interaction, but the stronger model is less likely to be “dragged down” by unnecessary debate and
can more reliably achieve (or slightly exceed) its best homogeneous performance.

Overall, this study suggests that SID is not only compatible with heterogeneous multi-model debate,
but also capable of leveraging internal self-signals to coordinate agents of different strengths more
effectively than standard MAD.

E MODEL-LEVEL CONFIDENCE ANALYSIS

In this section, we provide additional analyses of the model-level confidence signal used by SID,
in order to clarify (i) how well it separates correct and wrong predictions, and (ii) what happens in
over-confident failure cases.

Recall that for each agent, we compute a model-level confidence score from internal self-signals dur-
ing generation. Concretely, given a sequence of output tokens {y; }7_; and model log-probabilities
logpo(y+ | y<e,x), we construct confidence metrics based on aggregated negative log-likelihood
(NLL) and entropy over different token positions (e.g., all tokens, answer tokens, or reasoning to-
kens). These metrics are then calibrated via the vocabulary-adaptive threshold described in Sec-
tion[d.T]to decide whether an agent should exit the debate early.

Separation between correct and wrong predictions. Figures[JHI@in the appendix, for multiple
datasets and models, the empirical distributions of our confidence metrics for correct (C) vs. wrong
(W) answers, together with significance tests. Across MMLU-Pro, MATH subsets, ScienceQA,
MMStar, and GPQA, we consistently observe that the C group exhibits noticeably lower NLL /
entropy than the W group, and these differences are statistically significant in most settings. In
parallel, the correction-flow plots in the same figures show that, under SID, the number of correct-to-
wrong (C—W) transitions across rounds is reduced, while wrong-to-correct (W—C) transitions are
maintained or increased compared to MAD. Taken together, these results indicate that our confidence
estimate, although not perfectly calibrated, is a useful ranking signal for debate scheduling: high-
confidence states are more likely to be correct and more likely to remain correct under SID.

Over-confident errors and failure cases. We also explicitly examine cases where the model-level
confidence is high but the final answer may be incorrect. Figures [[7H20] provide qualitative exam-
ples of such failure cases under our early-exit policy. In most of these examples, the intermediate
reasoning trajectory is largely sensible (e.g., correctly recalling definitions or setting up equations),
but the model makes a local slip in the last step, such as an arithmetic mistake or an incorrect option
mapping. Because our confidence is derived from token-level log-probabilities aggregated over the
entire reasoning sequence, these mostly plausible trajectories can still yield low NLL / entropy even
when the final box answer is wrong. These examples illustrate the limitations of our signal: it is not
an oracle and over-confident errors do occur.

However, our quantitative analyses show that such over-confident wrong cases are relatively rare
compared to the large mass of high-confidence correct predictions. In addition, the correction-flow
statistics indicate that SID reduces harmful C—W transitions overall, while preserving beneficial
W—C transitions. Thus, even though the confidence signal can occasionally fail, on balance it
enables the early-exit mechanism to (i) protect many high-confidence correct answers from being
overturned by noisy debate and (ii) avoid spending additional tokens on debates that are unlikely to
change the outcome.

In summary, our model-level confidence should be viewed as a ranking heuristic derived from in-
ternal self-signals. Empirically, it exhibits a clear and statistically meaningful separation between
correct and wrong predictions across benchmarks, and it leads to fewer C—W transitions and more
efficient use of debate rounds when integrated into SID. This supports its use as a practical gating
signal for deciding when to continue or terminate multi-agent debate.
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F MORE RESULTS

In this section, we list many visualization results to illustrate the effectiveness of our SID methods.

Figure [6] Example comparison between w/o semantic preservation (red, brute-force token selec-
tion) and w/ semantic preservation (green, semantically coherent expansion). It can be observed
that token-level semantic focus deletes irrelevant points (for example, point 2 in the solution was
deleted), and our semantic preservation retains the semantic cohesion from the selected tokens.

A series of model-level confidence examples below can demonstrate the stable early exit threshold
in the same model, and the statistical significance between the correct and wrong groups. Moreover,
we also provide the correction flow from the first round to the last round.

Figure [/| Top: Model-level Confidence result on the Math Algebra dataset with LLaMA3.1-8B.
Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged
between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

Figure [§] Model-level Confidence result on the Math Counting and Probability dataset with
LLaMA3.1-8B.

Figure[9Model-level Confidence result on the Math Geometry dataset with LLaMA3.1-8B.

Figure[I0]Model-level Confidence result on the Math Intermediate Algebra dataset with LLaMA3.1-
8B.

Figure[TT|Model-level Confidence result on the Math Number Theory dataset with LLaMA3.1-8B.
Figure 2] Model-level Confidence result on the Math Prealgebra dataset with LLaMA3.1-8B.
Figure[I3]Model-level Confidence result on the Math Precalculus dataset with LLaMA3.1-8B.
Figure [[4| Model-level Confidence result on the MMStar dataset with GLM4.1V.

Figure [I5] Model-level Confidence result on the MMLUpro dataset with GPT-OSS-20B. Bottom:
Correction flow with 8 deltas of confidence metrics.

In addition, a number of model-level early exit cases are provided here to show the confident and
overconfident cases. It can be observed that the model partially analyzes the problem in overconfi-
dent cases.

Figure [I7|Examples of model-level early exit cases in the MMLUpro dataset.
Figure[I8|Examples of model-level early exit cases in the ScienceQA dataset.
Figure [I9 Examples of model-level early exit cases in the Math dataset.
Figure 20Examples of model-level early exit cases in the GPQA dataset.

Subsequently, Figure [21] and Figure 22] display that the token-level semantic focus module com-
presses the contents and assists agents in correcting their answers.
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Runtime comparison across methods on 100 questions (LLaMA3.1-8B)
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Figure 5: Running time comparison on math datasets with LLaMA3.1-8B, running on single A100
80GB GPU
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1140

1141 <Selected Text: w/o Semantic Preservation>

1142 One agent solution:

1143 " "To solve this, let's break it down by step:

1144 3. Since are but not).

1145 4 the probability that each of children will bezy islor %), because they will only from both

1146 parents.

1147 So, the correct answer is (F) 1.

1148 One agent solution:

1149 "7 To solve this let's consider the possibleotypes andotypes of the and both parents are we can

1150 their the a

1151 2 Theotypes of )
3 parents the possible can

1152 4 The probability of each child is the of which is because each has of probability of2).

1153 So, the probability that each children will be affected equals 4 or 25%. Therefore, the answer is

1154 (1).

1155

1156 <Selected Text: w/ Semantic Preservation>

1157 One agent solution:

1158 """To solve this, let's break it down step by step:

1159 1. Both parents have the same autosomal recessive disorder, meaning they are both homozygous |

1160 can only produce offspring that are also homozygous recessive (rr) because they can only

1161 contribute their recessive alleles (r).

1162 3. Since the disorder is autosomal recessive, the parents are carriers of the recessive allele
(r) but do not express the disorder themselves because they are homozygous recessive (rr).

1163 4. Therefore, the probability that each of their children will be affected (homozygous recessive,

1164 rr) is 1 (or 100%), because they will only inherit the recessive allele from both parents. So,

1165 the correct answer is (F) 1.°°°

1166 One agent solution: ~"“To solve this, let's consider the possible genotypes and phenotypes of the
parents and their offspring. Since both parents are affected by an autosomal recessive disorder,

1167 we can represent their genotype as 'rr' (assuming the disorder is caused by a recessive allele

1168 ‘r' and the dominant allele is 'R’).

1169 2. The possible genotypes of their offspring are: - Rr (carrier) - Rr (carrier) 3. Since both

1170 parents are affected, the possible genotypes of the parents can be rr.
4. The probability of each child being affected (rr) is the probability of inheriting two

1171 recessive alleles, which is 1/4, because each parent has a 1/2 chance of contributing a recessive

1172 allele, and the probability of both contributing a recessive allele is (1/2) * (1/2) = 1/4. So,

1173 the probability that each of their children will be affected equals 1/4 or 25%. Therefore, the
answer is (I). ™~

1174

1175 Legend: Thelli@@lland gréen shaded text is an example pair for the w/o Semantic Preservation and w/

1176 Semantic Preservation comparison.
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1178

1179
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11g4  Figure 6: Example comparison between w/o semantic preservation (red, brute-force token selection)
11a5  and w/ semantic preservation (green, semantically coherent expansion)
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Figure 7: Top: Model-level Confidence result on the Math Algebra dataset with LLaMA3.1-8B.
Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged
between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.
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Figure 8: Top: Model-level Confidence result on the Math Counting and Probability dataset with
LLaMA3.1-8B. Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer
remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong
to correct.
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LLaMA3.1-8B Geometry
Model-level Confidence Correct = 112, Wrong=188
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Figure 9: Top: Model-level Confidence result on the Math Geometry dataset with LLaMA3.1-8B.
Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged
between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.
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LLaMAS3.1-8B Intermediate Algebra
Model-level Confidence Correct = 54, Wrong=246
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Figure 10: Top: Model-level Confidence result on the Math Intermediate Algebra dataset with

LLaMA3.1-8B. Bottom: Correction flow with 8 deltas of confidence metrics.

Unc: the answer

remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong

to correct.
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LLaMA3.1-8B. Bottom: Correction flow with 8 deltas of confidence metrics.
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Top: Model-level Confidence result on the Math Number Theory dataset with

Unc: the answer

remains unchanged between the first round and the last round, C2W: correct to wrong, W2C: wrong

to correct.
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LLaMAS3.1-8B Prealgebra
Model-level Confidence Correct = 166, Wrong=134
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Figure 12: Top: Model-level Confidence result on the Math Prealgebra dataset with LLaMA3.1-8B.
Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged
between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.
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LIaMA3.1-8B Precalculus
Model-level Confidence Correct = 85, Wrong=215

NIl Max NIl Avg Entropy Max Entropy Avg
ok ns L *
3.5 4.0
0.3 0.5 1
3.0 1 3.5 4
(0] ) [0) (0] 044
S5 25 YR i 3.0 1 | E
i 4 2 251 S 037
2.0 1
15 01 4 20 - 0.2 1
1.5 - 0.1
1.0 - T T T T T T T T
Correct Wrong Correct Wrong Correct Wrong Correct Wrong
Entropy First Entropy Penultimate NIl First NIl Penultimate
1.25 -
1.5 04
1.00 1 0.6 - 0.3
o 107 o 0.75 - o o
= = = 04 3 0.2
B . £ 050 S B
.5
0.25 - 0.2 0.1 4
0.0 1 0.00 1 0.0 1 0.0 1
T T T T T T T T
Correct Wrong Correct Wrong Correct Wrong Correct Wrong
LIaMA3.1-8B Precalculus
Correction Flow
2 —
1.0 4 3 21 2 15 A
é E’ E| ml '
g ] S -| > 1.0 -
! ='0s g s
< | € 04 € 054
s s g 9
S $ 0.0 8 1 4 % 0.0
S T -0.5
_3 - _2 - ——
T T T T T T T T T T T T
o o © o
N & @ & & @ & & gt ¢
label label label label
2
- £ 10 34T g 0757 T
4 = @
& 37 3 3 £ 050
| c <4 =
> ¢ 0.5 = 2 S
8 % = g
‘E 2 2 < ) 2 025
q)l o 00 © | 0.00
= = c u
« < 4] (e
= ©
S 14 ® -05 - 0] S 025 4
2 1 ° L
©
T T T o} T T T T T T T T T
o o © o
Ny Ny Ny & gt ¢
label label label label

Figure 13: Top: Model-level Confidence result on the Math Precalculus dataset with LLaMA3.1-8B.
Bottom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged
between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.
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GLM4.1V MMStar
Model-level Confidence Correct = 97, Wrong=203

NIl Max NIl Avg Entropy Max Entropy Avg
2.0 1 4
0.3 3 0.6 -
g S g g
=< 1.5 = 0.2 1 = 3 = 4
g g g | g o4
1.0 017 0.2 -
T T T T T T T T
Correct Wrong Correct Wrong Correct Wrong Correct Wrong
Entropy First NIl First
> Entropy Penultimate i NIl Penultimate
1e-6 1e-7
6 1.25 0.15 H
0.6
0.10 +
8 4 S 044 51209 _ - E
= = s =
0.2 0.05 +
2 4 1.15
004 = 0004 =
T T T T T T T T
Correct Wrong Correct Wrong Correct Wrong Correct Wrong
GLM4.1V MMStar
Correction Flow
0.8 T
1.0 - 3 2 20
x o 0.6 EI g,l
0.5 1 > 15
5 Jioa g2 g
El 0.0 < s ‘E 1.0
2 0.5 202 qc)l o 0.5
C 3 00 g 07 (ol
-1.0 : 3 S 00
T T T —I_ T T
o o o o
Ny O{1§ $q/0 N o‘l§ $’),0 N 0r1§ $,LO N Qq§ @q’o
label label label label
£ 20
54T g - o 1.00 -
12 =R 2.0 ©
= 4 3 - I £ 0751
> @ i = 1.5 =
S s j o 10 =! S 050 -
= > a
5 2 g 0'5] g 10 =' 025 1
b= ©
24 5 °° B 05 < 0001
o -05 4 ©
04 -+ % 05 0.0 T -0.25 1
T T T o T T T T T T
o o o o
¢t ¢ N St ¢ ot ¢
label label label label

Figure 14: Top: Model-level Confidence result on the MMStar dataset with GLM4.1V. Bottom:
Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between
the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.

30



Under review as a conference paper at ICLR 2026

Value

Value

py_first

delta_entro

delta_nll_max
o
1

NIl Max
10.0
7.5 - I
5.0
2.5 1
T T
Correct Wrong
Entropy First
ns
1e-8
1.0
0.5 1
001 7 T
Correct Wrong
4 -

_2_

_4_
T T T
¢ N O
P

label

0.0

-0.5

-1.0

S 0’9 \&O

label

Value

Value

_avg

delta_nll_avi

py_penultimate

delta_entro

GPT-0OSS-20B MMLUpro
Model-level Confidence Correct = 101, Wrong=91
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Figure 15: Top: Model-level Confidence result on the MMLUpro dataset with GPT-OSS-20B. Bot-
tom: Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged
between the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.
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GPT-0SS-20B GPQA
Model-level Confidence Correct = 108, Wrong=153
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Figure 16: Top: Model-level Confidence result on the GPQA dataset with GPT-OSS-20B. Bottom:
Correction flow with 8 deltas of confidence metrics. Unc: the answer remains unchanged between
the first round and the last round, C2W: correct to wrong, W2C: wrong to correct.
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Examples of Model-Level Confidence Exit on MMLUpro

<Question, Correct Answer: B>

Can you answer the following question? If a freight train travels at a speed of 20 miles per hour for 6 hours, how far will it
travel?: (A) 90 miles, (B) 120 miles, (C) 150 miles, (D) 140 miles, (E) 26 miles, (F) 100 miles, (G) 80 miles, (H) 110 miles,
(1) 160 miles, (J) 12 miles.

<Agent Answer: B>

To find the distance traveled by the freight train, we need to multiply its speed by the time it traveled.\n\nSpeed = 20 miles
per hour\nTime = 6 hours\n\nDistance = Speed x Time\n= 20 miles/hour x 6 hours\n= 120 miles\n\nSo, the freight train will
travel 120 miles. \n\nThe correct answer is (B).

<Question, Correct Answer: E>

Can you answer the following question? A driver and passenger were driving to work in the former's automobile one
morning. As they were traveling at a speed of 20 m. p. h. (which was within the posted speed limit), the passenger
suddenly pointed to an overturned vehicle along the side of the highway and said, "Look at that car upside down. " The
driver turned to look at the overturned vehicle. As he was looking toward the side of the road, the driver failed to see an
abandoned vehicle with a flat tire in the highway about 200 feet in front of his approaching auto. Seconds later, the driver
crashed into the rear of the abandoned auto and was injured. The jurisdiction has a relevant comparative negligence
statute in effect. If the driver asserts a claim against the owner of the abandoned auto, the most likely result is that the
driver will: (A) recover nothing, because the passenger's act was a supervening cause., (B) recover only a portion of
damages, because both the driver and the owner of the abandoned auto were negligent., (C) recover nothing, because he
was distracted while driving., (D) recover all of his damages, because the owner of the abandoned auto was negligent., (E)
recover only a portion of damages, because the abandoned auto was in plain view., (F) recover all of his damages,
because the abandoned auto was a traffic hazard., (G) recover all of his damages, because the defendant created a
dangerous condition., (H) recover nothing, because he was driving at a speed that didn't allow him to stop in time., (I)
recover nothing, because he had the last clear chance to avoid the collision..

<Agent Answer: B> X [But Judged by Gemini and GPT, both B and E are correct.]

(B) To determine the most likely result, let's break down the situation step by step:\n\n1. The driver was driving at a speed
of 20 m.p.h. within the posted speed limit.\n2. The passenger pointed out the overturned vehicle, distracting the driver and
causing him to take his eyes off the road.\n3. As a result, the driver failed to see the abandoned vehicle with a flat tire in
front of him.\n4. The driver crashed into the abandoned vehicle.\n\nGiven the comparative negligence statute, the
jurisdiction likely follows a modified comparative negligence system. In this system, a plaintiff can recover damages even
if they were partially at fault, but their recovery is reduced by the percentage of their own negligence.\n\nThe driver's
distraction caused by the passenger's comment likely contributed to the accident, making him partially responsible for the
collision. However, the owner of the abandoned auto also created a hazard by leaving the vehicle on the road. Therefore,
both parties contributed to the accident.\n\nThe most likely result is that the driver will recover only a portion of damages,
as both the driver and the owner of the abandoned auto were negligent.

Figure 17: Examples of model-level early exit cases on MMLUpro datasets. The exit questions are
correctly answered in principle.
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Examples of Model-Level Confidence Exit on Math

<Question, Correct Answer: [1, 4]>

Question:

Given a mathematics problem, determine the answer.

Question:Compute the domain of the real-valued function \[f(x)=\sqrt{1-\sqrt{2-\sqrt{x}}}.\]
Your final answer should be in the form \boxed{answer}, at the end of your response.

<Agent Answer: [1, 4]>

To find the domain of the function $f(x)=\\sqrt{1-\\sqrt{2-\\sqrt{x}}}$, we need to ensure that the expression under the
square roots is non-negative.\n\nFirst, we start with the innermost expression, $\\sqrt{x}$. Since the square root of a
number is non-negative, we know that $x \\geq 0$.\n\nNext, we consider the expression $2-\\sqrt{x}$. For this to be non-
negative, we need $2-\\sqrt{x} \\geq 0$. Solving for $\sqrt{x}$, we get $\\sqrt{x} \leq 2$, which implies $x \\leq
4$.\n\nFinally, we consider the expression $1-\\sqrt{2-\\sqrt{x}}$. For this to be non-negative, we need $1-\\sqrt{2-\\sqrt{x}}
\\geq 0$. Solving for $\sqrt{2-\\sqrt{x}}$, we get $\\sqrt{2-\\sqrt{x}} \leq 1$, which implies $2-\sqrt{x} \leq 1$. Simplifying,
we get $\\sqrt{x} \\geq 1$, which implies $x \\geq 1$.\n\nCombining the conditions, we have $1 \\leq x \\leq 4$. Therefore,
the domain of the function is $\\boxed{[1, 4]}$.’

<Question, Correct Answer: 7>

Given a mathematics problem, determine the answer.

Question:Evaluate $\left\iceil{\frac32}\right\rceil*2+\left\Iceil{\eft(\frac32\right)*2}\right\rceil$.

Your final answer should be in the form \boxed{answer}, at the end of your response.

<Agent Answer: 9> X

To evaluate this expression, we need to follow the order of operations (PEMDAS):\n\n1. Evaluate the expressions inside
the parentheses: $\\left(\\frac32\\right)*2 = \\frac94 = 2.25$\n2. Evaluate the ceiling function of the result: $\\left\\ceil 2.25
\\right\\rceil = 3$\n3. Evaluate the expression inside the other set of parentheses: $\\frac32$\n4. Evaluate the ceiling
function of the result: $\\left\\ceil \\frac32 \\right\\rceil = 2$\n5. Square the result of step 3: $\\left(\frac32\\right)*2 = \\frac94
=2.25%\n6. Add the results of steps 2 and 5: $3 + 2.25 = 5.25%\n7. Evaluate the ceiling function of the result of step 6:
$S\\left\\iceil 5.25 \\right\\rceil = 63\n\nNow, add the results of steps 2 and 7: $3 + 6 = 9$\n\nTherefore, the final answer is
\\boxed{9}."

Figure 19: Examples of model-level early exit cases on Math datasets. The bottom overconfident
case shows the model partially analyzes the question, potentially leading to a high confidence.
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Examples of Model-Level Confidence Exit on GPQA

<Question, Correct Answer: B>

Can you answer the following question? In the vacuum, we have the following mixture
$\left|\nu_{iNleft(x\right)\right\rangle =e”{ip_{1}x}\cos\theta\left|\nu_{1}\right\rangle
+eNip_{2}x}\sin\theta\left|\nu_{2}\right\rangle $

where $i=e,\mu,\nu, \theta the mixing angle, and \nu_{1} and \nu_{2}$ are the basis of mass eigenstates.

At what value of the mixing angle we will obtain the transition probability $P\left(\nu_{e}\rightarrow\nu_{\mu}\right)=1$.
Choices: (A) pi/2 (B) pi/4 (C) pi (D) pi/3.

<Agent Answer: B>

analysis:We need to analyze neutrino flavor mixing: initial state is electron neutrino? They give general state |v_i(x)> =
eMip1x} cos 0 [v1> + eMi p2 x} sin 6 |v2>. The probability of transition from ve to vy = sin2 28 sin*2(Am”2 L / (4E)). For
maximum probability 1, we need sin*2 26 = 1 AND sin”2 phase term = 1 (i.e., argument = 1/2 + n1r). But question asks at
what mixing angle we will obtain the probability 1 independent of oscillation? If you want probability 1, you need perfect
mixing: 6=11/4 gives maximal mixing so sin’2 26 = sin*2(11/2)=1. So answer (B) 11/4. So "The correct answer is
(B)".assistantfinalln a two-flavor framework the transition probability is \n\n\\nP(\\nu_e\\rightarrow \\nu_\\mu)=\\sin*2
2\\theta \\\\sin"2\\\left(\\frac{\\Delta m"2 L}{4E}\\right),\n\\n\nwhere \\(\\theta\\) is the mixing angle and the second sine
factor contains the usual oscillation phase. \nTo make the probability equal to unity for some distance \\(L\\) we need both
factors to be unity. \nThe phase factor can become unity for suitable \\(L\\) (e.g. when \\(\frac{\\Delta m"2 L}{4E} =
\\pi/2\\)). \nThe remaining requirement is therefore \n\n\\[\n\\sin*2 2\\theta = 1 \\;\\;\\\Longrightarrow\\;\\; \\sin 2\\theta = \\pm
1 \\;\\,\Longrightarrow\\;\\; 2\\theta = \\frac{\pi}{2}\\;( \\text{mod }N\pi).\n\\\n\nThus \n\n\\[\n\\theta = \\frac{\\pi}{4} \\quad
(\text{mod N\tfrac{\\pi}{2}).\n\\\n\nAmong the provided options, the value that gives complete mixing is \\(\\theta = \\pi/4\\).
\nTherefore the correct choice is (B).\n\nThe correct answer is (B).'

<Question, Correct Answer: B>

Can you answer the following question? In a specific region of the sky, astronomers have observed that the number of
stars varies with parallax as 1/pIx*5. How does the number of stars in that region of the sky change with distance (per unit
range of distance, r)? Choices: (A) ~ r*4 (B) ~ r*3 (C) ~ r*2 (D) ~ r"5.

<Agent Answer: B>

analysisWe need to understand relationship between parallax and distance: parallax p (in arcseconds) approx 1/d(pc)
maybe? For small parallax: p = 1/d in arcsec if distance in parsecs. So d = 1/p. Number of stars varying as 1/p*5. Number
of stars per parallax interval? They say number of stars varies with parallax as 1/pIx*5. That implies count N(p) ~ 1/p"5.
We want how number per unit range of distance r behaves: N(r) per unit distance? The distribution of stars per unit
distance range: dN/dr. The relation between p and r: p = 1/r (assuming p in arcsec, r in parsecs). So r = 1/p. So p = 1/r. So
N(p) ~ 1/p"5. But N(p) is number in certain parallax interval maybe? We need convert to N(r). Suppose number per
parallax interval dp is proportional to 1/p*5. The number per unit r: dN/dr = dN/dp * dp/dr. dN/dp = k * 1/p*5. dp/dr =
d(1/r)/dr = -1/rA2. We take magnitude: |dp/dr| = 1/r*2. Express p in terms of r: p = 1/r. So (1/p”5) = 1/( (1/r)*5 ) = r"5. So
dN/dp = k * r"5. Multiply by |dp/dr|=1/r*2 gives dN/dr = k * r"5 * (1/r*2) = k * r*3. So number per unit distance ~ r*3. So
answer (B). That matches typical uniform space density: N(r) ~ r*3. So The correct answer is (B).assistantfinalThe
relationship between parallax \\(p\\) and distance \\(r\\) is \\(p = 1/r\\) (with \\(p\\) in arcseconds and \\(r\\) in parsecs).
\nThe number of stars as a function of parallax is given as \n\\[\n\\frac{dN}dp}\propto \\frac{1}{p”5}.\n\\\nTo find the
differential number per unit distance we use the chain rule\n\\n\\frac{dN}{dr}= \\frac{dN}{dp}\\,\\frac{dp}{dr}.\n\\\n\nFrom
\\(p = 1/r\\), we have \\(dp/dr = -1/r*2\\); taking the magnitude, \\( |dp/dr| = 1/r*2\\). \nSubstitute \\(p=1/r\\) into
\\(dN/dp\\):\n\\\n\\frac{dN}{dp}\\propto \\frac{1}{(1/r)"5} = r*5.\n\\n\nThus,\n\[\n\\frac{dNKdr}\\propto r’5 \\times
\\frac{1}r*2} = r*3.\n\\|\n\nHence, the number of stars per unit range of distance \\(r\\) scales as \\(r*3\\).\n\nThe correct
answer is (B)."} (We did not find negative cases when using model-level early exit.)

Figure 20: Examples of model-level early exit cases on GPQA datasets, where we did not find
negative cases (i.e., the model is overconfident).
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Examples of Token-Level Compression

<Token-Level Semantic Focus Analysis>
Below are the key points where other agents **disagree** with your own reasoning.*
Concentrate on those disagreements and Keep or revise your answer accordingly.

<Copy the first agent message as the content is determined by internal attention that would be useful for current agent>
One agent solution: “analysisWe need interpret reaction: 9-fluorenone + 2 equivalents of Selectfluor under photochemical? 400nm? Then product
observed via 19F NMR with two fluorine signals: +29.8 ppm and -115.7 ppm. Which product matches? We need consider structure of products.

9-fluorenone has no fluorine. Fluorine signals appear from added fluorine atoms (from Selectfluor) presumably fluorination of the aromatic system. 19F
NMR chemical shifts: +29.8 ppm is typical for aromatic fluorine attached to sp2 carbon in aromatic ring (like fluorobenzene ~7-8 ppm? wait
fluorobenzene is 7 ppm. Actually 19F NMR for fluoride attached to benzene ring: about -113 to -115 ppm. For CF3 group ~ -65 ppm. For fluorines
bound to carbonyl? Let's recall typical shifts: In 1,2-difluoro compounds, one signal can be upfield and one downfield depending on environment. For
example, 2,4-difluoroaniline maybe at ~-110 and -45? Hard.

Let's analyze options:

(A) 1,5-difluoro-9H-fluoren-9-one. This would be fluorine at positions 1 and 5 of the fluorenone core. Aromatic fluorine signals for 1,5-difluoro;
symmetrical? Two identical signals? But 19F NMR would show one signal (if equivalent)? Actually if two fluorines are meta to each other? Might be
equivalent? 1,5-difluoro: two positions are equivalent if molecule symmetrical (flipped). For 1,5-difluoro-9-fluorenone, the two fluorines would be in
symmetric positions. Would give a single 19F signal. But question says two fluorine signals, so (A) unlikely.

(C) 2,6-difluoro-9H-fluoren-9-one: also symmetrical? 2,6 are para on each phenyl ring? The two fluorines are in equivalent positions (mirror plane
through center). Might again give single signal. So (C) unlikely.

(B) 2'-fluoro-[1,1"-biphenyl]-2-carbonyl fluoride. This is a different product: a biphenyl with fluorine on one ring and a carbonyl fluoride on other. This
would have a single fluorine (the one at 2' position). Therefore only one 19F signal. So also unlikely.

(D) 4'fluoro-[1,1"-biphenyl]-2-carbonyl fluoride. Also single fluorine.

One agent solution: “analysisWe need to analyze the described reaction: 9-fluorenone (structure: a fluorenone: a fused ring (fluorene) with a

carbonyl at center? Actually 9-fluorenone is a 9-carbonyl in fluorene. 2 equivalents of Selectfluor used in acetonitrile, irradiated with 400 nm light.
Reaction product has two fluorine signals: +29.8 ppm and -115.7 ppm in 19F NMR. Need to identify which structure among the options is correct
product. Let's parse the options:

(A) 1,5-difluoro-9H-fluoren-9-one
(B) 2'-fluoro-[1,1"-biphenyl]-2-carbonyl fluoride

(C) 2,6-difluoro-9H-fluoren-9-one
(D) 4'-fluoro-[1,1'-biphenyl]-2-carbonyl fluoride

<Delele useless background information,>
We need to consider the reaction conditions. Selectfluor is used as a fluorination agent. Selectfluor is known to be a strong oxidant and fluorinating
reagent, can generate radical cation. 9-Fluorenone has a central carbonyl. But 2 equivalents of Selectfluor might produce two fluorine atoms.

<Keep useful induction>
Looking at the product options: Both (B) and (D) are biphenyl derivatives with a carbonyl fluoride group at the 2-position of the biphenyl core. The
difference is the position of a fluorine substituent on the biphenyl ring: 2' vs 4'.

<Cut out useless reasoning paths>

Options (A) and (C) are difluoro-substituted fluorene-9-one. 1,5-difluoro vs 2,6-difluoro arrangement on the fluorene core. Those are fluorinated at the
aromatic positions adjacent to the carbonyl (perhaps positions that are 1 and 5, or 2 and 6 referencing fluorene numbering). But do we expect
difluorination of the aromatic ring? Maybe the reaction could be electrophilic aromatic substitution with electrophilic fluorine; but Selectfluor is a
fluorinating agent, providing F+. With 9-fluorenone, electrophilic aromatic substitution would likely occur at positions ortho/para to the carbonyl? etc)
perhaps the substituents on the ring positions adjacent to the central carbonyl. | need to draw structure:

The numbering scheme: positions 1, 3, 5, 7 correspond to the outer ring carbons; Let's quickly sketch: The central carbonyl is at position 9. | need to
be precise. Let's step aside: We might not need exact numbering™™"

Using the reasoning from other agents as additional advice, can you give an updated answer? Examine your solution and that other agents step by
step. Let's think step by step. Your last sentence should be 'The correct answer is (insert answer here).' e.g., The correct answer is (A).

Figure 21: Detailed example of token-level semantic focus. There is content from two agents in the
figure. The first agent’s answer was largely adopted, whereas the second agent’s answer was largely
cropped. <comments> shows places that were adaptively compressed by the model’s attention
mechanism.
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Token-Level Semantic Focus Cases

Question: If Real GDP = $200 billion and the price index = 200 Nominal GDP is:

P o LLM Agent 1

To find the Nominal GDP, we need to multiply the
Real GDP by the price index. Real GDP = $200
billion. Price Index = 200.Nominal GDP = Real
GDP * Price Index. Nominal GDP = $200 billion *
200. Nominal GDP = $40,000 billion. However,
none of the options match this calculation. This
might be due to the fact that the question is based
on a typical assumption that the price index is a
percentage increase. In this case, the correct
answer should be the Real GDP multiplied by (1 +
(Price Index / 100)). Price Index = 200. Price Index
Percentage = (200 / 100) = 2. Nominal GDP =
Real GDP * (1 + Price Index Percentage). Nominal
GDP = $200 billion * (1 + 2). Nominal GDP = $200
billion * 3. Nominal GDP = $600 billion.

Wrong X

-]
P Y LLM Agent 2

To solve this, we need to understand the
relationship between Real GDP and Nominal GDP.
Real GDP is the value of goods and services
produced in a country, adjusted for inflation.
Nominal GDP, on the other hand, is the value of
goods and services produced in a country, without
adjusting for inflation. The formula to find Nominal
GDP from Real GDP is: Nominal GDP = Real GDP
* (Price Index / 100).Given that Real GDP = $200
billion and the price index = 200, we can plug in
the values: Nominal GDP = $200 billion * (200 /
100). Nominal GDP = $200 billion * 2. Nominal
GDP = $400 billion

So, the correct answer is (1) $400 billion.

Correct @

™ LLM Agent 3

To find the nominal GDP, we need to multiply the
real GDP by the price index. .Nominal GDP = Real
GDP * Price Index. Nominal GDP = $200 billion *
200\

Nominal GDP = $40 trillion * 5 (since 200/5 = 40)
Nominal GDP = $40 trillion * 10 (since 200/20 = 10
is not correct but 200/5 = 40 is correct.

Nominal GDP = $40 trillion * 5 (since 200/5 = 40)
Nominal GDP = $40 trillion * 10 (since 200/20 = 10
is not correct but 200/5 = 40 is correct.

Wrong X

Token-level Semantic Focus | Agent 1’s Debate Content
<compressed LLM Agent 2’s Content Start> To solve this, we need to
understand the relationship between Real GDP and Nominal GDP. Real GDP
is the value of goods and services produced in a country ... <compressed
LLM Agent 2’s Content End> <compressed LLM Agent 3’s Content Start>
To find the nominal GDP, we need to multiply the real GDP by the price
index. .Nominal GDP = Real GDP * Price Index. Nominal GDP = $200 billion *
200 <compressed LLM Agent 3’s Content End>

| see that they are all calculating the Nominal GDP by multiplying the Real
GDP by the price index. However, one agent is using the correct formula to
adjust for the price index, which is Nominal GDP = Real GDP * (Price Index /
100)..Real GDP = $200 billion. Price Index = 200 Nominal GDP = Real GDP *
(Price Index / 100) Nominal GDP = $200 billion * (200 / 100). Nominal GDP =
$200 billion * 2. Nominal GDP = $400 billion

— LLM Agent 1

Correct @

Token-level Semantic Focus | Agent 3's Debate Content
<compressed LLM Agent 1's Content Start> To find the Nominal GDP, we
need to multiply the Real GDP by the price index. . Real GDP = $200 billion.
Price Index = 200 ...<compressed LLM Agent 1’s Content End>
<compressed LLM Agent 2’s Content Start> To solve this, we need to
understand the relationship between Real GDP and Nominal GDP. Real GDP
is the value of goods and services produced in a country, adjusted for
inflation. ... <compressed LLM Agent 2’s Content End>

o

LLM Agent 3
Epon reviewing my previous solution and the additional advice from other
agents, | realize that | made an incorrect assumption about the price
index. .Let's re-evaluate the problem with the correct approach. .Nominal GDP
= Real GDP * (Price Index / 100).Given that Real GDP = $200 billion and the
price index = 200, we can plug in the values: Nominal GDP = $200 billion *
(200 / 100). Nominal GDP = $200 billion * 2.
Nominal GDP = $400 billion.

Correct @

Figure 22: Visualization of token-level semantic focus helped agents correct their answers during
the SID. Specifically, SID invokes a compressed debate round, highlighting disagreement-relevant
spans across debate contents. Agent 1 and Agent 3 iteratively revise their reasoning based on focused
inputs, ultimately correcting earlier errors and converging on the correct answer.
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