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Abstract

The design and discovery of new materials with specific
properties is a costly and time-consuming process because
of the vast search space and the high cost of experimental
testing. Simulation and machine learning offer promising
solutions to address these challenges. Carbon nanotubes
(CNTs) are highly promising nanoscale materials renowned
for their exceptional mechanical, electrical, and thermal
properties, and have a wide range of potential applications.
The properties of CNTs are related to their structural char-
acteristics, which are determined by the growth parameters.
In this paper, we present CNT-Former, a generative adver-
sarial network (GAN) using a transformer-based architec-
ture and frequency domain encoding to simulate CNT struc-
tures based on given growth parameters. Our ultimate ob-
jective is to identify the optimal growth parameters for the
desired structures and properties. This approach provides a
more scalable alternative to traditional finite element simu-
lators while maintaining high accuracy in simulating CNT
structures. Additionally, it allows for the integration of real,
multi-modal experimental data, grounding the simulations
in actual experimental results. Experimental results demon-
strate promising structural fidelity and strong class discrim-
ination capabilities for CNT-Former.

1. Introduction

Carbon nanotubes (CNTs) [7] are cylindrical nanostruc-
tures made of carbon atoms arranged in a hexagonal lat-
tice. CNTs offer unique mechanical, electrical, and ther-
mal properties that are useful across various industries, from
consumer electronics and energy devices to biomedical and
healthcare [9]. CNTs are typically grown through chemi-
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Figure 1. Real and simulated CNT forest images. (a) Real CNT
forest imaged using scanning electron microscope (SEM); (b)
CNT forest simulated using physics-guided finite element simu-
lations [14]; (c) SEM-like photo-realistic image of the simulated
CNT forest using neural style transfer [11]

.

cal vapor deposition (CVD) or other similar methods [10].
The growth process involves the deposition of carbon atoms
onto a substrate, where they form CNTs under specific con-
ditions. The growth conditions determine the structure and
properties of the resulting CNTs. Development of new
CNT materials with desired properties is an expensive and
time-consuming process, since many experiments need to
be conducted to grow and test the new CNTs. Simula-
tion and machine learning offer new opportunities in the
design and discovery of new materials. Previous work de-
veloped a physics-based finite element simulation to model
carbon nanotube (CNT) forests [10, 14]. This model con-
siders attraction between neighboring CNTs and allows the
growing and deforming CNTs to interact and react based
on a balance of forces [14] (Figure 1). This physics-based
simulation effectively captures the morphology and over-
all properties of CNT forests, allowing researchers to ana-
lyze and predict their mechanical properties. By combin-
ing this with a custom style transfer [11], current methods
also enable generation of high-fidelity, photo-realistic im-
ages of CNT forests. These images are critical for training
and evaluation of image analysis methods, which are essen-
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tial for segmentation and characterization [6, 11], for non-
destructive material property prediction, and for exploring
structure-property relationships. Although highly valuable,
this physics-based finite element simulation has two main
limitations: its high computational cost and its inability to
integrate real experimental data. The finite element simula-
tion involves inverting large matrices, which makes it slow
and prone to numerical instability. Furthermore, this ap-
proach lacks a mechanism for incorporating experimental
data, such as the structure of CNTs grown under specific
environmental conditions to improve the simulation.

Recent years have seen rapid advancements in generative
AI, particularly in generative adversarial networks (GANs).
GANS frame the learning process, the mapping from latent
space to generated data points, as a zero-sum adversarial
game between two players [5]. These models have been
well studied and widely used in the field of generative AI,
having seen the quickest adaptation in computer vision for
image generation [1, 16], and have since rapidly expanded
into other areas and data modes. Our study proposes an
adversarially trained deep generative neural network frame-
work for generating individual CNT samples, in interest of
further enhancing the quality of data we are able to generate
for designing automated image analysis methods for CNT
forests.

These advances have led to the proposal of several ad-
versarially trained networks for signal synthesis, many of
which employ autoregressive methods in both the generator
and discriminator [2, 15, 21]. While these methods are pow-
erful, they are hindered by high computational complexity
during both training and inference. In contrast, transform-
ers [19] offer a model architecture that can be trained for se-
quence prediction and modeling without the need for auto-
regression at training time. As such, the transformers, par-
ticularly the transformer encoders, lend themselves nicely
as architectures for learning mappings between the latent
space and the data distribution that we aim to model. While
the progression of thought for signal GANs is promising,
transformer encoders were initially used as a backbone in
computer vision tasks. The Vision Transformer (ViT) [4]
demonstrated that embedding image patches as a sequence
enabled transformer encoders to excel in image classifica-
tion tasks. Building on this, TransGAN [8] applied the same
principle to GANs for image generation, showing that a
fully transformer encoder-based backbone could effectively
drive image synthesis. TTS-CGAN [13] demonstrated that
a GAN architecture with a transformer backbone could be
effectively applied to signal generation by treating signals
as one-dimensional images and adapting the ViT’s patch di-
vision to this representation.

The Fourier transform plays a central role in signal anal-
ysis by converting a signal from the time domain to the
frequency domain. This transformation provides valuable

insights into the frequency components of a signal, which
are often more useful for analysis. The Fourier transform
represents periodic signals as a sum of sinusoidal functions
with varying frequencies, where these components are en-
coded using complex numbers. Many standard operations
that deep networks rely on are not defined on the outputs
of a Fourier transform directly, one has to take a few liber-
ties, or compute other abstractions on the components. For
example, in the MelGAN architecture [12], the outputs of a
short-time Fourier transform are multiplied with a Mel basis
in order to form a Mel spectogram as input to the network.
Fourier encodings of this sort are done to allow networks to
learn very high frequency data more easily, and stably [17].

In this paper, we present a novel CNT simulator
based on generative adversarial networks (GANs) with a
transformer-based architecture and frequency domain en-
coding. This approach not only addresses the high com-
putational cost of physics-based finite element simulations
but also facilitates the integration of real multi-modal ex-
perimental data, grounding the simulation in actual data and
enhancing its representational accuracy.

2. Methods

2.1. Physics-guided CNT simulation
The synthetic dataset used in our study was generated
through physics-based finite element simulations, as de-
scribed in [10, 14]. This model accounts for van der Waals
(vdW) attraction between neighboring CNTs and enables
the growing and deforming CNTs to interact and respond
based on a balance of forces [14]. Given a set of input
parameters, the physics-based simulation produces a CNT
forest model M = {M1,M2, . . . ,Mm} where each Mi

represents an individual CNT defined by its coordinates
Mi = {(x1, y1), (x2, y2), . . . , (xk, yk)}. The input param-
eters such as CNT growth rate and density affect the mor-
phology, particularly curvature, of the generated CNTs.

2.2. Network architecture
We developed a generative adversarial network (GAN),
CNT-Former, with a transformer-based architecture and
frequency-domain encoding. This network is illustrated in
Figure 2 and is described in the following.

Transformer structure: The structure of the main encoder
blocks used as feature extractors within both networks uses
a pre-norm structure [20], and learned positional encodings
were used in both networks.
Generator: The generator of the proposed CNT-Former
network is made up of three stacked transformer encoders,
broken up by linear reprojection layers and succeeded by a
single linear output head for the final reprojection into N

2 ×2
Fourier coefficients, which are then passed to the discrimi-
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Figure 2. CNT-Former network architecture. The generator (pink block) outputs Fourier components, which are input to the Discriminator
(blue block) directly without transforming back to the temporal domain. The generator outputs both adversarial logits and classification
logits, which helps the model to adhere to the class distributions of the data.

nator. The generator is also provided with discretized input
parameter labels, which are mapped through a learned em-
bedding and concatenated onto the latent vector before the
whole vector is fed into the generator. The adversarial loss
per sample for the generator is defined as

LGadv = −PF (1)

where PF is the adversarial logit of the discriminator for
the fake sample. The classification loss for the generator is
defined as the cross-entropy between the discriminator pre-
dicted class logits for the fake sample, and the class indices
that the generator received as input in generating that sam-
ple,

LGcls = −
NC∑
i=1

yf (i) log(PFC(i)) (2)

where PFC denotes the discriminator’s class predictions on
the fake sample. The combined loss is defined as,

LG = αLGadv + βLGcls (3)

where α, β are hyperparameters set by the user. In our
experiments, we found α = 1.2 and β = 0.8 to work best
heuristically. This combined loss encourages the generator
to generate samples which match the class distribution
in addition to winning the adversarial game against the
discriminator [3, 13].

Discriminator: The discriminator is made up of a sin-
gle transformer encoder layer and two linear classification
heads, one for adversarial logits and one for class logits,
with the input reshaped into patches and a class (cls) token
appended to each patch [4, 13]. Since the data are relatively
low dimensional, the data in the discriminator is also lin-
early reprojected into a sequence with higher feature dimen-
sionality and higher sequence length in order to allow for

the patch divisions. We found in practice that these learned
reprojections were more effective than simple padding or
up-sampling. The same was true in the generator. The ad-
versarial loss per sample for the discriminator is defined as
the hinge loss for the adversarial predictions:

LDadv = max(0, 1 + PR) + max(0, 1− PF ) (4)

where PR and PF denote the discriminator predictions for
the real and fake samples, respectively. The per batch loss
is simply the mean of these per sample scores. The classifi-
cation loss is simply the cross-entropy between the discrim-
inator’s class logit outputs, and the class indices for the real
signal.

LDcls = −
NC∑
i=1

yr(i) log(PRC(i)) (5)

where PRC denotes the discriminator’s class predictions on
the real samples. The combined loss is a weighted sum of
these two losses,

LD = αLDadv + βLDcls (6)

2.3. Frequency-domain processing

Both generator and discriminator were designed to operate
in frequency domain through the use of Fourier coefficients.
The discriminator was designed to accept a sequence of size
(N2 , 2), representing the real and imaginary components of
the Fourier decomposition of a CNT signal. This reformu-
lates the generator’s task, shifting it from learning a signal
based on 1D spatial information to learning it through 2D
frequency components. The generator was trained to gen-
erate (N2 , 2) frequency components of a signal, customized
with respect to the input class indices.

3652



Figure 3. t-SNE (t-Distributed Stochastic Neighbor Embedding) analysis [18] between physics-based and CNT-Former generated CNTs
for each of the nine classes (top row) and between class 1 and classes 1-9 of CNT-Former generated CNTs (bottom row).

(a) class=1 (b) class=9

Figure 4. CNT-Former generated CNT samples from the lowest
and highest frequency classes, plotted in the temporal domain after
being reconstructed from the output Fourier components.

3. Experiments

The proposed network was trained for 50 epochs over the
data. We found that the data distribution generally required
a smaller batch size, and so training was carried out in
batches of size 16, for a total of 51207 training updates. The
generator and critic were both set to have hidden dimen-
sions of 256, 16 attention heads, and a model depth of 12,
although we don’t doubt that a larger model might improve
results. Training took roughly 45 hours on one NVIDIA
A100 GPU.

3.1. Experimental results and evaluation
Figure 4 displays sample CNTs generated from two input
parameter classes using the proposed CNT-Former network.
These results not only highlight the structural fidelity to real
CNTs but also demonstrate high within-class and low inter-
class structural similarities.

3.1.1. t-distributed Stochastic Neighbor Embedding
To further evaluate the quality of the generated CNTs, we
employed the t-distributed Stochastic Neighbor Embedding
(t-SNE) [18] dimensionality reduction technique to visual-
ize the latent structure of the CNTs.

The top row of Figure 3 illustrates pairwise embeddings
between physics-based and CNT-Former generated CNTs
across all nine classes. The close clustering of correspond-
ing data points indicates strong structural similarity, under-
scoring the generative capacity of CNT-Former in replicat-

ing the distribution of physically simulated CNTs.
The bottom row of Figure 3 presents pairwise t-SNE em-

beddings between CNT-Former generated CNTs from class
1 and those from classes 1 through 9. The clear separation
between these clusters demonstrates the model’s ability to
capture class-specific variations, highlighting its discrimi-
native power.

It is important to note that for certain class pairs, particu-
larly between low-frequency and middle-frequency CNTs,
the structural differences were inherently subtle, even in
the physics-based simulated data that serve as our ground
truth. This intrinsic similarity limits the degree of inter-
class separation observable in the t-SNE plots and partially
explains why CNT-Former also exhibits less distinction be-
tween these specific classes. These overlaps reflect the chal-
lenge posed by ambiguous class boundaries in the input data
itself, rather than a limitation of CNT-Former.

3.1.2. Inter-class scatter analysis
To further investigate the discriminative and generative
properties of CNT-Former, we analyzed the inter-class scat-
ter, defined as:

SB =

C∑
k=1

nk(µk − µ)(µk − µ)T , (7)

where C is the total number of classes, nk is the number of
samples in class k, µk is the mean vector of class k, µ is the
overall mean vector across all classes, and (µk − µ)(µk −
µ)T is the outer product that quantifies the deviation of class
k’s mean from the overall mean.

As illustrated in Figure 5, this inter-class scatter matrix
SB provides insight into how well the feature representa-
tions of different classes are separated, with higher values
indicating stronger class-wise discrimination. The red bars,
representing the inter-class scatter between physics-based
and CNT-Former generated CNTs, remain consistently low,
indicating that the generative model effectively replicates
the real data structure and preserves the distributional char-
acteristics of individual classes. The blue bars, representing
the inter-class scatter between class 1 and classes 1-to-9 of
the CNT-Former generated CNTS, are not only higher com-
pared to red bars (similarities between physics-based and
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Figure 5. Inter-class scatter analysis between physics-based and CNT-Former generated CNTs (red) and between class 1 and classes 1-9 of
CNT-Former generated CNTs (blue).

CNT-Former generated CNTs) but also grow significantly,
particularly for the classes 7-to-9 (classes with highly dif-
ferent growth parameters compared to class 1). This pat-
tern suggests that the generative model effectively learns
to distinguish between different growth classes and asso-
ciated structural properties. These results indicate that the
model does not only replicate individual class distributions
but also captures the relative differences between low- and
high-frequency classes, reinforcing their distinguishability
in the embedding space. We found that the higher fre-
quency classes outperformed slightly in terms of their dis-
tribution quality when compared to the lower frequency
classes. The model itself could also likely be pruned post
training, as even the high frequency class CNTs have most
of the Fourier components close to zero in both the real and
the generated samples.

4. Conclusion and Future Works

In this paper, we introduced CNT-Former, a novel CNT
structure simulator based on generative adversarial net-
works (GANs), using a transformer-based architecture and
frequency-domain encoding. CNT-Former offers a scal-
able alternative to traditional simulators, reducing compu-
tational demands while maintaining the accuracy of simu-
lated CNT structures. CNT-Former also enables integration
of real, multi-modal experimental data to the model improv-
ing its accuracy. We demonstrated in our experiments that
CNT-Former is able to generate diverse and realistic CNTs,
while preserving signal feature differences between differ-
ent growth parameter classes.

The structure of individual CNTs is shaped by both in-
put growth parameters and interactions with neighboring

CNTs. While CNT-Former models CNT growth at the in-
dividual level and does not explicitly incorporate CNT-to-
CNT interactions, its learned representations implicitly cap-
ture some of the effects of these interactions. Future future
work will focus on extending CNT-Former to simulate the
collective growth of entire CNT forests by explicitly mod-
eling interactions among neighboring CNTs, and addition-
ally adding measures to consider continuous parameters for
CNT growth to enhance both modeling fidelity and inter-
pretability. Additionally, we will continue to explore av-
enues for evaluation of generated samples, in order to evalu-
ate future iterations against this one, and all of them against
data collected from real physical experiments.
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