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Abstract
We introduce a highly multimodal transformer
that analyzes many remote sensing modalities —
multispectral optical, synthetic aperture radar, el-
evation maps, weather, pseudo-labels, and more
— across space and time. These inputs are useful
for diverse remote sensing tasks, e.g., crop map-
ping, flood detection, etc. However, learning rep-
resentations of remote sensing data is challenging;
e.g., objects of interest vary massively in scale,
from small vessels (1−2 pixels and transient) to
glaciers (thousands of pixels and persistent). We
present a novel self-supervised learning algorithm
that extracts multi-scale features through masked
modeling. Our two-task approach consists of
global and local training objectives that differ w.r.t.
prediction targets (deep vs. shallow) and masking
strategies (structured vs. not). With a single pre-
trained encoder, our Galileo model outperforms
SoTA models for satellite images and pixel-time
series — extensively evaluated over eleven bench-
marks spanning multiple task types.

1. Introduction
Learning representations of large-scale and multimodal
geospatial data is a long-standing scientific and practical
goal. This goal is motivated by the increasing impact of
machine learning and remote sensing in societally important
domains (e.g. food security (Kerner et al., 2020) or disaster
response (Frame et al., 2024)) where labels are expensive or
difficult to acquire (Kebede et al., 2024).

Self-supervised learning (SSL) unlocks harnessing vast
quantities of unlabeled data, as is available for remote sens-
ing, but can require customization for a given type of data.
SSL for RS (Jean et al., 2019; Cong et al., 2022) has there-
fore specialized to certain input modalities or shapes, such
as pixel timeseries vs. image timeseries, following the pio-
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neering methods for learning from photograph (Chen et al.,
2020; He et al., 2022) and text (Devlin et al., 2018). In a
nutshell, these methods create two versions (“views”) of an
input and pretrain a model, or several models, to predict one
view given the other. After pretraining, the learned represen-
tations can then transfer to real tasks through finetuning or
reuse as features, even with limited labels or computation.
We unify SSL over multiple modalities and input shapes
used for remote sensing in practice, yielding a flexible model
of both image and pixel timeseries.

For spatiotemporal scale, satellite imagery encompasses
objects of a variety of spatial and temporal extents. Com-
mon resolutions are 10m per pixel and 6 acquisitions per
month. Thus—unlike in most natural imagery (e.g., Ima-
geNet (Deng et al., 2009)) or video (e.g., Kinetics-400 (Kay
et al., 2017))—an object in RS (such as a small fishing ves-
sel) may be represented by only a single pixel in RS and
can be present in just a single frame (Beukema et al., 2023).
Conversely, an object may be a kilometer-scale glacier that
requires tracking over decades (Baraka et al., 2020). We
address this challenge of the massive scale differences in
Earth’s surface features by designing a dual-objective SSL
algorithm to learn representations of small (“local”) and
large-scale (“global”) phenomena.

For modalities, the number and variety of sensors has driven
progress in the RS community on data fusion for earth
observation. Many methods model multispectral optical
(MS) data (Cong et al., 2022; Noman et al., 2024; Nedungadi
et al., 2024), synthetic aperture radar (SAR) data (Wang
et al., 2024b;a), or joint MS and SAR data (Fuller et al.,
2024; Xiong et al., 2024), but not other modalities and not
across time. Other methods model MS data across time,
but no other modalities (Bastani et al., 2023; Szwarcman
et al., 2024). Limiting the number and diversity of views of
the Earth for learning may limit the utility and generality
of the resulting representations for predictions and analysis.
This could limit transfer with or without finetuning, and
especially without, which may be more computationally
feasible for applied and interdisciplinary practitioners.

We propose Galileo, a new family of models for multiple
modalities (optical, radar, ...) scales (global, local), and
shapes (pixel timeseries, image timeseries, single images)
of remote sensing data. Our models learn multimodal, multi-
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Figure 1. A single Galileo encoder can be
applied to a wide range of remote sens-
ing tasks. We achieve this by training
Galileo on the diversity of remote sensing
modalities used by practitioners for dif-
ferent applications. In addition, we train
Galileo to ingest views of these modalities
used by practitioners, ranging from pixel
timeseries to multi timestep imagery to
single timestep imagery.

scale, and flexible representations for Earth Observation
with SoTA downstream task results. We achieve this with
(i) a novel self-supervised learning (SSL) algorithm which
extends the masked data modeling framework to learn useful
representations of “local” and “global” features, and (ii) a
globally sampled, highly multimodal pretraining dataset
which includes inputs specifically selected because of their
use across diverse remote sensing tasks.

We demonstrate Galileo’s accuracy on an extensive suite
of benchmarks, covering many applications, domains, and
RS data types. Specifically, our Galileo-Base model ranks
first above larger RS models specialized for images, such
as SatMAE (Cong et al., 2022) and CROMA (Fuller et al.,
2024), and at the same time and with the same set of weights
Galileo-Base ranks above RS models specialized for pixel-
timeseries such as Presto (Tseng et al., 2023).

2. Global, Local, Multimodal Self-Supervision
We collect a large, rich dataset of highly multimodal remote
sensing data specifically sampled for geographic and se-
mantic diversity (Sec. 2.1). To learn rich representations
of the diverse modalities in this dataset across massive fea-
ture scales, we design a novel and highly effective SSL
algorithm:

Galileo learns representations via two masked data modeling
objectives, which we call our global and local tasks (Figure
2). Masked modelling operates as follows: given a sample
x, apply a mask to the sample. This sample with a mask
applied is called the “visible” view, xv; the elements of x
which have been removed by the mask make up the “targets”,
xt. The goal in masked modelling is to predict the targets
xt given the visible view xv .

We use a transformer-based encoder to learn latent features
from our multimodal remote sensing data. We therefore
tokenize our remote sensing inputs (Sec. B.0.1). The mask-
ing and target prediction occurs in token space z, not input

space x.

Our global and local objectives differ in important ways: (i)
target construction, and (ii) masking strategies.

Deep targets → global features; shallow targets → local
features. Our target prediction occurs in the token space,
so we construct target tokens by passing our target sample
xt to a “frozen” encoder (Sec. B.0.3). This construction
has important consequences for the learned latents. If we
construct target tokens that contain global information, we
will train an encoder to output latents that facilitate global
feature prediction. Conversely, if we construct target tokens
that contain local information, we will encourage the en-
coder to extract local features. We thus construct global
targets by processing our target sample xt with our frozen
encoder. We construct local targets by processing our target
sample xt with a single linear layer. Intuitively, deeper
representations contain more global information than
shallower representations, which are closer to inputs.
Galileo learns representations of both global and local fea-
tures by alternating between deep and shallow targets during
pretraining.

Space-time masking → global features; unstructured
masking → local features. Masking strategies are rules
governing which tokens are visible, i.e., used as inputs and
which are used as outputs (Sec. B.0.2); the choice of strategy
affects the learned representations. Intuitively, prediction
over larger scales promotes global features compared to
prediction within a neighborhood. We thus setup a global
masking strategy that separates visible and target tokens by
longer spans, called “space-time” masking. Conversely, we
leverage unstructured random masking for our local task.
Galileo learns multi-scale features by alternating between
structured masking (longer spans) and unstructured masking
(shorter spans) during pretraining.

A more detailed description of our method is available in
Appendix B.
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m-EuroSat m-BigEarthNet m-So2Sat m-Brick-Kiln
Top-1 Acc. F1 Score Top-1 Acc. Top-1 Acc.
Training % Training % Training % Training %

Method Arch. 100% 1% 100% 1% 100% 1% 100% 1%

SatMAE ViT-Base 84.1 34.8 50.6 29.0 36.0 23.1 86.1 73.5
SatMAE++ ViT-Large 82.7 48.5 50.8 31.6 34.7 23.4 89.6 76.7
CROMA ViT-Base 85.6 51.3 58.8 44.7 48.8 33.8 92.6 85.1
SoftCon ViT-Small 89.8 27.2 64.7 43.3 51.1 31.4 89.2 77.8
DOFA-v1 ViT-Base 82.8 49.6 49.4 29.9 41.4 29.4 88.3 78.3
Satlas Swin-Tiny 81.7 35.8 51.9 29.6 36.6 27.1 88.2 73.0
MMEarth CNN-atto 81.7 30.0 58.3 39.6 39.8 25.1 89.4 79.7
DeCUR ViT-Small 89.0 46.6 63.8 49.6 45.8 30.9 83.7 74.2
Prithvi 2.0 ViT-Large 80.2 48.0 49.4 28.8 29.5 26.1 87.9 80.6
AnySat ViT-Base 82.2 47.1 54.9 33.7 39.8 29.0 85.3 72.0

Galileo ViT-Nano 89.7 41.7 53.8 33.9 50.1 37.4 86.7 79.7
Galileo ViT-Tiny 90.1 41.3 55.5 34.4 49.7 36.2 86.9 77.3
Galileo ViT-Base 93.0 56.6 59.0 36.5 54.8 43.2 90.7 78.0

Table 1. Galileo-Base is the best model for im-
age classification (%) by kNN. We show the best
architecture per method. We bold and underline
the 1st and 2nd best results across all methods
and architectures, as reported in Table 9.

2.1. Galileo’s Pretraining Data

We collect a large, globally sampled pretraining dataset
of 127,155 training instances. Section C.1 describes our
dataset sampling process. We include a wide range of RS
inputs to serve diverse applications. A training instance
consists of 4 types of data covering 9 RS data modalities. We
select these modalities based on their uses in past machine
learning for remote sensing efforts (Van Tricht et al., 2023;
Beukema et al., 2023; Poggio et al., 2021).

We group the modalities by whether they vary in space, time,
both, or neither. A single instance consists of 24 monthly
timesteps and 96× 96 pixels at a 10m/pixel resolution.

Space-time varying data. These data consist of imagery
acquired by Sentinel-1 & -2 satellites. For Sentinel-1, we
take the VV and VH polarizations; and for Sentinel-2, we
take all bands except the B1, B9 and B10 bands. All bands
are resampled to a 10m/pixel resolution. We also include
NDVI (Tucker, 1979) from Sentinel-2 as an input.

Space varying data. These data consist of elevation and
slope captured by the Shuttle Radar Topography Mission
(NASA JPL, 2000), which are constant in time; Dynamic
World land cover map probabilities (Brown et al., 2022),
averaged over time for temporal consistency; and World
Cereal agricultural land cover maps (Van Tricht et al., 2023).

Time varying data. These data consist of precipitation and
temperature from the ERA5 dataset (Hersbach et al., 2020);
climate water deficit, soil moisture, and actual evapotran-
spiration from TerraClimate (Abatzoglou et al., 2018); and
VIIRS nighttime lights (Elvidge et al., 2017). Although
these modalities vary in space as well, their spatial resolu-
tion (ERA5 has a spatial resolution of tens of kilometres
per pixel) means we treat them as static in space from the
perspective of a single instance.

Static data. These data consist of population estimates
from the LandScan dataset (Dobson et al., 2000), the spatial

location of the instance, defined by its central latitude and
longitude, Dynamic World classes spatially averaged over
the instance, and World Cereal agricultural land cover maps
spatially averaged over the instance. We include the aver-
aged Dynamic World and World Cereal inputs in addition
to the space-varying inputs.

3. Experimental Framework
Pretraining. We pretrain three model sizes for 500 epochs
using the algorithm described in Section ??. Please see the
Appendix for complete details.

Downstream Tasks. We evaluate our model on all Sentinel-
2 tasks in GeoBench (Lacoste et al., 2024). These cover
single-timestep image classification and segmentation in
various applications and geographies. We also test on fine-
grained segmentation via the MADOS marine debris dataset
(Kikaki et al., 2024), Sentinel-1 image segmentation via
Sen1Floods11 (Bonafilia et al., 2020), image-timeseries seg-
mentation via PASTIS (Garnot & Landrieu, 2021), optical
pixel-timeseries classification via Breizhcrops (Rußwurm
et al., 2019), and multimodal pixel-timeseries classification
via CropHarvest (Tseng et al., 2021).

Comparisons. We benchmark our models against all SoTA
pretrained RS models (described in Section A). We report re-
sults on the full test set for each task. Feature scaling, image
sizes, and hyperparameter selections have significant effects
on model performance (Corley et al., 2024). We therefore
rerun evaluations for all baseline models and sweep feature
scaling methods and learning rates (where appropriate). In
addition, we resize all images to the pretraining image size.
For the image classification and segmentation tasks, we
measure model results across four training set sizes (“par-
titions”): 100%, 20%, 5%, and 1%. We use a patch size
of 4 for all models with variable patch sizes. When apply-
ing single-timestep models to the multi-timestep PASTIS
dataset, we additionally sweep pooling methods to pool per-
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m-Cashew-Plant m-SA-Crop-Type MADOS Sen1Floods11 PASTIS
Training % Training % Training % Training % Training %

Method Arch. 100% 1% 100% 1% 100% 1% 100% 1% 100% 1%

SatMAE ViT-Large 30.8 22.7 24.8 16.9 55.6 13.2 N/A 29.6 11.5
SatMAE++ ViT-Large 29.6 23.3 25.7 16.8 49.9 12.7 N/A 30.5 12.0
CROMA ViT-Base 31.8 26.8 32.0 18.3 64.2 24.4 78.9 77.6 44.4 18.5
SoftCon ViT-Base 29.6 22.8 30.8 18.5 60.3 16.5 78.0 74.8 31.3 10.5
DOFA-v1 ViT-Large 27.7 23.3 25.4 16.8 51.6 19.1 78.1 77.4 29.8 13.4
Satlas Swin-Tiny 25.1 18.6 23.4 16.2 45.9 12.4 N/A 28.0 10.9
MMEarth CNN-atto 24.2 20.3 22.2 14.1 34.2 16.1 N/A 24.0 10.5
DeCUR ViT-Small 26.2 22.8 21.5 15.3 54.8 16.6 74.5 72.2 22.4 11.0
Prithvi 2.0 ViT-Large 26.7 23.2 22.9 15.7 50.0 18.9 N/A 29.3 13.2
AnySat ViT-Base 26.1 21.7 27.1 15.8 50.2 17.0 77.9 76.9 46.2 23.5

Galileo ViT-Nano 24.4 24.5 19.7 14.5 54.8 13.9 78.6 77.1 17.5 13.1
Galileo ViT-Tiny 27.4 27.9 22.5 17.1 60.8 17.5 78.0 77.9 28.1 16.9
Galileo ViT-Base 33.0 30.2 30.1 19.4 67.6 14.7 79.4 78.2 39.2 18.7

Table 2. The Galileo models excel at image
segmentation measured by % mIoU via lin-
ear probing (Galileo-Base obtains an aver-
age rank of 2.7, Table 12). We show the
best architecture per method. We bold and
underline the 1st and 2nd best results across
all methods and architectures, as reported
in Table 11. The Sen1Floods11 dataset con-
sists of labelling floods from SAR data; mod-
els which do not support this modality have
the result replaced with N/A.

timestep encodings. See Appendix D for complete details.

4. Results
We present model rankings averaged across all tasks and par-
titions in Table 8. We evaluate Galileo against common RS
benchmarks; however, while many pretrained models can
only process the benchmark modalities, Galileo is trained
to process numerous additional modalities which are read-
ily available to practitioners (Table 8, “Supported Inputs”).
This functionality is highly valuable to practitioners despite
not being captured by these common benchmarks.

Image results. We compare Galileo to image-specialized
models in Tables 1, 10 and 2; besides Satlas, these mod-
els were pretrained on single-timestep imagery, devoting
all their capacity to images. Nonetheless, Galileo-Base
outranks all such models on image classification and seg-
mentation. Our lightweight models also excel at these tasks,
often outperforming much larger models; we anticipate that
these Galileo-Nano and Galileo-Tiny models will be highly
valuable to many cost-sensitive RS practitioners in research
and production. Furthermore, Galileo’s variable patch sizes
allow for trade-offs between computational cost and model
performance; by increasing the patch size, an instance is
split up into fewer tokens, reducing the MACs required to
obtain an embedding (Table 7).

Timeseries classification results. We compare Galileo to
generalist AnySat and the pixel-timeseries specialist Presto
in Table 3. We conclude similarly: Galileo outranks the
specialist model and far exceeds AnySat.

5. Conclusion
We identify two requirements for the application of pre-
trained models in a wide range of RS contexts: (i) the ability
to flexibly process different modalities and input shapes,
and (ii) the ability to model RS phenomena which occur
at very different scales. To meet these requirements, we
present the Galileo family of pretrained RS models.

Table 3. The Galileo models are the best (-Base) and second-best
(-Tiny) models for pixel timeseries classification, measured via
linear probing. The best result is bolded and the second best
is underlined. The CropHarvest dataset contains a number of
modalities in addition to Sentinel-2 optical imagery, including
topography, weather and SAR data. We use all modalities each
model can support.

CropHarvest

Method Arch. Togo Brazil Kenya Breizhcrops

Presto ViT-Presto 75.5 98.8 84.0 63.0
AnySat ViT-Base 73.4 76.7 75.5 66.1
Galileo ViT-Nano 73.5 76.4 84.5 67.3
Galileo ViT-Tiny 74.7 97.2 85.4 69.0
Galileo ViT-Base 74.8 99.3 84.2 73.0

We achieve these requirements by innovating on (i) the
Galileo model architecture, allowing the model to flexibly
ingest highly multimodal inputs that vary in both space
and time, and (ii) our dual local-global SSL algorithm, to
encourage the model to learn phenomena occurring at vastly
different scales, and (iii) the pretraining dataset used to train
the Galileo models,

We run hundreds of evaluations — including extensive
sweeps of baseline pretrained RS models — to robustly
demonstrate Galileo’s performance across a wide range of
domains, modalities, and task types. We run thorough abla-
tions of our method. Having confirmed the effectiveness and
transferability of unified local, global, and multimodal self-
supervised learning with Galileo, we note that more research
is needed to investigate local and global self-supervision for
other data beyond RS.
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A. Related Work and Background
Self-Supervised Learning. Reconstructing a masked or noised input is a common form of self-supervised pretraining, both
for natural language (Devlin et al., 2018; Radford et al., 2018; Mikolov et al., 2013) and natural imagery (Xie et al., 2022;
He et al., 2022; Vincent et al., 2008). While these methods originally make predictions in the raw-input space (e.g. pixels,
most succesfully via MAE, He et al. (2022)), recent work has investigated making predictions in the latent space (Assran
et al., 2022; Wei et al., 2024). These methods predict patch representations, computed by the encoder’s exponential moving
average. Galileo is unique in leveraging different depths of the latent space, ranging from (linear projections of) the pixel
space to the full depth of the latent space.

Contrastive learning (Le-Khac et al., 2020; Oord et al., 2018; Chen et al., 2020; Chopra et al., 2005) is a different approach
to learning representations, which encodes samples augmented in two different ways, then attracts the representations
of the same sample (called positives), and repels the representations of different samples (called negatives). LatentMIM
(Wei et al., 2024) demonstrate that applying a contrastive objective in a latent-masked-modeling setting can increase the
stability of these methods compared to reconstructive losses; LatentMIM’s PatchDisc loss attracts patch representations of
the same location within an image, and repels patch representations of the same sample but different locations. We adopt the
PatchDisc loss but observe it remains prone to collapses. Galileo’s dual losses introduce significant additional stability to
the pretraining procedure.

Pretrained RS Models. When pretraining models for remote sensing data, most previous methods have ingested a single
timestep of data, either via multi-spectral optical imagery only (SatMAE (Cong et al., 2022), MMEarth (Nedungadi et al.,
2024)), multispectral optical imagery and SAR data seperately (SoftCon Wang et al. (2024b), DOFA Xiong et al. (2024),
DeCUR Wang et al. (2024a)) or multispectral optical imagery and SAR data jointly (CROMA (Fuller et al., 2024)). Models
which can ingest multiple timesteps of data can process only multispectral optical imagery (Prithvi 2.0 (Szwarcman et al.,
2024), Satlas (Bastani et al., 2023)) or discard the spatial dimensions, treating the data as pixel-timeseries (Presto (Tseng
et al., 2023)). These models employ different self-supervised learning methods during pretraining; we illustrate some of
them in Figure 4.

Galileo is far more multimodal than these previous approaches; it can jointly ingest multispectral optical imagery and SAR
imagery in addition to many other remote sensing products, including topography, weather, population maps, night-lights
and land cover classification maps. These products are commonly used in remote sensing tasks, and are therefore important
for the utility of Galileo in a wide range of remote sensing applications. In addition, Galileo can flexibly model both the
space and time dimensions of this multimodal data, treating the data as single-timestep imagery, multi-timestep imagery
or pixel-timeseries. This reflects the many view-construction approaches used by remote sensing practitioners (from
pixel-timeseries (Van Tricht et al., 2023; Kruse et al., 2023) to single- or multi- timestep imagery (Beukema et al., 2023)),
and allows Galileo to fit seamlessly into existing remote-sensing workflows.

AnySat (Astruc et al., 2024) is concurrent with our work and shares the same spirit. AnySat ingests data from many satellites,
and can also flexibly ingest the space and time dimensions of this data. However, AnySat is missing many of the other
modalities ingested by Galileo, which are necessary to model a range of remote sensing phenomena (Poggio et al., 2021;
Van Tricht et al., 2023)).

B. Methodology details
B.0.1. VISION TRANSFORMER TOKENIZATION

Our encoder splits the input tensor into spatial squares, timesteps, and channel groups – channel groups are grouped subsets
of channels within a remote sensing product (e.g. one channel group groups the 10m channels in Sentinel-2 data). Our
encoder then projects these raw inputs to the encoder dimension D using the following transformations: (i) Space-time
data, RH×W×T×C → RH

P ·WP ·T ·G×D, H is the height, W is the width, P is the patch size (in pixels per side), T is the
timesteps, C are the channels, G are the channel groups. (ii) Space data, RH×W×C → RH

P ·WP ·G×D, (iii) Time data,
RT×C → RT ·G×D, and (iv) Static data, RC → RG×D.

Token Embeddings. After these linear projections, our encoder creates spatial and temporal sinusoidal position embeddings,
learnable channel embeddings, and month embeddings to enable seasonal reasoning; we denote these token position
embeddings as e ∈ RL×D, where L is the token sequence length. Our encoder adds these embeddings to the linear
projections, previously computed. It concatenates all channel groups along the sequence dimension — forming our input
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Figure 2. We train Galileo with our global (left) and local (right) pretraining tasks. Black-outlined tokens are model outputs, black-striped
tokens are model inputs. Steps: 1 sample from dataset and mask (structured left, unstructured right), 2 encode “visible” tokens, 3

predict targets given target queries and visible encodings, 4 encode targets (deep left, shallow right) with stop gradient, and 5 calculate
within-sample token contrastive loss.

sequence, x ∈ RL×D.

B.0.2. CONSTRUCTING INPUTS VIA MASKING

Given a sample x, we construct a “visible” view xv ∈ RLv×D and a “target” view xt ∈ RLt×D. For both global and local
tasks, the goal is to predict the target tokens given the visible tokens. However, our masking strategies (i.e., rules that govern
view construction) differ between tasks.

Global features via space and time masking. “Space masking” randomly samples tokens across space while maintaining
consistency across time; “time masking” randomly samples tokens across time while maintaining consistency across space.
This strategy increases the distance between visible and target tokens.

Local features via unstructured masking. Unstructured masking randomly samples tokens with the same probability
regardless of their space, time, or channel group position. This strategy minimizes the average distance between visible and
target tokens.

B.0.3. ENCODING VISIBLE AND TARGET TOKENS

Inputs. Our “online” encoder computes encodings for the visible tokens, zv = E(xv). This model’s parameters are updated
via gradient descent.

Targets. Our “target” encoder computes encodings for the target tokens, zt = EEMA(x). This model’s parameters are
updated via computing the exponential moving average of the online encoder; this use of EMA is common in SSL (Chen
et al., 2021; Assran et al., 2023). However, depending on the task (global vs. local), we set the number of target encoder
layers the sample passes through; this method is unique to Galileo.

Global features via deep targets. We compute targets by saving token representations after the ℓth layer, where ℓ varies by
modality. We select ℓ based on each modality’s abstraction level: pseudo-labels use only linear projections (no encoder
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layers), Sentinel-1 and Sentinel-2 use all encoder layers, and other channels use half the encoder layers. We denote our
level-specific target encoder as Eℓ

EMA.

Local features via shallow targets. We target the lowest representation level: the pixel space. So the dimensions match, we
compute targets using the target encoder’s linear projection, Eproj

EMA which maps all tokens to the embedding dimension D.
This strategy skips all transformer blocks.

B.0.4. MAKING PREDICTIONS AND COMPUTING LOSS

A predictor transformer P receives the position, time, month and channel group embeddings et for the target tokens and
predicts patch encodings pt by cross-attending to the visible encodings, i.e., pt = P(et, zv). Finally, the predictions pt and
targets zt are compared to compute a loss L(pt, zt) that updates the online encoder.

We use the “Patch Discrimination” loss (PatchDisc (Wei et al., 2024)) for both tasks, which applies the InfoNCE loss
between tokens within a sample:

L(u,v) = 1
Li

∑Li

j log
exp(sim(ui,j ,vi,j)/τ)∑Li
j exp(sim(ui,j ,vi,j)/τ)

with the softmax temperature τ , the sample index i, the token index j, the number of tokens in the ith sample Li, and the l2
normalized dot product sim(u,v) = u⊤v/∥u∥∥v∥.

Amplifying local features via pixel-contrastive learning. By leveraging PatchDisc and targeting (linear projections of)
pixels we setup a highly challenging task. To achieve low loss, the predictor must output tokens that are similar to the
pixels at matching sequence positions but dissimilar to pixels from other sequence positions. This significantly differs from
reconstruction methods, like MAE (He et al., 2022), which predict pixels (via the mean-squared error), but do not repel
other pixels in the sequence. This significantly differs from joint embedding methods, like LatentMIM (Wei et al., 2024) or
I-JEPA (Assran et al., 2023), which target deep representations only.

Finally, we combine global and local tasks:

LGalileo = 1
2 (Lglobal + Llocal)

C. Pretraining details
C.1. Galileo’s Pretraining Data

We collect a large, globally sampled pretraining dataset of 127,155 training instances (we describe our dataset sampling
process below). We include a wide range of RS inputs to serve diverse applications. A training instance consists of 4 types
of data covering 9 RS data modalities. We select these modalities based on their uses in past machine learning for remote
sensing efforts (Van Tricht et al., 2023; Beukema et al., 2023; Poggio et al., 2021).

We group the modalities by whether they vary in space, time, both, or neither. A single instance consists of 24 monthly
timesteps and 96× 96 pixels at a 10m/pixel resolution.

Space-time varying data. These data consist of imagery acquired by Sentinel-1 & -2 satellites. For Sentinel-1, we take the
VV and VH polarizations; and for Sentinel-2, we take all bands except the B1, B9 and B10 bands. All bands are resampled
to a 10m/pixel resolution. We also include NDVI (Tucker, 1979) from Sentinel-2 as an input.

Space varying data. These data consist of elevation and slope captured by the Shuttle Radar Topography Mission (NASA
JPL, 2000), which are constant in time; Dynamic World land cover map probabilities (Brown et al., 2022), averaged over
time for temporal consistency; and World Cereal agricultural land cover maps (Van Tricht et al., 2023).

Time varying data. These data consist of precipitation and temperature from the ERA5 dataset (Hersbach et al., 2020);
climate water deficit, soil moisture, and actual evapotranspiration from TerraClimate (Abatzoglou et al., 2018); and VIIRS
nighttime lights (Elvidge et al., 2017). Although these modalities vary in space as well, their spatial resolution (ERA5 has a
spatial resolution of tens of kilometres per pixel) means we treat them as static in space from the perspective of a single
instance.

Static data. These data consist of population estimates from the LandScan dataset (Dobson et al., 2000), the spatial location
of the instance, defined by its central latitude and longitude, Dynamic World classes spatially averaged over the instance,
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and World Cereal agricultural land cover maps spatially averaged over the instance. We include the averaged Dynamic
World and World Cereal inputs in addition to the space-varying inputs.

To construct the Galileo dataset, we split the global WorldCover map (Zanaga et al., 2022) into 1000 × 1000 pixels
(10km × 10km) tiles. For each tile, we compute two feature sets: 1 the number of pixels within each WorldCover
classification class, and 2 the latitude and longitude of the tile. We use these features to train a k=150,000 k-means
clustering algorithm, and select the tiles closest to the centroid of each cluster. This yields 150,000 training points, of which
85% (127,155) are successfully exported using Google Earth Engine (Gorelick et al., 2017). By including both the pixel
counts and the latitude and longitudes as features to the k-means algorithm, we ensure both the semantic and geographic
diversity of the model’s training points — Figure 3 shows a chloropleth map of the exported points.

We use this sampling procedure to construct a rich dataset to pretrain our model. This dataset consists of 9 RS inputs,
ranging from directly sensed inputs (such as Sentinel-2 optical imagery) to semantically dense maps (such as the Dynamic
World landcover maps) — these are discussed in detail in Section 2.1. Table 4 studies the impact of each of these modalities
on the model’s downstream performance, by pretraining the combined global-local model while omitting a single data
product.

Table 4. Ablating the Galileo dataset. MADOS and Sen1Floods11 (% mIoU) via linear probing. CropHarvest and EuroSat (% OA) via
kNN.

Removed
input MADOS Sen1Floods11 CropHarvest EuroSat

None 67.79 77.66 87.87 91.00
S1 67.67 N/A 85.27 90.20
NDVI 67.89 78.10 88.32 90.00
ERA5 68.10 77.10 87.14 91.20
TerraClim 61.30 74.90 82.78 81.20
VIIRS 63.48 74.52 84.10 81.10
SRTM 66.14 77.62 86.74 91.00
DynamicWorld 67.24 77.86 87.80 89.30
WorldCereal 65.94 77.56 87.71 89.60
LandScan 60.74 77.45 87.89 91.10
Location 69.25 77.36 87.14 91.20

C.2. Implementation

Figure 3. The number of exported training points per
H3 cell (Uber, 2018) at resolution = 2 . We sam-
ple from the entire globe, aiming for semantic diver-
sity (defined by the WorldCover landcover map classes
(Zanaga et al., 2022)) and geographic coverage.

All models are trained on single H100 GPUs (model sizes and training
times are described in Table 5). We use an effective batch size of 512,
which consists of minibatches of 32 instances augmented and repeated
4 times (Hoffer et al., 2019). For data augmentations, we randomly
apply vertical and horizontal flipping and 90-degree rotations to each
instance. When repeating the data, we first randomly select a patch size
P ∈ [1, 2, 3, 4, 5, 6, 7, 8]. We then randomly select a (size, timestep)
combination (S, T ) ∈ [(4, 12), (5, 6), (6, 4), (7, 3), (9, 3), (12, 3)].
We then randomly subset spatially height H = P × S, width
W = P × S and timesteps T from each instance in the batch.

We use bfloat16 precision, and the AdamW optimizer with β1 = 0.9
and β2 = 0.999 with gradient clipping. We warmup our learning rate
for 30 epochs to a maximum learning rate before applying a cooldown
via a cosine decay schedule. We use exponential moving averaging
(EMA) to update our target encoder with a momentum value of 0.996
which linearly increases to 1 throughout pretraining following Assran
et al. (2022).

For all ablations (Section E.1), we pretrain a ViT-Tiny model for 200
epochs to a maximum learning rate of 2 × 10−3 and use a weight decay of 0.02. For the final Galileo models, we
pretrain the models for 500 epochs and conduct a sweep of [learning rate × weight decay]. For the ViT-Nano and ViT-Tiny
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Table 5. Configurations of our ViT models and associated pretraining costs. GPU-hours describes the number of GPU-hours required to
pretrain each model for 500 epochs on an H100 GPU.

architecture blocks dim heads params GPU-hours

ViT-Nano 4 128 8 0.8M 200
ViT-Tiny 12 192 3 5.3M 259
ViT-Base 12 768 12 85.0M 573

architectures, we sweep learning rates ∈ [1×10−3, 2×10−3, 3×10−3] and weight decays ∈ [1×10−2, 2×10−2, 3×10−2].
For the ViT-Base architecture, we sweep learning rates ∈ [1 × 10−4, 3 × 10−4, 1 × 10−3, 2 × 10−3, 3 × 10−3] and
weight decays ∈ [1× 10−2, 2× 10−2, 3× 10−2].

D. Evaluation details
D.1. Implementation

To ensure consistent experimental settings when comparing pretrained models, we rerun all evaluations under identical
conditions. For the kNN probing, we follow the implementation of Gwilliam & Shrivastava (2022) — we use the pretrained
models to compute representations of the test data (as values) and training data (as keys) — we then use the keys to classify
the test data. Following Fuller et al. (2024) and Reed et al. (2023), we use k = 20. When linear probing, we use the
pretrained models to compute representations of the training data and use this to train linear probes. We sweep learning
rates when training the linear probes ({1, 3, 4, 5} × 10{−4,−3,−2,−1}) and apply the trained linear probes to the computed
representations of the test data. When finetuning, we sweep learning rates when finetuning ({1, 3, 6} × 10{−5,−4,−3}) and
apply the finetuned models to the test data.

D.2. Evaluation Datasets

We evaluate our models on the datasets described below. For all GeoBench-modified datasets (Lacoste et al., 2024) -
m-Eurosat, m-BigEarthnet, m-So2Sat, m-Brick-Kiln, m-Cashew-Plant and m-SA-Crop-Type, we use the training, validation
and test splits shared by GeoBench. In addition, we use the 1%, 5% and 20% partitions shared by GeoBench.

• m-EuroSat (Helber et al., 2019): The full training set consists of 2,000 images, with 1,000 images in the validation
and test sets. Images are 64× 64 pixels.

• m-BigEarthNet (Sumbul et al., 2019): The full training set consists of 20,000 images, with 1,000 images in the test
set. Images are 120× 120 pixels.

• m-So2Sat (Zhu et al., 2020): The full training set consists of 19,992 images (with 986 images in the test set), and
images are 32× 32 pixels.

• m-Brick-Kiln (Lee et al., 2021): The full training set consists of 15,063 images, with 999 images in the test set. Images
are 64× 64 pixels.

• m-Cashew-Plant (Yin et al., 2023): The full training set consists of 1,350 images, with 50 images in the test set.
Images are 256× 256; we subtile them into 64× 64 images.

• m-SA-crop-type (link): The full training set consists of 3,000 images, with 93 images in the test set. Images are
256× 256; we subtile them into 64× 64 images.

• MADOS (Kikaki et al., 2024): The full MADOS dataset consists of 2,804 140 × 140 images, extracted from 174
Sentinel-2 scenes. We use the train/val/test splits from MADOS (50%/25%/25%) — each split was created as a
representative subset of the entire MADOS dataset. In addition, we subtile each image into 80× 80 images.

• PASTIS (Garnot & Landrieu, 2021): The full PASTIS dataset consists of 2,433 128 × 128 timeseries, with 38-61
timesteps per timeseries. We subtile each timeseries spatially into 64× 64 images. In addition, we compute monthly
aggregations of the timeseries. Garnot & Landrieu (2021) share 5 folds of the data; we use folds {1, 2, 3} for training,
4 for validation and 5 for testing. When applying single-timestep models to this dataset, we additionally sweep pooling
methods to pool per-timestep encodings (as described in Section D).
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• Breizhcrops (Rußwurm et al., 2019): The Breizhcrops dataset consists of pixel-timeseries in 4 NUTS-3 regions in
Brittany, France. We use 2 for training (FRH01, with 178,613 parcels and FRH02 with 140,645 parcels). We use
FRH03 (166,391 parcels) for validation and FRH04 (122,614 parcels) for testing. The dataset consists of variable
sequence lengths; we compute monthly aggregations of the timeseries.

• CropHarvest (Tseng et al., 2021): The CropHarvest dataset consists of 3 pixel-timeseries tasks: (i) crop vs. non crop
in Togo, with 1,319 samples in the training set and 306 samples in the test set, (ii) maize vs. rest in Kenya with 1,345
samples in the training set and 1,942 m2 of densely labelled pixels in the test set, and (iii) coffee vs. rest in Brazil with
794 samples in the training set and 4.2 km2 of densely lablled pixels in the test set.

D.3. Comparing to baseline models

Corley et al. (2024) found that input-image sizes and feature scaling methods can have significant impacts on the performance
of pretrained RS models. We therefore resize all input images to the sizes that the models were pretrained on. In addition,
we treat feature scaling methods as an additional hyperparameter, and sweep it in addition to the learning rates (where those
are applicable, i.e. for linear probing and finetuning). Finally, the PASTIS dataset consists of multiple timesteps of optical
imagery. Since all benchmark models (except AnySat) cannot ingest the full timeseries natively, we use multiple forward
passes. We select two methods for combining the outputs of these forward passes - 1 a mean of the encodings, and 2 a max,
following Bastani et al. (2023).

Table 6. Galileo MADOS classification test perfor-
mance (%) as a function of patch size measured via
linear probing for different training set %s.

Arch. patch size 100 % 20 % 5% 1%

ViT-Nano 2 53.6 43.9 33.5 16.6
4 54.8 41.5 28.9 13.9

ViT-Tiny 2 61.9 49.9 32.6 15.2
4 60.8 50.6 34.0 17.5

ViT-Base 2 68.4 53.4 39.0 18.0
4 67.6 49.0 34.1 14.7

The reported test results are therefore computed by sweeping the cross
product of the following hyperparameters:

[Learning Rate]× [Temporal aggregations]

We select all hyperparameters using the validation sets in the down-
stream datasets.

In addition to conducting this sweep, we run the linear probes 5 times
and average the results. When running the linear probe, we sweep the
learning rate and feature scaling method concurrently for the first run.
We select the feature scaling method from this first run, and fix it for
all subsequent runs. We then select the best other hyperparameters
per run, and aggregate these to obtain our final results.

We run this sweep for all evaluation datasets with the exception of the CropHarvest tasks; these consist of small training sets
and no validation sets against which the hyperparameters can be selected. We therefore follow Tseng et al. (2023) in using
the same feature scaling methods as was used during pretraining, and using scikit-learn’s regression algorithm with default
parameters (Pedregosa et al., 2011) for all models.

D.3.1. FEATURE SCALING

Table 7. Galileo m-Eurosat classification test performance (%)
as a function of patch size measured via kNN for different
training set %s. MACs required to process a single EuroSat
instance are also recorded; by selecting the model size and
patch size, practitioners can make trade offs between model
performance and inference costs.

Arch. patch size GMACs 100 % 20 % 5% 1%

ViT-Nano 8 0.25 88.7 81.9 55.0 38.5
16 0.06 85.7 79.3 56.0 41.1

ViT-Tiny 8 1.71 88.3 83.0 59.7 41.3
16 0.43 83.6 78.4 50.1 33.8

ViT-Base 8 27.20 92.6 88.3 72.4 56.9
16 6.80 88.0 82.4 58.6 48.9

The pretrained models we benchmark against apply either stan-
dardization (MMEarth, DOFA, AnySat and Presto) or normal-
ization (all other models) during pretraining. We sweep the
following normalization statistics, either via standardization
on normalization depending on the pre-training procedure: 1

statistics from the downstream datasets, 2 SatMAE pretraining
statistics, 3 SSL4EO (Wang et al., 2023) statistics, 4 Galileo
pretraining dataset statistics, 5 Presto pretraining dataset statis-
tics. For all of these statistics, we additionally sweep standard
deviation multipliers. Prithvi 2.0 statistics only cover a subset
of Sentinel-2 bands; we therefore only include those statistics
in the sweeps for the Prithvi 2.0 model.
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Table 8. When compared to existing pretrained remote sensing models, the Galileo models are both the best performing and most flexible
models. Performance is measured via rankings (where lower numbers are better) on image tasks in Tables 9, 10 & 11 and pixel-timeseries
tasks in Table 3. For clarity, we select the best architecture per method; full rankings are available in Table 12. Flexibility is measured
by documenting which inputs are supported by the models: MultiSpectral (MS), Synthetic Aperture Radar (SAR), additional Remote
Sensing modalities (+modalities), inputs with spatial dimensions and inputs with more than 1 or 4 timesteps. Galileo-Base is the best
performing model compared to both image-specialized models (e.g. CROMA) and pixel-timeseries specialized models (e.g. Presto).

Rank ↓ Supported Inputs

Method Arch. Images Pixel-
timeseries MS SAR +modalities Spatial dims > 1 timestep > 4 timesteps

SatMAE ViT-Large 10.4 N/A D D
SatMAE++ ViT-Large 10.9 N/A D D
CROMA ViT-Base 4.3 N/A D D D
SoftCon ViT-Base 5.9 N/A D D D
DOFA-v1 ViT-Large 9.4 N/A D D D
Satlas Swin-Tiny 12.9 N/A D D D
MMEarth CNN-atto 12.3 N/A D D
DeCUR ViT-Small 8.3 N/A D D D
Prithvi 2.0 ViT-Large 11.7 N/A D D D
AnySat ViT-Base 11.1 4.5 D D D D D D
Presto ViT-Presto N/A 3.0 D D D D D
Galileo ViT-Nano 10.9 3.5 D D D D D D
Galileo ViT-Tiny 6.4 2.3 D D D D D D
Galileo ViT-Base 3.0 1.8 D D D D D D

E. Results
We include full results for the image classification tasks (Table
9) and segmentation tasks (Table 11). In addition, full results
for the m-Eurosat dataset with varying patch sizes are recorded
in Table 7 - these values are used in Figure ??. Similarly, we measure results for MADOS with varying patch sizes in Table
6 - a patch size of 4 is used in Tables 2 and 11.

We rank the models in Table 12. When ranking the models, we compute the average rank of each model across each dataset
and partition.
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Table 9. Image classification test performance (%) via kNN. Ranks are calculated by averaging all results and ranking the averages.
m-EuroSat m-BigEarthNet m-So2Sat m-Brick-Kiln

Training %, Top-1 Acc. ↑ Training %, F1 Score ↑ Training %, Top-1 Acc. ↑ Training %, Top-1 Acc. ↑
Method Arch. 100% 20% 5% 1% 100% 20% 5% 1% 100% 20% 5% 1% 100% 20% 5% 1%

SatMAE (Cong et al., 2022) ViT-Base 84.1 73.3 50.1 34.8 50.6 42.5 35.7 29.0 36.0 32.9 29.7 23.1 86.1 81.9 80.3 73.5
SatMAE (Cong et al., 2022) ViT-Large 84.3 74.7 53.1 46.4 50.8 42.9 35.6 27.7 36.6 34.3 31.0 24.4 87.9 84.0 80.4 74.7
SatMAE++ (Noman et al., 2024) ViT-Large 82.7 75.9 51.1 48.5 50.8 42.8 36.7 31.6 34.7 32.7 29.9 23.4 89.6 87.1 82.8 76.7
CROMA (Fuller et al., 2024) ViT-Base 85.6 79.4 66.2 51.3 58.8 55.3 49.3 44.7 48.8 48.0 43.9 33.8 92.6 90.6 87.7 85.1
CROMA (Fuller et al., 2024) ViT-Large 86.3 78.1 59.9 49.0 56.6 50.6 44.1 38.0 47.6 45.0 43.2 33.7 91.0 86.7 82.9 80.2
SoftCon (Wang et al., 2024b) ViT-Small 89.8 83.4 55.9 27.2 64.7 58.7 52.6 43.3 51.1 49.9 43.3 31.4 89.2 86.9 80.5 77.8
SoftCon (Wang et al., 2024b) ViT-Base 90.3 82.1 54.2 19.8 63.7 57.5 52.0 42.5 51.0 49.7 45.3 35.4 90.0 86.1 80.6 74.5
DOFA-v1 (Xiong et al., 2024) ViT-Base 82.8 72.1 60.9 49.6 49.4 43.6 37.2 29.9 41.4 40.7 37.5 29.4 88.3 86.2 82.0 78.3
DOFA-v1 (Xiong et al., 2024) ViT-Large 83.6 72.1 53.5 41.7 49.9 41.6 35.3 27.6 45.4 40.6 35.6 31.8 86.8 85.2 84.8 80.6
Satlas (Bastani et al., 2023) Swin-Tiny 81.7 70.3 48.3 35.8 51.9 44.8 37.8 29.6 36.6 30.7 29.6 27.1 88.2 85.2 82.4 73.0
Satlas (Bastani et al., 2023) Swin-Base 81.5 69.1 42.1 10.0 47.0 41.1 35.0 25.8 35.8 33.4 29.6 30.4 80.0 78.3 76.9 73.3
MMEarth (Nedungadi et al., 2024) CNN-atto 81.7 73.5 60.3 30.0 58.3 52.2 46.5 39.6 39.8 38.8 36.8 25.1 89.4 85.4 84.1 79.7
DeCUR (Wang et al., 2024a) ViT-Small 89.0 85.3 72.3 46.6 63.8 59.2 55.4 49.6 45.8 43.1 38.5 30.9 83.7 81.7 77.9 74.2
Prithvi 2.0 (Szwarcman et al., 2024) ViT-Large 80.2 69.4 54.1 48.0 49.4 42.9 35.5 28.8 29.5 31.2 29.6 26.1 87.9 86.8 83.3 80.6
AnySat (Astruc et al., 2024) ViT-Base 82.2 73.7 62.5 47.1 54.9 47.2 40.7 33.7 39.8 34.9 32.0 29.0 85.3 81.7 78.0 72.0
Galileo ViT-Nano 89.7 82.4 56.6 41.7 53.8 46.3 41.5 33.9 50.1 50.3 47.5 37.4 86.7 82.2 83.2 79.7
Galileo ViT-Tiny 90.1 83.9 59.5 41.3 55.5 48.2 41.6 34.4 49.7 50.5 44.2 36.2 86.9 83.7 83.8 77.3
Galileo ViT-Base 93.0 88.5 71.3 56.6 59.0 51.5 45.4 36.5 54.8 53.8 51.1 43.2 90.7 86.9 85.8 78.0
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Table 10. Image classification test performance (%) via finetuning.
m-EuroSat m-BigEarthNet m-So2Sat m-Brick-Kiln

Training %, Top-1 Acc. ↑ Training %, F1 Score ↑ Training %, Top-1 Acc. ↑ Training %, Top-1 Acc. ↑
Method Arch. 100% 20% 5% 1% 100% 20% 5% 1% 100% 20% 5% 1% 100% 20% 5% 1%

SatMAE (Cong et al., 2022) ViT-Base 96.5 90.8 79.7 55.5 67.8 59.3 51.1 39.0 54.5 52.0 45.2 34.8 98.5 97.4 97.0 94.0
SatMAE (Cong et al., 2022) ViT-Large 96.6 91.5 82.5 56.9 68.3 61.1 52.4 41.8 57.2 56.2 49.7 36.4 98.4 97.3 97.3 96.1
SatMAE++ (Noman et al., 2024) ViT-Large 96.5 90.6 80.1 56.4 67.9 60.4 51.9 45.6 56.0 52.4 46.0 36.9 98.6 97.3 96.0 92.5
CROMA (Fuller et al., 2024) ViT-Base 96.0 91.2 79.2 53.6 70.0 63.4 54.0 43.4 59.7 59.1 54.1 43.3 98.7 97.8 97.0 96.1
CROMA (Fuller et al., 2024) ViT-Large 96.6 92.9 80.7 52.7 71.9 66.0 58.3 47.9 60.6 57.9 52.9 40.9 98.7 98.0 97.1 96.7
SoftCon (Wang et al., 2024b) ViT-Small 97.4 95.4 84.9 57.5 69.5 62.5 53.3 36.0 61.7 60.3 54.2 49.2 98.8 98.1 97.7 97.2
SoftCon (Wang et al., 2024b) ViT-Base 97.5 95.0 88.2 56.3 70.3 63.6 53.8 38.5 61.7 60.3 54.2 49.2 98.7 98.1 98.0 97.3
DOFA-v1-v1 (Xiong et al., 2024) ViT-Base 94.6 86.1 74.2 50.9 68.1 60.3 51.9 41.9 56.7 49.9 45.8 33.8 98.7 97.3 96.2 95.0
DOFA-v1-v1 (Xiong et al., 2024) ViT-Large 96.9 91.5 82.2 53.4 68.0 60.3 52.2 43.5 58.7 55.4 47.4 37.0 98.6 96.9 96.1 94.5
Satlas (Bastani et al., 2023) Swin-Tiny 96.3 89.1 78.1 52.9 71.3 63.8 53.6 32.0 57.3 52.7 45.9 30.8 98.5 97.7 96.8 94.7
Satlas (Bastani et al., 2023) Swin-Base 97.5 92.2 81.2 51.9 72.8 65.1 54.9 25.8 61.9 55.0 47.0 30.6 98.4 97.9 97.2 94.7
MMEarth (Nedungadi et al., 2024) CNN-atto 95.7 86.1 73.0 47.5 70.0 62.7 52.6 43.4 57.2 51.0 44.1 30.0 98.9 98.0 96.5 89.2
DeCUR (Wang et al., 2024a) ViT-Small 97.9 95.3 87.9 54.2 70.9 64.9 54.7 44.7 61.7 61.0 54.2 47.0 98.7 98.0 97.1 96.9
Prithvi 2.0 (Szwarcman et al., 2024) ViT-Large 96.5 89.2 77.6 51.5 69.0 61.8 51.4 37.1 54.6 50.5 40.2 31.0 98.6 97.6 96.7 96.2
AnySat (Astruc et al., 2024) ViT-Base 95.9 88.2 74.4 51.3 70.3 61.6 46.1 13.3 51.8 49.8 42.0 29.7 98.6 97.2 96.8 85.6
Galileo (ours) ViT-Nano 94.5 88.3 80.2 52.6 67.1 59.3 44.1 23.3 57.4 54.7 47.8 34.9 98.5 97.7 96.1 94.2
Galileo (ours) ViT-Tiny 96.9 94.4 85.2 60.6 69.7 62.2 53.4 39.5 61.9 57.2 54.9 43.1 98.7 97.9 97.2 96.6
Galileo (ours) ViT-Base 97.7 96.0 87.0 63.5 70.7 63.1 53.9 40.9 63.3 57.8 56.7 50.6 98.7 98.0 97.5 96.8
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Table 11. Image (and image timeseries) segmentation test performance (%) via linear probing. * For semantic segmentation, AnySat
outputs dense per-pixel features instead of per-patch. To keep the training-costs of the linear probes similar to other models, we sampled
6.25% of pixel features per image when training the linear probe for AnySat. Evaluation used all pixel features in an image.

m-Cashew-Plant m-SA-Crop-Type MADOS Sen1Floods11 PASTIS
Training %, mIoU ↑ Training %, mIoU ↑ Training %, mIoU ↑ Training %, mIoU ↑ Training %, mIoU ↑

Method Arch. 100% 20% 5% 1% 100% 20% 5% 1% 100% 20% 5% 1% 100% 20% 5% 1% 100% 20% 5% 1%

SatMAE (Cong et al., 2022) ViT-Base 28.9 28.1 27.6 23.0 23.8 23.4 21.5 16.8 53.2 39.1 26.4 12.4 not supported 27.6 24.2 18.5 11.2
SatMAE (Cong et al., 2022) ViT-Large 30.8 29.7 28.7 22.7 24.8 24.0 21.9 16.9 55.6 41.0 29.9 13.2 not supported 29.6 25.3 19.1 11.5
SatMAE++ (Noman et al., 2024) ViT-Large 29.6 28.0 27.5 23.3 25.7 24.3 21.5 16.8 49.9 38.2 27.5 12.7 not supported 30.5 26.0 19.3 12.0
CROMA (Fuller et al., 2024) ViT-Base 31.8 31.4 30.2 26.8 32.0 29.9 26.1 18.3 64.2 49.1 39.6 24.4 78.9 78.1 77.4 77.6 44.4 38.4 29.2 18.5
CROMA (Fuller et al., 2024) ViT-Large 34.3 33.3 32.5 27.9 32.0 29.9 25.6 18.0 66.3 52.5 36.2 13.9 78.6 78.0 77.1 77.2 42.9 35.9 25.8 16.1
SoftCon (Wang et al., 2024b) ViT-Small 27.0 26.8 25.6 23.0 28.5 27.8 24.3 17.7 57.1 44.0 29.4 19.1 78.5 78.3 76.9 75.6 28.6 26.1 19.3 11.8
SoftCon (Wang et al., 2024b) ViT-Base 29.6 28.9 27.2 22.8 30.8 29.3 24.7 18.5 60.3 42.4 31.9 16.5 78.0 77.4 74.9 74.8 31.3 26.5 19.3 10.5
DOFA-v1 (Xiong et al., 2024) ViT-Base 26.9 26.7 26.8 22.2 24.8 23.9 21.0 16.6 48.3 37.4 30.0 19.1 78.1 77.8 77.0 77.1 29.8 25.6 19.5 13.2
DOFA-v1 (Xiong et al., 2024) ViT-Large 27.7 27.4 27.3 23.3 25.4 23.9 21.3 16.8 51.6 38.5 31.0 19.1 78.1 77.9 77.3 77.4 29.8 25.5 19.5 13.4
Satlas (Bastani et al., 2023) Swin-Tiny 25.1 24.8 24.2 18.6 23.4 22.7 19.8 16.2 45.9 35.7 26.5 12.4 not supported 28.0 24.0 17.4 10.9
Satlas (Bastani et al., 2023) Swin-Base 24.5 24.4 23.3 19.4 22.4 21.6 19.3 14.7 48.0 36.5 25.9 15.9 not supported 25.4 21.6 16.1 9.2
MMEarth (Nedungadi et al., 2024) CNN-atto 24.2 24.6 24.6 20.3 22.2 21.0 18.7 14.1 34.2 26.4 19.5 16.1 not supported 24.0 21.6 16.0 10.5
DeCUR (Wang et al., 2024a) ViT-Small 26.2 26.2 26.0 22.8 21.5 20.8 19.2 15.3 54.8 40.9 30.3 16.6 74.5 74.6 73.5 72.2 22.4 19.7 15.4 11.0
Prithvi 2.0 (Szwarcman et al., 2024) ViT-Large 26.7 26.6 26.8 23.2 22.9 22.3 20.3 15.7 50.0 41.8 33.7 18.9 not supported 29.3 26.8 20.2 13.2
AnySat * (Astruc et al., 2024) ViT-Base 26.1 26.1 24.9 21.7 27.1 25.2 21.4 15.8 50.2 39.8 30.5 17.0 77.9 77.6 77.1 76.9 46.2 41.9 33.7 23.5
Galileo ViT-Nano 24.4 24.6 24.6 24.5 19.7 19.7 17.1 14.5 54.8 41.4 28.9 13.9 78.6 78.5 77.7 77.1 17.5 17.0 15.7 13.1
Galileo ViT-Tiny 27.4 27.0 27.3 27.9 22.5 22.4 20.5 17.1 60.8 50.6 34.0 17.5 78.0 77.8 77.7 77.9 28.1 27.0 23.1 16.9
Galileo ViT-Base 33.0 32.8 33.1 30.2 30.1 29.3 25.4 19.4 67.6 49.0 34.1 14.7 79.4 79.0 78.5 78.2 39.2 36.7 27.9 18.7
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Table 12. Model rankings, computed against the full Image Clasification (Im. Class.) results in Table 9, Image Segmentation (Im. Seg.)
results in Table 11 and TimeSeries (TS) results in Table 3. We aggregate the Image Classification and Image Segmentation rankings into
a single “Image” (Im.) rankings. When we do this, we average the rankings across all the tasks (as opposed to naively averaging the
aggregated image classification and image segmentation rankings).

Im. Class. Im. Seg

Method Arch. KNN FT LP Im. TS

SatMAE (Cong et al., 2022) ViT-Base 13.8 12.5 11.7 12.6 N/A
SatMAE (Cong et al., 2022) ViT-Large 11.9 9.1 10.1 10.4 N/A
SatMAE++ (Noman et al., 2024) ViT-Large 10.9 11.4 10.4 10.9 N/A
CROMA (Fuller et al., 2024) ViT-Base 3.6 7.4 2.5 4.3 N/A
CROMA (Fuller et al., 2024) ViT-Large 5.9 5.3 3.5 4.8 N/A
SoftCon (Wang et al., 2024b) ViT-Small 5.6 4.7 7.7 6.1 N/A
SoftCon (Wang et al., 2024b) ViT-Base 5.9 4.0 7.3 5.9 N/A
DOFA-v1 (Xiong et al., 2024) ViT-Base 9.4 13.1 9.6 10.6 N/A
DOFA-v1 (Xiong et al., 2024) ViT-Large 10.6 10.2 7.7 9.4 N/A
Satlas (Bastani et al., 2023) Swin-Tiny 12.7 10.6 14.9 12.9 N/A
Satlas (Bastani et al., 2023) Swin-Base 15.9 7.9 15.7 13.4 N/A
MMEarth (Nedungadi et al., 2024) CNN-atto 8.3 11.7 16.1 12.3 N/A
DeCUR (Wang et al., 2024a) ViT-Small 7.0 3.6 13.0 8.3 N/A
Prithvi 2.0 (Szwarcman et al., 2024) ViT-Large 12.0 12.5 10.8 11.7 N/A
AnySat (Astruc et al., 2024) ViT-Base 11.1 14.5 8.3 11.1 4.5
Presto (Tseng et al., 2023) ViT-Presto N/A N/A N/A N/A 3.0
Galileo ViT-Nano 7.0 13.1 12.2 10.9 3.5
Galileo ViT-Tiny 6.6 5.8 6.8 6.4 2.3
Galileo ViT-Base 2.9 3.5 2.7 3.0 1.8
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Galileo: Learning Global & Local Features from Many Remote Sensing Modalities

E.1. Ablations

For all our ablation experiments, we pretrain ViT-Tiny models for 200 epochs. We select four diverse validation tasks covering
segmentation (Sen1Floods11 and MADOS), image classification (EuroSat), and timeseries classification (CropHarvest),
using only the validation sets for ablations.

We begin by ablating our global and local tasks in isolation; while the global task excels at the classification tasks and the
local task excels at the segmentation tasks, neither excel at both. We then ablate our combined algorithm, which excels on
both the classification and segmentation tasks. We ablate the following specific components of our algorithms:

Table 13. Deep targets combined with structured space-time masking
excels in global feature extraction. Segmentation tasks are gray-ed
to focus on classification with our global task. We measure % top-1
accuracy via kNN.

masking
strategy

target enc.
computation

loss
function MADOS Floods CropH. EuroSat

space+time varied PatchDiscB 58.91 76.92 88.72 89.50
random varied PatchDiscB 11.71 69.62 82.12 17.40

random+space+time varied PatchDiscB 22.87 71.62 76.53 66.30
space+time 0 PatchDiscB 61.73 76.66 85.79 86.90
space+time 6 PatchDiscB 63.83 76.93 88.17 89.20
space+time 12 PatchDiscB 60.35 77.19 87.30 87.90
space+time varied MSE 62.35 76.78 86.02 87.20
space+time varied PatchDisc 25.74 71.68 75.30 62.50

Global task ablations. We focus on classification per-
formance since our global task is meant for it (we gray-
out segmentation in Tab. 13). Our global task uses per-
modality exit depths when computing targets. It slightly
outperforms models that use target depths of 6 (half the
encoder layers) and 12 (all layers). Using only linear
projections for target processing reduces performance by
2.6% on EuroSat and 2.9% on CropHarvest, confirming
the importance of targeting deeper features for classifica-
tion. Using the PatchDisc loss function without our local
task fails — it achieves 62.5% on EuroSat; we believe
this might be caused by a shortcut, where position embed-
dings are exploited for discrimination. One solution to
this shortcut is to include tokens from other samples in
the batch as negatives in the contrastive objective (we call
it PatchDiscB); this solution works well. Finally, unstructured random masking also fails when used in our global task.

Table 14. Deep-shallow contrastive learning combined with unstruc-
tured random masking excels in local feature extraction. Classifica-
tion tasks are gray-ed to focus on segmentation with our local task.
We measure % mIoU (↑) of linear prediction on frozen features.

masking
strategy

target enc.
computation

loss
function MADOS Floods CropH. EuroSat

random 0 PatchDisc 71.48 77.39 86.77 86.90
random+space+time 0 PatchDisc 68.63 77.82 85.31 88.80

space+time 0 PatchDisc 62.25 77.22 86.82 87.00
random 6 PatchDisc 58.53 75.66 76.58 65.40
random 12 PatchDisc 11.65 72.60 71.92 27.50
random varied PatchDisc 8.25 68.89 77.83 18.40
random 0 MSE 65.34 77.09 86.71 87.40
random 0 PatchDiscB 70.12 77.26 85.27 88.20

Local task ablations. We focus on segmentation perfor-
mance since our local task is meant for it (we gray-out
classification in Tab. 14). Our local tasks uses an exit
depth of 0, i.e., it skips all transformer blocks. This
shallow-target strategy is highly effective; it achieves
71.5% mIoU on the MADOS dataset, which contains tiny
objects, such as marine debris; for comparison, our global
task achieves 58.9% on MADOS. Using the PatchDisc
loss function slightly outperforms PatchDiscB; only tar-
geting linear projections (i.e., without position embed-
dings) prevents potential shortcuts without using neg-
ative tokens from the batch. These contrastive losses
outperform the MSE loss by 5+% on MADOS — this
demonstrates that repelling the pixels from other tokens
amplifies local features. This is the first successful use of

pixel-contrastive learning in the SSL literature. Finally, unstructured random masking outperforms structured masking by
9% on MADOS — this confirms our intuition that prediction across shorter spans promotes local features.

Table 15. Our dual-objective algorithm excels on both classification
and segmentation, and is more consistent than our single-objective
algorithms. MADOS and Sen1Floods11 (% mIoU) via linear probing.
CropHarvest and EuroSat (% top-1 acc.) via kNN.

global
loss

local
loss

share
predictors

target
context MADOS Floods CropH. EuroSat

PatchDiscB PatchDisc no all 64.37 77.33 87.72 89.70
PatchDisc PatchDisc no all 67.79 77.66 87.87 91.00

PatchDiscB PatchDisc no dec. 63.54 76.95 86.98 89.30
PatchDisc PatchDisc no dec. 36.98 74.21 85.49 83.30
PatchDisc PatchDisc no dec.+enc. 63.41 77.36 85.87 89.30
PatchDisc PatchDisc yes all 67.04 78.23 85.23 88.50

PatchDiscB PatchDiscB no all 67.88 77.08 86.61 89.50
MSE MSE no all 62.36 77.17 86.28 88.70

Full algorithm ablations. Although PatchDiscB is es-
sential for our global task when used alone, when used
with our local task it is unnecessary. Not sharing predictor
parameters across objectives is optimal. Interestingly, our
dual-objective strategy achieves successful training runs
more consistently (e.g. 100% of runs achieve >80% on
EuroSat in Tab. 15 vs. 63% of runs in Tabs. 13 and 14).
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Figure 4. SSL for RS. Top left: Attracts representations originating from the same sample and repels representations from other samples.
Top center: Predicts pixels of hidden patches. Top right: Predicts representations of hidden patches. Bottom left: Attracts representations
originating from the same patch and repels representations from other patches. Galileo (ours): Our method simultaneously attracts
varied-level representations originating from the same patch and repels elsewhere — and attracts pixel predictions originating from the
same patch and repels elsewhere. This strategy encourages learning global and local features.
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