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Abstract

The invasive measurement of the AIF for the full quantification of dynamic PET data
limits its widespread use in clinical research studies. Current methods which estimate the
AIF from imaging data are prone to large errors, even when based on NNs. This work
aims to estimate the AIF from dynamic PET images using physically informed deep neural
networks. To this end, we employ 3D convolutions where we exploit the different channels
to encode time-dependent information, and exploit depthwise separable convolutional layers
to significantly reduce parameter count. We find that the incorporation of prior knowledge
in the form of differentiable equations allows accurate estimation of the AIF. This allows
kinetic modelling which leads to good estimates of the distribution volume. This work can
pave the way for removing the large invasivity constraint that currently limits quantitative
PET applications.
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1. Introduction

The translocator protein 18kDa (TSPO) is upregulated by activated microglia andmacrophages,
therefore representing a target for [11C]PBR28 Positron Emission Tomography (PET)-based
in vivo imaging of neuroinflammation. Quantitative PET requires sampling of the Arterial
Input Function (AIF) via invasive arterial cannulation, which comes with several challenges
including e.g. higher clinical staff demands and additional patient burden. While it could be
possible to estimate the AIF noninvasively through deep learning techniques, this is often
hampered by 1) the need for large data sets 2) the data footprint 3D/4D medical images
(which results in high computational burden and model parameter count). Here we aimed to
estimate the AIF from a dynamic PET acquisition (i.e. a 4D image only) while employing
a parameter efficient, Physically Informed Neural Network (PINN).

We inject a priori knowledge about the AIF time course (Karniadakis et al., 2021) while
4D dynamic PET images form the input for a set of depthwise separable convolutional layer.
Time evolution is encoded in the channels, hence forgoing the use of 4D convolutional layers.
Quantitative PET results obtained (in the test set) using the estimated versus real AIF are
not statistically different, indicating that deep learning techniques may provide a valuable
strategy to limit the need for arterial cannulation.
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2. Material and methods

[11C]PBR28 Positron Emission Tomography/ Magnetic Resonance Imaging (PET/MRI)
of the brain was performed with a Siemens Biograph mMR on 50 individuals (22 females;
58.2/13.2 years old [mean/SD], 15 mCi of [11C]PBR28, 90 minutes).

Figure 1: Architec-
ture overview

Arterial blood samples were collected at 3-10s (first 3 minutes) and
at 5, 10, 20, 30, 50, 70 and 90 minutes post-[11C]PBR28 injection, and
radio-metabolite-corrected AIFs were obtained for each subject. T1-
weighted structural Magnetic Resonance Imaging (MRI) volumes were
also acquired for anatomical localization and selection of Region Of
Interests (ROIs).

Our network was trained to approximate the mapping function from
the dynamic PET images to the parameters of the equation known as
the Parker Model (PM), which describes the AIF as a mixture of two

Gaussians and an exponential modulated by a sigmoid function (Parker et al., 2006):

AIF(t) =
∑

(An/(σn
√
2π)exp((−t− Tn)

2/2σ2
n) + α exp((−βt)/(1 + exp(−s(t− τ))) (1)

where An, Tn, and σn are the scaling constants, centers, and widths of the nth Gaussian, α
and β are the amplitude and decay constant of the exponential, s and τ are the width and
center of the sigmoids, respectively.

Figure 2: Compart-
mental model. Cp:
plasma compart-
ment; Cnd/Cs: tis-
sue compartments;
Cvasc: vascular
component.

Our architecture (Figure 1) consisted of six depthwise separable 3D
strided convolution layers which repeatedly downsample the dynamic
4D PET image by a factor of two. We employed 3D convolutional layers
and included time information in the channels. The interaction between
channels was split through the implementation of a depthwise separable
3D convolution, which consisted of the sequential application of depth-
wise and pointwise convolutions. This resulted in both a considerable
reduction of parameter count (a factor of twenty) and a computation
of spatiotemporal features thanks to the pointwise channel’s interaction
term. The convolution layers were followed by an average pooling layer
with a kernel size of two. Features were then flattened and passed to
a multilayer perceptron of depth 3 with hyperbolic tangent activation
functions that mapped the features onto the ten parameters of the PM.
The PM was integrated into the computational graph to output an AIF
estimate over 200 evenly sampled time points which was compared to the original one during
training (mean squared error loss, 80 : 20 train/test split). The model was trained on an
NVIDIA A100 GPU (80GB RAM; batch size: 20, 2500 epochs, Adam optimizer, learning
rate:1e - 4; reduced by 10% every 500 epochs). The network learns how to predict parameters
of the PM model from the PET image. After training, the estimated AIF in the test set was
used to model [11C]PBR28 kinetics with the 2TCM With Irreversible Vascular Trapping
(2TCM-1k) (Figure 2).

This resulted in the estimation of the distribution volume vT (mL/cm3, proportional to
receptor density and binding activity) from the model parameters as : vT = (K1/k2)(1 +
(k3/k4)) where the microparameters K1 (mL/cm3 per minute), k2 (1/minute), k3 (1/minute),
and k4 (1/minute) are the rate constants for tracer transport from plasma to tissue and
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Figure 3: Volume of distribution and AIF estimation. A: Exemplary true and predicted AIFs from a sample
subject; B: vT values obtained in sample ROIs when fitting the 2TCM-1k with the true and predicted AIF. No
statistical differences were was found. C: Example 3D map of the true and predicted vT in one representative
patient.

back, and from the non-displaceable to the specific compartment and back, respectively. The
Wilcoxon rank sum test was used to test the difference between the vT values obtained by
fitting the 2TCM-1k using both the true and predicted AIF in several ROIs obtained from
the T1-weighted (T1w) PET/MRI image through automatic segmentation (Freesurfer v 7.1).
No difference in vT values was found when comparing estimates from the estimated and real
AIFs in both kinetic models. Upon visual inspection, estimated vT maps as well as AIFs in
the test set resulted qualitatively similar to true vT maps and AIFs (Figure 3).

3. Conclusions

We have shown that incorporating prior knowledge into neural networks by letting the
gradient flow through a differentiable model can provide good performance in modeling a
complex phenomenons like the AIF from a small data set. In this paper, we enforced a specific
shape for the AIF rather than predicting its shape point-by point, hence effectively posing
an upper bound on individual prediction performance in terms of the PM’s representation
ability. The combination of convolutional and recurrent layers with a larger data set may
be a potentially promising approach in this respect. Also, the impact of hyperparameters
were not explored, leaving margin for improving our prediction. Also, the model was trained
for 2500 epochs only due to computational constraints - this may have led to systematic
bias in estimation of e.g. the AIF peak. Still, our results demonstrate that the predicted
distribution volume is very close to its true value in the test set. This work has the potential
to aid in reducing the invasivity of quantitative PET.
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