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Abstract

Modeling the shape of garments has received much attention, but most existing
approaches assume the garments to be worn by someone, which constrains the
range of shapes they can assume. In this work, we address shape recovery when
garments are being manipulated instead of worn, which gives rise to an even larger
range of possible shapes. To this end, we leverage the implicit sewing patterns (ISP)
model for garment modeling and extend it by adding a diffusion-based deformation
prior to represent these shapes. To recover 3D garment shapes from incomplete
3D point clouds acquired when the garment is folded, we map the points to UV
space, in which our priors are learned, to produce partial UV maps, and then fit
the priors to recover complete UV maps and 2D to 3D mappings. Experimental
results demonstrate the superior reconstruction accuracy of our method compared
to previous ones, especially when dealing with large non-rigid deformations arising
from the manipulations.

1 Introduction

Garments play an important role in our daily lives, as we interact with them through wearing, folding,
and manipulating them. Therefore, the ability to recover their 3D shape is important in many fields,
including virtual try-on, VR/AR, and robotic manipulation. However, since garments are non-rigid
thin structures with a near-infinite number of degrees of freedom, accurate reconstruction remains a
challenge, especially in the presence of massive self-occlusions caused by folding or crumpling.

Most existing techniques focus on reconstructing garments being worn by someone and therefore
constrained by the body shape. This limits the amount of crumpling and provides a shape prior that
can be exploited. In this paper, we address the even more challenging problem of recovering the
shape of garments not being worn and therefore possibly assuming arbitrary shapes, such as those of
Fig. 1.

To this end, we start from the Implicit Sewing Patterns (ISP) model [1]. As in models used by clothing
designers, each garment consists of individual 2D panels. Their 2D shape is defined by a Signed
Distance Function and 3D shape by a 2D to 3D mapping. We chose this formalism because it can
handle complex garments with various geometries, while preserving differentiability with respect to
observations. However, its 3D parameterization is limited to a single rest state for each garment and
is designed to be draped on a human body.

To handle garments unconstrained by the wearer’s body, we introduce a prior to represent the many
plausible deformations, including folding and crumpling. It is learned using a generative diffusion
model that generates 2D positional UV maps that are applicable to many different garments. We use
it to recover 3D garment shapes from incomplete 3D point clouds, such as those that are acquired
using a laser scanner when the garment is folded.
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Figure 1: Recovering the 3D shape of folded and crumpled garments from incomplete point clouds.
Top: The input point clouds (green) overlaid on the ground truth meshes (gray). Bottom: Our
reconstructions.

In practice, given that every panel in the ISP model is registered to a unified 2D space parameterized
by its UV coordinates, we train a UV mapper to assign the points to individual panels and to project
them into the corresponding UV-space, as shown at the top of Fig. 2. This yields partial UV maps for
each panel. We then fit the 2D panels and use a guided reverse diffusion process to generate complete
UV maps from the partial ones.

We validate our approach on the data from the VR-Folding dataset [2], where point clouds are
generated from multi-view RGBD images. As shown in Fig. 1, our approach accurately reconstructs
3D garment meshes under high levels of deformation and self-occlusion. We also demonstrate that
our algorithm can handle real point cloud data. Notably, our method achieves this without requiring
explicit prior knowledge of the garment geometry, further demonstrating its practical applicability.
This goes well-beyond prior diffusion-based work [3] that can only model the deformations of a single
specific garment worn on the human body. Our implementation and model weights are available at
https://github.com/liren2515/GarmentFolding.

2 Related Work

Non-Rigid 3D Reconstruction. Reconstructing non-rigid deforming objects has been a longstand-
ing research area in computer vision and graphics. One line of work [4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16], known as Shape from Template (SfT) and 3D registration, assumes the availability of 3D
surface templates. These methods aim to minimize the difference between the observations, such as
captured images or point clouds, and the given template surface to recover the deformed state of the
objects with geometric constraints or differentiable physics simulators. Unfortunately 3D templates
are rarely available. Thus, there are many approaches that rely on free-form techniques without any
geometric prior [17, 18, 19, 20], which warp and accumulate different observations across frames
into a 3D volume. However, these methods face challenges when reconstructing regions that remain
occluded throughout the sequence. While the algorithms of [21, 22, 23, 24, 25, 26] can recover full
object geometry from RGB-D videos, the shape representations they use are designed for watertight
surfaces, and thus not suitable for garments that are thin open surfaces.

In contrast, GarmentNets [27] recovers the full 3D surfaces of previously unseen garments from point
clouds. It leverages the Normalized Object Coordinate Space (NOCS) [28] as a category-specific
canonical representation for garments. The garment mesh is reconstructed by mapping the predicted
canonical mesh to the deformed one. However, GarmentNets only handles garments being grasped.
To cover the much wider range of possible states that garments can be in, a large-scale garment
manipulation dataset is introduced in [2]. It relies on a VR system and uses it to learn a tracking
model for estimating the complete pose of a given garment. Despite promising results, requiring a
canonical geometry for garment and an initial shape estimate in the first frame imposes limitations
similar to those of template-based methods. In contrast, our proposed method is not subject to these
and can recover 3D meshes of garments with unknown geometry.

On-Body Garment Reconstruction. Clothed human reconstruction has received significant at-
tention in recent years. However, the majority of methods primarily focus on clothing that tightly
adheres to the body. In these, garments are represented either explicitly using template meshes
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Figure 2: Our framework. Given a point cloud, we first map it to UV space to obtain sparse UV
maps M̃ and panel masks Õ. We recover complete UV maps M and panel masks O from them
using ISP and a deformation prior, enabling the reconstruction of the deformed garment’s 3D mesh.

[29, 30, 31, 32] or implicitly by signed and unsigned distance functions [33, 34, 35]. To handle
loose-fitting garments such as skirts and dresses, the methods of [36, 37, 38] leverage complex
physics simulation steps or feature line estimation to align the garment surface with the input image.
The one of [39] reconstructs garments from point clouds by predicting displacement and principal
component analysis (PCA) coefficients for the mesh registered to base templates. While effective,
these methods’ reliance on garment templates limits their generality. To address this limitation, [40]
uses the Implicit Sewing Patterns (ISP) model from [1] as the garment representation and fits an
image-conditioned deformation model to the normal estimation of the garments.

However, all these methods rely on the articulated body shape model [41] as a prior. This makes them
unsuitable for the perception task in the context of robot manipulations where no body is involved
and garments can exhibit higher levels of crumpled deformation and occlusions, which is the focus of
our work.

Diffusion Model. Diffusion models [42, 43] are a class of generative models that excel at learning
complex data distributions through score matching. By iteratively denoising the data, these models
can generate high-quality samples. They have achieved state-of-the-art performance in a wide
range of image-based generative tasks [44, 45, 46, 47]. Additionally, diffusion models have found
application in various 3D tasks, such as text-to-3D generation [48, 49, 48], image-to-3D generation
[50, 48, 51, 52], and point cloud synthesis [53, 54]. Recently, [3] introduced a diffusion-based shape
prior for on-body garment registration, employing UV maps to parameterize the garment. However,
its prior is specific to a single garment piece and requires coarse registration of the input point clouds.
In contrast, our proposed method is capable of handling garments with diverse geometries and does
not impose any registration requirements.

3 Method

Given a point cloud P ∈ RN×3 that partially represents a previously unknown garment, we want
to reconstruct an accurate 3D model that captures both its geometry and deformation. Instead of
doing this directly in 3D space, we first use a trained UV mapper to map 3D points to the unified 2D
UV space in which individual ISP [1] garment panels are represented. In practice, we typically use
two such panels, one for the front, and one for the back. In the resulting UV maps, each pixel can
either be empty or contain the 3D location of a point. We then fit the 2D panels to these and use a
reverse diffusion process to fill the potentially large holes in the UV maps, which yields a complete
reconstruction. Fig. 2 depicts this process.

In this section, we first briefly describe the Implicit Sewing Pattern (ISP) garment model [1], which
represents the garment geometry using one UV map for each 2D panel and which we extend by
adding a diffusion-based [42, 43] deformation model. This makes it possible to model plausible
and potentially large garment deformations. We then introduce the UV mapper that maps the point
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cloud data to UV space of the individual panels and discuss our approach to fitting the augmented
ISP model to the resulting UV maps.

3.1 ISP Garment Model

Formalization. ISP [1] is a garment model inspired by the sewing patterns used in the fashion
industry to design and manufacture clothes. Such a pattern consists of several 2D panels along with
stitch information for assembling them. They are implicitly modeled using a 2D signed distance field
(SDF) and a 2D label field, respectively. For a specific garment, its corresponding latent code z, and
a point u in the 2D UV space Ω = [−1, 1]2, the ISP model outputs the signed distance s to the panel
boundary and a label l using a fully connected network IΘ as

(s, l) = IΘ(u, z) . (1)

The zero crossing of the SDF defines the shape of the panel, with s < 0 indicating that u is within
the panel and s > 0 indicating that u is outside the panel. The label l encodes the stitch information,
indicating which panel boundaries should be stitched together. To map the 2D sewing patterns to
3D surfaces, a UV parameterization function AΦ is learned to perform the 2D-to-3D mapping. It is
written as

X = AΦ(u, z) , (2)
where X ∈ R3 represents the 3D position of u. ISP effectively registers different garments onto
a unified UV space and establishes the mapping functions between points in UV space and the
garments’ 3D surfaces. Crucially, this is a differentiable representation. Given masks or contours of
the panels, we can easily fit the latent code z to recover the corresponding garment geometry.

Training. Training ISP requires the 2D sewing patterns of 3D garments in a rest state, which are
not available in most garment datasets, such as CLOTH3D [55]. Following the garment flattening
approach described in [40, 56], we cut the garment mesh into a front and a back piece according to
predefined cutting rules and then unfold them into 2D panels by minimizing an as-rigid-as-possible
energy [57] to ensure local area preservation. For each garment in the dataset, we generate a front
and a back panel as its sewing pattern. By pairing these 2D sewing patterns with their corresponding
3D meshes, we follow the training procedure of [1] to learn the weights of the ISP model (IΘ,AΦ).

3.2 Modeling Deformations

Although the UV parameterization described above is good at representing garments in their rest state,
it does not capture the various deformations that can occur when the garment is subjected to external
forces, such as folding or creasing. To address this and model the possibly large deformations of
garments, we incorporate a deformation prior into ISP.

Given a set of deformed garments whose rest states are modeled by ISP, we write the corresponding
UV maps as

M[u, v] =

{
V, if su ≤ 0

∅, if su > 0
, (3)

where V ∈ R3 is the corresponding position on the deformed mesh surface for the UV point
u = (u, v), su is the SDF value of u, [·, ·] denotes standard array addressing and ∅ = (−1,−1,−1).
Note that ∅ indicates that u is out of the panel and has no corresponding 3D point. Each M represents
a specific deformed state for a particular garment. To capture the distribution of plausible deformations
represented in this way, we learn a deformation prior using a standard diffusion model [42, 43].

Diffusion. The popular Denoising Diffusion Probabilistic Model (DDPM) framework [42] com-
prises a forward and a reverse process. The forward process perturbs the clean data x0 ∼ q(x0) by
iteratively adding Gaussian noise ϵ ∼ N (0, I) to it. This is written as

xt =
√

1− βtxt−1 +
√
βtϵ , (4)

where xt is the noised intermediate state at step t = 1, 2, .., T , and βt ∈ (0, 1) denotes the variance
schedule. The reverse process recovers the clean data from random noise with a trained neural
network ϵθ

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz , (5)
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where αt = 1− βt, ᾱt =
∏t

i=1 αi, z ∼ N (0, I) and σt =
√

1−ᾱt−1

1−ᾱt
βt.

Training. In our context, we concatenate the UV map M generated by Eq. 3 with the panel mask
O along the channel dimension to form the training samples x0 = [M,O] where

O[u, v] =

{
1, if su ≤ 0

0, if su > 0
. (6)

The panel mask O encodes the shape of the panels as well as the 3D geometry of the canonical
garment. The network ϵθ is trained on corrupted x0 to predict the noise by minimizing the loss

L = ∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)
∥2 . (7)

Once the diffusion model is trained, it learns the deformation prior, enabling it to generate or recover
realistic and diverse deformations for different garments.

3.3 Mapping Point Cloud to UV Space

To relate an input 3D point cloud P of the garment to the UV space in which the deformation prior is
learned, we rely on the UV mapper G shown at the top of Fig. 2. For each 3D point, it predicts σ,
the probability of belonging to either the front or back panel, along with the u, v coordinates of the
pixel where the 3D point should be stored in the UV map. As in [2], we use a sparse 3D convolution
network [58] to extract raw features for each point pi in P. These raw features are then passed
through a transformer encoder with self-attention, producing fused per-point features fi that capture
relationships across points. These are fed to an MLP that predicts the per-point UV coordinates.
It outputs probability distributions ϕu ∈ RK and ϕv ∈ RK over K discrete values for the u- and
v-axes, along with σ. G is trained by minimizing

LG = CE(ϕu, ϕ̂u) + CE(ϕv, ϕ̂v) +BE(σ, σ̂) , (8)

where ·̂ denotes the ground-truth values, and CE and BE are the cross entropy and the binary cross
entropy, respectively.

Once trained, G assigns to each point pi a UV coordinate ui = (ui, vi) in the front (σi ≥ 0.5) or the
back (σi < 0.5) panel with

ui = −1 +
2ku

K − 1
, vi = −1 +

2kv
K − 1

, (9)

where ku = argmax
k∈{0,...,K−1}

ϕk
u and kv = argmax

k∈{0,...,K−1}
ϕk
v .

We then combine these predictions with M̃[ui, vi] = pi and Õ[ui, vi] = 1 at pixels where a 3D point
is projected, and M̃[ui, vi] = ∅ and Õ[ui, vi] = 0 elsewhere, producing the assembled UV map M̃
and the panel mask Õ.

3.4 Fitting the Model

When the garment deformations are severe, there are many occlusions, and M̃ and Õ are typically
sparse. Nevertheless, we can use the deformation model of Section 3.2 to fill-in the holes and recover
complete UV maps. To this end, we first recover the 2D shape of the 2D panels and then their
individual 3D surfaces, as shown at the bottom of Fig. 2.

Panel Recovery. To recover the 2D shape of the panels, we find the latent code z of Eq. 1 that
yields patterns matching Õ as well as possible. We take it to be

z∗ = argmin
z

∑
u ∈ O+

R(−su(z))− λarea

∑
u ∈ Ω

su(z) + λz||z||2 , (10)

where O+ = {u|Õu = 1,u ∈ Ω}, R(·) is the ReLU function, su(z) is the SDF value of u computed
by ISP, and λarea and λz are the weighting constants. Since the second item of the objective function
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Figure 3: The projected sparse masks Õ and UV maps M̃ of the point clouds with (a) the maximum
volume and (b) the minimum volume. The point clouds are color coded by their 3D positions.

in Eq. 10 penalizes large panel area, this yields panels O whose contours—the zero crossings of the
SDF—surround the non-zero point of Õ as closely as possible, as shown in the bottom right of Fig. 2.

Given a point-cloud sequence, we solve Eq. 10 only once, specifically at the frame where the point
cloud occupies the maximum volume in 3D space. This choice is motivated by the fact that a large
volume of the point cloud indicates less deformation and occlusion of the garment, resulting in a
more visible and informative mask Õ, as shown in Fig. 3. Using this frame for the optimization of z
leads to more accurate fitting results as demonstrated in the Appendix.

Guidance

Signals

Reverse Diffusion Process

Recovered Panel Masks

Sparse UV Maps

Sparse Panel Masks 𝑥0𝑥𝑇 𝑥𝑡… …

Figure 4: The guided reverse diffusion process. The UV maps of the deformed garment are
generated by using the observations from the input point cloud as guidance to direct the reverse
diffusion process.

Deformation Recovery. The deformation model of Section 3.2 has been trained to generate UV
maps representing plausible deformations of garments of many different geometries. To align the
generation process with the observation of the sparse UV map M̃ and the ISP-recovered mask O
introduced in the previous paragraph, we use them as manifold guidance [45, 46] in the reverse
diffusion process. We write

∇xt
log p(xt|M̃, Õ,O) ≃ −ϵθ(xt, t)

σt
− ρ∇xt

d(x̂0,M̃, Õ,O) , (11)

x̂0 =
1√
ᾱt

xt −
√

1− ᾱt

ᾱt
ϵθ(xt, t) , (12)

where ρ is the guidance step size. The function d measures the difference between the generated
result and the observations

d(x̂0,M̃, Õ,O) = ∥Õ ∗ (x̂0,M − M̃)∥2 + ∥x̂0,O −O∥1 , (13)

where x̂0,M and x̂0,O refer to the generated UV map and panel mask respectively, and ∗ denotes the
elementwise multiplication. When sequential information is available, we additionally refine our
method by using the previous prediction Mprev as the regularization for the unobserved part

d(x̂0,M̃, Õ,O) = ∥Õ ∗ (x̂0,M −M̃)∥2 + ∥x̂0,O −O∥1 +λ∥(1−Õ) ∗ (x̂0,M −Mprev)∥2. (14)

where λ is a weighting constant. Finally, the garment mesh is inferred from the generated UV map
using the mapping function of ISP. As illustrated in Fig. 4, this process finally produces a garment
mesh that aligns with the point cloud observation.
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4 Experiments

4.1 Dataset, Evaluation Metrics, and Baseline

We train our models using data from the VR-Folding [2] and CLOTH3D [55] datasets. The VR-
Folding dataset is collected using a VR-based recording system, where participants manipulate
garments (i.e., folding and flattening) in a simulator through a VR interface. The dataset features
pants, shirts, tops, and skirts selected from the CLOTH3D, and each category covers a wide shape
range. VR-Folding comprises 9767 manipulation videos and 790K multi-view RGB-D frames,
which are used to generate point clouds. For the training of ISP, we use the same garments from
CLOTH3D as those selected in VR-Folding and generate their sewing patterns as described in Sec.
3.1. We generate UV maps of deformed garments and the corresponding UV coordinates of point
clouds using the mapping function of ISP. These UV maps and coordinates serve to train the diffusion
model and the UV mapper, respectively. For each garment category, we train a separate set of models,
using the same training and test splits as [2].

As in [2, 27], we employ the Chamfer Distance Dcf and the Correspondence Distance (Dcr, Ad)
as evaluation metrics. Dcf measures the surface reconstruction quality by calculating the Chamfer
distance in centimeters from the reconstructed mesh to the ground truth. Dcr represents the point-wise
L2 distance in centimeters between the reconstruction and the ground truth, which evaluates the
accuracy of garment pose estimation. Note that the correspondences of Dcr are established by finding
the closest point of the ground truth in canonical space instead of the deformed one as Dcf . Finally,
we take Ad to be the ratio of frames with Dcr < d cm.

We compare our method against state-of-the-art approaches: GarmentNets [27] and GarmentTracking
[2]. GarmentTracking estimates the per-vertex garment pose based on the given canonical garment
mesh and the initialization of the first frame. GarmentNets is a single-frame garment shape estimation
method that utilizes the winding number field for garment meshing. Like our method, GarmentNets
does not require ground truth geometry.

4.2 Quantitative Results

Table 1: Quantitative comparisons of our method to GarmentNets and GarmentTracking on VR-
Folding dataset.

Type Method Init. Folding Flattening
A3 ↑ A5 ↑ Dcr ↓ Dcf ↓ A5 ↑ A10 ↑ Dcr ↓ Dcf ↓

Shirt

GarmentNets [27] N/A 0.8% 21.5% 6.40 1.58 13.2% 59.4% 10.54 3.54
GarmentTracking [2] GT 29.8% 85.8% 3.88 1.16 30.7% 83.4% 8.63 1.78
GarmentTracking [2] Pert. 29.0% 85.9% 3.88 1.18 25.4% 81.6% 8.94 1.85
GarmentTracking [2] GN. 25.4% 78.9% 4.04 1.18 - - - -

Ours N/A 84.7% 97.9% 2.36 0.77 78.8% 95.2% 4.19 1.08

Pants

GarmentNets [27] N/A 16.2% 69.5% 4.43 1.30 1.5% 42.4% 12.54 4.19
GarmentTracking [2] GT 47.3% 94.0% 3.26 1.07 31.3% 78.2% 8.97 1.64
GarmentTracking [2] Pert. 42.8% 93.6% 3.35 1.10 30.7% 76.9% 9.55 2.71
GarmentTracking [2] GN 45.1% 92.2% 3.33 1.16 - - - -

Ours N/A 75.9% 97.9% 2.69 0.70 60.8% 91.4% 5.32 1.16

Top

GarmentNets [27] N/A 10.3% 53.8% 5.19 1.51 13.1% 42.5% 12.11 2.85
GarmentTracking [2] GT 37.9% 85.9% 3.75 0.99 54.6% 82.8% 6.59 1.15
GarmentTracking [2] Pert. 36.6% 86.1% 3.76 1.00 54.2% 82.6% 7.80 2.59
GarmentTracking [2] GN 21.1% 61.9% 4.82 1.11 - - - -

Ours N/A 71.2% 93.5% 2.65 0.74 70.2% 86.2% 5.24 1.08

Skirt

GarmentNets [27] N/A 1.1% 30.3% 6.95 1.89 0.1% 7.9% 18.48 5.99
GarmentTracking [2] GT 23.5% 71.3% 4.61 1.33 5.4% 39.4% 16.09 2.02
GarmentTracking [2] Pert. 22.8% 70.6% 4.72 1.36 2.3% 35.5% 16.55 2.15
GarmentTracking [2] GN 14.7% 65.9% 5.36 1.46 - - - -

Ours N/A 32.5% 76.5% 4.70 1.04 5.1% 33.1% 14.26 1.75

Table 1 shows the quantitative results obtained on the VR-Folding dataset. In the third column, the
abbreviation "N/A" indicates the absence of any initialization, while "GT", "Pert." and "GN" represent
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the results of GarmentTracking using the ground-truth mesh, the noise-perturbed ground-truth mesh,
and the estimation of GarmentNets as the initialization, respectively. Our method outperforms the
baselines by a large margin for both the Folding and Flattening sets. GarmentNets can handle
garments without prior knowledge of their geometry but has the lowest reconstruction accuracy.
GarmentTracking is more accurate and benefits from using the given garment mesh as a prior, but its
performance is highly influenced by the choice of initialization. When using the network-predicted
result (GN) instead of the ground truth, its performance drops substantially, particularly for Shirt, Skirt
and Top. This greatly restricts its applicability in real-world scenarios where obtaining the ground
truth garment mesh in advance is rarely possible. In contrast, our method has no such limitation while
still achieving the highest reconstruction accuracy. The performance disparity between our method
and the baselines is particularly significant for challenging metrics such as A3 (on Folding) and A5

(on Flattening), for instance, 84.7% vs 29.8% and 78.0% vs 24.5% on Shirt.

We also notice that both our method and the baseline models achieve relatively higher Dcr and
lower Ad values for Skirt compared to other categories. This discrepancy arises from the ambiguous
definition of skirt sides due to its rotational symmetry. When the skirt is rotated by a specific amount
around the medial axis, the resulting shape is nearly identical to the original one, which can yield
high Dcr and low Ad values because they are computed using correspondence between the estimated
canonical mesh and the ground truth. Consequently, this symmetrical ambiguity makes these metrics
unsuitable for assessing the reconstruction quality of skirts, whereas the Chamfer distance Dcf does
not have this issue, on which we obtain the lowest values. An illustrative example is provided in the
Appendix.
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Figure 5: Qualitative comparisons of our method to GarmentTracking (initialized with ground truth
meshes) on VR-Folding dataset for the categories of Pants, Top, Shirt and Skirt.

4.3 Qualitative Results

In Fig. 5, we show the qualitative comparison with GarmentTracking which uses the ground truth
garment mesh as the initialization. GarmentTracking produces results with inaccurate size and
deformation, and unrealistic artifact can show up on the reconstructed surfaces. In contrast, our
method can recover garment meshes from input point clouds faithfully with correct shape and
deformations. In Fig. 6, we further show the reconstructed results for a folding and a flattening
sequences, which demonstrates our method can consistently produce accurate results compared with
GarmentTracking. More qualitative comparisons can be found in the Appendix.

4.4 Evaluation on Real-World Data

To evaluate our method on real-world data, we capture RGB images of a pair of pants and a sweater,
and compute dense point clouds using the nerfstudio library [59] for them, as illustrated in Fig. 7 (a).
We remove background points and use the resulting point cloud downsampled as input to our method.
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Figure 6: Qualitative comparisons of our method to GarmentTracking (initialized with ground truth
meshes) on VR-Folding dataset for the sequences of Folding and Flattening.

Side Views

Side view Side view

(a) (b)

Figure 7: Real-world evaluation. (a) The captured image and point cloud of the pants. (b) Our
reconstructed results.

Fig. 7 (b) shows the qualitative results for the pants (the results of the sweater are included in the
Appendix). Despite being trained on simulated data, our method is able to reconstruct 3D meshes for
both flat and folded garments in real-world scenarios.
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5 Conclusion

We have proposed a method that addresses the challenges of reconstructing garment that is not being
worn and can be manipulated in complex ways. It leverages the Implicit Sewing Patterns (ISP)
model for geometry modeling, a generative diffusion model for learning deformation prior, and a
UV mapping network to relate the 3D point cloud observations to the UV space where the priors are
learned. We have demonstrated the effectiveness of our fitting approach in accurately reconstructing
garment meshes in the presence of severe self-occlusion and unknown garment geometries. In future
work, we will incorporate accumulated point-cloud information across time to improve the accuracy
of UV mapping and mesh reconstruction.
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A.1 Qualitative Comparisons

G
ar

m
en

tT
ra

ck
in

g
G

T
O

u
rs

Figure 8: The comparison of reconstructed results for the flattening sequence of Skirt.

In Fig. 8 to 15, we provide additional qualitative comparisons between the results of our method and
GarmentTracking [2] initialized with the ground truth garment mesh. Our reconstructions demonstrate
higher accuracy and greater fidelity to the ground truth.

A.2 Evaluation on Real-World Data

Fig. 16 shows the qualitative results for the sweater. Similar to the results of the pants shown in Fig. 7
of the main paper, our method is able to reconstruct 3D meshes for both the flat and folded sweaters.
However, some discrepancies still exist between the input and our reconstruction, which is attributed
to the sim-to-real gap. Closing this domain gap will be an important direction of future work.
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Figure 9: The comparison of reconstructed results for the flattening sequence of Top.
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Figure 10: The comparison of reconstructed results for the flattening sequence of Pants.
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Figure 11: The comparison of reconstructed results for the flattening sequence of Shirt.

A.3 Evaluation of Intersections

In Table 2, we evaluate the intersections of our reconstructions and compare them with those of
GarmentTracking [2] using the ground-truth initialization. We compute the average ratio of faces
with intersection as the evaluation metric. Notably, our results exhibit fewer intersections compared
to GarmentTracking on Pants, Top and Skirt.
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Figure 12: The comparison of reconstructed results for the folding sequence of Skirt.
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Figure 13: The comparison of reconstructed results for the folding sequence of Top.
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Figure 14: The comparison of reconstructed results for the folding sequence of Pants.
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Figure 15: The comparison of reconstructed results for the folding sequence of Shirt.

Figure 16: Qualitative results for folding a real sweater. Top: the images of the sweater. Bottom: our
reconstructed results.

Table 2: The average intersection ratio of faces intersecting another face of our reconstructions
compared to GarmentTracking [2]. GarmentTracking is initialized with the ground-truth mesh.

Ours GarmentTracking [2]

Pants 1.9% 3.8%
Shirt 2.2% 1.6%
Top 1.8% 6.4%
Skirt 1.5% 2.7%

A.4 Ablation Study

Table 3: Ablation study. +M̃, +O and +Mprev denote using the guidance of the sparse UV maps,
the recovered panel mask and the recovery of previous frames, respectively.

A3 ↑ A5 ↑ Dcr ↓ Dcf ↓

+M̃ 61.5% 85.0% 3.55 1.12
+M̃, +O 68.7% 91.2% 2.81 0.80

+M̃, +O, +Mprev 71.3% 94.2% 2.62 0.72
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Table 3 presents the evaluation results of our fitting method of Eq. 14 of the main paper with
different combinations of guidance on the test set of Top. Utilizing only the sparse UV maps M̃ as
guidance results in the lowest reconstruction accuracy. However, incorporating the guidance of the
ISP-recovered panel mask O, which provides garment geometry information, improves the results
significantly. Moreover, by incorporating the recovery of the previous frame Mprev, we further
reduce the reconstruction error by introducing additional regularization on the unobserved surface.

A.5 Robustness

(a) (b)

Figure 17: Quantitative results of (a) using different numbers of points as input and (b) under
different noise levels with 4000 input points. Blue: the Correspondence Distance Dcr. Red: the
Chamfer Distance Dcf .

To evaluate the influence of point quantity, we analyze the reconstruction errors by varying the
number of points used as input on the subset of Folding Pants. The results are reported in Fig. 17 (a).
A reduction in points correlates with increased error. However, even with 2000 points, we maintain a
relatively low error margin.

To evaluate the influence of input point noise, we add per-point Gaussian noise to the input with
varying standard deviation. Fig. 17 (b) shows the results on the subset of Folding Pants. It illustrates
that as the noise level rises, so does the reconstruction error; nonetheless, the errors remain relatively
low across different noise levels.

A.6 Generative Samples

In Fig. 18, we show the deformed garment mesh generated by using the diffusion model to denoise
the randomly sampled noise images. The resulting plausible deformations of the garment surfaces
demonstrate the effectiveness of our diffusion model in capturing meaningful deformation priors.

A.7 Evaluation of Panel Mask Fitting

Fig. 19 shows the curve of the mean Intersection over Union (mIoU) between the ground truth panel
masks and the masks fitted using Eq. 10 of the main paper. The x-axis represents the volume of the
input point cloud, computed as the occupancy of the voxelized 3D space [−1, 1]3 and normalized by
the min-max normalization. As shown, a larger point cloud volume corresponds to a better fitting
result reflected by a higher mIoU. This validates our choice of using the fitted panel mask of the
frame with the maximum volume for the entire sequence.

A.8 Rotational Symmetry

As mentioned in Sec. 4.2 of the main paper, the rotational symmetry of the skirt can result in a
relatively large Correspondence Distance (Dcr, Ad). Fig. 20 provides an illustrative example for
this issue. Specifically, the front and back sides of the ground truth mesh are defined as Fig. 20 (c).
However, our model mistakenly identifies the facing-up points of Fig. 20 (b) as the front surface,
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Folding Flattening

Figure 18: The generative samples for the categories of Skirt, Top, Pants and Shirt (top to bottom).

Figure 19: The evaluation of the panel mask fitting results.

yielding a Dcr of 19.67 cm. Despite this, as illustrated by Fig. 20 (d), our reconstruction maintains
high quality, with a small Chamfer Distance (Dcf ) of 1.21 cm.

Predicted UV maps

Ground truth

(a) (d)(c)(b)

Front Back Front

Figure 20: (a) The predicted sparse UV maps and the corresponding ground truth for (b) the input
point cloud. (c) The ground truth mesh. (d) Our reconstruction. The front and back sides of the
meshes are labeled with ’Front’ and ’Back’, respectively.
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Figure 21: We use the reconstructed shirt meshes (left) to simulate the process of dropping them onto
a bar (right).

A.9 Simulation

Our recovered meshes can be used for animation and simulation directly. In Fig. 21, we show the
simulated results for the recovered shirts using Blender [60], where we drop them onto a horizontal
bar.

B Implementation Details

Following [40, 1], the pattern parameterization network IΘ and the UV parameterization network
AΦ of ISP are implemented as MLPs with the latent code z of size 128. We train IΘ and AΦ jointly
for 9000 iterations with a batch size of 50. For the diffusion model, we adopt a U-Net architecture
[61]. It takes the concatenated front and back UV maps and panel maps with the dimensions of
128× 256× 4 as input. The diffusion model is trained for 100 epochs, with a learning rate of 1e-4, a
batch size of 64, and T = 1000 steps. The UV mapper G consists of a sparse 3D CNN implemented
as [2], a 6-layer Transformer encoder [62], and a 7-layer MLP for UV coordinate prediction. We
choose K = 128 and train G for 100 epochs, using a learning rate of 1e-4 and a batch size of 128. To
augment the data, we apply random rotations to both the point cloud and the mesh represented as UV
maps. All the models are trained using the Adam optimizer [63] on NVIDIA A100 GPUs.

C Limitations

Due to the thin structure and the close proximity of surfaces during manipulation, self-intersections
can occur. An interesting direction for future research is the exploration of learning intersection-free
deformation priors with physics-based constraints.

The UV mapper currently relies on single-frame information for predictions. To enhance its per-
formance, we intend to incorporate accumulated point cloud information across frames in future
improvements.

Another limitation lies in the dataset used to train our models, which was recorded under controlled
settings where participants followed specific manipulation procedures. However, this can be ad-
dressed by leveraging the recording platform of [2] to introduce a wider range of potential garment
deformations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section C in the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4.1 and Section B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will release our codes and models upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.1 and Section B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Not available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the ethics review guidelines and ensured that our paper conforms
to them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is about modeling the garment deformation which has no societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Section 4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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