
Under review as a conference paper at ICLR 2024

TEMPORAL REPETITION COUNTING WITH
DYNAMIC ACTION QUERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal repetition counting aims to quantify the repeated action cycles within a
video. The majority of existing methods rely on the similarity correlation matrix
to characterize the repetitiveness of actions, but their scalability is hindered due
to the quadratic computational complexity. In this work, we introduce a novel
approach that employs an action query representation to localize repeated action
cycles with linear complexity. Based on this representation, we further develop
two key components to tackle the fundamental challenges of temporal repetition
counting. Firstly, to facilitate open-set action counting, we propose the dynamic
action query. Unlike static action queries, this approach dynamically embeds video
features into action queries, offering a more flexible and generalizable represen-
tation. Second, to distinguish between actions of interest and background noise
actions, we incorporate inter-query contrastive learning to regularize the video
feature representation corresponding to different action queries. The experiments
demonstrate that our method significantly outperforms the state-of-the-art methods
in terms of both accuracy and efficiency. Specifically, our approach exhibits ver-
satility in handling long video sequences, unseen actions, and actions at various
speeds across two challenging benchmarks. 1

1 INTRODUCTION

Temporal periodicity is a ubiquitous phenomenon in the natural world. Temporal Repetition Counting
(TRC) aims to accurately measure the number of repetitive action cycles within a given video and
holds significant potential for applications ranging from pedestrian detection (Ran et al., 2007) to
fitness monitoring (Fieraru et al., 2021).

Pioneer methods (Laptev et al., 2005; Azy & Ahuja, 2008; Cutler & Davis, 2000; Tsai et al.,
1994; Pogalin et al., 2008; Thangali & Sclaroff, 2005; Chetverikov & Fazekas, 2006) represent
time-series video data as one-dimensional signals and employ spectral analysis techniques such
as the Fourier transform. While suitable for short videos with fixed periodic cycle lengths, these
methods struggle to handle real-world scenarios with varying cycle lengths and sudden interruptions.
Recent studies shift to deep learning-based methods (Levy & Wolf, 2015; Dwibedi et al., 2020;
Hu et al., 2022; Zhang et al., 2020) and show promising performance. Notably, most of these
methods, such as RepNet (Dwibedi et al., 2020) and TransRAC (Hu et al., 2022), utilize a temporal
similarity correlation matrix to depict repetitiveness, as illustrated in Figure 1 (a). Nevertheless, the
computational complexity of this representation grows quadratically with the number of input frames,
limiting the model scalability. As a result, these methods struggle to simultaneously accommodate
varying action periods and video lengths.

Recent progress in the field of Temporal Action Detection (TAD) (Zhang et al., 2022a; Liu et al.,
2022b) introduces an efficient representation of action periods by associating each action instance
with an action query, similar to DETR (Carion et al., 2020). Inspired by this, we propose to formulate
the TRC problem as a set prediction task and the goal is to detect every action cycle by representing
it as an action query. Figure 1 (b) shows an overview of our method. This novel formulation reduces
the complexity from quadratic to linear and enables counting long videos with varying action periods.
However, directly applying DETR-like TAD approaches to the TRC problem proves inadequate in

1Code and models will be publicly released.

1

Under review as a conference paper at ICLR 2024

V
id

e
o

 f
e

a
tu

re
 (
𝑇
)

𝑂(𝑇2𝐶)

N
e

tw
o

rk

Count

Video feature (𝑇)

𝑂(𝑘𝑇𝐶)

Query

𝐦1

𝑡

Network

Count
𝐝1

𝐦2

𝐝2

𝐦3

𝐝3

𝐦4

𝐝4

Video feature (𝑇)

(a) (b)

Figure 1: Comparison of (a) similarity matrix-based approaches and (b) our action query-
based approach. Unlike similarity matrix-based approaches, which have a quadratic increase in
computation complexity with input video length, our approach achieves a linear increase.

addressing two distinctive challenges unique to TRC task, resulting in inferior performance as shown
in Section 4.3 and 4.4. We highlight the two inherent differences between TRC and classic detection
problems (including TAD):

1. TRC requires recognizing open-set action instances depending on the input video, rather
than relying on predefined class labels.

2. TRC requires recognizing action instances with identical content, while detection does not.

In response to the first challenge, we propose the Dynamic Action Query (DAQ), which adaptively
updates the action query using distilled content features from the encoder. This mechanism allows
the decoder to attend to the action of interest based on the input video contents. To tackle the second
challenge, we propose an Inter-query Contrastive Learning (ICL) strategy. It enforces that repetitive
action cycles exhibit similar representations, while simultaneously having dissimilar representations
with non-repetitive (background) video content. Extensive experiments validate the effectiveness of
our proposed designs.

We summarize our contributions as follows:

• We provide a novel perspective to tackle the TRC problem using a simple yet effective
representation for action cycles. This approach reduces the computational complexity from
quadratic to linear and proves robust to varying action periods and video lengths.

• We propose Dynamic Action Query to guide the model to focus on the action of interest and
improve generalization ability across different actions.

• We introduce Inter-query Contrastive Learning to facilitate learning repetitive action repre-
sentations and to distinguish these from distractions.

• Our experiments on two challenging benchmarks demonstrate the superiority of our method,
showing a significant improvement compared to state-of-the-art methods. Notably, our
method strikes an effective balance between handling various action periods and video
lengths.

2 RELATED WORK

2.1 TEMPORAL REPETITION COUNTING

Traditional methods (Laptev et al., 2005; Azy & Ahuja, 2008; Cutler & Davis, 2000; Tsai et al.,
1994; Pogalin et al., 2008; Thangali & Sclaroff, 2005; Chetverikov & Fazekas, 2006) frequently
employ spectral or frequency domain techniques for the analysis of repetitive sequences, thereby
preserving the underlying repetitive motion structures. While these conventional approaches are
capable of effectively handling simple motion sequences or those characterized by fixed periodicity,
they prove inadequate when confronted with non-stationary motion sequences encountered in real-
world scenarios. In contrast, deep-learning-based approaches (Levy & Wolf, 2015; Dwibedi et al.,

2

Under review as a conference paper at ICLR 2024

2020; Hu et al., 2022; Zhang et al., 2020) have demonstrated remarkable performance improvements.
Notably, RepNet (Dwibedi et al., 2020) and TransRAC (Hu et al., 2022) leverage temporal similarity
matrices of actions to construct models for counting temporal repetitions. However, these similarity-
matrix-based methods are not scalable for long videos due to their quadratic computational complexity.
Another research line involves predicting the start and end points of each cycle (Zhang et al., 2020)
from coarse to fine. Nevertheless, its practicality is hindered by the requirement for over 30 forward
passes to count iteratively from a single video. In this paper, we introduce an effective action
cycle representation by leveraging a Transformer encoder-decoder, which reduces the computational
complexity from quadratic to linear and demonstrates superior performance in handling both fast and
slow actions.

2.2 TEMPORAL ACTION DETECTION

The field of temporal action detection (Redmon et al., 2016; Zhao et al., 2017; Chao et al., 2018) is
typically classified into two categories: anchor-based methods, and anchor-free methods. Anchor-
based methods (Zeng et al., 2019; Li & Yao, 2021; Qing et al., 2021) generate multiple anchors,
subsequently classifying these anchors to determine the action boundaries. Anchor-free methods
(Buch et al., 2019; Shou et al., 2017; Yuan et al., 2017; Lin et al., 2021) predict action instances by
directly regressing the boundary and the center point of an action instance. With the rapid development
of Transformer technology, DETR (Carion et al., 2020) is introduced for object detection task (Zhu
et al., 2020; Meng et al., 2021; Liu et al., 2022a; Zhang et al., 2022b) and gains increasing popularity
with promising performance. This paradigm promotes the study in many fields such as the action
detection tasks (Liu et al., 2022b; Tan et al., 2021; Vaswani et al., 2017; Wang et al., 2021). These
methods establish a direct connection between action queries and the predicted action instances,
enabling them to accurately predict the temporal boundaries of actions. Inspired by these promising
results, we explore the possibility of utilizing a novel action query to represent the action cycle
in TRC task. In contrast to existing TAD methods, our approach allows the model to capture the
inherent repetitive content of an action cycle without relying on predefined class labels and effectively
addresses confounding factors such as non-repetitive video backgrounds. This makes our approach
well-suited for tackling the challenges of the TRC problem.

3 METHOD

3.1 OVERVIEW

Given an RGB video sequence V with T frames, our model predicts an integer N indicating the
number of estimated repetitive action cycles. The entire model consists of the backbone network
Φ(·), the Transformer network with encoder E(·), decoder D(·), and multiple prediction heads as
shown in Figure 2. The backbone network Φ(·) takes a sequence of T video frames as input and
extracts feature vectors F ∈ RT×C for each frame using widely-used backbone networks such as
TSN (Wang et al., 2016), where C denotes the feature dimension.

We leverage a Transformer encoder-decoder architecture to process the features F and detect each
action cycle instance to obtain the action count. The core idea is to connect the action instances
with a set of action queries, constructed by content queries Qcnt ∈ RQ×C and position queries
Qpos ∈ RQ×C , where Q denotes the number of queries. The content queries are responsible for the
action category, while the position queries handle the action time period. In order to automatically
detect the open-set action categories of interest, we propose the Dynamic Action Query (DAQ)
strategy, which adaptively updates the action query of the decoder using distilled content features
from the encoder. We leave the position queries as learnable parameters. Through iterative refinement
by the decoder and two prediction heads, these queries are updated to accurately align with the
corresponding time periods of repetitive actions. The two prediction heads include a classification
head and a position head. The classification head is to assign a class label for each content query,
with K = 2 classes consisting of actions and null (∅). The position head network transforms the
decoder output features Hdec to a set of time positions bias ∆P, which are used to iteratively get
final time periods P, including the midpoints and duration of each action cycle. To recognize action
instances with identical content, we propose Inter-query Contrastive Learning (ICL) to guide the
network to focus on repetitive actions while getting rid of other distractors. This strategy clusters the
queries into the positive action set (S+) and negative null set (S−) according to the predicted class

3

Under review as a conference paper at ICLR 2024

𝑡

ℰ(⋅)

𝒟(⋅)

Prediction

Heads

Query Selection

Null

Dynamic Action Query

Encoder

Video Backbone

Φ(⋅)

𝑇 × 𝐶

Inter-query

Contrastive Learning

_
+

Action class

𝑆− Negative set

𝑆+ Positive set

Content query

Position query

Null class

_

+

ℒ𝑐𝑡𝑟𝑠

Figure 2: Framework overview. Given the video input, we first extract video features with the
backbone network and then feed them to the encoder. The encoder processes the features F and
selects top-Q queries to be the dynamic content queries Qcnt for the decoder. The decoder refines the
queries along with learnable position queries Qpos and maps them to the action instances with the
prediction heads and predicts the final action count. We apply inter-query contrastive learning on the
decoder features Hdec.

label Ccls. Finally, we obtain the count value N by selecting the action instances whose confidence
scores Cconf are above a certain threshold α according to the classification results. Both the encoder
and decoder are Transformer networks with Lenc and Ldec layers.

3.2 MODEL ARCHITECTURE

Encoder and query selection. The encoder E(·) refines the video features F extracted by the
backbone network and feeds them to a query selection module. The query selection module selects Q
queries from the output features of E(·) to be the initial content queries Qcnt for the decoder based
on their confidence scores. The confidence scores are obtained by applying the classification head
network to these features.

Decoder. The decoder D(·) employs a layer-by-layer update mechanism to output the final position
of the action instance of interest. We use the midpoint and the period duration of each action cycle to
denote each action instance. The initial action position Pinit = (minit,dinit) ∈ RQ×2 is obtained
from the learnable position queries Qpos with a linear layer. The decoder takes the output features
Henc of the encoder, the content query Qcnt, and the initial action position Pinit as input and outputs
Hdec ∈ RQ×C as well as update the action position layer-by-layer. We apply a position head and a
classification head network to process the output feature Hdec, respectively, and finally get the action
instances, which are formed with the refined position P ∈ RQ×2 and the class label Ccls ∈ RQ×K .

Prediction heads. The prediction heads consist of a classification head network and a position head
network. The classification head is a fully-connected network. Given that the action category is an
open set and not preset, we set the number of classes K to be 2 in the classification head, indicating
whether the query is the action instance of interest or a null (∅) class. The classification head produces
the probability Ccls for each action instance with the Softmax function. The maximum probability
value serves as their confidence score Cconf. The position head, which is a two-layer MLP, computes
the residual changes of the midpoint and duration of the action positions using the intermediate
features Hdec generated by each decoder layer. The action positions for the next decoder layer are
obtained by adding the predicted residual to the action positions of the previous layer. The query
selection module reuses the class head and position head, and these two networks share parameters
with the decoder. We apply binary Cross-entropy loss to supervise the predicted class labels Ccls for
each action instance, aiming to guide the model in effectively discriminating the action instances of

4

Under review as a conference paper at ICLR 2024

interest from others:

Lcls =

Q∑
q=1

CrossEntropyLoss
(
Ccls

q , C̃cls
q

)
=

Q∑
q=1

K∑
i=1

−c̃q,ilog (cq,i) , (1)

where Ccls
q = [cq,1, cq,2, ..., cq,K] ∈ RK represents the predicted class label for qth action query.˜

denotes the GT label.

We also supervise the predicted action positions with L1 loss and gIoU (Rezatofighi et al., 2019) loss:

Lpos =

Q∑
q=1

∥∥∥Pq − P̃q

∥∥∥+ λgIoU

Q∑
q=1

(
1− gIoU(Pq, P̃q)

)
, (2)

where Pq = (mq,dq) represents the predicted action instance position for the qth query, which
consists of the midpoint and duration of the action instance.˜stands for GT label.

3.3 DYNAMIC ACTION QUERY

As discussed in Section 1, the TRC problem requires to recognize open-set action instances depending
on the video content, while the action category is not predefined. Therefore, we decompose the query
into the content query and position query and propose the Dynamic Action Query, which adaptively
updates the content (action) query using distilled content features from the encoder, as shown in
Figure 2.

Concretely, we first perform query selection on the encoder output features Henc ∈ RT×C and select
top-Q query features as priors for the decoder which contains the video content features. We re-use
the two prediction heads to process Henc to extract the action class and the action position. Then we
select the top-Q features with high confidence over all the action queries, excluding the null query
according to the classification results. These selected queries finally serve as the initial content query
Qcnt for the decoder.

In this way, the content query is enhanced by the extracted content-related features from the encoder
which contains the action priors of interest. It helps the decoder to focus more on the substantial
action features from the encoder, thereby achieving stronger generalization capability. We also
explore several other updating strategies for different types of queries to validate the effectiveness of
DAQ. Please refer to Section 7.1 in the supplementary for details.

3.4 INTER-QUERY CONTRASTIVE LEARNING

Another unique challenge to the TRC task is to recognize action instances with identical content. To
tackle this challenge, we propose Inter-query Contrastive Learning. Intuitively, queries corresponding
to action cycles should have similar representations, while other queries should have dissimilar
representations.

Specifically, the classification head takes the decoder features Hdec of the Q queries as input and
classifies them into K = 2 classes, consisting of actions and null ∅. Then we use the Hungarian
matching algorithm (Carion et al., 2020) to match the Q disordered predicted instances with the GT
labels. We define the matched action instances as a set of positive samples S+, while the rest null
instances as a set of negative samples S−. We apply contrastive learning over the Q decoder features
Hdec using InfoNCE loss (He et al., 2020):

Lctrs = −
∑
q∈S+

log

(∑
s∈S+,s6=q exp(H

dec
q ·Hdec

s)/τ∑
s∈S+,s 6=q exp(H

dec
q ·Hdec

s)/τ +
∑

s∈S− exp(Hdec
q ·Hdec

s)/τ

)
, (3)

where τ is the temperature parameter, and · denotes inner product.

3.5 TRAINING LOSS

We train the whole network in a supervised way. The overall loss function is defined as:
L = λclsLcls + λposLpos + λctrsLctrs, (4)

where λcls, λpos, λctrs are the coefficients of each loss term, respectively.

5

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

4.1 DATASETS AND METRICS

RepCountA dataset (Hu et al., 2022) is primarily gathered from fitness videos uploaded on YouTube.
It features longer video lengths, greater variations in average motion cycle changes, and more
repetitive cycles than previous evaluation datasets (Dwibedi et al., 2020; Runia et al., 2018; Levy
& Wolf, 2015; Zhang et al., 2020). The dataset contains fitness activities performed in various
environments such as home, gym, and outdoors. The activities include push-ups, pull-ups, jumping
jacks, etc. The dataset contains 1041 videos, with 757 videos allocated to the training set, 130 to
the validation set, and 151 to the test set. The maximum video length and counting number in this
dataset are 88 seconds and 141, respectively. We use the start and end position of each action instance
provided from annotations as P̂q, and set the class label Ĉcls

q of all instance to be 1. We train our
model on the RepCountA train set and select the best-performed model on the validation set. We
report the evaluation results on the test set.

UCFRep dataset (Zhang et al., 2020) is a subset of the UCF101 dataset (Soomro et al., 2012),
including fitness videos and daily life videos. The dataset includes 526 videos, with 420 videos in the
training set and 106 videos in the validation set. The maximum video length and counting number in
this dataset are approximately 34 seconds and 54, respectively. Following previous work (Hu et al.,
2022), we do not use the train set but directly test our model on the test set to evaluate the model
generalization ability.

Metrics. We compute two commonly used metrics to evaluate the model performance, including
OBO and MAE (Hu et al., 2022; Dwibedi et al., 2020; Zhang et al., 2020). OBO (Off-By-One count
error) measures the probability that the predicted count is within 1 unit of the GT count, and considers
a prediction to be correct if it falls within this range. MAE (Mean Absolute Error) measures the
normalized absolute difference between the predicted and GT counts. Formally,

OBO =
1

M

M∑
i=1

∣∣∣Ni − N̂i ≤ 1
∣∣∣ , MAE =

1

M

M∑
i=1

∣∣∣Ni − N̂i

∣∣∣
Ni

, (5)

where Ni and N̂i are the predicted and GT counts for the ith test video, respectively, and M is the
total number of test videos.

To better evaluate the performance of different models in recognizing actions with varying periods,
we expand the evaluation metrics with three variants for the OBO and MAE metrics. We split the
test video set into three categories based on the average single action period time: short-, medium-,
and long-period test sets. We define videos with an average single action duration of fewer than 30
frames as belonging to the short-period test set, videos with an average action duration longer than
60 frames as the long-period test set, and the remaining videos as belonging to the medium-period
test set. We report the OBO and MAE metrics on each of these sets separately.

4.2 IMPLEMENTATION DETAILS

We employ the backbone network with commonly-used TSN (Wang et al., 2016) RGB branch or
VideoMAE (Tong et al., 2022) networks, which are both pre-trained on the Kinetics400 (Kay et al.,
2017) dataset. For the Transformer architecture, we employ a 2-layer encoder and a 4-layer decoder,
both with 8-head attention mechanisms. The feature dimension is set to C = 512. We use Q = 40
queries in the model. The length of the video input is set to T = 512 frames without down-sampling.
We utilize the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 0.002, a batch
size of 64, and train the model for 80 epochs. λcls, λpos, λgIoU , and λctrs are set to be 1.0, 5.0, 0.4,
1.0, respectively. The action instance confidence threshold α is 0.2.

4.3 COMPARISON TO STATE-OF-THE-ARTS

Results on RepCountA dataset. We compare our proposed approach to the state-of-the-art methods
on the RepCountA (Hu et al., 2022) dataset, and the results are presented in Table 1. Our approach
achieves the best performance over the whole test set, outperforming previous works by 70.8% on

6

Under review as a conference paper at ICLR 2024

Table 1: Comparison to the state-of-the-arts on RepCountA (Hu et al., 2022) dataset. † denotes
the result by sequentially segmenting the video into the needed input length for each method.
ActionFormer (Zhang et al., 2022a) and TadTR (Liu et al., 2022b) are trained by treating each action
category as a distinct class, while ActionFormer∗ and TadTR∗ represent models trained by treating
all action categories as a single class. We additionally report MAE and OBO metrics for short-,
medium-, and long-period test sets.

MAE ↓ OBO ↑ MAEs ↓ OBOs ↑ MAEm ↓ OBOm ↑ MAEl ↓ OBOl ↑

RepNet (Dwibedi et al., 2020) 0.5865 0.2450 0.7793 0.0930 0.5893 0.1591 0.4549 0.4062
TransRAC (Hu et al., 2022) 0.4891 0.2781 0.5789 0.0233 0.4696 0.2955 0.4420 0.4375
ActionFormer (Zhang et al., 2022a) 0.4833 0.2848 0.4106 0.0930 0.3816 0.2955 0.6021 0.4062
ActionFormer∗ (Zhang et al., 2022a) 0.4990 0.2781 0.4164 0.1628 0.3768 0.3409 0.6385 0.3125
TadTR (Liu et al., 2022b) 0.9306 0.2053 0.8814 0.0233 0.7230 0.1591 1.1063 0.3594
TadTR∗ (Liu et al., 2022b) 1.1314 0.0662 0.8364 0.0233 1.1591 0.0000 1.3106 0.1406

RepNet (Dwibedi et al., 2020) † 0.6734 0.3311 0.1222 0.4419 0.2926 0.2727 1.3056 0.2969
Context (Zhang et al., 2020) † 0.5257 0.3179 0.3185 0.2093 0.3626 0.3182 0.7771 0.3906
TransRAC (Hu et al., 2022) † 2.5842 0.0728 1.0150 0.2093 2.0664 0.0000 3.9945 0.0312

Ours (TSN) 0.2809 0.4570 0.2411 0.1628 0.1792 0.5455 0.3776 0.5938
Ours (VideoMAE) 0.2622 0.5430 0.2257 0.2558 0.2002 0.5909 0.3294 0.7031

Table 2: Generalization comparison on UCFRep (Zhang et al., 2020) dataset. We additionally
report MAE and OBO metrics for short-, medium-, and long-period test sets.

MAE ↓ OBO ↑ MAEs ↓ OBOs ↑ MAEm ↓ OBOm ↑ MAEl ↓ OBOl ↑

RepNet (Dwibedi et al., 2020) 0.5336 0.2984 0.6219 0.1739 0.4825 0.3600 0.4996 0.5000
TransRAC (Hu et al., 2022) 0.6180 0.3143 0.6296 0.1951 0.5842 0.4250 0.6784 0.4118

Ours (TSN) 0.6016 0.2959 0.7069 0.0488 0.5777 0.4250 0.4039 0.5882
Ours (VideoMAE) 0.5435 0.4184 0.5657 0.1951 0.4625 0.5500 0.6804 0.6471

the OBO metric. In particular, our approach gains high performance on the medium- and long-
period actions, outperforming competing methods significantly. Previous works struggle to achieve a
balance and show limited effectiveness when dealing with actions of different lengths. Especially,
the TransRAC (Hu et al., 2022) yields an inferior performance on short-period video for the metric
OBOs due to its sparse sampling of the entire video, resulting in the loss of multiple cycles.

For a fair comparison, we re-evaluate the previous methods using a sliding-window strategy, in which
the original untrimmed video is divided into segments, and the final counting result is obtained by
summing the counting result of each segment. The results are shown with † in Table 1. It can be
observed that even though RepNet (Dwibedi et al., 2020) achieves accurate counting for short actions,
it still faces challenges in recognizing long actions. The performance on the short-period actions may
be attributed to the local feature matching proposed in RepNet (Dwibedi et al., 2020). On the other
hand, the results obtained by TransRAC (Hu et al., 2022) are even less satisfactory.

We additionally compare our method with two state-of-the-art TAD methods, ActionFormer (Zhang
et al., 2022a) and TadTR (Liu et al., 2022b). To adapt the TAD methods for TRC task, we explore two
training strategies by treating each action category as a distinct class or a single class (denoted with ∗

in Table 1). The inferior performance of these TAD methods is attributed to the distinct difference
between the TAD and TRC tasks and therefore demonstrates the effectiveness of our approach.

However, our method could be improved in the detection of short-period actions in future work,
which is similar to the challenge of recognizing small objects in the field of object detection (Carion
et al., 2020).

Results on UCFRep dataset. We evaluate the generalization ability of our method in Table 2,
where we directly use the model trained on the RepCountA dataset (Hu et al., 2022) and evaluate it
on the validation set of the UCFRep dataset(Zhang et al., 2020) following previous work (Hu et al.,
2022). Our approach gets consistent improvement compared to existing works. The improvement
becomes more significant on the longer-period actions, validating the effectiveness and the strong
generalization ability of our method.

7

Under review as a conference paper at ICLR 2024

Table 3: Effect of different modules. DAQ means the use of dynamic action query, and ICL means
inter-query contrastive learning by using contrastive loss.

MAE ↓ OBO ↑ MAEs ↓ OBOs ↑ MAEm ↓ OBOm ↑ MAEl ↓ OBOl ↑

Baseline 0.4592 0.3509 0.2805 0.1576 0.3037 0.4318 0.6862 0.3906
(a) + DAQ 0.4035 0.4040 0.2448 0.2093 0.3106 0.4545 0.5740 0.5000
(b) + ICL 0.3542 0.4172 0.2624 0.2093 0.2515 0.5227 0.4864 0.4844
(c) + DAQ + ICL 0.2809 0.4570 0.2411 0.1628 0.1792 0.5455 0.3776 0.5938

Table 4: Comparison of model complexity. Due to variations in input video lengths and the frozen
backbones used in both methods, We compare the computational complexity of the backbone when
processing a single frame and the computational complexity of the rest counting part when processing
the input sequences.

Input length Backbone (per frame) Counting part (all frames)
Params (M) FLOPs (G) Params (M) FLOPs (G)

RepNet (Dwibedi et al., 2020) 64 23.51 1.11 20.47 92.40
TransRAC (Hu et al., 2022) 64 27.85 7.53 14.43 100.19
Ours (TSN) 512 23.51 5.38 16.81 3.55

4.4 ABLATION STUDY

Effect of different modules. Table 3 shows the results on the RepCountA (Hu et al., 2022) dataset
to ablate the effect of each proposed module. The baseline method uses a static query and does not
incorporate inter-query contrastive learning by not using the contrastive loss. The static query means
removing the DAQ module where both the content query and the position query are learnable variables
instead of updating from the encoder output. As a result of using the query-based representation, the
baseline model is able to naturally handle long-time videos, leading to comparable results with the
state-of-the-art method TransRAC (Hu et al., 2022). When (a) changing to the proposed DAQ in the
baseline, we obtain consistent improvement to the static query and get larger improvement on the
OBOl metric. When (b) adding the ICL strategy to the baseline, we observe similar improvements.
These two modules show similar improvements in detecting short-period actions. ICL performs better
in recognizing actions with middle-period lengths, while DAQ exhibits a noticeable improvement
in detecting long-period actions. When (c) both ICL and DAQ are applied to the baseline, there is
a significant improvement in detecting actions with middle and long periods. However, it can be
observed that while the MAEs for short actions improves, the OBOs decreases. This suggests that
there is a decrease in the overall bias in counting predictions, but the accuracy of predicting exact
counts diminishes. This could be attributed to the high number of short-period actions, which makes
predicting exact counts particularly challenging.

4.5 QUALITATIVE RESULT

Figure 3 illustrates a representative example of the effectiveness of our proposed method on the
RepCountA (Hu et al., 2022) dataset. The accuracy of our counting results is remarkably high, with
precise alignment to the annotated action start and end positions. In contrast, the counting results
obtained by the TransRAC (Hu et al., 2022) method are comparatively inferior, accompanied by a
notable lack of interpretability in the predicted outcomes.

Figure 4 illustrates the generalization performance of the proposed method on the UCFRep (Zhang
et al., 2020) dataset. The cross-dataset experiments demonstrate promising results. Notably, in the
second example of Figure 4, where the action of soccer juggling is not present in the training set, our
model still accurately recognizes the action instances, indicating robust generalization ability.

Please refer to our supplementary video for more qualitative results which are robust to varying cycle
lengths and sudden interruptions.

8

Under review as a conference paper at ICLR 2024

Labels

Ours

TransRAC

Count=7.00

Count=7.00

Count=14.01

Labels

Ours

TransRAC

Count=17.00

Count=17.00

Count=7.96

Figure 3: RepCountA visualization results. Each block represents a single GT or predicted action
instance. TransRAC displays the results by density map, and the final count value is obtained by
summing the values in the density map.

Labels

Ours

TransRAC Count=1.93

Count=3.00

Count=3.00

Labels

Ours

TransRAC Count=5.14

Count=7.00

Count=7.00

Figure 4: UCFRep visualization results. The vertical lines in the labels represent the time points at
which the actions begin, for only the starting points of the actions annotated.

4.6 EFFICIENCY

To demonstrate the efficiency of our approach, we compare the model complexity between our method
and the similarity matrix-based methods including RepNet (Dwibedi et al., 2020) and TransRAC (Hu
et al., 2022), as detailed in Table 4. Thanks to the proposed query-based action cycle representation,
our method can handle longer input video length while keeping a much smaller amount of parameters
of the counting module.

5 CONCLUSION

In conclusion, we propose a novel approach for the TRC task that offers several advantages. Our
method utilizes a simple yet effective representation for action cycles, reducing computational com-
plexity and maintaining robustness across varying action periods and video lengths. The introduction
of the DAQ improves generalization across different actions, while the ICL strategy facilitates learn-
ing repetitive action representations and distinguishing them from distractions. Experimental results
on challenging benchmarks demonstrate the superiority of our approach, showcasing significant
improvements compared to state-of-the-art methods. Besides, our method strikes an effective balance
in handling diverse action periods and video lengths. As for limitations, due to the presence of only
human motion videos in the dataset, our method currently focuses on human-centric videos. Also,
there is still room for improvement in detecting short-period actions.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ousman Azy and Narendra Ahuja. Segmentation of periodically moving objects. In 2008 19th International
Conference on Pattern Recognition, pp. 1–4. IEEE, 2008.

Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. Soft-nms–improving object detection with
one line of code. In Proceedings of the IEEE international conference on computer vision, pp. 5561–5569,
2017.

Shyamal Buch, Victor Escorcia, Bernard Ghanem, Li Fei-Fei, and Juan Carlos Niebles. End-to-end, single-stream
temporal action detection in untrimmed videos. In Procedings of the British Machine Vision Conference 2017.
British Machine Vision Association, 2019.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229. Springer, 2020.

Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A Ross, Jia Deng, and Rahul Sukthankar.
Rethinking the faster r-cnn architecture for temporal action localization. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1130–1139, 2018.

Dmitry Chetverikov and Sándor Fazekas. On motion periodicity of dynamic textures. In BMVC, volume 1, pp.
167–176. Citeseer, 2006.

Ross Cutler and Larry S. Davis. Robust real-time periodic motion detection, analysis, and applications. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):781–796, 2000.

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman. Counting out
time: Class agnostic video repetition counting in the wild. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10387–10396, 2020.

Mihai Fieraru, Mihai Zanfir, Silviu Cristian Pirlea, Vlad Olaru, and Cristian Sminchisescu. Aifit: Automatic 3d
human-interpretable feedback models for fitness training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9919–9928, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9729–9738, 2020.

Huazhang Hu, Sixun Dong, Yiqun Zhao, Dongze Lian, Zhengxin Li, and Shenghua Gao. Transrac: Encoding
multi-scale temporal correlation with transformers for repetitive action counting. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19013–19022, 2022.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio
Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017.

Ivan Laptev, Serge J Belongie, Patrick Pérez, and Josh Wills. Periodic motion detection and segmentation via
approximate sequence alignment. In Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1, volume 1, pp. 816–823. IEEE, 2005.

Ofir Levy and Lior Wolf. Live repetition counting. In Proceedings of the IEEE international conference on
computer vision, pp. 3020–3028, 2015.

Zhihui Li and Lina Yao. Three birds with one stone: Multi-task temporal action detection via recycling temporal
annotations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4751–4760, 2021.

Chuming Lin, Chengming Xu, Donghao Luo, Yabiao Wang, Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang,
and Yanwei Fu. Learning salient boundary feature for anchor-free temporal action localization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3320–3329, 2021.

Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, and Lei Zhang. Dab-detr:
Dynamic anchor boxes are better queries for detr. arXiv preprint arXiv:2201.12329, 2022a.

Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Shiwei Zhang, Song Bai, and Xiang Bai. End-to-end temporal
action detection with transformer. IEEE Transactions on Image Processing, 31:5427–5441, 2022b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

10

Under review as a conference paper at ICLR 2024

Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang.
Conditional detr for fast training convergence. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3651–3660, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Erik Pogalin, Arnold WM Smeulders, and Andrew HC Thean. Visual quasi-periodicity. In 2008 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, 2008.

Zhiwu Qing, Haisheng Su, Weihao Gan, Dongliang Wang, Wei Wu, Xiang Wang, Yu Qiao, Junjie Yan, Changxin
Gao, and Nong Sang. Temporal context aggregation network for temporal action proposal refinement. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 485–494, 2021.

Yang Ran, Isaac Weiss, Qinfen Zheng, and Larry S Davis. Pedestrian detection via periodic motion analysis.
International Journal of Computer Vision, 71:143–160, 2007.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788,
2016.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese. Generalized
intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 658–666, 2019.

Tom FH Runia, Cees GM Snoek, and Arnold WM Smeulders. Real-world repetition estimation by div, grad and
curl. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9009–9017,
2018.

Dingfeng Shi, Yujie Zhong, Qiong Cao, Jing Zhang, Lin Ma, Jia Li, and Dacheng Tao. React: Temporal action
detection with relational queries. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part X, pp. 105–121. Springer, 2022.

Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki Miyazawa, and Shih-Fu Chang. Cdc: Convolutional-de-
convolutional networks for precise temporal action localization in untrimmed videos. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 5734–5743, 2017.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes
from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Jing Tan, Jiaqi Tang, Limin Wang, and Gangshan Wu. Relaxed transformer decoders for direct action proposal
generation. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 13526–13535,
2021.

Ashwin Thangali and Stan Sclaroff. Periodic motion detection and estimation via space-time sampling. In 2005
Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05)-Volume 1, volume 2, pp.
176–182. IEEE, 2005.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-efficient
learners for self-supervised video pre-training. arXiv preprint arXiv:2203.12602, 2022.

Ping-Sing Tsai, Mubarak Shah, Katharine Keiter, and Takis Kasparis. Cyclic motion detection for motion based
recognition. Pattern recognition, 27(12):1591–1603, 1994.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool. Temporal
segment networks: Towards good practices for deep action recognition. In European conference on computer
vision, pp. 20–36. Springer, 2016.

Xiang Wang, Shiwei Zhang, Zhiwu Qing, Yuanjie Shao, Zhengrong Zuo, Changxin Gao, and Nong Sang. Oadtr:
Online action detection with transformers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7565–7575, 2021.

Zehuan Yuan, Jonathan C Stroud, Tong Lu, and Jia Deng. Temporal action localization by structured maximal
sums. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3684–3692,
2017.

11

Under review as a conference paper at ICLR 2024

Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong, Peilin Zhao, Junzhou Huang, and Chuang Gan. Graph
convolutional networks for temporal action localization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 7094–7103, 2019.

Chen-Lin Zhang, Jianxin Wu, and Yin Li. Actionformer: Localizing moments of actions with transformers. In
European Conference on Computer Vision, volume 13664 of LNCS, pp. 492–510, 2022a.

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino:
Detr with improved denoising anchor boxes for end-to-end object detection. arXiv preprint arXiv:2203.03605,
2022b.

Huaidong Zhang, Xuemiao Xu, Guoqiang Han, and Shengfeng He. Context-aware and scale-insensitive temporal
repetition counting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 670–678, 2020.

Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaoou Tang, and Dahua Lin. Temporal action detection
with structured segment networks. In Proceedings of the IEEE international conference on computer vision,
pp. 2914–2923, 2017.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

12

Under review as a conference paper at ICLR 2024

In this supplementary, we provide additional implementation details in Section 6 and more experi-
mental results in Section 7. At last, we discuss the broader impacts and ethics in Section 8.

6 IMPLEMENTATION DETAILS

6.1 NETWORK ARCHITECTURE DETAILS

We adopt the classical Transformer (Vaswani et al., 2017) architecture for the encoder and decoder
as detailed in Figure 5. To improve computational efficiency, we employ the deformable attention
module (Zhu et al., 2020) in both the encoder and decoder. In the decoder, we employ the relation
attention module (Shi et al., 2022) as the self-attention module and the deformable attention module
(Zhu et al., 2020) as the cross-attention module. As for the reference points, we uniformly sample T
points in the timeline as reference midpoints in the encoder, while the reference points in the decoder
are obtained from the midpoints of the action position in the previous layer. The initial midpoints
are mapped from the learnable position embedding Qpos ∈ RQ×C to RQ×1 through an FC layer.
The overall computational complexity is O(kTC), where k is the number of reference points in the
deformable attention module.

𝐐!"# 𝐐$%&

Relation
Attention 𝐏

Deformable
Attention

FFN

𝐏

Deformable
Attention

FFN

Uniform Sampled
Reference Point

Query Selection

𝐅

ℒ'"!	×

ℒ('!×

𝐇('! 𝐏

Encoder Decoder

MLP

MLP

Add & Norm

Add & Norm
Add & Norm

Add & Norm

Add & Norm

Figure 5: Transformer architecture.

Query selection. We re-use the prediction heads to process the outputs of the encoder, with shared
parameters. The top-Q queries are those with the highest confidence score which are obtained from
the classification head.

6.2 THE ROLE OF HUNGARIAN MATCHING

The Hungarian matching algorithm is employed for associating the Q predicted instances from
the decoder with the ground-truth (GT) results. Since the order of the Q predicted instances from
the decoder is not guaranteed, the Hungarian matching technique is used to establish a one-to-one
correspondence between the labels and predictions. This correspondence is essential for computing
the final loss. The matching score is a metric used to assess the relationship between the predicted
instances and the GT.

We divide the matching score into two components, which evaluate whether the predicted positions
and categories align with the GT. For the position component, we employ both Intersection over
Union (IOU) and L1 distance to calculate scores that measure the proximity between predicted values
and GT. Additionally, the Negative Log-Likelihood (NLL) loss is used to evaluate the accuracy of
classification.

13

Under review as a conference paper at ICLR 2024

(d) Dynamic content query(a) Static query

Content query
Position query

ℰ(⋅) 𝒟(⋅)

(b) Dynamic query

ℰ(⋅) 𝒟(⋅)

Query Selection

(c) Dynamic position query

ℰ(⋅) 𝒟(⋅)

Query Selection

ℰ(⋅) 𝒟(⋅)

Query Selection

Figure 6: Different query type. (a) Both the content query and position query are learnable variables
that are optimized during the training process. (b) Both the content query and position query rely on
the features of the encoder. (c) (d) Only the position query or content query relies on the encoder
features, while the other one is a learnable variable.

Table 5: Ablation results of different query type. We illustrate each query type architecture in
Figure 6.

RepCountA UCFRep
MAE ↓ OBO ↑ MAE ↓ OBO ↑

(a) Static query 0.3542 0.4172 0.7447 0.1633
(b) Dynamic query 0.4042 0.3576 0.7142 0.1633
(c) Dynamic position query 0.5762 0.2649 0.6333 0.2653
(d) Dynamic content query 0.2809 0.4570 0.6016 0.2959

Ultimately, we construct a matching score matrix of dimensions Q×Ngt, where Q represents the
number of predicted instances and Ngt represents the number of GT instances. This matrix is then
utilized in the Hungarian matching procedure.

6.3 TRAINING DETAILS

We implement the proposed model using PyTorch (Paszke et al., 2019) and train on a single NVIDIA
V100 GPU. For training, we use an overlap rate of 0.75 to segment the original videos. For testing, we
use an overlap rate of 0.25 and feed different segments of the same video as a batch to the network for
prediction. Due to the overlap between segments, we add SoftNMS (Bodla et al., 2017) to alleviate
the issue of multiple boxes pointing to the same action instance when testing.

7 ADDITIONAL EXPERIMENTS

7.1 ABLATION STUDY

Different query type. We explore several different query types illustrated in Figure 6. Table 5
shows the results of different query types on the RepCountA (Hu et al., 2022) dataset. The utilization
of the position query (b) (c) yields suboptimal prediction results, which may be potentially attributed
to inadequate initialization of position queries due to the substantial variations observed among action
instances. Although the use of static query performs better on the RepCountA (Hu et al., 2022)
dataset, it brings inferior results on the generalization test on UCFRep (Zhang et al., 2020) dataset.
In contrast, our method (d) shows that by leveraging the information extracted from the encoder as
content features, the decoder can concentrate on similar information, leading to notable improvements
and enhanced generalization capabilities.

14

Under review as a conference paper at ICLR 2024

Table 6: Ablation results of different updating strategies for the dynamic action query.
We additionally report MAE and OBO metrics for short-, medium-, and long-period test
sets of RepCountA (Hu et al., 2022) dataset.

MAE ↓ OBO ↑ MAEs ↓ OBOs ↑ MAEm ↓ OBOm ↑ MAEl ↓ OBOl ↑

(a) avg 0.2987 0.4570 0.2378 0.2791 0.1953 0.4773 0.4107 0.5625
(b) add 0.3259 0.4636 0.2752 0.2093 0.2277 0.6136 0.4274 0.5312
(c) linear 0.3252 0.4503 0.2364 0.2326 0.2950 0.5455 0.4056 0.5312
(d) direct 0.2809 0.4570 0.2411 0.1628 0.1792 0.5455 0.3776 0.5938

Table 7: Ablation results of different query number Q on RepCountA (Hu et al.,
2022) dataset. We additionally report MAE and OBO metrics for short-, medium-, and
long-period test sets of RepCountA (Hu et al., 2022) dataset.

MAE ↓ OBO ↑ MAEs ↓ OBOs ↑ MAEm ↓ OBOm ↑ MAEl ↓ OBOl ↑

Q=10 0.6516 0.0795 0.5267 0.0233 0.5582 0.0682 0.7998 0.1250
Q=20 0.2867 0.5364 0.2829 0.1860 0.1621 0.6591 0.3748 0.6875
Q=30 0.2778 0.5033 0.2784 0.2093 0.1989 0.5909 0.3317 0.6406
Q=40 0.2809 0.4570 0.2411 0.1628 0.1792 0.5455 0.3776 0.5938
Q=50 0.3864 0.3974 0.2443 0.1860 0.1946 0.5000 0.6136 0.4688

Updating strategy of dynamic action query. We compare different ways of how to update the
action query in the decoder on the RepCountA (Hu et al., 2022) dataset in Table 6. Our method (d)
differs from the other three baselines in how to update the content query.

Baseline (a) takes the average of the features produced by the query selection module and assigns it to
the content query for the decoder. Baseline (b) takes the sum of the encoded feature and a learnable
embedding to update the content query for the decoder. Baseline (c) first concatenates the encoded
features with a learnable embedding and then transforms it with a linear matrix to update the content
query. Our method (d) directly uses the encoded features after the query selection as the content
query for the decoder. The four implementations are as follows:

(a) Qcnt =
1

Q

∑
Q

Hsel,

(b) Qcnt = Hsel +Ql,

(c) Qcnt = WConcat(Hsel,Ql),

(d) Qcnt = Hsel,

where W ∈ RC×2C denotes a learnable weight matrix, Hsel ∈ RQ×C is the feature produced by the
query selection module, and Ql ∈ RQ×C is a learnable embedding.

As shown in Table 6 (d), direct updating performs the best on middle- and long-period actions.
Because this method focuses on the most salient features, features associated with long-period actions
are more prominent in time compared to short-period actions, making them easier to recognize.
(b) addition and (c) linear combination have worse MAE. Because of the presence of learnable
embeddings, predictions may exhibit a certain bias during inference, resulting in the prediction of
values that deviate significantly from the true values.

Query number Q. We conduct ablation experiments on different choices of the query number
Q. The experimental results on the RepCountA (Hu et al., 2022) and UCFRep (Zhang et al., 2020)
datasets are presented in Table 7 and 8, respectively.

It can be observed that a query number of Q = 40 strikes a good balance between the two datasets.
When the query number is too small, such as Q = 10, the results obtained are expectedly inferior.
However, as the number of queries increases, the performance improves on the RepCountA (Hu et al.,
2022) dataset while degrading on the UCFRep (Zhang et al., 2020) dataset. This discrepancy can be

15

Under review as a conference paper at ICLR 2024

Table 8: Ablation results of different query number Q on UCFRep (Zhang et al.,
2020) dataset. We additionally report MAE and OBO metrics for short-, medium-, and
long-period test sets of UCFRep (Zhang et al., 2020) dataset.

MAE ↓ OBO ↑ MAEs ↓ OBOs ↑ MAEm ↓ OBOm ↑ MAEl ↓ OBOl ↑

Q=10 0.9543 0.0204 0.9505 0.0000 0.9437 0.0500 0.9882 0.0000
Q=20 0.7933 0.1429 0.8483 0.0244 0.8057 0.1250 0.6314 0.4706
Q=30 0.7416 0.2143 0.8505 0.0488 0.6789 0.2750 0.6265 0.4706
Q=40 0.6016 0.2959 0.7069 0.0488 0.5777 0.4250 0.4039 0.5882
Q=50 0.5621 0.3571 0.7369 0.0244 0.4651 0.5250 0.3686 0.7647

Table 9: Ablations on intermediate supervision on the RepCountA (Hu et al., 2022) dataset. We
additionally report MAE and OBO metrics for short-, medium-, and long-period test sets.

MAE ↓ OBO ↑ MAEs ↓ OBOs ↑ MAEm ↓ OBOm ↑ MAEl ↓ OBOl ↑

Baseline 0.2809 0.4570 0.2411 0.1628 0.1792 0.5455 0.3776 0.5938
- inter. superv. 0.5062 0.2583 0.4792 0.0930 0.3554 0.2500 0.6281 0.3750

attributed to the different counting distributions present in these two datasets. Therefore, based on
our experiments, we choose Q = 40 as the optimal value.

Intermediate supervision. To accelerate training and promote performance, we apply the total
losses for both the final encoder layer and each decoder layer. We conduct the ablation experiments
where we only keep the total losses at the final decoder layer and remove all the intermediate
supervision. The results are shown in Table 9, where removing the intermediate supervision degrades
the performance.

Confidence threshold α. We empirically set the action instance confidence threshold α as 0.2. We
assess the impact of different action confidence thresholds on the final counting results in Figure 7
(orange curve). We can see that setting the threshold between 0.2 to 0.4 yields similar performance
for our method and surpasses TransRAC (Hu et al., 2022) by a large margin.

Feature dimension C. We conduct ablation experiments on the feature dimension C on the
RepCountA (Hu et al., 2022) dataset, and the results are presented in Table 10. It can be observed that
the best results are obtained when the dimension is set to C = 512. When C is smaller, the model
struggles to handle long-period instances effectively, while larger values of C lead to inaccurate
predictions for short-period instances. When C is small, it becomes challenging for the model
to accommodate longer sequences of information within the limited capacity. On the other hand,
when C is large, the model becomes overloaded with excessive information, leading to redundant
information for short-period actions and hindering accurate prediction results.

7.2 QUALITATIVE RESULTS

We show more qualitative results in Figure 8, where our method can handle various action types
robustly. We compare our results with the state-of-the-art method TransRAC (Hu et al., 2022), which
performs inferior. One potential reason could be that the predicted density map of TransRAC (Hu
et al., 2022) lacks interpretability, making the wrong count. Please refer to the video-3031.mp4
for more video results that are robust to varying cycle lengths and sudden interruptions.

Figure 9 shows two typical failure cases. In the first case, due to a change in viewing perspective,
the person is truncated, making a large difference in the action feature, resulting in several missed
cycle counts. In the second case, when the action speeds up later in the video, our method mistakenly
identifies one action cycle as two, resulting in an overcount.

16

Under review as a conference paper at ICLR 2024

Figure 7: Ablations of different confidence thresholds of our method and TransRAC (Hu et al.,
2022). We depict the MAE (left) and OBO (right) curves of our method (orange curve) and the
TransRAC (blue curve) approach with regard to different confidence thresholds. The metrics of
TransRAC are obtained by binarizing the density map of TransRAC output and then summing to
obtain the final count.

Table 10: Ablation results of different feature dimensions on the RepCountA (Hu et al.,
2022) dataset. We additionally report MAE and OBO metrics for short-, medium-, and
long-period test sets of RepCountA (Hu et al., 2022) dataset.

C MAE ↓ OBO ↑ MAEs ↓ OBOs ↑ MAEm ↓ OBOm ↑ MAEl ↓ OBOl ↑

128 0.4514 0.3709 0.2361 0.2093 0.2750 0.4545 0.7175 0.4219
256 0.3298 0.4570 0.2207 0.2326 0.2366 0.6136 0.4673 0.5000
512 0.2809 0.4570 0.2411 0.1628 0.1792 0.5455 0.3776 0.5938
1024 0.6259 0.2848 0.6241 0.0465 0.3562 0.2955 0.8126 0.4375

7.3 LIMITATIONS

We observe that the proposed method performs well in predicting medium- and long-period actions,
but its performance is still not satisfactory for short-period actions. This phenomenon is similar to
the situation in object detection where detecting small objects is more difficult than detecting large
ones (Carion et al., 2020), where the core reason may lie in the ability of the neural network to extract
salient features of the target. Compared to large objects, CNN-based neural networks do not pay
enough attention to small objects. Therefore, as in traditional object recognition, feature pyramid
methods can be used to enhance the features of small objects and improve their recognition. We may
also introduce this multi-scale strategy to address the issue in the future.

7.4 VISUALIZATION OF DAQ

To investigate the role of DAQ in practical scenarios, we selected three test videos from RepCountA
and visualized the features output by the encoder using the t-SNE method in Figure 10. In this visual-
ization, the features selected by the query selection module and those not selected are represented by
orange and blue points, respectively. It can be observed that features belonging to the background
exhibit a clustered pattern. Features corresponding to actions are dispersed around, while the features
selected by DAQ are situated in the middle part of the action-related features. By using this subset of
features as the initial values for Qcnt, the model can better focus on prominent actions in the video,
thereby enhancing the performance and generalization of the model.

8 BOARDER IMPACTS AND ETHICS

We use public datasets in our experiments following their licensing requirements. This work has no
harm to society for not explicitly using biometrics and outputting a number that only represents the

17

Under review as a conference paper at ICLR 2024

Labels

Ours

TransRAC Count=2.682

Count=5.0

Count=5.0

Labels

Ours

TransRAC

Count=6.0

Count=6.0

Count=5.913

Labels

Ours

TransRAC

Count=8.0

Count=8.0

Count=6.51

Labels

Ours

TransRAC

Count=4.0

Count=4.0

Count=2.402

Figure 8: Visualization of qualitative results on RepCountA (Hu et al., 2022) dataset. Each block
represents a single annotated or predicted action instance. TransRAC (Hu et al., 2022) displays the
results of its density map, and the final count value is obtained by summing the values in the density
map.

repetition cycles. The method proposed in this paper does not violate ethical principles and strictly
adheres to standards and regulations.

18

Under review as a conference paper at ICLR 2024

Labels

Ours

Labels

Ours

Figure 9: Visualization of failure case on RepCountA (Hu et al., 2022) dataset. In the first case,
body truncation caused by the camera zooming in leads to miscounting. In the second case, the high
speed of movement leads to overcounting.

Figure 10: Visualization of dynamic action query of three cases. We conduct t-SNE analysis
on the content query Qcnt ∈ Q × C obtained from the encoder of three samples. In the resulting
2-dimensional space, the selected and unselected queries are represented by orange and blue dots,
respectively. Our dynamic action queries exhibit a clear separation into two distinct clusters (actions
vs. null). And the three different cases possess different patterns, validating the effectiveness of the
dynamic query updating design.

19

	Introduction
	Related Work
	Temporal Repetition Counting
	Temporal Action Detection

	Method
	Overview
	Model Architecture
	Dynamic Action Query
	Inter-query Contrastive Learning
	Training Loss

	Experiments
	Datasets and Metrics
	Implementation Details
	Comparison to State-of-the-arts
	Ablation Study
	Qualitative Result
	Efficiency

	Conclusion
	Implementation Details
	Network Architecture Details
	The role of Hungarian matching
	Training Details

	Additional Experiments
	Ablation Study
	Qualitative Results
	Limitations
	Visualization of DAQ

	Boarder Impacts and Ethics

