
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRAPH-BASED ALGORITHMS FOR NEAREST NEIGHBOR
SEARCH WITH MULTIPLE FILTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study nearest neighbor search with filter constraints (MultiFilterANN): given a
query vector with a discrete set of labels S, retrieve the (approximately) closest
vector from a dataset under the constraint that S must be a subset of the labels
of the retrieved vector. There has been a burgeoning interest in this problem on
the practical side, due to its strong motivation from search and recommendation
applications where vector labels correspond to real world attributes such as date,
price, or color. On the theoretical side, this problem generalizes the subset query
problem, which asks us to only determine if S is a subset of some set in the dataset,
without retrieving the closest vector.
In this work, we present a systematic study of MultiFilterANN,. Theoretically, we
demonstrate the power of graph-based algorithms in two ways:

• We design provable algorithms with the best known space-time tradeoffs for
MultiFilterANN in the large filter regime by carefully incorporating ANN
algorithms into known subset query algorithms.

• We demonstrate lower bounds for popular algorithms for MultiFilterANN,
showing that they can catastrophically fail even on simple data/label sets.

Our theoretical results inspire our empirical approach, where we extend practical
graph indices for standard nearest neighbor search to MultiFilterANN by augment-
ing the (greedy) search procedure with a penalized distance function that captures
filter constraints. Our empirical algorithm is competitive with existing state of
the art solutions which are tailored for one or two filters, while also seamlessly
generalizing to any number of filters without any modifications. Lastly we release
multiple novel datasets for MultiFilterANN, filling in a noticeable gap in literature.

1 INTRODUCTION

Driven by advances in machine learning, the capabilities of embeddings to faithfully represent
semantic relationships between real world objects such as video, images, and text via geometric
distances has dramatically increased. This has prompted the study of new algorithmic questions
centered around the analysis of large scale vector data. A prominent example is the nearest neighbor
problem with filter constraints (MultiFilterANN): we are given a dataset of n high-dimensional
vectors X where every vector v ∈ X has a set of associated labels Sv ⊆ [m]1. We wish to design a
data structure, which given a query vector q with its own set of labels Sq ⊆ [m] and a target k ∈ N,
outputs the k (approximately) closest vectors to q in X , subject to the constraint that Sq must be a
subset of the label set Sv of each of the vectors v returned.

The problem is well motivated by practical constraints in search and recommendation. It captures the
realistic scenario of combining vector search with keyword matches. For example in image search,
we might only be interested in images shot in Paris. In product recommendations, a shopper may
only wish to view items with certain specifications of size, make, and model. Likewise for text data,
we may only want documents that contain a set of given keywords to be retrieved. In general, hybrid
keyword semantic search is a fundamental task in many modern systems. Leading vector search
companies such as Weaviate Weaviate (2024) and Pinecone Pinecone (2024) offer “hybrid search”
as a service, with the motivating example being a combination of hard matches based on keywords

1[m] := {1, . . . ,m}

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and a vector distance based on the dense LLM-based embeddings. Our formulation models the case
where the returned data points must satisfy all the labels of the query.

Beyond its practical appeal, the problem is also rich theoretically: it generalizes the classic subset
query problem from the algorithms literature, where we wish to quickly determine if a given set
Sq ⊂ [m] is a subset of a collection of n subsets of [n] (i.e., MultiFilterANN without vector search).

Many recent empirical solutions have been proposed for MultiFilterANN, with most work focusing
on the single-filter regime and more recently, |Sq| = 2. These works demonstrate that many existing
algorithms for the vanilla nearest neighbor search problem can be extended to handle the case of few
filters. Nevertheless, while tremendous practical progress has been made, substantial gaps remain in
our understanding of MultiFilterANN, captured by the following questions:

• On the empirical side, can we design algorithms that scale as the numbers of constraints, i.e. m
and |Sq|, grow? What are the limits of current approaches deployed for the small-filter case?

• Likewise, what can we say theoretically for MultiFilterANN? First, do the existing practical
algorithms for the small-filter case have provable guarantees? And secondly, can we obtain
algorithms for MultiFilterANN whose performance is comparable to the best known algorithms
for the subset query problem? Note that if m is constant, there is a simple naive algorithm with
a 2m factor space overhead which constructs a nearest neighbor data structure corresponding to
every subset of [m]. Thus, the problem is especially interesting when m is large.

Our Contributions. We initiate a broad and systematic study of the MultiFilterANN problem.

• On the theoretical side, we give an algorithm with o(2m) space overhead and o(n) query time (in
certain regimes), matching some of the best known space and query time trade-offs for subset query
problem, while additionally handling the nearest neighbor search component. Our algorithm is
flexible and capable of incorporating graph-based indices.

• Bridging theory and practice, we construct simple datasets demonstrating failure modes of popular
solutions for the small-filter regime that are based solely on clustering.

• Inspired by our theoretical understanding, we give a practical algorithm for MultiFilterANN based
on DiskANN, a popular graph-based method for approximate nearest neighbor search. Our method
easily generalizes to any number of filters, and comes with theoretical guarantees under assumptions
on bounded doubling dimension of the data. It can return a specified number of near neighbors (all
satisfying the label constraints), and we measure accuracy using Recall@k.
At a high level, we change the greedy search procedure of the query phase of DiskANN, carefully
incorporating both vector distance and label information in an asymmetric manner (see Section 5).
Crucially, a query search can utilize all edges of the graph index, even those that connect vertices
which don’t satisfy the filter constraint of the query. In summary, our algorithm improves recall by
up to 40% for comparable latency over prior baselines.

• Lastly, we also release a novel vector dataset with multi-filter constraints and describe new
synthetic datasets, filling a noticeable gap in the literature. While the MultiFilterANN problem
is demonstrably important in practice, publicly available datasets which capture the complexity
of the problem are few and far between. For example, existing datasets (such as those in
Wang et al. (2022)) can either be easily reduced to the one filter case, since the total number
of combinations is very small, or can be brute forced since there are very few data points per
label. Our dataset is quite natural: the vector consist of embeddings of Wikipedia pages and
filters correspond to common keywords. We hope our new dataset becomes a benchmark for
future work on MultifilterANN; see the anonymous link https://www.dropbox.com/
scl/fi/h5om8cwxosrqhc9ortk19/filterann-dataset-link.txt?rlkey=
syjlvzcxvr59m4ule3uv9pyhv&st=0gtcgfod&dl=0.

2 PRELIMINARIES

Our ‘base’ dataset X consists of n points in Rd. In addition, every point x ∈ X also has a set of
labels (or filters) Sx ⊆ [m]. In this setting, X is also referred to as a labeled dataset. A query q ∈ Rd

also has a set of labels Sq ⊆ [m]. We define the Multi-FilterANN problem as follows.

2

https://www.dropbox.com/scl/fi/h5om8cwxosrqhc9ortk19/filterann-dataset-link.txt?rlkey=syjlvzcxvr59m4ule3uv9pyhv&st=0gtcgfod&dl=0
https://www.dropbox.com/scl/fi/h5om8cwxosrqhc9ortk19/filterann-dataset-link.txt?rlkey=syjlvzcxvr59m4ule3uv9pyhv&st=0gtcgfod&dl=0
https://www.dropbox.com/scl/fi/h5om8cwxosrqhc9ortk19/filterann-dataset-link.txt?rlkey=syjlvzcxvr59m4ule3uv9pyhv&st=0gtcgfod&dl=0

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Definition 2.1 (Multi-FilterANN). We are given a labeled dataset X as above and a parameter
C ≥ 1. We want to create a data structure which on any query q, returns a point x ∈ X guaranteeing
that Sq ⊆ Sx and ∥x− q∥2 ≤ C ·minx′∈X,Sq⊆Sx′ ∥x′ − q∥2.

This definition is the analogue of the theoretical work on nearest neighbor search Andoni et al. (2018).
Thus we think of datapoints as having a vector component as well as a label component. We always
ℓ2 (Euclidean metric) to measure vector distance. In our experiments, we instead report the standard
Recall@k score, which is analogous to the empirical works on standard nearest neighbor search
without filters. It denotes the fraction of the returned top-k points that are among the true k nearest
neighbors of a query q. Note that while we allow for an approximation in the vector distance, we
always require the subset condition to be satisfied.

The Multi-FilterANN problem is a strict generalization of the SubsetQuery problem, whose study
goes back at least two decades Charikar et al. (2002).
Definition 2.2 (SubsetQuery Problem). We are given a collection X of n subsets of [m]. When a
query q ⊆ [m] arrives, we must determine if there exists an x ∈ X such that q ⊆ x.

Usually the SubsetQuery problem asks if there exists an x such that x ⊆ q, but the formulation we
state is equivalent by taking complements.

Using the language of prior works Gollapudi et al. (2023), in Multi-FilterANN we are solving the
‘AND’ case, where all the labels of the query must be present in the data points returned. This is as
opposed to the much easier ‘OR’ case, where only one label of the query can be present. The ‘OR’
case can be reduced to multiple invocations of an algorithm for the single-filter case.

Lastly, we introduce the doubling dimension of a dataset. It is a well-studied measure of intrinsic
dataset dimensionality in the context of nearest neighbor search in theory Gupta et al. (2003);
Krauthgamer & Lee (2004); Indyk & Naor (2007); Har-Peled & Kumar (2013). Furthermore in
practice, the performance of popular empirical algorithms can be analyzed via the doubling dimension
Narayanan et al. (2021); Indyk & Xu (2023), and many real world dataset exhibit small intrinsic
dimensionality Aumüller & Ceccarello (2019).

We define it for the vector component of a dataset. For any x ∈ X , radius r > 0, we use B(p, r) to
denote the ball of radius r centered at p, i.e. B(p, r) = {q ∈ X : ∥p− q∥ ≤ r}.
Definition 2.3 (Doubling Dimension). A vector data set X has doubling dimension λ if for any
p ∈ X and radius r > 0, X ∩B(p, 2r) can be covered by at most 2λ balls of radius r.

3 RELATED WORK

Over the years, there has been extensive research on ANNS algorithms with the focus on enhancing
recall, improving scale, cost-efficiency, distributed indexing, real-time index updates, and theoretical
guarantees Bentley (1975); Beygelzimer et al. (2006); Muja & Lowe (2014); Bernhardsson (2018);
Indyk & Motwani (1998b); Andoni & Indyk (2008); Zheng et al. (2020); Andoni & Razenshteyn
(2015); Sundaram et al. (2013); Park et al. (2015); Liu et al. (2011); Jiang & Li (2015); Johnson
et al. (2017); Baranchuk et al. (2018); Babenko & Lempitsky (2012); Ge et al. (2014); Arya &
Mount (1993); Malkov & Yashunin (2016); Fu et al. (2019); Subramanya et al. (2019); Echihabi
et al. (2019); Baranchuk et al. (2018); Sundaram et al. (2013); Chen et al. (2021); Xu et al. (2023);
Guo et al. (2019). The interested reader may refer to the ANN benchmark efforts Simhadri et al.
(2023); Aumüller et al. (2023). On the other hand, we have only recently begun scratching the surface
when it comes to MultiFilterANN. Analytic DB-VWei et al. (2020) and VBase Zhang et al. (2023)
present elegant solutions to integrate filtered ANNS queries into database systems, but their general-
purpose nature means that these methods typically have higher latencies than some high-performance
scenarios permit. CAPS Gupta et al. (2023) develops an algorithm for MultiFilterANN by combining
data structures for ANN and subset query, but the performance seems to suffer significantly as the
size of the label universe grows. SERF Zuo et al. (2024) makes clever modifications to the index
construction phase of graph algorithms to enable them to support single range queries (e.g., filter by
date). Importantly, these ideas do not generalize to multiple filters. More recently, ACORN Patel
et al. (2024) and IVF2 are also newer methods for filtered ANNS. The ideas in ACORN, however, do
not scale well to even simple AND predicates. While IVF2 is the state-of-art open source algorithm
for MultiFilterANN, the algorithm is purely clustering based, and we demonstrate scenarios where

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

graph-based methods, if done right, can still outperform clustering based methods even in the
MultiFilterANN problem.

The Subset Query algorithm also has several practical real-world applications, especially for keyword
based search. In traditional search engines, each keyword maintains an inverted index of associated
documents and the search essentially boils down to fast intersection methods of these inverted indices;
see Wang & Suel (2019); Goodwin et al. (2017) and the citations therein for a more complete set
of references. One can see our work as a natural step in the direction of fusing vector search with
traditional keyword-based search ideas.

4 THEORETICAL ANALYSIS

We present an algorithm with strong theoretical (worst-case) guarantees for the Multi-FilterANN
problem. We additionally take inspiration from our theoretical study to design our final empirical
algorithm of Section 6. This is elaborated at the end of the section.

The starting point of our theoretical algorithm is to note that any Multi-FilterANN data structure
must be able to solve the SubsetQuery problem. Thus, we first review a data structure from Charikar,
Indyk and Panigrahy, denoted as CIP, for the SubsetQuery problem Charikar et al. (2002). The CIP
data structure is among the best known when m = O(poly(log n)). Note that as stated, CIP cannot
handle the full generality of the Multi-FilterANN problem.

Summary of their approach: The CIP data structure partitions the input dataset (of the Subset-
Query problem) into multiple levels, thought of as a nested table. All levels, except the final one, hash
a given query to only one entry of the table. This last level is a collection of disjoint sets X = ∪iXi

of the data points. The CIP data structure guarantees that (with high probability), for all Xi, either
all datapoints in Xi are valid responses to the query (i.e., the query is a subset of all the datapoints
in Xi), or none are. However, the data structure needs to evaluate this for every group. Fortunately,
Charikar et al. (2002) guarantees that we can construct the data structure so that only o(n) groups are
at the last level, so only o(n) checks need to be made. A detailed summary of the CIP data structure
and its formal guarantees are given in Appendix B.1 (see Theorem B.1).

Adapting from SubsetQuery to Multi-FilterANN Our key idea is to replace each of the final
groups in CIP with a nearest-neighbor data structure. If a group (in the final layer of the CIP data
structure) is valid for the query, then we use a vanilla nearest-neighbor data structure to find a close
vector to the query’s vector. Note that this takes care of both the SubsetQuery requirement, as well
as the vector search component, i.e., is applicable to the Multi-FilterANN problem. For theoretical
guarantees, we may use Locality Sensitive Hashing Indyk & Motwani (1998a) in the final level of
the CIP data structure or the DiskANN graph. It implies the following theorem, with a formal proof
deferred to Appendix B.

Theorem 4.1. (Main theoretical guarantee for Multi-FilterANN) There exists a data structure which,
with probability 0.99, returns a (1 + ε)−approximate filtered nearest neighbor on any query. This
data structure uses Õ(n1−δ(m+ dnδ + n3δ)2O(m

√
δ log2 m)) space and on any query, performs at

most O(n1−δ) set intersections and Õ(n1−εδ) distance comparisons.

The intuition of the above theorem is the difficulty of the MultiFilterANN problem is dominated by
the subset query requirement. This is why the stated bounds of Theorem 4.1 generalize Theorem B.1.

Note that we can choose any unfiltered approximate nearest neighbor data structure at the lowest
level of the CIP data structure, instead of LSH (see Corollary B.3). In particular, we can also use
graph-based data structures, such as (the ‘slow preprocessing version’ of) DiskANN Indyk & Xu
(2023) instead of CIP to obtain an identical guarantee as in Theorem 4.1, but using graph indices.

Theorem 4.2. (Graph theoretical guarantee for Multi-FilterANN) There exists a data structure which,
with probability 0.99, returns a (1 + ε)−approximate filtered nearest neighbor on any query. This
data structure uses Õ(n1−δ(m+ nδ(1/ϵ)O(λ))2O(m

√
δ log2 m)) space and on any query, performs at

most O(n1−δ) set intersections and Õ(n1−δ(1/ϵ)O(λ)) distance comparisons where λ is the doubling
dimension of the dataset.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Furthermore, in practice graph-based indices are empirically among the state of the art for approximate
nearest neighbor search Jayaram Subramanya et al. (2019), and our guarantees show that we can
indeed invoke them for the more challenging Multi-FilterANN problem, without losing any theoretical
power. We further justify the use of graphs for Multi-FilterANN in Section 6.

Lesson 1: Graph-based nearest neighbor algorithms are powerful primitives for Multi-FilterANN.

Note that the theoretical algorithm we presented starts by routing queries to a small subset of relevant
data (the hashing levels of CIP guarantee few groups at the lowest level). This allows us to perform a
refined nearest neighbor search on only ‘relevant’ parts of the input dataset. This motivates a similar
high-level actionable idea in any practical algorithm, where we route queries to the appropriate subset
of the input data. This is discussed in our empirical algorithm design section, Section 6.

Lesson 2: Query planning is important.

5 MOTIVATING OUR EMPIRICAL ALGO. BY STUDYING PRIOR FAILURES

We now additionally motivate our final empirical algorithm by presenting failure modes of prior ap-
proaches for the one or two filters regime. By demonstrating simple instances where such approaches
catastrophically fail, we gain valuable insights towards our final algorithm.

ParlayIV F 2 Counterexample. We start with ParlayIV F 2, the winner of the recent ANN Bench-
mark challenge on nearest neighbor search with 2 filters (queries have at most 2 filters) Landrum
et al. (2024). As a summary, the ParlayIV F 2 algorithm essentially constructs a clustering index
for each label. When a query arrives, for each label in the query, it evaluates the distance of each
cluster to the query, sorting the clusters in ascending order of distance. It keeps adding all the points
from the nearest remaining cluster into a queue until the size of the queue is at least a pre-determined
parameter. Then, it takes the intersection of these queues and evaluates the distances. In some simple
instances, we can prove that in order to find the nearest point satisfying both the labels, ParlayIV F 2

must add almost all the points into the queue. The corresponding intersections of sets containing
O(n) elements can make ParlayIV F 2 take linear time if we want to obtain any non-zero recall.

Lemma 5.1. There exists a size-n one-dimensional dataset with two total labels such that the
ParlayIV F 2 algorithm has query time Ω(n).

This highlights that popular prior approaches for our problem, which use clustering based methods,
are too ‘local.’ In the simple one dimensional aforementioned example, clustering based methods
spend too much time focusing on the ‘distance’ part of the problem and ignore the subset match
constraint. This forces them to iterate over many irrelevant points in the local vicinity of the query.

In contrast, that graph-based indices avoid this problem by having long-range edges, which in this
instance, would allow us to quickly navigate to the end of the one dimensional dataset, without
performing a linear scan through the number line. This prompts the following lesson.

Lesson 3: Clustering indices alone are not enough for Multi-FilterANN. Long-range connections
afforded by graph indices are needed.

We now discuss two prior graph-based approaches: FilterDiskANN Gollapudi et al. (2023) and NHQ
Wang et al. (2022; 2024). While they are both graph-based, we give provable hard instances for these
algorithms, motivating important modifications used for our final graph-based empirical algorithm.

FilterDiskANN Counterexample. The paper Gollapudi et al. (2023) was the first to empirically
study nearest neighbor search with filter constraints, and they focused on the 1-filter regime (queries
have 1 label only). At a high level, they construct a graph index (based on the vanilla DiskANN
algorithm), and perform the following greedy search given a query q with label Sq: traverse the graph
only on edges with both endpoint vertices having label Sq . They start the greedy search procedure at
a fixed starting vertex containing label Sq. Thus, for every label ℓ ∈ [m], they require the subgraph
of all vertices with label ℓ to be connected in their graph index. While this approach works well for
the m = 1 single-filter case, we show that it cannot generalize to large m.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In particular, if we require the subgraph corresponding to datapoints X that are ‘valid’ for any query
q (the points in X whose labels contain those of q) to be connected, then the graph must have Ω(n2)
edges. This holds for any graph with the aforementioned propriety (not just those based on DiskANN),
making it prohibitive to store or initialize such graphs for large datasets.

Lemma 5.2. There exist a labeled dataset X of size n with m = O(log n) total labels such that any
graph index on X with the property that the subgraph of points satisfying the label constraints of a
query is connected, must have Ω(n2) edges.

Intuitively, the approach of Gollapudi et al. (2023) leads to a dense graph for large m because queries
are prohibited from traversing edges that are not directly relevant to the labels of the query. This
restriction requires having many extraneous edges due to the combinatorial explosion of possible
label sets of queries, leading to an almost trivial graph index.

Lesson 4: We must be allowed to use all edges of a graph index, even those that connect vertices not
directly relevant to the query labels.

NHQ does not handle subset queries. Lastly, we study the NHQ algorithm Wang et al. (2022;
2024). It defines a “fusion distance" which is the geometric distance between the vector component
of two points, multiplied by a term that depends on the symmetric difference of their label sets. The
fusion distance for two points x and y is set to ∥x− y∥2 ·

(
1 +

∥Sx−Sy∥
m

)
, where ∥Sx − Sy∥ is the

Hamming distance between the 0/1 encodings of the sets Sx and Sy . Using the fusion distance, they
construct a graph index; when a query arrives, the fusion distance is used to perform greedy search on
the graph. While this does work well for exact label set queries (i.e. if we wanted Sx = Sy exactly),
this approach can fail catastrophically for subset constraints.

Lemma 5.3. There exists a one-dimensional dataset X and a query q such that an incorrect data
point x ∈ X is closest to q under the fusion distance function of NHQ Wang et al. (2022; 2024).

The fundamental issue with the NHQ fusion distance for our subset query constraint is that the
symmetric label difference can lead us astray. Using the symmetric difference might be sufficient for
a tabular label setup, where every base point has prescribed label values for a set of fixed attributes,
and the query predicate is similarly set up, e.g., the base labels could have 2 attributes like Venue
and Year, and the query could insist on Venue=NeurIPS and Year=2024. However, this
formulation is insufficient for the MultiFilterANN problem where we merely want the label set Sq of
the query to be a subset of the label set of the base point Su. As an example, we do not see a way to
apply such an approach if a base vector has associated metadata like Categories = {Sports,
Baseball, Betting, NYTimes} and the query simply wanted to filter by Categories
= {Betting, NYTimes}. Rather, an asymmetric distance function on the label set is the right
choice. This is elaborated in Section 6.1.

Lesson 5: A symmetric label set distance cannot capture the Multi-FilterANN problem.

6 OUR EMPIRICAL ALGORITHM

In this section, we describe our main empirical algorithm. It consists of three main parts:

• Building the graph index: we build our graph index using FilteredDiskANN from Gollapudi
et al. (2023) with a modified greedy search routine, which we call PenaltyGreedySearch. For
convenience, the full description of FilteredDiskANN can be found in Algorithm 2. The parameters
of our build are given in our results; see Section 7.

• Searching the graph index: Motivated by our prior discussion of Section 5, we use a novel penalized
search, described in Section 6.1. The full description is in Algorithm 1.

• Query planning: Based on ‘Lesson 2’, we route queries to either the graph search or simple search
procedures depending on the selectivity of the query’s labels. For example, if the query has a label
which only one point in the base dataset satisfies, we can quickly check for this and just direct the
query to the single relevant point. This is described in Appendix E.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

6.1 SEARCHING THE GRAPH INDEX: THE PENALTY GRAPH SEARCH

Most graph-based ANNS algorithms work in the following manner: the index construction involves
building a directed graph G with nodes corresponding to the base vectors; the search algorithm
for a query vector employs a natural greedy or best-first traversal policy on G, by starting at some
designated point s ∈ P , and iteratively hopping to the neighboring vertex whose vector is closest
to the query vector until we reach a fixed point. Algorithm 1 with λ = 0 and τ = ∞ gives a more
formal definition of this process.

However, the drawback of such a search method is that we are completely agnostic to the query filters
and base point labels. To overcome this, the FilteredDiskANN algorithm in Gollapudi et al. (2023)
only traverses the neighbors that satisfy the query predicate. This change, along with a suitable
change during the graph construction phase yielded reasonable results for simple predicates (like
query having one filter label). However, as noted in Section 5, this strict approach is doomed to fail
for very selective queries.

To overcome this deficiency, we note that the NHQ algorithm Wang et al. (2024) performs greedy
search on a novel fused distance, which takes into account the distance ∥q − x∥ between the query
vector and the base vector x, and the symmetric difference between the label sets Sq and Ss. However,
Lemma 5.3 shows that this formulation also cannot capture the nuances of MultiFilterANN. Instead,
we use an asymmetric distance on the label sets.

Asymmetric Penalty Distance. To provide intuition, the symmetric part of the NHQ fusion distance
heavily penalizes data points that have many irrelevant labels, even if they contain all the labels of the
query. Consider the following toy example: We have a universe of 5 labels, namely {A,B,C,D,E},
and there are are two base vectors u and v, with label sets Su = {A,B,C,D,E} and Sv = {A,C}.
Suppose we want to retrieve the closest vector to a query q with label set Sq = {B}. Clearly, the
correct result must return u as it is the only feasible point. However, using a symmetric difference
would result in returning v. Indeed, using the symmetric difference between Sq and Sv is essentially
using the hamming (or squared euclidean, for that matter) distance between the one-hot encodings of
the label sets, where the dimension of these encodings is of size m. Our simple-in-hindsight approach
to solve this issue is to only measure the label difference for the labels in q.

This choice has three desirable properties. First, it does not penalize data points in X that have many
labels, skirting the lower bound presented in Lemma 5.3. Secondly, the asymmetric label distance can
be embedded into ℓ2: represent the label set of the data points as the {0, 1} valued m-dimensional
vector where we have a coordinate of 1 iff the label is present. On the other hand, represent the label
set of the query as a {1, 1/2} valued vector, where again a coordinate of 1 is present iff the query has
the label. The ℓ22 distance under this embedding always gives the same contribution for labels that
are not present in the query. Thus, we essentially ignore labels not in the query when comparing the
label sets of the query and a datapoint in X . Note that the asymmetry of the embedding is necessary
to capture the asymmetric label set distance. As presented later, the fact that the asymmetric label
distance can be embedded into ℓ2 implies that our final empirical algorithm has provable worst-case
guarantees, under the common assumption of bounded doubling dimension (see Lemma D.1). Lastly,
the fact that we can reduce the subset query part of MultiFilterANN to an ℓ2 distance calculation
means it can be seamlessly combined with the vector search component.

Equipped with this, we can essentially reduce the MultiFilterANN problem to (vanilla) ANN by
setting dist′(q, x) = ∥q−x∥2+λ · ∥encF(Sq)−encF(Sx)∥2 where encF denotes the m-dimensional
asymmetric encoding described above and λ > 0 is a large parameter.
Theorem 6.1. Given a labelled set X of bounded vectors, sufficiently large λ and query vector q with
labels Sq , the closest-k database vectors according to distance dist′ is precisely the closest-k feasible
(i.e., those satisfying the label constraint of Sq) database vectors according to the original distance.

While this establishes a rigorous connection between the filtered and unfiltered version of nearest-
neighbor search, there are two issues we encounter when using it directly on real-world datasets:
(a) performing distance computations over a d+m-dimensional vector space is significantly more
expensive when the universe U of labels is very large, as is often the case, and (b) each of the
irrelevant labels in U \ Sq contribute a value of 1/4 (in squared euclidean metric) to the overall
distance, which additively inflates all distances we are dealing with, and this consequently alters the
behaviour of the algorithms used in practice. Due to these considerations, we settle on the following

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

asymmetric penalty distance which only cares about the labels in the query filter that are not present
in the label set of the base point: d̂ist(q, x) = ∥q − x∥2 + λ|Sq \ Sx|. In summary, once we have
built the graph, we run the greedy search algorithm using the modified distance d̂ist defined above.

Three Refinements (a) One optimization to improve query latency without affecting recall much
is to first evaluate the penalty distance |Sq \ Sx|, and only consider the candidate during search if
this value is at most some threshold τ . This is assuming that Sq has small cardinality, and the set
difference is significantly cheaper computationally compared to the distance calculation. (b) Second,
our index data structure will also maintain a small sample set of the database points, as well as
label-wise inverted indices on the sample set. That is, for each label l ∈ U , we let sampList(l) denote
the set of database points in the sample that contain label l in their filter sets. We start the greedy
search from a suitable point which appears in the intersection of sampList(l) for l ∈ Sq . If the sample
intersection has size 0 (which would happen when the filter predicates are highly selective), we simply
start at the global starting point of the search. Our overall search algorithm is given in Algorithm 1.
(c) Third, recall that in Gollapudi et al. (2023), FilteredDiskANN only considers candidate neighbors
for a given point that has at least one matching filter. We find replacing this with the penalty method
and a suitable value of τ provides better results.

7 EMPIRICAL RESULTS

We compare our algorithm from Section 6 to two open-source algorithms for ANNS with multiple
filters: (a) ParlayIV F 2, the winning entry from the BigANN Filter competition Simhadri et al.
(2022), and (b) ACORN, which claims state-of-art performance for this problem across a range of
scenarios Patel et al. (2024). We remark that Zilliz and Pinecone have both released a proprietary
algorithm accessible through the BigANN API. Both fail to run on our system, and are omitted from
our comparisons. Finally, Irrespective of parameter choice, CAPS, another open-source algorithm
gives near-zero recall on our primary datasets, and is therefore omitted from our comparisons.

In addition, we perform a number of ablation studies on our graph algorithm, demonstrating where it
works well and where it struggles. All experiments are performed on a server with Intel(R) Xeon(R)
Gold 5218 CPU at 2.30GHz, and 512 GB of RAM. We run all experiments with 1 thread.

7.1 DATASETS

We compare these algorithms on three diverse real-world datasets. Additionally, to the best of our
knowledge, ours is the first work which uses entirely real-world datasets to evaluate algorithms for
the MultiFilter-ANN problem, with all prior work partly or fully using datasets where the labels on
which the queries are filtered are generated synthetically.

Wiki-Cohere. We introduce a dataset for AND query search based on the Cohere Wikipedia
Embeddings dataset Cohere (2023). The dataset itself comprises of 35 million passages from
Wikipedia pages. Each paragraph has an associated embedding as well as several pieces of metadata:
the title of the page, the number of views, and the number of languages into which the page has
been translated. Additionally, there is a simple English set with only 486,000 points. We use the
embeddings as the base points. For the labels, we exclude "common words" (the NLTK stopwords
Bird et al. (2009)), then take the 4000 most frequent words to be the label universe. Each embedding
then uses the present words in the corresponding passage as labels. For the queries, we built a query
set from the simple English set, with the filters being two random choices from the 15 most common
words found in the corresponding passage. We avoid picking more than two choices to prevent
queries from having a predicate with low selectivity; that is, have very few points in the index that
satisfy the query’s filters. We also use a 1M slice of this dataset in various experiments. There are
4000 labels in total, and the average number of labels per base point is 29.

YFCC1M. We also use a 1M slice of the YFCC dataset used in the BigANN Filter competition. The
base vectors are 192-dimensional CLIP embeddings of images, and the queries are embeddings of
texts. The metadata of the images, like camera model, resolution, etc. become the metadata based
on which the query predicates are chosen (either a single label predicate or an AND of two labels).
There are ≈ 182000 labels, with the average number of labels per base point being 8.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 1: Recall vs Latency of different methods on Wiki-1M, Amazon-1M and YFCC-1M datasets.

Figure 2: Comparison on Wikipedia-35M Figure 3: Our algorithm on three filter ANDs

Amazon. We use a 1M slice of the Amazon dataset recently uploaded to the BigANN benchmarks.
From Dataset (2024), the base vectors are 384-dimensional Cohere embeddings of product descrip-
tions, and the queries are embeddings of sample user queries generated by GPT. The predicates are
based on user rating and product category (either a single predicate like Rating=5, or an AND query
of the form CAT=Auto AND Rating=5). There are around 65000 labels with an average of 6 labels
per vector.

Synthetic Datasets. In addition to the above datasets, we also construct a series of datasets on top
of the 1M slice of the Wikipedia-35 embeddings. The full procedures for generating these labels are
detailed in the appendix. These datasets are designed for ablation studies on PenaltyDiskANN, and
are not used for comparison with baselines due to having larger label sizes.

Baseline Evaluations. See Figure 1. We built the ACORN and ParlayIV F 2 indices with different
parameter choices (efC , γ, M for the former and cutoff and clusterSize for the latter) as suggested in
the respective papers. We also build our graph index using R = 64, L = 100, and the FilteredVamana
construction algorithm. For search, we sweep the efS parameter for ACORN, tinyCutoff and
targetPoints for ParlayIVF, and set bruteForceThreshold=10000 and clusteringThreshold=25000 for
our algorithm. Interestingly, ParlayIV F 2 does not do well on the Amazon dataset, while ACORN
exhibits some drawbacks on the YFCC dataset. We leave the task of understanding the reasons behind
such contradictory performance of algorithms across datasets as future work.

We also compare our algorithm with ParlayIV F 2 on the full 35M wikipedia dataset and report the
numbers in Figure 2. For the graph component of our algorithm, we set the build parameters of R= 64
and L= 100. For the clustering component, we use 1024 cluster centers. During search, we use a
bruteforce search cutoff of 10000 and a clustering search cutoff of 50000. We also vary Ls from 10 to
80 in intervals of 10. For ParlayIV F 2, we set the build parameters cluster_size= 10000 and
cutoff= 10000, the search parameters tiny_cutoff= 128000 and bitvector_cutoff=
128000, and vary target_points from 8000 to 20000 in increments of 4000. Finally, we show
the generality of our algorithm by running it on queries with 3-term conjunctions (a AND b and C) as
predicate on the wiki-1M dataset. Note that for comparable latency numbers, our algorithm offers a
considerable recall improvement of around 40%.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Query Correlation

Figure 5: Penalty Removal Figure 6: Query Filter Selectivity

7.2 ABLATIONS

We next investigate the effect of query correlation, filter selectivity, and the effect of the penalty term
during graph search as ablation studies.

Query Correlation: Inspired by Patel et al. (2024), we develop synthetic labels that are correlated
with the underlying embeddings to varying degrees. Intuitively, if a query vector has positively
correlated labels, then we would expect its geometric nearest neighbors to generally the same labels.
If a query has negatively correlated labels, then we would expect points far from the geometric nearest
neighbors to have the labels. In the uncorrelated setting, we cannot make any assumptions about
which points would have the labels with respect to the query’s nearest neighbors. Figure 4 shows that
for negatively, positively, and non-correlated query labels, there is a small change in performance
in favor of positively correlated labels, suggesting that graph search performance is robust towards
different query correlations.

Filter Selectivity: We evaluate for queries that come with filters of varying degrees of selectivity.
Specifically, we study the case where queries come with high specificity labels (>90%), medium
specificity labels (45%), and low specificity labels (10%). Figure 6 shows a considerable change
in recall for lower selectivities. Indeed, if a query comes with rare filters that are evenly dispersed
throughout the dataset, it becomes more difficult to find points with those filters using a distance-based
greedy search, as is the case with our graph algorithm.

Removing the Search-time Penalty. As Figure 5 demonstrates, incorporating the penalty provides a
minimum 2.5x increase to recall performance at the same QPS. The intuition here is that the penalty
allows for an implicit prioritization of points with matching filters in the list L PenaltyGreedySearch
maintains in its procedure. Without the prioritization, points that are close geometrically to the query
without meeting the filter constraints can appear closer to the algorithm, leading to poor recall.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Commun. ACM, 51(1):117–122, January 2008. ISSN 0001-0782. doi:
10.1145/1327452.1327494. URL http://doi.acm.org/10.1145/1327452.1327494.

Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing,
STOC ’15, pp. 793–801, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3536-2. doi:
10.1145/2746539.2746553. URL http://doi.acm.org/10.1145/2746539.2746553.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search in high
dimensions. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro
2018, pp. 3287–3318. World Scientific, 2018.

Sunil Arya and David M. Mount. Approximate nearest neighbor queries in fixed dimensions. In
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’93, pp.
271–280, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathematics. ISBN
0-89871-313-7. URL http://dl.acm.org/citation.cfm?id=313559.313768.

Martin Aumüller and Matteo Ceccarello. The role of local intrinsic dimensionality in benchmarking
nearest neighbor search. In Similarity Search and Applications: 12th International Conference,
SISAP 2019, Newark, NJ, USA, October 2–4, 2019, Proceedings 12, pp. 113–127. Springer, 2019.

Martin Aumüller, Erik Bernhardsson, and Alec Faitfull. Ann-benchmarks, 2023. https://
big-ann-benchmarks.com/neurips23.html.

A. Babenko and V. Lempitsky. The inverted multi-index. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3069–3076, 2012.

Dmitry Baranchuk, Artem Babenko, and Yury Malkov. Revisiting the inverted indices for billion-scale
approximate nearest neighbors. CoRR, abs/1802.02422, 2018. URL http://arxiv.org/
abs/1802.02422.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Commun.
ACM, 18(9):509–517, September 1975. ISSN 0001-0782. doi: 10.1145/361002.361007. URL
https://doi.org/10.1145/361002.361007.

Erik Bernhardsson. Annoy: Approximate Nearest Neighbors in C++/Python, 2018. URL https:
//pypi.org/project/annoy/. Python package version 1.13.0.

Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In Pro-
ceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 97–104,
New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933832. doi:
10.1145/1143844.1143857. URL https://doi.org/10.1145/1143844.1143857.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing
text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.

Moses Charikar. Similarity estimation techniques from rounding algorithms. In John H. Reif
(ed.), Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002,
Montréal, Québec, Canada, pp. 380–388. ACM, 2002. doi: 10.1145/509907.509965. URL
https://doi.org/10.1145/509907.509965.

Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for subset query, partial match,
orthogonal range searching, and related problems. In International Colloquium on Automata,
Languages, and Programming, pp. 451–462. Springer, 2002.

Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li, Mao Yang, and
Jingdong Wang. SPANN: highly-efficient billion-scale approximate nearest neighbor search. CoRR,
abs/2111.08566, 2021. URL https://arxiv.org/abs/2111.08566.

Cohere. Cohere wikipedia dataset, 2023. https://huggingface.co/datasets/Cohere/
wikipedia-2023-11-embed-multilingual-v3.

11

http://doi.acm.org/10.1145/1327452.1327494
http://doi.acm.org/10.1145/2746539.2746553
http://dl.acm.org/citation.cfm?id=313559.313768
https://big-ann-benchmarks.com/neurips23.html
https://big-ann-benchmarks.com/neurips23.html
http://arxiv.org/abs/1802.02422
http://arxiv.org/abs/1802.02422
https://doi.org/10.1145/361002.361007
https://pypi.org/project/annoy/
https://pypi.org/project/annoy/
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1145/509907.509965
https://arxiv.org/abs/2111.08566
https://huggingface.co/datasets/Cohere/wikipedia-2023-11-embed-multilingual-v3
https://huggingface.co/datasets/Cohere/wikipedia-2023-11-embed-multilingual-v3

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Amazon Dataset. Amazon filtered dataset, 2024. URL https://github.com/
harsha-simhadri/big-ann-benchmarks/pull/311.

Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim. Return of the
lernaean hydra: Experimental evaluation of data series approximate similarity search. Proc. VLDB
Endow., 13(3):403–420, 2019. doi: 10.14778/3368289.3368303. URL http://www.vldb.
org/pvldb/vol13/p403-echihabi.pdf.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search
with the navigating spreading-out graphs. PVLDB, 12(5):461 – 474, 2019. doi: 10.14778/3303753.
3303754. URL http://www.vldb.org/pvldb/vol12/p461-fu.pdf.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. IEEE Trans.
Pattern Anal. Mach. Intell., 36(4):744–755, 2014. doi: 10.1109/TPAMI.2013.240. URL https:
//doi.org/10.1109/TPAMI.2013.240.

Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy, Nikit Begwani,
Swapnil Raz, Yiyong Lin, Yin Zhang, Neelam Mahapatro, Premkumar Srinivasan, et al. Filtered-
diskann: Graph algorithms for approximate nearest neighbor search with filters. In Proceedings of
the ACM Web Conference 2023, pp. 3406–3416, 2023.

Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei, Sameh Elnikety, and
Yuxiong He. Bitfunnel: Revisiting signatures for search. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 605–614,
2017.

Ruiqi Guo, Quan Geng, David Simcha, Felix Chern, Sanjiv Kumar, and Xiang Wu. New loss
functions for fast maximum inner product search. CoRR, abs/1908.10396, 2019. URL http:
//arxiv.org/abs/1908.10396.

Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and low-
distortion embeddings. In 44th Symposium on Foundations of Computer Science (FOCS 2003),
11-14 October 2003, Cambridge, MA, USA, Proceedings, pp. 534–543. IEEE Computer Society,
2003. doi: 10.1109/SFCS.2003.1238226.

Gaurav Gupta, Jonah Yi, Benjamin Coleman, Chen Luo, Vihan Lakshman, and Anshumali Shrivastava.
Caps: A practical partition index for filtered similarity search. arXiv preprint arXiv:2308.15014,
2023.

Sariel Har-Peled and Nirman Kumar. Approximate nearest neighbor search for low-dimensional
queries. SIAM J. Comput., 42(1):138–159, 2013. doi: 10.1137/110852711. URL https:
//doi.org/10.1137/110852711.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998a.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
STOC ’98, pp. 604–613, New York, NY, USA, 1998b. ACM. ISBN 0-89791-962-9. doi: 10.1145/
276698.276876. URL http://doi.acm.org/10.1145/276698.276876.

Piotr Indyk and Assaf Naor. Nearest-neighbor-preserving embeddings. ACM Trans. Algorithms, 3(3):
31, 2007. doi: 10.1145/1273340.1273347. URL https://doi.org/10.1145/1273340.
1273347.

Piotr Indyk and Haike Xu. Worst-case performance of popular approximate nearest neighbor search
implementations: Guarantees and limitations. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=oKqaWlEfjY.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single node.
Advances in Neural Information Processing Systems, 32, 2019.

12

https://github.com/harsha-simhadri/big-ann-benchmarks/pull/311
https://github.com/harsha-simhadri/big-ann-benchmarks/pull/311
http://www.vldb.org/pvldb/vol13/p403-echihabi.pdf
http://www.vldb.org/pvldb/vol13/p403-echihabi.pdf
http://www.vldb.org/pvldb/vol12/p461-fu.pdf
https://doi.org/10.1109/TPAMI.2013.240
https://doi.org/10.1109/TPAMI.2013.240
http://arxiv.org/abs/1908.10396
http://arxiv.org/abs/1908.10396
https://doi.org/10.1137/110852711
https://doi.org/10.1137/110852711
http://doi.acm.org/10.1145/276698.276876
https://doi.org/10.1145/1273340.1273347
https://doi.org/10.1145/1273340.1273347
https://openreview.net/forum?id=oKqaWlEfjY

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Qing-Yuan Jiang and Wu-Jun Li. Scalable graph hashing with feature transformation. In Proceedings
of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 2248–2254. AAAI
Press, 2015. ISBN 9781577357384.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

Robert Krauthgamer and James R. Lee. Navigating nets: simple algorithms for proximity search.
In J. Ian Munro (ed.), Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pp. 798–807. SIAM,
2004. URL http://dl.acm.org/citation.cfm?id=982792.982913.

Ben Landrum, Magdalen Dobson Manohar, Mazin Karjikar, and Laxman Dhulipala.
Parlayann ivf2: Fusing classic and spatial inverted indices for fast filtered anns.
https://big-ann-benchmarks.com/neurips23.html, 2024. URL https://
big-ann-benchmarks.com/neurips23.html.

Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Hashing with graphs. In ICML, 2011.

Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. CoRR, abs/1603.09320, 2016. URL http:
//arxiv.org/abs/1603.09320.

M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high dimensional data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(11):2227–2240, 2014.

Shyam Narayanan, Sandeep Silwal, Piotr Indyk, and Or Zamir. Randomized dimensionality reduction
for facility location and single-linkage clustering. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 7948–7957.
PMLR, 2021. URL http://proceedings.mlr.press/v139/narayanan21b.html.

Yongjoo Park, Michael Cafarella, and Barzan Mozafari. Neighbor-sensitive hashing. Proc. VLDB
Endow., 9(3):144–155, November 2015. ISSN 2150-8097. doi: 10.14778/2850583.2850589. URL
https://doi.org/10.14778/2850583.2850589.

Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. Acorn: Performant and predicate-
agnostic search over vector embeddings and structured data. arXiv preprint arXiv:2403.04871,
2024.

Pinecone. pinecone.io, 2024. URL (https://docs.pinecone.io/guides/data/
understanding-hybrid-search.

Harsha Vardhan Simhadri, George Williams, Martin Aumuller, Matthijs Douze, Artem Babenko,
Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Krishnaswamy, Gopal Srinivasa,
Suhas Jayaram Subramanya, and Jingdong Wang. Results of the neurips’21 challenge on billion-
scale approximate nearest neighbor search, 2022. URL https://arxiv.org/abs/2205.
03763.

Harsha Vardhan Simhadri, Martin Aumüller, Dmitry Baranchuk, Matthijs Douze, Edo Liberty, Amir
Ingber, Frank Liu, and George Williams. Practical vector search challenge, 2023. https:
//big-ann-benchmarks.com/neurips23.html.

Suhas Jayaram Subramanya, Fnu Devvrit, Rohan Kadekodi, Ravishankar Krishnawamy, and
Harsha Vardhan Simhadri. Diskann: Fast accurate billion-point nearest neighbor search on a single
node. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pp. 13748–13758, 2019. URL http://papers.nips.cc/paper/
9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node.

13

http://dl.acm.org/citation.cfm?id=982792.982913
https://big-ann-benchmarks.com/neurips23.html
https://big-ann-benchmarks.com/neurips23.html
https://big-ann-benchmarks.com/neurips23.html
http://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320
http://proceedings.mlr.press/v139/narayanan21b.html
https://doi.org/10.14778/2850583.2850589
(https://docs.pinecone.io/guides/data/understanding-hybrid-search
(https://docs.pinecone.io/guides/data/understanding-hybrid-search
https://arxiv.org/abs/2205.03763
https://arxiv.org/abs/2205.03763
https://big-ann-benchmarks.com/neurips23.html
https://big-ann-benchmarks.com/neurips23.html
http://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node
http://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak, Piotr Indyk, Samuel
Madden, and Pradeep Dubey. Streaming similarity search over one billion tweets using parallel
locality-sensitive hashing. Proc. VLDB Endow., 6(14):1930–1941, September 2013. ISSN 2150-
8097. doi: 10.14778/2556549.2556574. URL https://doi.org/10.14778/2556549.
2556574.

Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and Jiongkang Ni. Navigable
proximity graph-driven native hybrid queries with structured and unstructured constraints. arXiv
preprint arXiv:2203.13601, 2022.

Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and Jiongkang Ni. An
efficient and robust framework for approximate nearest neighbor search with attribute constraint.
Advances in Neural Information Processing Systems, 36, 2024.

Qi Wang and Torsten Suel. Document reordering for faster intersection. Proc. VLDB Endow.,
12(5):475–487, jan 2019. ISSN 2150-8097. doi: 10.14778/3303753.3303755. URL https:
//doi.org/10.14778/3303753.3303755.

Weaviate. https://weaviate.io/blog/hybrid-search-explained, 2024. URL
https://weaviate.io/.

Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and Yuanzhe Cai.
Analyticdb-v: A hybrid analytical engine towards query fusion for structured and unstructured
data. Proc. VLDB Endow., 13(12):3152–3165, 2020. doi: 10.14778/3415478.3415541. URL
http://www.vldb.org/pvldb/vol13/p3152-wei.pdf.

Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng Li, Ziyue Yang,
Fan Yang, Yuqing Yang, Peng Cheng, and Mao Yang. Spfresh: Incremental in-place update for
billion-scale vector search. In Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP ’23, pp. 545–561, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9798400702297. URL https://doi.org/10.1145/3600006.3613166.

Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi Chen, Yinxuan
He, Yuqing Yang, Fan Yang, Mao Yang, and Lidong Zhou. VBASE: Unifying online vector
similarity search and relational queries via relaxed monotonicity. In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23), pp. 377–395, Boston, MA, July
2023. USENIX Association. ISBN 978-1-939133-34-2. URL https://www.usenix.org/
conference/osdi23/presentation/zhang-qianxi.

Bolong Zheng, Xi Zhao, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu, and Christian S. Jensen.
Pm-lsh: A fast and accurate lsh framework for high-dimensional approximate nn search. Proc.
VLDB Endow., 13(5):643–655, January 2020. ISSN 2150-8097. doi: 10.14778/3377369.3377374.
URL https://doi.org/10.14778/3377369.3377374.

Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. Serf: Segment graph for range-
filtering approximate nearest neighbor search. Proceedings of the ACM on Management of Data, 2
(1):1–26, 2024.

A SYNTHETIC LABEL GENERATION PROCEDURES

In all studies, a fixed random 1M slice of the Cohere Wikipedia dataset Cohere (2023) is used.

A.1 FILTER SELECTIVITY STUDY LABELS

In this section, we provide the procedure to reproduce the labels generated for the experiment
generated in Figure 6.

We partition a universe of 90 labels into equal sets of 30. Each partition has a different specificity,
with the first having 90%, the second 45%, and the third having 10%. For each base point, we assign
filters using the assigned selectivity as probabilities in a binomial trial for each partition. As such,

14

https://doi.org/10.14778/2556549.2556574
https://doi.org/10.14778/2556549.2556574
https://doi.org/10.14778/3303753.3303755
https://doi.org/10.14778/3303753.3303755
https://weaviate.io/blog/hybrid-search-explained
https://weaviate.io/
http://www.vldb.org/pvldb/vol13/p3152-wei.pdf
https://doi.org/10.1145/3600006.3613166
https://www.usenix.org/conference/osdi23/presentation/zhang-qianxi
https://www.usenix.org/conference/osdi23/presentation/zhang-qianxi
https://doi.org/10.14778/3377369.3377374

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

each point should have most of the first partition, half the second partition, and around 10% of the
remaining partition as labels.

For the queries, we sample two filters from the partition corresponding to the selectivity we aim to
evaluate.

A.2 TRIPLE QUERY FILTER STUDY LABELS

We provide the procedure to reproduce the labels generated for the experiment shown in Figure 3.

We assign labels to each base point by performing a binomial trial on a universe of 60 filters with
probability 0.5. For each query, we assign filters by sampling one filter from each sequential third
(e.g. first 20 filters, second 20 filters, third 20 filters) of the universe.

A.3 QUERY CORRELATION STUDY LABELS

In this section we describe the procedure for the construction of the synthetic label set used for the
query correlation study (Figure 4).

First, we construct k random separating hyperplanes. Each co-ordinate of each hyperplane is drawn
from an independent gaussian mapping each datapoint to a "bucket" vector {0, 1}k (0 in the ith entry
if it is below the ith hyperplane, 1 if it is above). This is similar to the procedure studied in Charikar
(2002). For each label we randomly select 5 (out of 2k) bucket vectors as "foundations". Every
datapoint in the foundation bucket has the label with probability 0.5. Every datapoint in an adjacent
bucket has the label with probability 0.25 and other datapoints have the label with probability 0.01.

To make comparison more meaningful between the synthetic and natural datasets, we use the same
5000 query embeddings. Each of these queries has a corresponding bucket. We assign labels to the
query based on the frequency of each label in the query bucket.

1. Positively correlated: Two distinct labels are chosen, each with probability proportional to
the fraction of points in the bucket corresponding to the query satisfying the label.

2. Non-correlated: Two distinct labels are chosen uniformly at random.
3. Negatively correlated: Two distinct labels are chosen with probability proportional to the

fraction of points not satisfying the label in the bucket corresponding to the query.

B OMITTED DETAILS OF SECTION 4

B.1 DETAILED OVERVIEW OF THE CIP DATA STRUCTURE

In this setting, we are given a universe of m labels and a collection of n label sets (data points). The
goal is to construct a datastructure that takes as input a query set q and outputs data points whose
label sets are subsets of q.

The CIP-data structure comprises of 3 levels. The first level and the second level are both hash tables;
the query is only routed to one entry in the first level and one entry in the corresponding second level
table. The third level is a collection of disjoint sets g of datapoints. It will turn out that (with high
probability), for all g, either all datapoints in g are valid responses or none are. However, we will
need to evaluate the feasibility of a datapoint from each group. Fortunately, it will turn out that, for
any δ ∈ (0, 1), we can construct such a structure with the number of such groups being at most n1−δ .

To construct the first level, we sample a random subset S (with size o(m)) of the labels. The first
level table will be indexed by the power set of S. The query q will be mapped to S′ = q ∩ S. It turns
out that, for each S′, with probability 0.5, we can construct a "representative" set R such that for
almost all datapoints x satisfying x∩S ⊂ S′, |x−R| is small and |R− q| is small. The second level
table will be indexed by small subsets of R (corresponding to R− q) and the third level table will
have the datapoints grouped by x−R. More concretely:

1. We uniformly randomly sample a subset of the labels S with size k < m (k depends on δ).
The table T1 is indexed by subsets of S. A query q will be mapped to the entry S′ such that
S′ = q ∩ S. Corresponding to each entry c1 of the table, we have the following:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• A list L(c1) of all datapoints x such that x ∩ S ⊂ c1.
• A representative set R(c1) ⊂ L. This representative set is, loosely speaking, a "median"

of the points in the L(c1). It will turn out that for most datapoints x ∈ L(c1), the set
x−R(c1) is small. Note that R(c1) need not be a subset of c1.

• A second level hash table T2(c1) indexed by "small" subsets of R(c1).

2. T2(c1) Second level table indexed by small subsets of R(c1). A query q will be mapped to
T ⊂ R(c1) if T = R(c1)− q. Because the choice of S in the first level table was random,
with probability at least 0.5 (for the right choice of k), |R(c1)− q| is small. If R(c1)− q
is large, the data structure "fails". Corresponding to each cell c2 of this table we have the
following.

• A list L(c2) of datapoints x such that x ∩ c2 = ∅.
• A partitioning T3(c2) of the datapoints x ∈ L(c2) based on x − R(c1). Because for

most datapoints, x−R(c1) is small, the number of components of the partition is small.
From now on, we will call each component a "group".

3. T3(c2), the partitioning of datapoints in L(c2). Once the query q reaches c2, we will check
one datapoint x(g) from each group g in T3(c2). If x ⊂ q, then every member of g is a valid
response to the query.

It’s main guarantees are:

Theorem B.1 (Charikar et al. (2002)). For every δ > 0, there exists a data structure for the
SubsetQuery problem that has 2O(m

√
δ log2 m) cells, each of which contains at most O(n1−δ) disjoint

groups of elements and, with probability at least 0.99, maps any query to a single cell, returning the
O(n1−δ) groups of elements. Either all the elements in a group are valid for the query or none are.

We note that the space of the data structure is only subexponential when δ = o(1
log4 m

). No algorithm
for the SubsetQuery problem is known that achieves subexponential storage space when δ is a
constant. Furthermore, n1−δ = o(n) for a wide range of choices for m. Indeed, we have n1−δ =

n/poly log(n) = o(n) up to m = exp
(
(log(n)/ log log n)

O(1)
)

, i.e., barely sub-polynomial.

Finally we note that the 0.99 success probability can be boosted to an arbitrary value close to 1 by
standard independent repeating.

B.2 PROOF OF THEOREM 4.1

First we review Locality Sensitive Hashing (LSH). It has the following guarantees, parameterized by
the value ρ:

Theorem B.2 (LSH, Indyk & Motwani (1998a)). Let d(·) be a distance function. Let p1 and p2
be such that for every r > 0, there exists a distribution over hash functions f such that for every
x, y, Pr(f(x) = f(y)) ≥ p1 if d(x, y) ≤ r and Pr(f(x) = f(y)) < p2 < p1 if d(x, y) ≥ (1 + ε)r.
Then letting ρ := log(p1)

log(p2)
, there exists a data structure with storage space Õ(n1+ρ + nd)2 which can

find a (1 + ε)−approximate nearest neighbor while performing at most Õ(nρ) distance comparisons.

In the case where the distance function is the Euclidean metric (ℓ2), prior works achieve ρ = 1− ε
Andoni et al. (2018).

Theorem 4.1. (Main theoretical guarantee for Multi-FilterANN) There exists a data structure which,
with probability 0.99, returns a (1 + ε)−approximate filtered nearest neighbor on any query. This
data structure uses Õ(n1−δ(m+ dnδ + n3δ)2O(m

√
δ log2 m)) space and on any query, performs at

most O(n1−δ) set intersections and Õ(n1−εδ) distance comparisons.

Proof. First we focus only on the labels. Each base point corresponds to a subset of the labels;
multiple points may correspond to the same subset of labels.

2Õ(·) hides logarithmic factors.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We construct the same data structure as in Theorem B.1. Next, for every cell of the level two table,
we take groups with more than nδ points and split them into smaller groups containing nδ points
each (one of the groups created by each split may have fewer than nδ points).

The original structure had at most n1−δ groups per cell of the second level table. Post splitting, there
will be at most n1−δ groups of size nδ and at most n1−δ smaller groups, 2n1−δ groups of size at
most nδ .

Next, in addition to having a list of points in each group, we give each group an Locality Sensitive
Hashing based structure (Theorem B.2) on only the datapoints in that group. The search for each
group uses at most Õ(nδρ) distance comparisons.

Since there are O(n1−δ) groups, the total number of distance comparisons is at most Õ(nδρn1−δ) =

Õ(n1−(1−ρ)δ).

We know from Theorem B.1 that the total number of cells in all level 2 tables is at most 2O(m
√
δ log2 m).

Each cell contains at most O(n1−δ) groups of size at most nδ . Each LSH structure requires storage
space at most O(dnδ + nδ+δρ) and each group also needs to store a list points and the groups’
difference to the representative, which is O(m + nδ). Therefore, the total storage space for the
group is at most Õ(n1−δ(m + dnδ + nδ+ρδ)2O(m

√
δ log2 m)) as desired. Recall that we can take

ρ = 1− ε.

Corollary B.3. Given a data structure for the unfiltered approximate nearest neighbor problem with
storage space S(n, d, ε) and query time Q(n, d, ε), we can, by replacing the groups in CIP with the
given unfiltered data structure to obtain a storage space of Õ(n1−δ(m+ S(nδ, d))2O(m

√
δ log2 m))

and query time O(n1−δ(Q(nδ, d) +m)).

Remark B.1. The ‘slow preprocessing version’ of) DiskANN Indyk & Xu (2023) has space
S(n, d, ε) = n · (1/ε)O(λ) and query time Q(n, d, ε) = Õ((1/ε)O(λ)), where λ is the doubling
dimension of the (vector) part of the dataset X . We can apply this algorithm to Corollary B.3. From
our theoretical algorithm, we retain two valuable lessons that we use in our empirical algorithm
design.

C OMITTED PROOFS OF SECTION 5

Lemma 5.1. There exists a size-n one-dimensional dataset with two total labels such that the
ParlayIV F 2 algorithm has query time Ω(n).

Proof. The instance we construct will be 1 dimensional and points will have 2 labels. We will have n
points and assume for simplicity that n is odd. We have points in the odd positions 1, 3, 5 . . . n− 2
with label 1 and points in the even positions 2, 4, 6 . . . n− 1 with label 2 and a point in position n
with both labels 1 and 2. The query will be at location 0 and contain both labels 1 and 2. If Parlay
has k clusters containing label 1 and k′ clusters containing label 2 for some k, k′, then each cluster
will correspond to all the points containing a label in an interval. The clusters containing the point
in position n will be the last clusters added to the queue in Parlay. Therefore, when performing the
intersection, Parlay will have to intersect two sets of size Ω(n) and therefore, Parlay must have either
linear running time or worst case recall of 0.

Lemma 5.2. There exist a labeled dataset X of size n with m = O(log n) total labels such that any
graph index on X with the property that the subgraph of points satisfying the label constraints of a
query is connected, must have Ω(n2) edges.

Proof. We set m = C log n for a sufficiently large constant C. For each label ℓ ∈ [m] and datapoint
x ∈ X , assign label ℓ to x with probability 1

4 (independently of all other label-datapoint pairs). Notice
that if two datapoints have label sets A,B and there is no other datapoint whose label set contains
A ∩B, then there must be an edge between the two points with label sets A and B (if the query is
A ∩B then A and B are the only valid responses so there must be an edge between them).

Let XABℓ
C be 1 if label ℓ is in A and B but not C and 0 otherwise. If the edge A,B is not in the

graph, then there exists a C such that XABℓ
C = 0 for all labels ℓ. For each label k, the probability

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

that k is in A ∩ B but not C is (by independence of the assignments) 1×1×3
4×4×4 = 3

64 . Therefore (by
independence of the assignments) the probability that XABℓ

C = 0 for all labels ℓ is (6164)
m.

For any pair of points A,B, there are n− 2 possible datapoints that contain the entire intersection.
The probability that none of them do is (by a union bound) at least 1 − (n − 2)(6164)

m. If m ≥
log(100(n−2))

log 64
61

= logn
log 64

61

+ log 100
log 64

61

, then this probability is at least (1− n−2
100(n−2)), which is 0.99. This

means every pair of points has an edge between them with probability at least 0.99 and so the expected
degree of any node is at least 0.99(n− 1) ≥ 0.5n as desired.

Lemma 5.3. There exists a one-dimensional dataset X and a query q such that an incorrect data
point x ∈ X is closest to q under the fusion distance function of NHQ Wang et al. (2022; 2024).

Proof. Suppose we are in R1 and a query has label set {a, b} at position 0. There are two points in
X , one with label set {a, b, c} at position 1 and one with label set {a} at position 0. Applying the
NHQ method will favor the latter point (same distance with respect to the label set for NHQ, but
closer geometrically). However, the correct solution for the subset query would be the one with label
set {a, b, c}.

D MISSING DETAILS OF SECTION 6

Lemma D.1. Let mX and mL be the doubling dimensions of X and of the set of label indicator
vectors with the ℓ2 metric, respectively. Define the metric on their product as d̂ist(x, x′) = ∥x −
x′∥22+λ ·∥Sx−Sx′∥22. Then the resulting metric space has doubling dimension at most 2(mX+mL).
Moreover, if λ is large enough, then the doubling dimension is at most max(mX , 2mL).

Proof. Let L = {Sx : x ∈ X}; we treat X and L as two ℓ2 metric spaces. Fix any (x, ℓ) ∈ X × L
and r > 0. Applying the assumption twice, we can obtain a collection of balls BX(xi,

r
2) for

i = 1, . . . , 22mX that cover BX(x, 2r), and a collection of balls BL(Sj ,
r

2
√
λ
) for j = 1, . . . , 22mL

that cover BL(ℓ,
2r√
λ
). We claim that in the metric space (X × L, f) where f2((x, ℓ), (x′, ℓ′)) =

∥x− x′∥22 + λ · ∥ℓ− ℓ′∥22, the collection of 22mX+2mL balls

{Bf ((xi, Sj), r) : i = 1, . . . , 22mX , j = 1, . . . , 22mL}

covers Bf ((x, ℓ), 2r). (Note that we are using f2 instead of d̂ist for ease of notation since we make
use of f). To show this, take any (x′, ℓ′) ∈ Bf ((x, ℓ), 2r), i.e., ∥x−x′∥22+λ · ∥ℓ− ℓ′∥22 ≤ 4r2. Then
∥x− x′∥2 ≤ 2r and ∥ℓ− ℓ′∥2 ≤ 2r√

λ
, so there are some i and j such that x′ ∈ BX(xi,

r
2) and ℓ′ ∈

BL(Sj ,
r

2
√
λ
). Thus f2((x′, ℓ′), (xi, Sj)) ≤ r2

4 + λ · r2

4λ = r2

2 ≤ r2, i.e., (x′, ℓ′) ∈ Bf ((xi, Sj), r).

For the second point, intuitively, if λ is large enough, then the metric space (X × L, f) consists
of clusters X × {ℓ} that are well-separated. Concretely, let λ ≥ 16

3 diam2(X). Now fix any
(x, ℓ) ∈ X × L and r > 0 and consider the ball Bf ((x, ℓ), 2r). We have two cases.

If 2r <
√
λ, then (as ∥ℓ− ℓ′∥22 ≥ 1 for ℓ′ ̸= ℓ) the entire ball is contained in X × {ℓ}, and restricted

to that set, f = ∥ · ∥2. Therefore we can take a collection of balls BX(xi, r) for i = 1, . . . , 2mX that
cover BX(x, 2r), and lift them to Bf ((xi, ℓ), r).

If 2r ≥
√
λ, cover BL(ℓ,

2r√
λ
) with a collection of balls BL(Sj ,

r
2
√
λ
) for j = 1, ..., 22mL . We claim

that the collection Bf ((x, Sj), r) for j = 1, . . . , 22mL covers Bf ((x, ℓ), 2r). To show this, take any
(x′, ℓ′) ∈ Bf ((x, ℓ), 2r), i.e., ∥x−x′∥22+λ·∥ℓ−ℓ′∥22 ≤ 4r2. Then ∥ℓ−ℓ′∥2 ≤ 2r√

λ
, so there is j such

that ℓ′ ∈ BL(Sj ,
r

2
√
λ
), i.e., λ · ∥ℓ′ − Sj∥22 ≤ r2

4 . Moreover, ∥x− x′∥22 ≤ diam2(X) ≤ 3
16λ ≤ 3

4r
2.

In total, (x′, ℓ′) ∈ Bf ((x, Sj), r).

The above lemma implies that we can search using our distance d̂ist on graph indices whose runtimes
depend on the doubling dimension, for example the DiskANN analysis of Indyk & Xu (2023).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Theorem 6.1. Given a labelled set X of bounded vectors, sufficiently large λ and query vector q with
labels Sq , the closest-k database vectors according to distance dist′ is precisely the closest-k feasible
(i.e., those satisfying the label constraint of Sq) database vectors according to the original distance.

Proof. If λ is larger than say twice the diameter of the vectors in X (for example larger than 2 for
normalized unit vectors), then the second term of dist′ dominates. Thus, any base vector x that does
not satisfy the label constraint (i.e., Sq is not a subset of Sx), will have dist′ value larger than all the
vectors in our dataset that satisfy the label constraint.

E QUERY PLANNING

While the main contribution in this work is in making graph-based indices more robust to handling
query predicates, as discussed earlier, almost any graph-based search algorithm would struggle when
the query predicate is highly selective. Indeed, in extreme situations where a very small number of
points satisfy the predicate, it might just make sense to first identify these points (say, by intersecting
inverted indices of each of the query labels), and running brute force distances to compute the closest
k points. It turns out that for our algorithm in its current shape, there are also some predicates of low,
but not too low, selectivity for which an intermediate clustering-based data-structure works best.

Given the labelled dataset X of vectors, we choose a target numClus of the number of clusters, and
run a k-means clustering with k = numClus to generate the clusters. For each cluster Ci ⊂ X , we
maintain label-wise inverted indices invList(Ci, l) that contains the ids of database points that fall
into cluster Ci and have label l in their label sets. When the query q arrives with label set Sq, we
first identify the closest L clusters, say, C1, C2, . . . , CL from the numClus clusters (using brute force
search). Then, for each of these L clusters C, we compute ∪L

i=1 ∩l∈Sq invList(Ci, l) to gather the
feasible points in these clusters, and then identify the closest k points to the query, again via brute
force search, from this set to generate our output.

Putting all these pieces together, our final empirical algorithm is then defined as follows: Given the
query q with labels Sq , estimate the fraction of database points which will satisfy Sq using a sample
dataset along with label-wise inverted indices over the sample.

1. If the estimate is tiny (e.g. 10000 points), we use a brute-force search.
2. If the estimate is moderate (e.g. 50000 points), we search using the clustering layer.
3. If the estimate is large, we run the penalty greedy search.

Algorithm 1: PenaltyGreedySearch(xq , Sq , k, s, L, λ, τ)
Data: Query vector q, query filter(s) Sq , start node s, search list size L, and penalty parameters λ and λ.
Result: Result set L, and a set V containing all visited nodes.
begin

1 For any u, define f (u) := ∥xu − q∥+ λ|Su \ Sq|
2 Initialize sets L ← {s} and V ← ∅.

while L \ V ≠ ∅ do
3 Let p∗ ← arg minp∈L\Vf (p)

4 V ← V ∪ {p∗}
5 Let N ′

out(p
∗)← {p′ ∈ Nout(p

∗) : |Sp′ \ Sq| < τ}
6 L ← L ∪N ′

out(p
∗)

if |L| > L then
7 Update L with the closest L nodes to xq with respect to f.

return [Closest k NNs from L satisfying Sq;V]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 2: FilteredDiskANN Indexing Algorithm
Data: Database P with n points where i-th point has coords xi, parameters α,L,R.
Result: Directed graph G over P with out-degree ≤ R.
begin

1 Initialize G to an empty graph
2 Let s denote the medoid of P
3 Let st(f) denote the start node for filter label f for every f ∈ F
4 Let σ be a random permutation of [n]
5 Let Fx be the label-set for every x ∈ P

foreach i ∈ [n] do
6 Let SFxσ(i)

= {st(f) : f ∈ Fxσ(i)
}

7 Let [∅;VFxσ(i)
]← FilteredGreedySearch(SFxσ(i)

, xσ(i), 0, L, Fxσ(i)
)

8 V ← V ∪ VFxσ(i)

9 Run FilteredRobustPrune(σ (i) ,VFxσ(i)
, α,R) to update out-neighbors of σ (i) .

foreach j ∈ Nout(σ (i)) do
10 Update Nout(j)← Nout(j) ∪ {σ (i)}

if |Nout(j)| > R then
11 Run FilteredRobustPrune(j,Nout(j), α,R) to update out-neighbors of j.

20

	Introduction
	Preliminaries
	Related Work
	Theoretical Analysis
	Motivating Our Empirical Algo. by Studying Prior Failures
	Our Empirical Algorithm
	Searching the Graph Index: The Penalty Graph Search

	Empirical Results
	Datasets
	Ablations

	Synthetic Label Generation Procedures
	Filter Selectivity Study Labels
	Triple Query Filter Study Labels
	Query Correlation Study Labels

	Omitted Details of Section 4
	Detailed overview of the CIP data structure
	Proof of Theorem 4.1

	Omitted Proofs of Section 5
	Missing Details of Section 6
	Query Planning

