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ABSTRACT

Ensuring fairness in machine learning models is critical, but existing debiasing
techniques often sacrifice model performance, struggle to adapt to emerging bi-
ases, or require extensive sensitive attribute annotations. To address these chal-
lenges, we propose FairLoRA, a novel low-rank adaptation method that mitigates
bias while preserving model performance. FairLoRA incorporates parameter-
efficient modular LoRA components, enabling iterative bias mitigation to ensure
fairness across multiple sensitive attributes without interfering with previous ad-
justments. Furthermore, it employs discriminators to identify biased classes with
reduced reliance on sensitive information, significantly reducing the need for an-
notated data. We theoretically derive conditions under which FairLoRA fine-
tuning can effectively mitigate bias while maintaining the original model’s per-
formance. We then empirically validate its effectiveness across diverse computer
vision and natural language processing tasks. Our experimental results show that,
even for models that have undergone prior bias mitigation training, the integration
of FairLoRA fine-tuning can further enhance fairness, while maintaining or even
slightly improving the original performance.

1 INTRODUCTION

Machine learning (ML) models demonstrate immense power and achieve remarkable success in
both computer vision (CV) and natural language processing (NLP) domains. As ML models have
been widely applied to many critical fields in our society, fairness concerns have recently gained
increasing attention in their research and applications (Liu et al., 2023). For example, Gong et al.
(2021) observe that applying biased face recognition systems can cause potential risk in law enforce-
ment. Lu et al. (2024) highlight that transformers-based models make biased predictions in CV and
NLP fields. Therefore, algorithmic fairness is a burgeoning topic of broad interest, and addressing
fairness issues in ML models is a significant but challenging task.

The main cause of fairness issues is that ML methods have provided opportunity for negative so-
cietal biases to affect the models through data. Traditional definitions of algorithmic fairness often
focus on performance disparities among different demographic groups. The standard approach of
empirical risk minimization (ERM) trains ML models to minimize average loss on a training set.
However, ERM method can produce models that achieve high accuracy on average but still consis-
tently fail on rare and atypical groups of examples (Song et al., 2024). These kinds of performance
disparities across groups can be especially pronounced in the presence of data that encode negative
societal biases (Ferrara, 2023) and other spurious correlations (Neuhaus et al., 2023): misleading
heuristics that work for most training examples but do not always hold (Sagawa et al., 2020a). For
example, in the task of toxic comment classification, the training data is often biased by correlat-
ing toxicity with particular demographic identities (e.g., certain races or religions) (Mathew et al.,
2021). Therefore, models that learn this spurious correlation will reflect the biases in these datasets,
and cause fairness issues in many applications, such as language tasks (McCoy et al., 2019), facial
recognition (Sagawa et al., 2020a), and medical imaging (Oakden-Rayner et al., 2020).

Existing works that attempt to address fairness issues in ML can be broadly classified into two
categories: model interventions and data interventions (Jain et al., 2024). Model interventions target
either model weights (Santurkar et al., 2021; Shah et al., 2024) or the training procedure (Sagawa
et al., 2020a; Kirichenko et al., 2023). However, most of previous works need to fine-tune all
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the parameters in the bias-mitigation process, and can not maintain the model performance while
improving the fairness of some demographic group. Therefore, it is rather hard to combine different
debiasing methods together to fully utilize their advantages, and it is also difficult to mitigate bias
of different sensitive attributes as improving the fairness of one demographic may affect another.
Moreover, previous works still suffer from challenges in trade-off between accuracy and fairness,
high-demand computational resources, and expensive annotations for sensitive information:

(1) Most previous works struggle to enhance the fairness of ML models while maintaining perfor-
mance, and often focus solely on a single sensitive attribute (Liu et al., 2023). Furthermore, many
existing approaches lack theoretical guarantees for the trade-off between fairness and performance,
leaving a significant gap in our understanding of these critical relationships.

(2) When addressing fairness issues in large-scale pre-trained models, numerous existing methods
necessitate fine-tuning all parameters to achieve a balance between fairness and accuracy. However,
updating such a vast number of parameters can be prohibitively expensive (Petersen et al., 2021) and
may lead to catastrophic forgetting, potentially diminishing the model’s efficacy in other tasks.

(3) Traditionally, previous approaches have operated either in a full-information setting, where group
labels are required for each training example, or in a no-information setting, where all group labels
are unavailable (Liu et al., 2021). While full-information methods empirically demonstrate superior
performance compared to no-information approaches, obtaining training group annotations is often
costly and time-consuming. Consequently, there remains a crucial need for further exploration of
partial-information settings which utilize only a small portion of group labels.

To solve the above challenges, we propose FairLoRA, a novel fine-tuning method to enhance fair-
ness of ML models without degrading model performance. By combining a group discriminator
with a low-rank adaptation (LoRA) block trained on group-balanced subset of the data, the Fair-
LoRA block can reduce the worst-group error (Sagawa et al., 2020a) and thus improve the fairness
of ML models. The main contributions of our work are summarized as:

(1) FairLoRA fine-tuning can enhance model fairness while maintaining its performance, supported
by theoretical analysis that provides guarantees. FairLoRA module offers high flexibility, allow-
ing it to be combined with other debiasing methods for further fairness improvements. Moreover,
following an iterative residual learning paradigm, FairLoRA can address fairness concerns across
multiple sensitive attributes.

(2) FairLoRA leverages the representational power of the base model in the group discriminator and
the efficiency of the LoRA method, resulting in significantly lower computational costs compared
to full-parameter fine-tuning. The group discriminator functions as a gate unit, determining the
activation of the LoRA block, which can effectively mitigate catastrophic forgetting issues.

(3) FairLoRA operates under a partial-information setting, where group labels are observed only
for a subset of the training set. This approach substantially reduces annotation costs for sensitive
attributes compared to full-information settings, making it more practical for real-world applications.

2 RELATED WORK

We review fair machine learning work on the trade-off between fairness and performance, fairness-
aware finetuning methods, and fairness with/without demographics information.

2.1 TRADE-OFF BETWEEN FAIRNESS AND PERFORMANCE

Traditional bias mitigation techniques often involve data preprocessing methods such as re-
sampling, re-weighting, or data augmentation to balance datasets across sensitive attributes (Calmon
et al., 2017; Liu et al., 2023). While effective to some extent, these methods may not address bi-
ases inherent in model architectures or training procedures. To mitigate model-level biases, fairness
constraints and regularization terms have been integrated directly into training objectives. Agarwal
et al. (2018) proposed a reduction approach transforming fairness-constrained classification into a
sequence of cost-sensitive classification problems. Recent works have focused on improving group
fairness via distributionally robust optimization. Sagawa et al. (2020a) presented GroupDRO, mini-
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mizing the worst-case loss over predefined groups to enhance fairness. However, such methods can
increase computational complexity and may negatively impact overall performance.

Balancing fairness and performance remains a critical challenge. Enhancing fairness often results
in decreased accuracy, particularly for the majority group (Song et al., 2024). Multi-objective opti-
mization frameworks have been proposed to navigate this trade-off. Martinez et al. (2020) presented
a minimax Pareto fairness approach to optimize for both fairness and accuracy. Cotter et al. (2019)
developed methods for optimizing non-differentiable fairness metrics alongside standard loss func-
tions. Adaptive methods that adjust training strategies based on subgroup performance have also
been explored (Hashimoto et al., 2018). Donini et al. (2018) introduced a duality-based approach to
enforce fairness constraints without significantly compromising performance. However, these meth-
ods may increase computational complexity or require careful hyperparameter tuning. Therefore,
it remains an open question to improve the model fairness while maintaining its performance, and
theoretical guarantees for the trade-off between fairness and performance still need to be derived.

2.2 FAIRNESS-AWARE FINE-TUNING METHODS AND CATASTROPHIC FORGETTING

Fine-tuning pre-trained models is a common strategy for adapting models to specific tasks. However,
standard fine-tuning may inadvertently introduce or amplify biases present in pre-trained models
(Zhao et al., 2019). Parameter-efficient fine-tuning (PEFT) techniques can significantly reduce the
number of trainable parameters. One of the most popular PEFT techniques is Low-Rank Adaptation
(LoRA) (Hu et al., 2022), which reduces the training cost by injecting trainable low-rank matrices
into each layer. While LoRA improves fine-tuning efficiency, its application to fairness enhancement
has been limited. Das et al. (2024) found that directly using low-rank fine-tuning inadvertently
preserves undesirable biases and toxic behaviors. Moreover, directly using LoRA fine-tuning may
worsen fairness across subgroups and appear less fair via worst subgroup accuracy (Ding et al.,
2024). Therefore, PEFT techniques for fairness still need further research.

To deal with multiple sensitive attributes, continual learning framework can be adopted to improve
fairness for different demographics step-by-step. Therefore, another challenge for fairness improv-
ing method is catastrophic forgetting, the loss of previously learned knowledge during finetuning,
which poses a challenge in bias mitigation and continual learning (Zhang et al., 2023). Finetuning
for fairness may degrade original task performance, which is undesirable in practical applications.
Continual learning techniques mitigate catastrophic forgetting by preserving important parameters.
Kirkpatrick et al. (2017) introduced Elastic Weight Consolidation (EWC), adding regularization to
prevent significant updates to critical weights. Sun et al. (2020) proposed LAMOL, a method for lan-
guage modeling that mitigates forgetting through data replay. However, research that integrates such
methods into fairness-aware fine-tuning scenarios remains limited and needs further exploration to
improve fairness for different demographics.

2.3 FAIRNESS AND DEMOGRAPHIC INFORMATION

Most of existing bias mitigation methods leverage demographic information during training to deal
with spurious correlations. For example, Sagawa et al. (2020b) reweight or subsample the major-
ity and minority groups; Goel et al. (2021) synthetically expand the minority groups via generative
modeling; Zhang et al. (2021) minimize the worst-group loss during training. Although these bias
mitigation methods substantially reduce worst-group error, obtaining corresponding group annota-
tions can be extremely expensive. Some previous works consider the no-information setting where
all the group labels are unavailable (Liu et al., 2021). However, methods in no-information setting
empirically can not perform as well as full-information setting. Instead, we focus on the partial-
information setting, leveraging partial group information during training to achieve more consistent
bias mitigation while reducing reliance on full group annotations.

3 METHODOLOGY

In this section, we introduce FairLoRA, a PEFT approach designed to enhance fairness in machine
learning models without requiring comprehensive group annotations during training. As illustrated
in Figure 1, FairLoRA harnesses the representational power of pre-trained models, integrating group

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: The architecture of FairLoRA, showcasing the integration of discriminators and LoRA
blocks across multiple layers. The discriminator is trained beforehand plays a crucial role in deter-
mining whether to activate the LoRA block. When the discriminator identifies a sample as belonging
to an underrepresented group, the corresponding LoRA block is engaged. Otherwise, the data sam-
ple is processed directly by the base model without LoRA intervention.

discriminators and LoRAs to mitigate bias by selectively improving the performance of underrepre-
sented groups.

3.1 SENSITIVE ATTRIBUTES AND FAIRNESS DEFINITION

Let s ∈ {0, 1} be the binary sensitive attribute, where s = 0 represents the majority group and
s = 1 represents the minority group. The base model fθ : X → Y , parameterized by θ, is trained
using ERM, minimizing the overall loss R(θ) = E(x,y)∼P [ℓ(fθ(x), y)], where ℓ(·) denotes the
loss function, and P represents the data distribution. However, due to data imbalance, the base
model tends to perform better on the majority group while underperforming on the minority group.
When there are multiple sensitive attributes, we can simply generalize this fairness definition by
considering each sensitive attribute in the similar manner.

3.2 FAIRLORA STRUCTURE

To mitigate unfairness issues, we propose FairLoRA, a framework consisting of two key compo-
nents: a group discriminator and a series of LoRA modules. The group discriminator is responsible
for identifying whether the input exhibits biases and determining whether corresponding adjustments
are necessary. The LoRA modules address the identified biases by making targeted modifications to
the model’s representations in a low-rank space.

The group discriminator, Dϕ : X → 0, 1, uses Attention Pooling to aggregate token-level hidden
states hθ(x) ∈ RT×d from the base model, where T is the sequence length and d is the hidden
state dimensionality. The attention pooling mechanism is formulated as hpool(x) =

∑T
t=1 αthθ(x)t,

where αt = softmax(w⊤hθ(x)t) and w ∈ Rd is a learnable weight vector. This pooling results in a
global representation hpool(x), which is considered as a representation of the input sample and used
as input to the group discriminator.

LoRA is applied to improve performance for minority groups. We utilize a dataset balanced ac-
cording to the predicted labels of sensitive attribute categories to train the LoRA modules. In cases
where sensitive attribute labels are unavailable, pseudo-labels can be generated using the pre-trained
group discriminator. Alternatively, we can also customize the dataset based on task requirements or
use other fine-tuning methods to improve fairness.
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During inference, the discriminator output Dϕ(hpool(x)) determines whether the LoRA block is
activated. The final model’s weights are updated as follows:

WFairLoRA = Wfrozen + I(Dϕ(hpool(x)) = 1) · (BA) (1)

where Wfrozen is the frozen pre-trained weight matrix of the base model, B ∈ Rd×r and A ∈
Rr×k are the low-rank matrices introduced by LoRA, with r ≪ min(d, k), and I(·) is the indicator
function, which outputs 1 if Dϕ(hpool(x)) = 1 (minority group), and 0 otherwise. Thus, when
Dϕ(hpool(x)) = 1, LoRA is activated to adjust the base model’s weights to mitigate bias. Otherwise,
data samples are processed directly by the base model without LoRA intervention.

3.3 FAIRLORA FOR MULTIPLE SENSITIVE ATTRIBUTES

FairLoRA can be extended to handle multiple sensitive attributes {s1, s2, . . . , sk}. As shown in
Figure 1, for each sensitive attribute si, a separate LoRA module is introduced. The overall model
update after processing all sensitive attributes is formulated as:

WFairLoRA = Wfrozen +

k∑
i=1

I(Dϕi(hpool(x)) = 1) · (BiAi) (2)

where Bi ∈ Rd×r, Ai ∈ Rr×k are the low-rank matrices corresponding to the i-th sensitive attribute,
and Dϕi is the discriminator for attribute si.

3.4 OPTIMIZATION FRAMEWORK

The optimization process for FairLoRA involves the following steps:

1. Group Discriminator Training: Train the group discriminator to identify the sensitive
attribute, using attention pooling to aggregate token-level hidden states for a more accurate
representation of the input.

2. LoRA Fine-Tuning: Apply LoRA fine-tuning to a dataset balanced according to the pre-
dicted labels of the sensitive attribute category to enhance the performance of underrepre-
sented or biased categories, updating B and A.

3. Extend the Chain: For multiple sensitive attributes, iteratively apply FairLoRA for each
attribute, forming a chain of low-rank adaptations.

This approach enables iterative bias mitigation without compromising previous adjustments, ensur-
ing fairness across multiple sensitive attributes while maintaining model performance.

4 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of FairLoRA, stating key theorems on fairness
improvements and performance preservation, along with detailed proofs.

4.1 DEFINITIONS AND PERFORMANCE METRICS

We begin by defining the key variables and performance metrics used in the analysis.

4.1.1 GROUP SAMPLES AND MODEL PERFORMANCE

We define the key variables as follows: N = N1+N2, where N1 and N2 are the number of samples
in the majority (G1) and minority (G2) groups, respectively. The proportion of minority group
samples is p = N2

N .

The model’s performance on G1 and G2 is P (M,G1) and P (M,G2). The overall performance is:

P (M) = (1− p) · P (M,G1) + p · P (M,G2) (3)

Similarly, for the LoRA fine-tuned model:

P (MLoRA) = (1− p) · P (MLoRA,G1) + p · P (MLoRA,G2) (4)
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4.1.2 DISCRIMINATOR METRICS

Define the True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN)
as follows: TP: Correctly classified G2 samples. FP: G1 samples incorrectly classified as G2. TN:
Correctly classified G1 samples. FN: G2 samples incorrectly classified as G1.

The True Positive Rate (TPR) and False Positive Rate (FPR) are: TPR = TP
N2

,FPR = FP
N1

4.2 THEORETICAL PROPERTIES OF FAIRLORA

The theoretical results of FairLoRA performance for the majority group and minority group are pro-
vided in Lemmas 1 and 2, respectively. The performance preservation condition for the FairLoRA
approach is provided in Theorem 1.

Lemma 1. For the majority group (G1), the model performance after FairLoRA fine-tuning is:

P (MFairLoRA,G1) = (1− FPR) · P (M,G1) + FPR · P (MLoRA,G1) (5)

Lemma 2. For the minority group (G2), the model performance after FairLoRA fine-tuning is:

P (MFairLoRA,G2) = TPR · P (MLoRA,G2) + (1− TPR) · P (M,G2) (6)

Theorem 1. To ensure that FairLoRA maintains the overall performance of the model, the discrim-
inator’s TPR to FPR ratio is required to meet the following condition:

TPR
FPR

≥ (1− p)

p
· P (M,G1)− P (MLoRA,G1)
P (MLoRA,G2)− P (M,G2)

(7)

The proofs for Lemmas 1, 2, and Theorem 1 are provided in the Appendix A.

In summary, our theoretical analysis demonstrates that FairLoRA fine-tuning can effectively miti-
gate bias while preserving overall model performance by maintaining a suitable TPR-to-FPR ratio.
This condition is often achievable in practice, as LoRA fine-tuning aims to improve minority group
performance P (MLoRA, G2) − P (M,G2) while minimally impacting majority group performance
P (M,G1) − P (MLoRA, G1). As a result, the improvement for the minority group typically out-
weighs the minor effect on the majority group, leading to a manageable threshold for the ratio,
which can often be approximated as TPR

FPR ≥
(1−p)

p . Adjusting classification thresholds can also help
achieve a high TPR and low FPR, thereby meeting this condition.

When the condition is met, FairLoRA ensures that gains for the sensitive group outweigh losses for
the non-sensitive group, enhancing fairness without compromising overall performance.

5 EXPERIMENTS

This section presents a comprehensive evaluation of our proposed method, FairLoRA, designed to
mitigate biases in pre-trained models while maintaining or improving original performance. We
conduct experiments on three widely-used fairness benchmark datasets: CelebA (Liu et al., 2015),
MultiNLI (Williams et al., 2018), and HateXplain (Mathew et al., 2021), and evaluate three key sce-
narios: (1) eliminating a single type of bias, (2) sequentially eliminating multiple types of biases, and
(3) evaluating the impact of dataset proportions on FairLoRA. Comparisons with prevalent methods
demonstrate that FairLoRA consistently improves fairness metrics without significant performance
loss, and in some cases, even enhances overall accuracy.

5.1 EXPERIMENTAL SETUP

We evaluate FairLoRA on three diverse datasets: CelebA, MultiNLI, and HateXplain, representing
different modalities and bias types. For CelebA, we predict the “Male” attribute while accounting
for “Blond Hair” as a sensitive attribute, revealing imbalances across male and female images with
blond hair. In MultiNLI, we predict entailment relations with a focus on negation as a sensitive
attribute, uncovering linguistic biases. HateXplain helps assess overlapping biases related to gender
and race, focusing on hate speech prediction.
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We compare FairLoRA with several widely-adopted baseline methods, including ERM, GroupDRO
(Sagawa et al., 2020a), DFR (Kirichenko et al., 2023), and Lu et al. Lu et al. (2024), to demonstrate
its effectiveness. FairLoRA is evaluated in two configurations:

• FairLoRA Min.: FairLoRA fine-tuning on the minority group to enhance fairness towards
underrepresented groups, while ensuring no degradation in the overall model performance.

• FairLoRA Maj.: FairLoRA fine-tuning on the majority group to improve overall perfor-
mance, while ensuring that the fairness for minority groups is not compromised.

FairLoRA’s performance is evaluated using multiple metrics, including Accuracy (ACC), Balanced
Accuracy (BA), Worst-Group Accuracy (WGA), Equalized Odds Difference (EOD), Demographic
Parity (DP), Equal Opportunity (EOp), and Pearson Correlation Coefficient (PCC). All models are
implemented using PyTorch, and we maintain consistent hyperparameter settings across experi-
ments. Detailed implementation choices and hyperparameters can be found in the Appendix B.

5.2 EXPERIMENT 1: ELIMINATING BIAS OF A SINGLE TYPE

In our first experiment, we assess the effectiveness of FairLoRA in mitigating a single type of bias
present in the CelebA and MultiNLI datasets. We used a 8-layer Vision Transformer (VIT) (Doso-
vitskiy, 2020) for the CelebA dataset and BERT-base (Devlin et al., 2019) for the MultiNLI dataset,
aligning with prior benchmarks. Table 1 presents the performance comparison across different meth-
ods on both datasets. The results demonstrate several key findings:

Table 1: Performance comparison across different datasets and methods.

Method CelebA MultiNLI
ACC↑(%) WGA↑(%) EOD↓(%) ACC↑(%) WGA↑(%) EOD↓(%)

ERM 95.8 ± 0.1 77.9 ± 2.6 10.0 ± 1.7 82.6 ± 0.3 67.3 ± 2.6 12.5 ± 1.5
+ FL Min. 95.8 ± 0.2 82.0 ± 2.2 8.5 ± 1.4 82.7 ± 0.4 71.0 ± 2.5 10.8 ± 1.4
+ FL Maj. 95.9 ± 0.1 77.2 ± 2.8 10.0 ± 1.6 82.8 ± 0.2 66.8 ± 2.7 12.7 ± 1.5

GroupDRO 94.4 ± 0.5 87.4 ± 1.4 4.8 ± 0.6 80.8 ± 0.6 77.2 ± 1.2 5.9 ± 0.9
+ FL Min. 94.4 ± 0.5 88.8 ± 1.5 4.7 ± 0.5 80.7 ± 0.8 78.3 ± 1.4 5.5 ± 0.8
+ FL Maj. 94.7 ± 0.4 84.4 ± 1.1 5.9 ± 0.4 81.2 ± 0.5 75.0 ± 2.9 6.0 ± 1.2

DFR 94.3 ± 1.4 86.0 ± 2.0 7.7 ± 0.8 81.9 ± 0.4 74.1 ± 1.0 6.7 ± 0.8
+ FL Min. 94.5 ± 1.2 87.8 ± 1.9 6.9 ± 0.8 81.9 ± 0.3 76.0 ± 1.0 6.3 ± 0.7
+ FL Maj. 95.6 ± 0.1 83.3 ± 2.1 8.1 ± 1.3 82.1 ± 0.7 73.0 ± 2.1 6.8 ± 0.9

Lu et al. 95.4 ± 0.4 81.4 ± 4.8 8.3 ± 2.0 82.0 ± 0.2 72.8 ± 0.7 8.3 ± 0.6
+ FL Min. 95.5 ± 0.4 86.8 ± 2.2 6.2 ± 0.7 82.0 ± 0.2 75.0 ± 0.6 7.5 ± 0.6
+ FL Maj. 95.9 ± 0.3 80.4 ± 4.3 8.6 ± 1.7 82.5 ± 0.4 71.8 ± 1.5 8.4 ± 1.0

* Bold values indicate the best performance in each category. “FL” refers to FairLoRA.

FairLoRA Minority Improves Fairness: Across all baseline methods and both datasets, applying
FairLoRA Minority leads to significant improvements in fairness metrics, specifically in WGA and
EOD. For instance, in the ERM framework on CelebA, WGA increases from 77.9% to 82.0%,
and EOD decreases from 10.0% to 8.5%. Similarly, on MultiNLI, WGA improves from 67.3%
to 71.0%, and EOD decreases from 12.5% to 10.8%. These improvements indicate that by fine-
tuning on minority group data, FairLoRA allows the model to better capture the characteristics of
underrepresented groups, leading to more equitable performance.

FairLoRA Majority Enhances Overall Accuracy: Applying FairLoRA Majority results in slight
improvements in overall accuracy across baseline methods. For example, in the ERM framework,
ACC increases from 95.8% to 95.9% on CelebA and from 82.6% to 82.8% on MultiNLI. While the
improvements in WGA and reductions in EOD are less pronounced compared to FairLoRA Minor-
ity, these results suggest that focusing on the majority group primarily enhances overall performance
without significantly affecting fairness metrics.
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Synergy with Existing Debiasing Methods: The combination of FairLoRA with other debiasing
methods like GroupDRO and DFR further improves fairness metrics. For instance, GroupDRO +
FairLoRA Minority on CelebA improves WGA from 87.4% to 88.8% and reduces EOD from 4.8%
to 4.7%. This synergy illustrates that, even for models that have undergone prior bias mitigation, the
incorporation of FairLoRA fine-tuning can further enhance fairness while preserving, or potentially
slightly improving, the model’s original performance.

5.3 EXPERIMENT 2: ELIMINATING BIASES OF MULTIPLE TYPES

In our second experiment, we evaluate the capability of FairLoRA to sequentially mitigate mul-
tiple biases. We utilize two pre-trained language models: DistilBERT-base (Sanh et al., 2019) and
BERT-base. The procedure involves initial training with ERM, followed by sequential application of
FairLoRA to mitigate racial bias (FairLoRA African American) and then gender bias (FairLoRA
Female). Table 2 presents the results of this process, revealing several key findings:

Table 2: Performance and fairness comparison during progressive debiasing of sensitive attributes
for DistilBERT-base and BERT-base.

Metric DistilBERT-base BERT-base
ERM FLoRa Afr. FLoRa Fe. ERM FLoRa Afr. FLoRa Fe.

DP (R)↓ 38.2 ± 1.4 33.7 ± 1.4 32.8 ± 1.1 27.1 ± 0.9 14.0 ± 1.0 12.4 ± 0.7
EOp (R)↓ 14.9 ± 1.1 14.2 ± 1.0 13.1 ± 1.0 13.0 ± 0.8 8.4 ± 1.1 7.2 ± 1.0
EOD(R)↓ 26.5 ± 0.7 24.4 ± 0.6 23.0 ± 0.6 20.1 ± 0.4 11.2 ± 0.6 9.8 ± 0.5
DP (G)↓ 7.4 ± 1.3 7.6 ± 1.1 12.9 ± 2.2 7.6 ± 1.5 8.5 ± 1.4 7.6 ± 1.0
EOp (G)↓ 13.0 ± 0.5 13.0 ± 0.5 2.0 ± 2.1 18.2 ± 0.8 16.7 ± 0.4 8.8 ± 1.4
EOD(G)↓ 11.3 ± 1.1 11.2 ± 0.7 7.4 ± 0.6 12.9 ± 1.1 12.6 ± 0.9 8.2 ± 0.4
ACC↑ 79.5 ± 0.2 79.6 ± 0.2 79.7 ± 0.3 79.8 ± 0.3 79.6 ± 0.5 79.7 ± 0.4

* Bold values indicate the best performance in each category, while underlined values represent the
second-best results. “R” refers to Race, and “G” refers to Gender.

Effective Sequential Mitigation of Biases: After applying FairLoRA Race, we observe a notable
reduction in EOD (Race) for both models, with DistilBERT-base decreasing from 26.5% to 24.4%,
and BERT-base from 20.1% to 11.2%. Notably, EOD (Gender) remains relatively stable in this
phase, showing only slight changes (11.3% to 11.2% for DistilBERT-base and 12.9% to 12.6%
for BERT-base). In the second stage, applying FairLoRA Female further reduces EOD (Gender),
dropping from 11.2% to 7.4% for DistilBERT-base and from 12.6% to 8.2% for BERT-base. Impor-
tantly, these reductions in EOD (Gender) are achieved while retaining or improving EOD (Race),
with DistilBERT-base decreasing from 24.4% to 23.0% and BERT-base from 11.2% to 9.8%.

No Negative Interference: The sequential application of FairLoRA demonstrates that mitigating a
new bias does not negate the improvements achieved in earlier stages. This observation is crucial,
as it suggests that FairLoRA effectively prevents catastrophic forgetting, a common issue when
fine-tuning models on new tasks. We quantify this non-interference by calculating the correlation
between performance changes across stages. Specifically, after mitigating gender bias, we compare
the changes in metrics unrelated to gender before and after gender debiasing, relative to the original
ERM model. For the DistilBERT and BERT models, the correlation coefficients are 0.97 and 0.99,
respectively, indicating that addressing the new bias does not disrupt the gains made in previous bias
mitigation stages. The corresponding calculation processes are provided in Appendix C.2.

5.4 EXPERIMENT 3: IMPACT OF DATASET PROPORTIONS ON FAIRLORA

This experiment evaluates the effect of varying training data sizes on the discriminator performance
of FairLoRA, using the CelebA dataset and a 8-layer ViT, as summarized in Table 3. The discrimi-
nator was trained on data proportions ranging from 0.1% to 100%, with the findings as follows:

Increased Dataset Size Enhances Discriminator Performance: As the training dataset size in-
creases, the TPR/FPR ratio shows significant improvement. Notably, the TPR/FPR ratio rises from
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Table 3: Impact of Different Training Data Sizes on FairLoRA’s Discriminator Performance

Size Num TPR (%) FPR (%) TPR/FPR ACC (%) WGA (%) EOD (%)
ERM - - - - 95.8 ± 0.1 77.9 ± 2.6 10.0 ± 1.7
0.1% 163 77.0 ± 1.5 7.03 ± 0.5 10.9 ± 0.8 95.7 ± 0.4 80.1 ± 1.2 9.11 ± 0.9
0.5% 813 85.0 ± 1.2 7.63 ± 0.6 11.1 ± 0.7 95.7 ± 0.4 80.6 ± 1.8 8.90 ± 2.0
1% 1,627 88.3 ± 1.3 8.34 ± 0.7 10.6 ± 0.9 95.7 ± 0.3 80.6 ± 1.6 8.86 ± 1.8
5% 8,134 93.2 ± 1.0 8.09 ± 0.6 11.5 ± 0.6 95.8 ± 0.4 82.2 ± 2.5 8.27 ± 2.3
10% 16,269 94.1 ± 0.8 7.11 ± 0.5 13.2 ± 0.7 95.8 ± 0.2 80.6 ± 1.8 8.88 ± 0.9
50% 81,344 94.9 ± 0.7 4.52 ± 0.4 21.0 ± 1.1 95.8 ± 0.3 81.1 ± 2.0 8.75 ± 1.2
100% 162,688 94.1 ± 0.6 3.45 ± 0.3 27.2 ± 1.2 95.9 ± 0.1 82.0 ± 2.2 8.50 ± 1.4

10.9 for a 0.1% sample to 27.2 for a 100% sample, suggesting enhanced discriminatory power with
increased data. The 100% training size yields the highest TPR/FPR ratio of 27.2, highlighting the
discriminator’s ability to differentiate biased and non-biased instances effectively.

Condition for Maintaining Performance: According to Theorem 1, the condition for maintaining
performance without degradation is given by (1−p)

p , which represents the ratio of non-biased to bi-
ased classes. In this case, the ratio is 138,503

24,267 = 5.71. A higher TPR/FPR ratio indicates stronger
discriminatory capability, which helps in achieving fairness improvements without negatively im-
pacting model accuracy, as evidenced by the trend of improved metrics with increased dataset size.

Effective Use of Limited Sensitive Attribute Labels: FairLoRA performs well even with limited
sensitive attribute labels. With just 0.1% of the labeled data, FairLoRA outperforms the baseline
(ERM) in in terms of WRA and EOD metrics, showing its efficiency in enhancing fairness while
requiring minimal data. As the training size increases, the model’s accuracy remains stable, while the
fairness metrics continue to improve. This observation underscores FairLoRA’s ability to effectively
mitigate biases without compromising overall performance, even in scenarios with limited access to
sensitive attribute labels.

5.5 ABLATION STUDY

We conduct an ablation study to evaluate the impact of the group discriminator in FairLoRA using
the HateXplain dataset. The study compares FairLoRA with LoRA (without the discriminator),
focusing on changes in accuracy and fairness across training batches and thresholds.

Figure 2: Comparison of accuracy (ACC) and fairness (1-EOD) between FairLoRA and LoRA.
Left: Trends of ACC and fairness over training batches. Right: Impact of varying discriminator
thresholds on ACC and fairness.
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Impact on Accuracy and Fairness Metrics: Figure 2 (left) shows the accuracy (ACC) and fairness
(1-EOD) trends across training batches. FairLoRA significantly improves debiasing for specific
categories, such as African American-related comments, while maintaining model performance.
Unlike LoRA, which shows a substantial decrease in accuracy from the early stages of training,
FairLoRA exhibits minimal performance loss, maintaining stable accuracy even in later training
stages. This demonstrates that FairLoRA can mitigate biases while preserving overall accuracy.

Regarding fairness towards non-target attributes (e.g., gender), FairLoRA maintains stable fairness
throughout the training process, avoiding negative impacts on these attributes. In contrast, LoRA
exhibits a significant decline in fairness for non-target attributes, suggesting that it struggles to ensure
fairness across multiple sensitive categories when sequentially mitigating multiple types of biases.
FairLoRA’s ability to maintain relatively high 1 − EOD (other) scores indicates its robustness in
handling multiple biases without catastrophic forgetting.

In target attribute fairness, FairLoRA consistently outperforms LoRA, with 1−EOD (target) improv-
ing gradually and staying at a high level throughout the training, while LoRA remains relatively low.
This result demonstrates FairLoRA’s superior capacity for enhancing fairness in bias mitigation.

Effect of Discriminator Threshold: Figure 2 (right) analyzes the effect of varying the discriminator
threshold. A threshold of 0 corresponds to the base model, while a threshold of 1 represents the fully
fine-tuned LoRA model. Across all thresholds, FairLoRA consistently outperforms LoRA in terms
of accuracy. And with the increase of the threshold, FairLoRA’s fairness in terms of EOD (target)
continuously improves. Notably, when the threshold exceeds 0.4, FairLoRA achieves significantly
better fairness for the target attribute (1−EOD (target)) than LoRA. Moreover, FairLoRA’s fairness
in terms of 1 − EOD (other) for non-target attributes also remains higher than that of LoRA, con-
firming that improving fairness in one category does not negatively impact other categories. Details
on the TPR-to-FPR ratio variation are provided in Appendix D.

The ablation results confirm the crucial role of the group discriminator in FairLoRA, enabling su-
perior fairness improvements while maintaining model performance. FairLoRA shows robustness
across training iterations and threshold variations, significantly outperforming LoRA in both accu-
racy and fairness, particularly when addressing multiple types of biases sequentially.

6 CONCLUSIONS

In this article, we introduced FairLoRA, a bias mitigation method that employs discriminators with
LoRA modules to enhance fairness while preserving model performance. Our experiments across
various computer vision and natural language processing tasks demonstrate that FairLoRA can im-
prove fairness metrics without compromising, and in some cases even enhancing, overall accuracy.
FairLoRA showed consistent improvements in fairness across both single and multiple bias scenar-
ios. It increased worst-group accuracy and reduced equalized odds difference in single bias settings,
and effectively handled sequential debiasing of multiple biases (e.g., race and gender) without nega-
tively impacting previous bias mitigation efforts. This highlights FairLoRA’s robustness in handling
multiple biases iteratively.

A key advantage of FairLoRA is its modular design, which enables targeted fine-tuning without
the need for full-model training. This not only reduces computational costs but also minimizes the
reliance on extensive sensitive attribute annotations, making FairLoRA highly adaptable to settings
with partial information. Additionally, FairLoRA’s selective activation of LoRA modules ensures
that bias correction does not degrade overall model performance.

Beyond its applications in fairness, FairLoRA’s modular approach has potential in multilingual and
multi-task model optimization. For instance, in multilingual tasks, FairLoRA can be applied to
fine-tune specific language components (e.g., improving Chinese language understanding) without
impacting performance on other languages (e.g., English). Similarly, in multi-task settings, LoRA
modules can be independently fine-tuned for specialized tasks, such as code generation or mathemat-
ical reasoning, without disrupting the model’s core capabilities across other tasks. This flexibility
enables FairLoRA to support the growing demands for adaptable, task-specific model training in
diverse and multilingual environments, providing a pathway for improving both fairness and task
performance.
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A THEOREM PROOF

Lemma 1. For the majority group (G1), the performance of the model after FairLoRA fine-tuning
is:

P (MFairLoRA,G1) = (1− FPR) · P (M,G1) + FPR · P (MLoRA,G1)
Proof.

Definitions and Notations:

• M : the original model.
• MLoRA: the model fine-tuned using LoRA.
• MFairLoRA: the final model after applying FairLoRA fine-tuning.
• G1: the majority group.
• P (M,G1): performance of model M on group G1.
• FPR: False Positive Rate when predicting G2 for samples from G1.

In the context of FairLoRA fine-tuning, the performance of the model on G1 depends on how sam-
ples from G1 are classified:

• True Negatives (TN): samples from G1 correctly classified as G1.
• False Positives (FP): samples from G1 incorrectly classified as G2.

Calculating the Performance:

Let N1 be the total number of samples in G1.

• Number of True Negatives: TN = (1− FPR) ·N1.
• Number of False Positives: FP = FPR ·N1.

For G1, the FairLoRA model uses:

• The original model M for True Negatives.
• The LoRA fine-tuned model MLoRA for False Positives.

Thus, the total performance on G1 is the weighted average:

P (MFairLoRA,G1) =
Performance on TN + Performance on FP

N1

=
TN · P (M,G1) + FP · P (MLoRA,G1)

N1

=
[(1− FPR)N1P (M,G1) + FPRN1P (MLoRA,G1)]

N1

= (1− FPR) · P (M,G1) + FPR · P (MLoRA,G1).

Therefore, we have:

P (MFairLoRA,G1) = (1− FPR) · P (M,G1) + FPR · P (MLoRA,G1).

This completes the proof. □

Lemma 2. For the minority group (G2), the performance of the model after FairLoRA fine-tuning
is:

P (MFairLoRA,G2) = TPR · P (MLoRA,G2) + (1− TPR) · P (M,G2)
Proof.

Definitions and Notations:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• G2: the minority group.
• P (M,G2): performance of model M on group G2.
• TPR: True Positive Rate when correctly predicting G2 for samples from G2.

For samples from G2, their classification can be:

• True Positives (TP): samples from G2 correctly classified as G2.
• False Negatives (FN): samples from G2 incorrectly classified as G1.

Calculating the Performance:

Let N2 be the total number of samples in G2.

• Number of True Positives: TP = TPR ·N2.
• Number of False Negatives: FN = (1− TPR) ·N2.

For G2, the FairLoRA model uses:

• The LoRA fine-tuned model MLoRA for True Positives.
• The original model M for False Negatives.

Thus, the total performance on G2 is:

P (MFairLoRA,G2) =
Performance on TP + Performance on FN

N2

=
TP · P (MLoRA,G2) + FN · P (M,G2)

N2

=
[TPRN2P (MLoRA,G2) + (1− TPR)N2P (M,G2)]

N2

= TPR · P (MLoRA,G2) + (1− TPR) · P (M,G2).
Therefore, we have:

P (MFairLoRA,G2) = TPR · P (MLoRA,G2) + (1− TPR) · P (M,G2).
This completes the proof. □

Theorem 1. To ensure that FairLoRA does not degrade the overall performance of the model, the
ratio of the true positive rate (TPR) to the false positive rate (FPR) must satisfy:

TPR
FPR

≥ (1− p)

p
· P (M,G1)− P (MLoRA,G1)
P (MLoRA,G2)− P (M,G2)

Proof.

Definitions and Notations:

• p = N2

N1+N2
: proportion of samples from G2.

• (1− p): proportion of samples from G1.
• ∆P (G1): change in performance on G1.
• ∆P (G2): change in performance on G2.
• ∆P : overall change in performance.

Calculating the Change in Performance for G1:

From Theorem 1, the performance change on G1 is:
∆P (G1) = P (MFairLoRA,G1)− P (M,G1)

= [(1− FPR)P (M,G1) + FPRP (MLoRA,G1)]− P (M,G1)
= −FPR · P (M,G1) + FPR · P (MLoRA,G1)
= FPR · [P (MLoRA,G1)− P (M,G1)].
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Calculating the Change in Performance for G2:

From Theorem 2, the performance change on G2 is:

∆P (G2) = P (MFairLoRA,G2)− P (M,G2)
= [TPRP (MLoRA,G2) + (1− TPR)P (M,G2)]− P (M,G2)
= −TPR · P (M,G2) + TPR · P (MLoRA,G2)
= TPR · [P (MLoRA,G2)− P (M,G2)].

Calculating the Overall Change in Performance:

The overall change is the weighted sum:

∆P = (1− p) ·∆P (G1) + p ·∆P (G2).

Substituting the expressions for ∆P (G1) and ∆P (G2):

∆P = (1− p) · FPR[P (MLoRA,G1)− P (M,G1)] + p · TPR[P (MLoRA,G2)− P (M,G2)].

Setting the Condition for No Performance Degradation:

To ensure the overall performance does not degrade (∆P ≥ 0), we require:

(1− p) · FPR[P (MLoRA,G1)− P (M,G1)] + p · TPR[P (MLoRA,G2)− P (M,G2)] ≥ 0.

Assuming Performance Changes:

• Let ∆PG1 = P (MLoRA,G1)− P (M,G1) (likely negative).
• Let ∆PG2 = P (MLoRA,G2)− P (M,G2) (positive).

Rewriting the inequality:

(1− p) · FPR ·∆PG1 + p · TPR ·∆PG2 ≥ 0.

Solving for TPR
FPR :

1. Isolate the positive term:

p · TPR ·∆PG2 ≥ −(1− p) · FPR ·∆PG1.

2. Since ∆PG1 < 0, −∆PG1 > 0:

p · TPR ·∆PG2 ≥ (1− p) · FPR · (−∆PG1).

3. Divide both sides by p ·∆PG2 (which is positive):

TPR ≥ (1− p)

p
· FPR · (−∆PG1)

∆PG2
.

4. Divide both sides by FPR (assuming FPR > 0):

TPR
FPR

≥ (1− p)

p
· −∆PG1

∆PG2
.

5. Substitute back the definitions of ∆PG1 and ∆PG2:

TPR
FPR

≥ (1− p)

p
· P (M,G1)− P (MLoRA,G1)
P (MLoRA,G2)− P (M,G2)

.

Therefore, the ratio of the True Positive Rate to the False Positive Rate must satisfy:

TPR
FPR

≥ (1− p)

p
· P (M,G1)− P (MLoRA,G1)
P (MLoRA,G2)− P (M,G2)

.

This condition ensures that the positive impact on G2 outweighs the negative impact on G1, pre-
venting overall performance degradation.

This completes the proof. □
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B IMPLEMENTATION DETAILS OF FAIRLORA

This section provides the implementation details for FairLoRA, focusing on the group discriminator
training, fine-tuning dataset construction, and FairLoRA training configuration. Key components of
the implementation are presented in pseudocode to facilitate understanding and reproducibility.

Group Discriminator Training

To effectively identify sensitive attributes, we trained a group discriminator Dϕ that takes hidden
layer representations from a pre-trained model as input and outputs the corresponding sensitive
attribute labels. Specifically, we used the penultimate hidden states hθ(x) ∈ RT×d as input, where
T represents the sequence length and d is the dimensionality of the hidden states.

To aggregate the sequence representation into a global vector, we employed attention pooling, which
assigns importance weights to different time steps. This allows the model to focus on the most
relevant parts of the sequence when predicting sensitive attributes.

To mitigate bias in predicting sensitive attributes, we employed the worst-group cross-entropy loss:

Lworst = max
g∈G

E(x,s)∼Pg
[ℓ (Dϕ(hpool(x)), s)] ,

where G represents the set of all groups, Pg is the data distribution for group g, s is the sensitive
attribute label, and ℓ(·) denotes the cross-entropy loss function.

The combined pseudocode for the attention pooling mechanism and the group discriminator network
is presented below.

Algorithm 1 Group Discriminator with Attention Pooling
Require: Hidden states h ∈ RT×d

Ensure: Predicted sensitive attribute label ŝ
1: Attention Pooling:
2: Initialize learnable parameter vector w ∈ Rd

3: for t = 1 to T do
4: Compute attention score: at ← w⊤ht ▷ Scalar value
5: end for
6: Compute attention weights: α← softmax([a1, a2, . . . , aT ])
7: Compute pooled representation: hpool ←

∑T
t=1 αtht

8: Group Discriminator Network:
9: Compute hidden layer activation: z ← ReLU(W1hpool + b1) ▷ W1 ∈ Rd1×d

10: Compute output logits: o←W2z + b2 ▷ W2 ∈ R2×d1

11: Compute predicted probabilities: p̂← sigmoid(o)
12: Predict sensitive attribute: ŝ← argmax p̂

In this algorithm:

Attention Pooling (Lines 2–7): We compute attention scores for each time step using the learnable
parameter vector w. The attention weights α are obtained by applying the softmax function to the
attention scores. The pooled representation hpool is then calculated as the weighted sum of the hidden
states.

Group Discriminator Network (Lines 8–12): The pooled representation hpool is fed into a fully
connected layer with ReLU activation to obtain the hidden activation z. A second linear layer
computes the logits o, which are transformed into probabilities p̂ using the sigmoid function. The
predicted sensitive attribute label ŝ is determined by taking the class with the highest probability.

By combining the attention pooling mechanism with the group discriminator network in a single
algorithm, we provide a clear and concise representation of how the discriminator processes the
input hidden states to predict sensitive attributes.
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Using all available data in these experiments ensures that the discriminators achieve high accuracy,
thereby improving the model’s capacity to debias effectively without compromising performance.
For scenarios with limited sensitive attribute labels, results are presented separately in Table 3.

Partition of dataset

For CelebA and MultiNLI, we used the official splits provided in the respective documentation,
following the standard training and test set divisions. For HateXplain, since the official split is not
provided, we followed the approach of Lu et al.Lu et al. (2024), where 50% of the samples were
used as the test set.

FairLoRA Fine-tuning Dataset Construction

The fine-tuning dataset was constructed to ensure class balance through the following steps:

• Data with Sensitive Attribute Labels: We selected samples with a sensitive attribute label
of s = 1 and performed undersampling to balance the classes.

• Data without Sensitive Attribute Labels: A trained discriminator Dϕ was used to as-
sign pseudo-labels for sensitive attributes. Samples predicted as s = 1 were selected, and
undersampling was applied to balance the class distribution.

FairLoRA Training Configuration

We employed the AdamW optimizer for training, which effectively handles weight decay and im-
proves generalization. The learning rate was set to 1 × 10−5 to ensure stable convergence during
fine-tuning. Training was conducted for 2 epochs, as this was sufficient for the model to converge
without overfitting. To maintain consistency, τ was fixed at 0.5 across all experiments. Addition-
ally, we used five different random seeds (5, 15, 25, 35, 45) for each set of experiments to ensure
robustness. A validation set can also be utilized to guide hyperparameter tuning if needed.

Pseudocode Implementation

During training, all LoRA adjustments are retained to allow the model to fully learn from the Fair-
LoRA fine-tuning dataset. During inference, the discriminator’s output selectively activates the
LoRA adjustments for samples predicted as belonging to sensitive groups. This design ensures that
model adjustments are targeted to reduce bias where needed, while maintaining both efficiency and
overall performance.

FairLoRA can be extended to accommodate multiple sensitive attributes by introducing additional
discriminators and LoRA modules.

Algorithm 2 FairLoRA Forward Pass with Multiple Sensitive Attributes
Require: Input features x, discriminator outputs dis1,dis2, . . . ,disk, training mode flag

training
1: Compute base output: ybase ← LinearLayer(x)
2: for i = 1 to k do
3: Compute LoRA adjustment: ylorai ← LoRALayeri(x)
4: Determine if LoRAi should be applied: apply lorai ← disi > τ
5: if not training then
6: ylorai [¬apply lorai]← 0
7: end if
8: end for
9: return y ← ybase +

∑k
i=1 ylorai

This approach enhances the fairness of the model without requiring full access to all sensitive at-
tribute labels, ensuring fairer treatment of underrepresented groups while preserving overall perfor-
mance.
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C COMPREHENSIVE COMPARISON OF EXPERIMENTAL DATA

The evaluation metrics employed in the presented tables are critical for assessing both the perfor-
mance and fairness of the models:

• Accuracy (ACC): The overall proportion of correctly predicted instances among all sam-
ples.

• Balanced Accuracy (BA): Accounts for class imbalance by computing the average recall
obtained on each class. It is calculated as:

BA =
1

2

(
TP

TP + FN
+

TN
TN + FP

)
where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively.

• Worst Group Accuracy (WGA): The lowest accuracy observed among all evaluated
groups (e.g., different genders, races), highlighting the model’s performance on the most
disadvantaged group.

• Demographic Parity (DP): Measures the difference in positive prediction rates across dif-
ferent groups. A lower DP indicates more equitable positive prediction distributions among
groups.

• Equal Opportunity (EOp): Assesses the disparity in true positive rates (TPR) between
groups. A smaller EOp suggests that the model provides similar chances of correct positive
predictions across groups.

• Equalized Odds Difference (EOD): Considers both TPR and false positive rate (FPR)
differences between groups. Lower EOD values indicate more balanced predictive perfor-
mance across groups in terms of both positive and negative classes.

• Average Error Rate (AER): The mean error rate across different groups. A lower AER
signifies an overall reduction in model errors.

C.1 COMPARATIVE ANALYSIS OF DEBIASING FOR SINGLE SENSITIVE ATTRIBUTE

The analysis of Table 4 involves evaluating the performance and fairness metrics of different models
on the CelebA dataset.

Table 4: Performance and Fairness Metrics of Models on the CelebA Dataset

Model ACC↑(%) BA↑(%) WGA↑(%) DP↓(%) EOp↓(%) EOD↓(%) AER↑(%)

ERM 95.8 ± 0.1 95.7 ± 0.0 77.9 ± 2.6 37.1 ± 0.6 17.5 ± 2.9 10.0 ± 1.7 69.7 ± 3.9
+ FL Min. 95.8 ± 0.2 95.8 ± 0.1 82.0 ± 2.2 37.3 ± 0.5 14.2 ± 2.4 8.5 ± 1.4 68.7 ± 2.9
+ FL Maj. 95.9 ± 0.1 95.6 ± 0.1 77.2 ± 2.8 36.9 ± 0.6 17.8 ± 3.0 10.0 ± 1.6 67.8 ± 3.0
+ FL All 95.9 ± 0.1 95.8 ± 0.1 81.3 ± 1.5 37.1 ± 0.3 14.6 ± 1.7 8.6 ± 1.0 70.3 ± 4.1
GroupDRO 94.4 ± 0.5 94.4 ± 0.4 87.4 ± 1.4 35.1 ± 0.5 7.5 ± 1.2 4.8 ± 0.6 81.8 ± 6.7
+ FL Min. 94.4 ± 0.5 94.6 ± 0.4 88.8 ± 1.5 35.4 ± 0.4 6.8 ± 1.3 4.7 ± 0.5 83.3 ± 6.7
+ FL Maj. 94.7 ± 0.4 94.6 ± 0.4 84.4 ± 1.1 35.4 ± 0.3 9.7 ± 0.9 5.9 ± 0.4 72.1 ± 3.6
+ FL All 94.7 ± 0.3 94.7 ± 0.3 85.9 ± 1.6 35.6 ± 0.2 9.0 ± 1.6 5.7 ± 0.8 75.1 ± 6.1

DFR 94.3 ± 1.4 94.8 ± 1.0 86.0 ± 2.0 37.5 ± 0.6 11.1 ± 1.6 7.7 ± 0.8 75.1 ± 4.4
+ FL Min. 94.5 ± 1.2 95.0 ± 0.9 87.8 ± 1.9 37.4 ± 0.8 9.6 ± 1.3 6.9 ± 0.8 78.7 ± 8.4
+ FL Maj. 95.6 ± 0.1 95.7 ± 0.0 83.3 ± 2.1 37.2 ± 0.5 13.1 ± 2.3 8.1 ± 1.3 72.3 ± 5.5
+ FL All 95.4 ± 0.1 95.7 ± 0.1 86.0 ± 1.1 37.3 ± 0.3 11.0 ± 1.2 7.1 ± 0.6 74.5 ± 6.1

Lu et al. (2024) 95.4 ± 0.4 95.6 ± 0.4 81.4 ± 4.8 36.8 ± 0.5 14.1 ± 4.1 8.3 ± 2.0 68.7 ± 5.3
+ FL Min. 95.5 ± 0.4 95.7 ± 0.3 86.8 ± 2.2 36.7 ± 0.5 9.8 ± 1.6 6.2 ± 0.7 75.9 ± 8.2
+ FL Maj. 95.9 ± 0.3 95.7 ± 0.3 80.4 ± 4.3 36.7 ± 0.6 14.8 ± 3.5 8.6 ± 1.7 67.3 ± 4.5
+ FL All 95.6 ± 0.3 95.8 ± 0.2 86.6 ± 2.1 36.7 ± 0.7 10.0 ± 1.4 6.3 ± 0.6 75.7 ± 9.0

* Bold values indicate the best performance in each category.
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The ERM model achieves high overall accuracy (ACC) and balanced accuracy (BA), with scores
of approximately 95.8% and 95.7%, respectively. However, the model presents fairness concerns
as indicated by the worst-group accuracy (WGA), which is relatively low at 77.9%. This suggests
suboptimal performance for the least advantaged group. Incorporating the FL Min. strategy in-
creases the WGA to 82.0%, demonstrating improved performance on the worst-performing group.
Additionally, there is a reduction in the Equal Opportunity (EOp) metric from 17.5% to 14.2% and
in Equalized Odds Difference (EOD) from 10.0% to 8.5%, indicating a significant decrease in group
disparities and an overall enhancement in fairness.

The GroupDRO model initially performs well with a high WGA of 87.4%, reflecting strong base-
line performance for the worst-performing group. When FL Min. is applied, the WGA further
increases to 88.8%, enhancing the model’s robustness across groups. Moreover, there are decreases
in EOp from 7.5% to 6.8% and in EOD from 4.8% to 4.7%, implying a reduction in group disparities
and improved fairness metrics.

The DFR model attains a WGA of 86.0%, suggesting favorable fairness performance at the baseline
level. With the application of FL Min., the WGA improves to 87.8%, indicating better performance
on the worst-performing group. Concurrently, the EOp decreases from 11.1% to 9.6%, and the EOD
reduces from 7.7% to 6.9%, which enhances fairness by mitigating disparities between different
groups.

The Lu et al. (2024) model starts with a WGA of 81.4%, highlighting room for improvement
in addressing the worst-performing group. Upon incorporating FL Min., the WGA significantly
increases to 86.8%, indicating substantial improvement for disadvantaged groups. Additionally,
notable reductions are observed in EOp from 14.1% to 9.8%, and in EOD from 8.3% to 6.2%,
demonstrating enhanced fairness by reducing inter-group disparities.

Table 5: Performance comparison across different attributes of CelebA dataset.

Method Heavy Makeup Wearing Lipstick
ACC↑(%) WGA↑(%) EOD↓(%) ACC↑(%) WGA↑(%) EOD↓(%)

ERM 95.8 ± 0.1 45.4 ± 3.2 27.9 ± 1.9 95.8 ± 0.1 57.4 ± 3.5 29.3 ± 2.4
+ FL Min. 95.8 ± 0.1 54.5 ± 3.1 24.4 ± 1.7 95.8 ± 0.2 63.0 ± 2.7 25.1 ± 2.0
GroupDRO 94.4 ± 0.5 65.4 ± 2.7 25.8 ± 1.6 94.4 ± 0.5 70.2 ± 2.5 25.9 ± 1.9
+ FL Min. 94.4 ± 0.4 70.1 ± 2.5 22.7 ± 1.5 94.5 ± 0.4 74.3 ± 2.4 22.5 ± 1.9
DFR 94.3 ± 1.4 58.0 ± 2.2 27.0 ± 1.8 94.3 ± 1.4 68.1 ± 1.9 26.7 ± 1.8
+ FL Min. 94.5 ± 1.5 63.8 ± 1.9 24.1 ± 2.0 94.4 ± 1.4 73.2 ± 2.0 22.3 ± 1.7
Lu et al. 95.4 ± 0.4 61.4 ± 2.5 28.0 ± 2.2 95.4 ± 0.4 67.8 ± 2.1 27.5 ± 1.7
+ FL Min. 95.6 ± 0.5 69.8 ± 2.9 23.2 ± 2.5 95.4 ± 0.4 74.1 ± 2.3 23.1 ± 1.5

We also conducted experiments using other sensitive attributes, such as “Heavy Makeup” and “Wear-
ing Lipstick”. The results, presented in Table 5, are consistent with those in Table 4, demonstrating
the robustness of our proposed method.

The analysis of Table 6, which presents the performance and fairness metrics of models on the
MultiNLI dataset, follows a similar structure to that of Table 1. The general observations about
model performance and the impact of incorporating fairness learning strategies (such as FL Min.,
FL Maj., and FL All) are consistent with the results discussed for the CelebA dataset.

In summary, incorporating the FL Min. strategy across all models for the MultiNLI dataset leads to
similar improvements as observed with the CelebA dataset. The WGA increases, and the fairness
disparities (as indicated by DP, EOp, and EOD) are reduced. These results emphasize that focusing
on disadvantaged groups during model training enhances both the performance for those groups and
overall fairness.
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Table 6: Performance and Fairness Metrics of Models on the MultiNLI Dataset

Model ACC↑(%) BA↑(%) WGA↑(%) DP↓(%) EOp↓(%) EOD↓(%) AER↑(%)

ERM 82.6 ± 0.3 82.6 ± 0.3 67.3 ± 2.6 47.6 ± 1.2 14.6 ± 1.1 12.5 ± 1.5 57.1 ± 4.0
+ FL Min. 82.7 ± 0.4 82.7 ± 0.4 71.0 ± 1.5 45.5 ± 0.7 12.2 ± 1.0 10.8 ± 1.4 60.2 ± 3.8
+ FL Maj. 82.8 ± 0.2 82.8 ± 0.2 66.8 ± 2.7 47.7 ± 1.4 14.7 ± 1.2 12.7 ± 1.5 55.6 ± 4.1
+ FL All 82.8 ± 0.2 82.8 ± 0.2 70.5 ± 2.2 45.8 ± 1.1 12.5 ± 1.1 11.0 ± 1.0 59.0 ± 4.0

GroupDRO 80.8 ± 0.6 80.8 ± 0.3 77.2 ± 1.2 40.7 ± 0.4 8.8 ± 0.7 5.9 ± 0.9 74.8 ± 6.5
+ FL Min. 80.7 ± 0.8 80.7 ± 0.8 78.3 ± 1.4 39.6 ± 0.7 7.5 ± 0.6 5.5 ± 0.8 77.2 ± 7.1
+ FL Maj. 81.2 ± 0.5 81.2 ± 0.5 75.0 ± 2.9 42.5 ± 0.6 9.1 ± 0.7 6.0 ± 1.2 72.5 ± 5.6
+ FL All 81.2 ± 0.4 81.2 ± 0.4 76.8 ± 1.0 41.6 ± 0.9 8.3 ± 0.8 5.7 ± 0.9 74.9 ± 6.7

DFR 81.9 ± 0.4 81.9 ± 0.4 74.1 ± 1.0 43.1 ± 0.5 9.1 ± 0.7 6.7 ± 0.8 65.1 ± 5.2
+ FL Min. 81.9 ± 0.3 81.9 ± 0.3 76.0 ± 1.0 42.0 ± 0.4 8.0 ± 0.6 6.3 ± 0.7 67.3 ± 5.4
+ FL Maj. 82.1 ± 0.7 82.1 ± 0.7 73.0 ± 2.1 43.9 ± 0.8 9.0 ± 1.0 6.8 ± 0.9 63.4 ± 7.1
+ FL All 82.1 ± 0.5 82.1 ± 0.5 74.7 ± 1.5 42.9 ± 0.5 8.5 ± 0.7 6.6 ± 0.7 66.0 ± 6.0

Lu et al. (2024) 82.0 ± 0.2 82.0 ± 0.2 72.8 ± 0.7 44.7 ± 0.9 10.1 ± 0.6 8.3 ± 0.6 64.7 ± 5.1
+ FL Min. 82.0 ± 0.2 82.0 ± 0.2 75.0 ± 0.6 42.6 ± 0.8 9.0 ± 0.5 7.5 ± 0.6 66.9 ± 5.2
+ FL Maj. 82.5 ± 0.4 82.5 ± 0.4 71.8 ± 1.5 44.8 ± 1.2 10.7 ± 1.2 8.4 ± 1.0 62.7 ± 6.7
+ FL All 82.6 ± 0.1 82.6 ± 0.1 74.7 ± 0.6 43.1 ± 0.9 9.1 ± 0.6 7.7 ± 0.6 66.3 ± 5.0

C.2 CALCULATION OF CORRELATION COEFFICIENTS

To verify that mitigating a new bias does not interfere with previously achieved fairness improve-
ments, we calculated the Pearson correlation coefficients between performance changes across de-
biasing stages. Specifically, we examined the changes in metrics unrelated to gender bias after
mitigating gender bias, relative to the original ERM model. The following metrics were used for
each model: DP (R) (racial fairness), EOp (R), EOD (R) and ACC (accuracy).

1. Extract Metrics and Compute Changes

The metrics were extracted from Table 7. For each metric M , we calculated the change ∆M at each
debiasing stage relative to the ERM baseline.

For DistilBERT-base, the changes are:

• Changes at FLoRa Afr. stage: ∆DP (R)Afr. = 33.7 − 38.2 = −4.5, ∆EOp (R)Afr. =
14.2 − 14.9 = −0.7, ∆EOD (R)Afr. = 24.4 − 26.5 = −2.1, ∆ACCAfr. = 79.6 − 79.5 =
+0.1.

• Changes at FLoRa Fe. stage: ∆DP (R)Fe. = 32.8−38.2 = −5.4, ∆EOp (R)Fe. = 13.1−
14.9 = −1.8, ∆EOD (R)Fe. = 23.0− 26.5 = −3.5, ∆ACCFe. = 79.7− 79.5 = +0.2.

2. Form Vectors of Changes

We form vectors of the changes for the two debiasing stages: X = [−4.5,−0.7,−2.1,+0.1] (FLoRa
Afr.), Y = [−5.4,−1.8,−3.5,+0.2] (FLoRa Fe.).

3. Compute Correlation Coefficient

The Pearson correlation coefficient r between the vectors X and Y was calculated. For DistilBERT-
base, the resulting correlation coefficient is:

r = 0.97

4. Results for BERT-base Model

Similarly, for the BERT-base model, we calculated:

• Changes at FLoRa Afr. and FLoRa Fe. stages: X = [−13.1,−4.6,−8.9,−0.2] (FLoRa
Afr.), Y = [−14.7,−5.8,−10.3,−0.1] (FLoRa Fe.).

• Correlation Coefficient: r = 0.99.
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Table 7: Performance and fairness comparison during progressive debiasing of sensitive attributes
for DistilBERT-base and BERT-base.

Metric DistilBERT-base BERT-base
ERM FLoRa Afr. FLoRa Fe. ERM FLoRa Afr. FLoRa Fe.

Other TPR 75.2 ± 2.0 75.1 ± 1.9 77.0 ± 1.7 77.1 ± 1.7 77.0 ± 1.8 78.2 ± 1.6
Afr. TPR 90.1 ± 1.7 90.1 ± 1.7 90.1 ± 1.5 90.1 ± 1.1 85.4 ± 2.0 85.4 ± 2.2
Other FPR 18.9 ± 3.1 18.7 ± 2.7 19.6 ± 2.5 20.5 ± 4.0 19.3 ± 3.7 20.9 ± 4.1
Afr. FPR 57.1 ± 2.7 52.4 ± 2.9 52.4 ± 2.0 47.6 ± 4.4 33.3 ± 3.6 33.3 ± 2.9
DP (R)↓ 38.2 ± 1.4 33.7 ± 1.4 32.8 ± 1.1 27.1 ± 0.9 14.0 ± 1.0 12.4 ± 0.7
EOp (R)↓ 14.9 ± 1.1 14.2 ± 1.0 13.1 ± 1.0 13.0 ± 0.8 8.4 ± 1.1 7.2 ± 1.0
EOD (R)↓ 26.5 ± 0.7 24.4 ± 0.6 23.0 ± 0.6 20.1 ± 0.4 11.2 ± 0.6 9.8 ± 0.5
Male TPR 80.5 ± 2.1 80.5 ± 2.1 80.6 ± 2.0 82.5 ± 2.1 81.0 ± 1.8 81.0 ± 1.7
Fe. TPR 67.5 ± 2.9 67.5 ± 3.1 78.6 ± 2.8 64.3 ± 2.0 64.3 ± 2.0 74.2 ± 1.8
Male FPR 19.7 ± 2.1 19.3 ± 1.7 20.1 ± 2.1 21.0 ± 3.8 20.1 ± 3.6 21.0 ± 3.7
Fe. FPR 28.6 ± 3.0 28.6 ± 3.1 33.0 ± 2.9 28.6 ± 2.6 28.6 ± 2.6 28.6 ± 2.1
DP (G)↓ 7.4 ± 1.3 7.6 ± 1.1 12.9 ± 2.2 7.6 ± 1.5 8.5 ± 1.4 7.6 ± 1.0
EOp (G)↓ 13.0 ± 0.5 13.0 ± 0.5 2.0 ± 2.1 18.2 ± 0.8 16.7 ± 0.4 8.8 ± 1.4
EOD (G)↓ 11.3 ± 1.1 11.2 ± 0.7 7.4 ± 0.6 12.9 ± 1.1 12.6 ± 0.9 8.2 ± 0.4
ACC↑ 79.5 ± 0.2 79.6 ± 0.2 79.7 ± 0.3 79.8 ± 0.3 79.6 ± 0.5 79.7 ± 0.4

* Bold values indicate the best performance in each category, while underlined values represent the
second-best results. “R” refers to Race, and “G” refers to Gender.

5. Summary

The high correlation coefficients (0.97 for DistilBERT and 0.99 for BERT) indicate a strong positive
relationship between the changes in metrics across debiasing stages, demonstrating that mitigat-
ing a new bias does not adversely affect previously achieved improvements, effectively preventing
catastrophic forgetting.

C.3 EXPLORING THE IMPACT OF PROCESSING ORDER ON MULTI-SENSITIVE ATTRIBUTES

Table 8: Performance and fairness comparison during progressive debiasing of sensitive attributes
for DistilBERT-base and BERT-base.

Metric DistilBERT-base BERT-base
ERM FLoRa Fe. FLoRa Afr. ERM FLoRa Fe. FLoRa Afr.

DP (R)↓ 38.2 ± 1.4 37.8 ± 1.2 32.9 ± 1.2 27.1 ± 0.9 26.7 ± 0.9 12.1 ± 1.0
EOp (R)↓ 14.9 ± 1.1 14.7 ± 1.1 13.2 ± 1.1 13.0 ± 0.8 12.4 ± 1.2 7.0 ± 1.1
EOD(R)↓ 26.5 ± 0.7 26.0 ± 0.7 23.1 ± 0.7 20.1 ± 0.4 19.7 ± 0.5 9.6 ± 0.7
DP (G)↓ 7.4 ± 1.3 13.0 ± 2.1 12.8 ± 2.2 7.6 ± 1.5 8.0 ± 1.2 8.5 ± 1.0
EOp (G)↓ 13.0 ± 0.5 5.0 ± 1.9 3.7 ± 1.7 18.2 ± 0.8 8.9 ± 1.5 8.8 ± 1.2
EOD(G)↓ 11.3 ± 1.1 7.3 ± 0.7 7.2 ± 0.6 12.9 ± 1.1 8.4 ± 0.7 8.3 ± 0.5
ACC↑ 79.5 ± 0.2 79.6 ± 0.3 79.6 ± 0.2 79.8 ± 0.3 79.8 ± 0.5 79.9 ± 0.4

* Bold values indicate the best performance in each category, while underlined values represent the
second-best results. “R” refers to Race, and “G” refers to Gender.

We conducted additional experiments to investigate the impact of varying the sequence of debiasing
(FairLORA Race first) and addressing multiple biases simultaneously. As shown in Table 8, the
results indicate that the order of debiasing has negligible impact on the final outcomes. This finding
aligns with our theoretical explanation that FairLoRA exhibits a “forgetting-avoidance” property,
whereby corrections for distinct sensitive attributes are encapsulated in independent LoRA modules.
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This design ensures that adjustments made for one attribute do not interfere with those made for
others.

Moreover, as illustrated in Table 9, the results demonstrate that whether biases are mitigated sequen-
tially or simultaneously, the overall outcomes remain largely consistent. This robustness arises from
FairLoRA’s modular architecture, which stores adjustments for each sensitive attribute in separate
LoRA modules, allowing independent corrections without cross-attribute interference.

Table 9: Comparison of Progressive Debiasing and Simultaneous Debiasing Approaches.

Metric DistilBERT-base BERT-base
Afr.Fisrt Fe.Fisrt Together Afr.Fisrt Fe.Fisrt Together

DP (R)↓ 32.8 ± 1.1 32.9 ± 1.2 33.2 ± 1.2 12.4 ± 0.7 12.1 ± 1.0 12.8 ± 1.1
EOp (R)↓ 13.1 ± 1.0 13.2 ± 1.1 13.3 ± 1.1 7.2 ± 1.0 7.0 ± 1.1 7.5 ± 1.2
EOD(R)↓ 23.0 ± 0.6 23.1 ± 0.7 23.3 ± 0.8 9.8 ± 0.5 9.6 ± 0.7 10.0 ± 0.7
DP (G)↓ 12.9 ± 2.2 12.8 ± 2.2 13.1 ± 2.3 7.6 ± 1.0 8.5 ± 1.0 8.0 ± 1.2
EOp (G)↓ 2.0 ± 2.1 3.7 ± 1.7 4.7 ± 2.2 8.8 ± 1.4 8.8 ± 1.2 9.0 ± 1.4
EOD(G)↓ 7.4 ± 0.6 7.2 ± 0.6 7.4 ± 0.8 8.2 ± 0.4 8.3 ± 0.5 8.5 ± 0.7

ACC↑ 79.7 ± 0.3 79.6 ± 0.2 79.6 ± 0.3 79.7 ± 0.4 79.9 ± 0.4 79.7 ± 0.4

* Afr.First refers to applying FairLoRA to address bias for African Americans first, while Fe.First
refers to addressing bias for females first, and Together represents simultaneous bias mitigation for
both groups.

D IMPACT OF THRESHOLD ON DISCRIMINATOR TPR AND FPR FOR
DEMOGRAPHIC GROUPS

African American Group Analysis (Left Pair of Plots in Figure 3) The top-left plot illustrates
the variation of True Positive Rate (TPR) and False Positive Rate (FPR) for the “African American”
group as a function of the threshold. As the threshold increases, both TPR and FPR decrease. The
reduction in TPR suggests that a higher threshold leads to stricter classification, reducing the number
of true positives. Meanwhile, the rapid decrease in FPR indicates fewer false positives.

The bottom-left plot shows the TPR/FPR ratio across different thresholds. This ratio peaks at ap-
proximately 0.7-0.8, indicating an optimal balance between TPR and FPR. Beyond this peak, the
ratio declines, suggesting diminishing benefits from further increasing the threshold due to a dispro-
portionate reduction in TPR compared to the decline in FPR. Therefore, this peak threshold can be
used to guide optimal threshold selection, ensuring fairness and maintaining model performance.

Female Group Analysis (Right Pair of Plots in Figure 3) The top-right plot shows the changes in
TPR and FPR for the “Female” group, following a similar pattern to the “African American” group.
As the threshold increases, both TPR and FPR decrease, with higher thresholds making the model
stricter, leading to a reduction in both true positives and false positives.

The bottom-right plot depicts the TPR/FPR ratio, which also peaks around the 0.7-0.8 threshold
range, indicating the threshold range that maximizes classification efficiency for the “Female” group.
After this peak, the ratio starts to decline, suggesting that further increases in the threshold reduce
classification effectiveness. Thus, selecting a threshold near this peak ensures optimal fairness while
retaining classification accuracy.

Summary For both the “African American” and “Female” groups in the HateXplain dataset, the
TPR/FPR ratio reaches its peak around a threshold of 0.7-0.8, indicating that this range provides the
optimal balance between fairness and classification performance. For other datasets, a similar anal-
ysis can be conducted to determine the optimal threshold range that ensures FairLoRA effectively
mitigates biases while maintaining overall model efficacy.
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Figure 3: TPR and FPR Analysis with TPR/FPR Ratio for African American and Female Groups
across Different Thresholds.
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