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ABSTRACT

Amortised inference enables scalable learning of sequential latent-variable models
(LVMs) with the evidence lower bound (ELBO). In this setting, variational poste-
riors are often only partially conditioned. While the true posteriors depend, e. g.,
on the entire sequence of observations, approximate posteriors are only informed
by past observations. This mimics the Bayesian filter—a mixture of smoothing
posteriors. Yet, we show that the ELBO objective forces partially-conditioned
amortised posteriors to approximate products of smoothing posteriors instead.
Consequently, the learned generative model is compromised. We demonstrate
these theoretical findings in three scenarios: traffic flow, handwritten digits, and
aerial vehicle dynamics. Using fully-conditioned approximate posteriors, perfor-
mance improves in terms of generative modelling and multi-step prediction.

1 INTRODUCTION

Variational inference has paved the way towards learning deep latent-variable models (LVMs): max-
imising the evidence lower bound (ELBO) approximates maximum likelihood learning (Jordan
et al., 1999; Beal, 2003; MacKay, 2003). An efficient variant is amortised variational inference
where the approximate posteriors are represented by a deep neural network, the inference network
(Hinton et al., 1995). It produces the parameters of the variational distribution for each observation
by a single forward pass—in contrast to classical variational inference with a full optimisation pro-
cess per sample. The framework of variational auto-encoders (Kingma & Welling, 2014; Rezende
et al., 2014) adds the reparameterisation trick for low-variance gradient estimates of the inference
network. Learning of deep generative models is hence both tractable and flexible, as all its parts can
be represented by neural networks and fit by stochastic gradient descent.

The quality of the solution is largely determined by how well the true posterior is approximated: the
gap between the ELBO and the log marginal likelihood is the KL divergence from the approximate
to the true posterior. Recent works have proposed ways of closing this gap, suggesting tighter
alternatives to the ELBO (Burda et al., 2016; Mnih & Rezende, 2016) or more expressive variational
posteriors (Rezende & Mohamed, 2015; Mescheder et al., 2017). Cremer et al. (2018) provide
an analysis of this gap, splitting it in two. The approximation gap is caused by restricting the
approximate posterior to a specific parametric form, the variational family. The amortisation gap
comes from the inference network failing to produce the optimal parameters within the family.

In this work, we address a previously unstudied aspect of amortised posterior approximations: suc-
cessful approximate posterior design is not merely about picking a parametric form of a probability
density. It is also about carefully deciding which conditions to feed into the inference network. This
is a particular problem in sequential LVMs, where it is common practice to feed only a restricted
set of inputs into the inference network: not conditioning on latent variables from other time steps
can vastly improve efficiency (Bayer & Osendorfer, 2014; Lai et al., 2019). Further, leaving out
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Figure 1: Illustration of the effect of partial conditioning. Consider a latent-variable model
p
(
C,C

∣∣ z) × p(z), with binary C and arbitrary C. We omit C from the amortised approximate
posterior q(z | C). Shown are two cases of separated (left) and overlapping (right) Gaussian true
posteriors. Top row: the full posteriors p

(
z
∣∣ C,C = 0

)
and p

(
z
∣∣ C,C = 1

)
as well as their av-

erage, the marginal posterior p(z | C). Middle row: Variational Gaussian approximation ν(z | C)
to the marginal posterior, which was obtained by stochastic gradient descent on the reverse, mode-
seeking KL-divergence (Hoffman et al., 2013). Bottom row: The optimal ω(z | C) obtained by
optimising the ELBO with a partially-conditioned amortised approximate posterior w. r. t. q. It is
located far away from the modes, sharply peaked and shares little mass with the true full posteriors,
the marginal posterior as well as the approximate marginal posterior.

observations from the future structurally mimics the Bayesian filter, useful for state estimation in
the control of partially observable systems (Karl et al., 2017b; Hafner et al., 2019; Lee et al., 2020).

We analyse the emerging conditioning gap and the resulting suboptimality for sequential amortised
inference models. If the variational posterior is only partially conditioned, all those posteriors equal
w. r. t. included conditions but different on the excluded ones will need to share an approximate
posterior. The result is a suboptimal compromise over many different true posteriors which cannot
be mitigated by improving variational family or inference network capacity. We empirically show
its effects in an extensive study on three real-world data sets on the common use case of variational
state-space models.

2 AMORTISED VARIATIONAL INFERENCE

2.1 VARIATIONAL AUTO-ENCODERS

Consider the task of fitting the parameters of a latent-variable model pθ(x, z) = pθ(x | z) × pθ(z)
to a target distribution p̂(x) by maximum likelihood:

argmax
θ

Ex∼p̂(x)[log pθ(x)]. (1)

In the case of variational auto-encoders (VAEs), the prior distribution pθ(z) is often simple, such
as a standard Gaussian. The likelihood pθ(x | z) on the other hand is mostly represented by a deep
neural network producing the likelihood parameters as a function of z.

The log marginal likelihood log pθ(x) = log
∫
pθ(x, z) dz contains a challenging integral within a

logarithm. The maximisation of eq. (1) is thus generally intractable. Yet, for a single sample x the
log marginal likelihood can be bounded from below by the evidence lower bound (ELBO):

log pθ(x) ≥ log pθ(x)−KL(q(z) || pθ(z | x)) (2)
= Ez∼q[log pθ(x | z)]−KL(q(z) || pθ(z)) =: −`(θ, q,x),

where a surrogate distribution q, the variational posterior, is introduced. The bound is tighter the
better q(z) approximates pθ(z | x). The gap vanishes with the posterior KL divergence in eq. (2).
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Typically, the target distribution is given by a finite data set D = {x(n)}Nn=1. In classical variational
inference, equally many variational posteriors {q(n)(z)}Nn=1 are determined by direct optimisation.
For instance, each Gaussian q(n)(z) is represented by its mean µ(n) and standard deviation σ(n). The
set of all possible distributions of that parametric form is called the variational family Q 3 q(z).
Learning the generative model parameters θ can then be performed by an empirical risk minimisation
approach, where the average negative ELBO over a data set is minimised:

arg min
θ,{q(n)}Nn=1

N∑
n=1

`
(
θ, q(n)(z),x(n)

)
.

The situation is different for VAEs. The parameters of the approximate posterior for a specific
sample x are produced by another deep neural network, the inference network qφ(z | x). Instead of
directly optimising for sample-wise parameters, a global set of weights φ for the inference network
is found by stochastic gradient-descent of the expected negative ELBO:

argmin
θ,φ

Ex∼p̂(x)[`(θ, qφ(z | x),x)].

This approach tends to scale more gracefully to large data sets.

The Sequential Case The posterior of a sequential latent-variable model

p(x1:T , z1:T ) =

T∏
t=1

p(xt | x1:t−1, z1:t)p(zt | z1:t−1,x1:t−1).

of observations (x1, . . . ,xT ) = x1:T and latents (z1, . . . , zT ) = z1:T , with z1:0 = ∅, factorises as

p(z1:T | x1:T ) =

T∏
t=1

p(zt | z1:t−1,x1:T ). (3)

The posterior KL divergence is a sum of step-wise divergences (Cover & Thomas, 2006):

KL(q(z1:T | ·) || p(z1:T | x1:T )) =

T∑
t=1

Ez1:t−1∼q[KL(q(zt | ·) || p(zt | z1:t−1,x1:T ))] (4)

where we have left out the conditions of q(z1:T | ·) =
∏
t q(zt | ·) for now. This decomposition al-

lows us to focus on the non-sequential case in our theoretical analysis, even though the phenomenon
most commonly occurs with sequential LVMs.

2.2 THE APPROXIMATION AND AMORTISATION GAPS

The ELBO and the log marginal likelihood are separated by the posterior Kullback-Leibler diver-
gence KL(q(z) || pθ(z | x)), cf. eq. (2). If the optimal member of the variational family q? ∈ Q is
not equal to the true posterior, or p(z | x) /∈ Q, then

KL(q?(z) || pθ(z | x)) > 0,

so that the ELBO is strictly lower than the log marginal likelihood—the approximation gap.

Using an inference network we must expect that even the optimal variational posterior within the
variational family is not found in general. The gap widens:

KL(qφ(z | x) || pθ(z | x)) ≥ KL(q?(z) || pθ(z | x)).

This phenomenon was first discussed by Cremer et al. (2018). The additional gap

KL(qφ(z | x) || pθ(z | x))−KL(q?(z) || pθ(z | x)) ≥ 0.

is called the amortisation gap.

The two gaps represent two distinct suboptimality cases when training VAEs. The former is caused
by the choice of variational family, the latter by the success of the amortised search for a good
candidate q ∈ Q.
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Table 1: Overview of partial conditions for sequential inference networks q(zt | Ct) in the literature.
Ct denotes missing conditions vs. the true posterior according to the respective graphical model.
DKF acknowledges the true factorization, but does not use zt−1 in any experiments.

Model Ct Ct

STORN (Bayer & Osendorfer, 2014) x1:T z1:t−1

VRNN (Chung et al., 2015) x1:t, z1:t−1 xt+1:T

DKF (Krishnan et al., 2015) x1:T zt−1 (exper.)
DKS (Krishnan et al., 2017) zt−1,xt:T –
DVBF (Karl et al., 2017a) xt, zt−1 xt+1:T

Planet (Hafner et al., 2019) xt, zt−1 xt+1:T

SLAC (Lee et al., 2020) xt, zt−1 xt+1:T

3 PARTIAL CONDITIONING OF INFERENCE NETWORKS

VAEs add an additional consideration to approximate posterior design compared to classical varia-
tional inference: the choice of inputs to the inference networks. Instead of feeding the entire obser-
vation x, one can choose to feed a strict subset C ⊂ x. This is common practice in many sequential
variants of the VAE, cf. table 1, typically motivated by efficiency or downstream applications. The
discrepancy between inference models inputs and the true posterior conditions has been acknowl-
edged before, e. g. by Krishnan et al. (2017), where they investigate different variants. Their analysis
does not go beyond quantitative empirical comparisons. In the following, we show that such design
choices lead to a distinct third cause of inference suboptimality, the conditioning gap.

3.1 MINIMISING EXPECTED KL DIVERGENCES YIELDS PRODUCTS OF POSTERIORS

The root cause is that all observations x that share the same included conditions C but differ in
the excluded conditions must now share the same approximate posterior by design. This shared
approximate posterior optimizes the expected KL divergence

ω := argmin
q

EC|C
[
KL
(
qφ(z | C)

∣∣∣∣ p(z ∣∣ C,C))]. (5)

w. r. t. the missing conditions C = x \ C. By rearranging (cf. appendix A.1 for details)

EC|C
[
KL
(
qφ(z | C)

∣∣∣∣ p(z ∣∣ C,C))]
=KL

(
qφ(z | C)

∣∣∣∣∣∣ exp(EC|C[log p(z ∣∣ C,C)])/Z)− logZ,

where Z denotes a normalising constant, we see that the shared optimal approximate posterior is

ω(z) ∝ exp
(
EC|C

[
log p

(
z
∣∣ C,C)]).

Interestingly, this expression bears superficial similarity with the true partially-conditioned posterior

p(z | C) = EC|C
[
p
(
z
∣∣ C,C)] = exp

(
log
(
EC|C

[
p
(
z
∣∣ C,C)])).

To understand the difference, consider a uniform discrete C | C for the sake of the argument. In
this case, the expectation is an average over all missing conditions. The true posterior p(z | C) is
then a mixture distribution of all plausible full posteriors p

(
z
∣∣ C,C). The optimal approximate

posterior, because of the logarithm inside the sum, is a product of plausible full posteriors. Such
distributions occur e. g. in products of experts (Hinton, 2002) or Gaussian sensor fusion (Murphy,
2012). Products behave differently from mixtures: an intuition due to Welling (2007) is that a factor
in a product can single-handedly “veto” a sample, while each term in a mixture can only “pass” it.

This intuition is highlighted in fig. 1. We can see that ω is located between the modes and sharply
peaked. It shares almost no mass with both the posteriors and the marginal posterior. The approxi-
mate marginal posterior ν on the other hand either covers one or two modes, depending on the width
of the two full posteriors-a much more reasonable approximation.
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In fact, ω(z) will only coincide with either p(z | C) or p
(
z
∣∣ C,C) in the the extreme case when

p(z | C) = p
(
z
∣∣ C,C) ⇔ p(z | C)p

(
C
∣∣ C) = p

(
z, C

∣∣ C), cf. appendix A.2, which implies
statistical independence of C and z given C.

Notice how the suboptimality of ω assumed neither a particular variational family, nor imperfect
amortisation—ω is the analytically optimal shared posterior. Both approximation and amortisation
gap would only additionally affect the KL divergence inside the expectation in eq. (5). As such, the
inference suboptimality described here can occur even if those vanish. We call

EC
[
EC|C

[
KL
(
ω(z | C)

∣∣∣∣ p(z ∣∣ C,C))]] (6)

the conditioning gap, which in contrast to approximation and amortisation gap can only be defined
as an expectation w. r. t. p(x) = p

(
C,C

)
.

Notice further that the effects described here assumed the KL divergence, a natural choice due to its
duality with the ELBO (cf. eq. (2)). To what extent alternative divergences (Ranganath et al., 2014;
Li & Turner, 2016) exhibit similar or more favourable behaviour is left to future research.

Learning Generative Models with Partially-Conditioned Posteriors We find that the opti-
mal partially-conditioned posterior will not correspond to desirable posteriors such as p(z | C) or
p(z | C,C), even assuming that the variational family could represent them. This also affects learn-
ing the generative model. A simple variational calculus argument (appendix A.3) reveals that, when
trained with partially-conditioned approximate posteriors, maximum-likelihood models and ELBO-
optimal models are generally not the same. In fact, they coincide only in the restricted cases where
p(z | C,C) = q(z | C). As seen before this is the case if and only if C ⊥ z | C.

3.2 LEARNING A UNIVARIATE GAUSSIAN

It is worth highlighting the results of this section in a minimal scalar linear Gaussian example. The
target distribution is p̂(x) ∼ N (0, 1). We assume the latent variable model

pa(x, z) = N (x | az, 0.1) · N (z | 0, 1)

with free parameter a ≥ 0. This implies

pa(x) = N
(
x
∣∣ 0, 0.1 + a2

)
, pa(z | x) = N

(
z
∣∣∣ a(0.1 + a2

)−1
x,
(
1 + 10a2

)−1)
.

With a∗ =
√
0.9, we recover the target distribution with posterior pa∗(z | x) = N

(
z
∣∣ √0.9x, 0.1).

Next, we introduce the variational approximation q(z) = N (z | µz, σ2
z). With the only condition

x missing, this is a deliberately extreme case of partial conditioning where C = ∅ and C = {x}.
Notice that the true posterior is a member of the variational family, i. e., no approximation gap. We
maximise the expected ELBO

ωa(z) = argmax
q

Ex∼p̃
[
Ez∼q

[
log

pa(x, z)

q(z)

]]
,

i. e., all observations from p̂ share the same approximation q. One can show that

ωa(z) = N
(
z
∣∣∣ 0, (100a2 + 1

)−1)
.

We immediately see that ωa(z) is neither equal to pa∗(z | x) ≡ p
(
z
∣∣ C,C) nor to p(z) ≡ p(z | C).

Less obvious is that the variance of the optimal solution is much smaller than that of both p
(
z
∣∣ C,C)

and p(z | C). This is a consequence of the product of the expert compromise discussed earlier: the
(renormalised) product of Gaussian densities will always have lower variance than either of the
factors. This simple example highlights how poor shared posterior approximations can become.

Further, inserting ωa back into the expected ELBO and optimising for a reveals that the maximum
likelihood model parameter a∗ is not optimal. In other words, pa∗(x, z) does not optimise the
expected ELBO in p—despite being the maximum likelihood model.
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3.3 EXTENSION TO THE SEQUENTIAL CASE

The conditioning gap may arise in each of the terms of eq. (4) if q is partially conditioned. Yet,
it is common to leave out future observations, e. g. q(zt | z1:t−1,x1:t,���xt+1:T ). To the best of our
knowledge, in the literature only sequential applications of VAEs are potentially affected by the con-
ditioning gap. Still, sequential latent-variable models with amortised under-conditioned posteriors
have been applied success fully to, e. g., density estimation, anomaly detection, and sequential deci-
sion making (Bayer & Osendorfer, 2014; Soelch et al., 2016; Hafner et al., 2019). This may seem at
odds with the previous results. The gap is not severe in all cases. Let us emphasize two “safe” cases
where the gap vanishes because Ct ⊥ zt | Ct is approximately true. First, where the partially- and
the fully-conditioned posterior correspond to the prior transition, i. e.

p(zt | zt−1) ≈ p(zt | Ct) ≈ p
(
zt
∣∣ Ct, Ct).

This is for example the case for deterministic dynamics where the transition is a single point mass.
Second, the case where the observations are sufficient to explain the latent state, i. e.

p(zt | xt) ≈ p(zt | Ct) ≈ p
(
zt
∣∣ Ct, Ct).

A common case are systems with perfect state information.

Several studies have shown that performance gains of fully-conditioned over partially-conditioned
approaches are negligible (Fraccaro et al., 2016; Maddison et al., 2017; Buesing et al., 2018). We
conjecture that the mentioned “safe” cases are overrepresented in the studied data sets. For example,
environments for reinforcement learning such as the gym or MuJoCo environments (Todorov et al.,
2012; Brockman et al., 2016) feature deterministic dynamics. We will address a broader variety of
cases in section 5.

4 RELATED WORK

The bias of the ELBO has been studied numerous times (Nowozin, 2018; Huang & Courville, 2019).
A remarkable study by Turner & Sahani (2011) contains a series of carefully designed experiments
showing how different forms of assumptions on the approximate posterior let different qualities
of the solutions emerge. This study predates the introduction of amortised inference (Kingma &
Welling, 2014; Rezende et al., 2014) however. Cremer et al. (2018) identify two gaps arising in the
context of VAEs: the approximation gap, i. e. inference error resulting from the true posterior not
being a member of variational family; and the amortisation gap, i. e. imperfect inference due to an
amortised inference procedure, e. g. a single neural network call. Both gaps occur per sample and
are independent of the problems in section 3.

Applying stochastic gradient variational Bayes (Kingma & Welling, 2014; Rezende et al., 2014)
to sequential models was pioneered by Bayer & Osendorfer (2014); Fabius et al. (2015); Chung
et al. (2015). The inclusion of state-space assumptions was henceforth demonstrated by Archer
et al. (2015); Krishnan et al. (2015; 2017); Karl et al. (2017a); Fraccaro et al. (2016; 2017); Becker-
Ehmck et al. (2019). Specific applications to various domains followed, such as video prediction
(Denton & Fergus, 2018), tracking (Kosiorek et al., 2018; Hsieh et al., 2018; Akhundov et al.,
2019) or simultaneous localisation and mapping (Mirchev et al., 2019). Notable performance in
model-based sequential decision making has also been achieved by Gregor et al. (2019); Hafner
et al. (2019); Lee et al. (2020); Karl et al. (2017b); Becker-Ehmck et al. (2020). The overall benefit
of latent sequential variables was however questioned by Lai et al. (2019). The performance of
sequential latent-variable models in comparison to auto-regressive models was studied, arriving at
the conclusion that the added stochasticity does not increase, but even decreases performance. We
want to point out that their empirical study is restricted to the setting where zt ⊥ z1:t−1 | x1:T , see
the appendix of their work. We conjecture that such assumptions lead to a collapse of the model
where the latent variables merely help to explain the data local in time, i. e. intra-step correlations.

A related field is that of missing-value imputation. Here, tasks have increasingly been solved with
probabilistic models (Ledig et al., 2017; Ivanov et al., 2019). The difference to our work is the
explicit nature of the missing conditions. Missing conditions are typically directly considered by
learning p

(
C
∣∣ C) instead of p(x) and appropriate changes to the loss functions.
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(a) x-axis (b) y-axis

Figure 2: Posterior-predictive check of prefix-sampling on the Blackbird data set. Possible futures
are sampled from the model after having observed a prefix x1:t. The state at the end of the pre-
fix is inferred with a bootstrap particle filter. Each plot shows a kernel density estimate of the
distribution over the final location xT , once for the semi-conditioned model in green and for the
fully-conditioned in blue. The true value is marked as a vertical, black line. The fully-conditioned
model assigns higher likelihood in almost all cases and is more concentrated around the truth.

5 STUDY: VARIATIONAL STATE-SPACE MODELS

We study the implications of section 3 for the case of variational state-space models (VSSMs). We
deliberately avoid the cases of deterministic dynamics and systems with perfect state information:
unmanned aerial vehicle (UAV) trajectories with imperfect state information in section 5.2, a se-
quential version of the MNIST data set section 5.3 and traffic flow in section 5.4. The reason is
that the gap is absent in these cases, see section 3.3. In all cases, we not only report the ELBO,
but conduct qualitative evaluations as well. We start out with describing the employed model in
section 5.1.

5.1 VARIATIONAL STATE-SPACE MODELS

The two Markov assumptions that every observation only depends on the current state and every
state only depends on the previous state and condition lead to the following generative model:

p(x1:T , z1:T | u1:T ) =

T∏
t=1

p(xt | zt)p(zt | zt−1,ut−1),

where u1:T are additional conditions from the data set (such as control signals) and z0 = u0 := ∅.
We consider three different conditionings of the inference model

q(z1:T | x1:T ,u1:T ) = q(z1 | x1:k,u1:k)

T∏
t=2

q(zt | zt−1,x1:m,u1:m),

partial with k = 1,m = t, semi with k > 1,m = t, and full with k = m = T . We call k the sneak
peek, inspired by Karl et al. (2017a). See appendix B for more details.

5.2 UAV TRAJECTORIES FROM THE BLACKBIRD DATA SET

We apply semi- and fully-conditioned VSSMs to UAV modelling (Antonini et al., 2018). By discard-
ing the rotational information, we create a system with imperfect state information, cf. section 3.3.
Each observation xt ∈ R3 is the location of an unmanned aerial vehicle (UAV) in a fixed global
frame. The conditions ut ∈ R14, consist of IMU readings, rotor speeds, and pulse-width modula-
tion. The emission model was implemented as a Gaussian with fixed, hand-picked standard devia-
tions, where the mean corresponds to the first three state dimensions (cf. (Akhundov et al., 2019)):
p(xt | zt) = N

(
µ = zt,1:3,σ

2 = [0.15, 0.15, 0.075]
)
. We leave out the partially-conditioned case,

as it cannot infer the higher-order derivatives necessary for rigid-body dynamics. A sneak peek
of k = 7 for the semi-conditioned model is theoretically sufficient to infer those moments. See
appendix C for details.

Fully-conditioned models outperform semi-conditioned ones on the test set ELBO, as can be seen
in table 2a. We evaluated the models on prefix-sampling, i. e. the predictive performance of
p(xt+1:T | x1:t,u1:T ). To restrict the analysis to the found parameters of the generative model only,
we inferred the filter distribution p(zt | x1:t,u1:t) using a bootstrap particle filter (Sarkka, 2013).
By not using the respective approximate posteriors, we ensure fairness between the different mod-
els. Samples from the predictive distribution were obtained via ancestral sampling of the generative
model. Representative samples are shown in fig. 4. We performed a posterior-predictive check for
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Table 2: Results on UAV and row-wise MNIST modelling.

(a) ELBO values for models with differently con-
ditioned variational posteriors for various data sets.
Presented values are averages over ten samples from
the inference model. The standard deviations were
negligible. Higher is better.

UAV Traffic Flow
val test val test

partial - - −2.91 −2.97
semi 1.47 2.13 −2.73 −2.75
full 2.03 2.41 −2.69 −2.78

(b) Results for row-wise MNIST. We report the
ELBO as a lower bound on the log-likelihood and
the KL-Divergence of the digit distribution induced
by the model from a uniform distribution. Other re-
sults by Klushyn et al. (2019).

Distribution Log-Likelihood ↑ KL ↓
data - 0.002
partial ≥ −98.99± 0.06 0.098
full ≥ −88.45± 0.05 0.015

vhp + rewo ≥ −82.74 -
iwae (L=2) ≥ −82.83 -

0 1 2 3 4 5 6 7 8 9
digit

0.0

0.1

re
l. 

fr
eq

ue
nc

y

type
data
partially
full

data partially-cond. fully-cond.

Figure 3: Left: Class distributions of the respective image distributions induced by a state-of-the-art
classifier. The data distribution is close to uniform, except for 5. The fully-conditioned model yields
too few 5’s and is close to uniform for the other digits. The partially-conditioned model only captures
the right frequencies of 1 and 3. Right: Comparison of generative sampling on row-wise MNIST.
Samples from the data distribution are shown on the left. The middle and right show samples from
models with an partially- and a fully-conditioned approximate posterior, respectively.

both models, where we compare the densities of the final observations xT obtained from prefix sam-
pling in fig. 2. Both evaluations qualitatively illustrate that the predictions of the fully-conditioned
approach concentrate more around the true values. In particular the partially-conditioned model
struggles more with long-term prediction.

5.3 ROW-WISE MNIST

We transformed the MNIST data set into a sequential data set by considering one row in the image
plane per time step, from top to bottom. This results in stochastic dynamics: similiar initial rows
can result in a 3, 8, 9 or 0, future rows are very informative (cf. section 3.3). Before all experi-
ments, each pixel was binarised by sampling from a Bernoulli with a rate in [0, 1] proportional to
the corresponding pixel intensity.

The setup was identical to that of section 5.2, except that a Bernoulli likelihood parameterised by
a feed-forward neural network was used: p(xt | zt) = B(FNNθE (zt)). No conditions u1:T and
a short sneak-peek (k = 1) were used. The fully-conditioned model outperforms the partially-
conditioned by a large margin, placing it significantly closer to state-of-the-art performance, see
table 2b. This is supported by samples from the model, see fig. 3. Cf. appendix D for details.

For qualitative evaluation, we used a state-of-the-art classifier1 to categorise 10,000 samples from
each of the models. If the data distribution is learned well, we expect the classifier to behave sim-
ilarly on both data and generative samples, i. e. yield uniformly distributed class predictions. We
report KL-divergences from the uniform distribution of the class prediction distributions in table 2b.
A bar plot of the induced class distributions can be found in fig. 3. Only the fully-conditioned model
is able to nearly capture a uniform distribution.

1https://github.com/keras-team/keras/blob/2.4.0/examples/mnist_cnn.py
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UAV Traffic Flow

partial -

semi

full

Figure 4: Comparison of prefix-sampling. Possible futures x̂
(i)
k+1:T (coloured lines) are sampled

from the model after having observed a prefix x1:k (solid black line) and then compared to the true
suffix xk+1:T (dashed line). The state at the end of the prefix is inferred with a bootstrap particle
filter. Left: UAV data, top-down view. Right: Traffic flow data, time-series view.

5.4 TRAFFIC FLOW

We consider the Seattle loop data set (Cui et al., 2019; 2020) of average speed measurements of
cars at 323 locations on motorways near Seattle, from which we selected a single one (42). The
dynamics of this system are highly stochastic, which is of special interest for our study, cf. sec-
tion 3.3. Even though all days start out very similar, traffic jams can emerge suddenly. In this
scenario the emission model was a feed-forward network conditioned on the whole latent state, i. e.
p(xt | zt) = N

(
FNNθE (zt), σ

2
x

)
. We compare partially-, semi- (k = 7) and fully-conditioned

models. See appendix E for details. The results are shown in table 2a. While the fully-conditioned
posterior emerges as the best choice on the validation set, the semi-conditioned and the fully-
conditioned one are on par on the test set. We suspect that the sneak peek is sufficient to fully
capture a sensible initial state approximation.

We performed a qualitative evaluation of this scenario as well in the form of prefix sampling. Given
the first t = 12 observations, the task is to predict the remaining ones for the day, compare sec-
tion 5.2. We show the results in fig. 4. The fully-conditioned model clearly shows more concentrated
yet multi-modal predictive distributions. The partially-condition model concentrates too much, and
the semi-conditioned one too little.

6 DISCUSSION & CONCLUSION

We studied the effect of leaving out conditions of amortised posteriors, presenting strong theoretical
findings and empirical evidence that it can impair maximum likelihood solutions and inference. Our
work helps with approximate posterior design and provides intuitions for when full conditioning
is necessary. We advocate that partially-conditioned approximate inference models should be used
with caution in downstream tasks as they may not be adequate for the task, e. g., replacing a Bayesian
filter. In general, we recommend conditioning inference models conforming to the true posterior.
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Advances in Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
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A DETAILED DERIVATIONS

A.1 DERIVATION OF THE SOLUTION TO AN EXPECTED KL-DIVERGENCE

We want to show that

EC|C
[
KL
(
qφ(z | C)

∣∣∣∣ p(z ∣∣ C,C))]
=KL

(
qφ(z | C)

∣∣∣∣∣∣ exp(EC|C[log p(z ∣∣ C,C)])/Z)− logZ.

This can be seen from

EC|C
[
KL
(
qφ(z | C)

∣∣∣∣ p(z ∣∣ C,C))]
=EC|C

[
Eqφ(z|C)

[
log

qφ(z | C)
p
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z
∣∣ C,C)

]]
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(
exp
(
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[
log p

(
z
∣∣ C,C)]))]

= KL
(
qφ(z | C)

∣∣∣∣∣∣ exp(EC|C[log p(z ∣∣ C,C)])/Z)− logZ,

where Z is the normalizing constant of

exp
(
EC|C

[
log p

(
z
∣∣ C,C)]).

A.2 ANALYZING THE OPTIMAL PARTIALLY-CONDITIONED POSTERIOR

In this section, we show that assuming either ω(z) = p(z | C) or ω(z) = p
(
z
∣∣ C,C) implies

p
(
C
∣∣ z, C) = p

(
C
∣∣ C).

We begin by observing
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Now, firstly,
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Secondly,
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C
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(
C
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A.3 PROOF OF SUBOPTIMAL GENERATIVE MODEL

We investigate whether a maximum likelihood solution p? = argminp Ex1:T∼p̂[− log p(x1:T )] is a
minimum of the expected negative ELBO. From calculus of variations (Gelfand & Fomin, 2003), we
derive necessary optimality conditions for maximum likelihood and the expected negative ELBO as

0
!
=

dEx1:T∼p̂[− log p(x1:T )]

dp
α
dG
dp
, (max. likelihood) (7)

0
!
=

dEx1:T∼p̂[− log p(x1:T )]

dp
+

dEx1:T∼p̂[KL]

dp
+ λ

dG
dp
, (ELBO) (8)

respectively. G is a constraint ensuring that p is a valid density, λ and α are Lagrange multipliers.
KL refers to the posterior divergence in eq. (2). Equating (7) and (8) and rearranging gives

dEx1:T∼p̂[KL]

dp
+ (α− λ)dG

dp
= 0. (9)

Equation (9) is a necessary and sufficient condition (van Erven & Harremoës, 2014) that the
Kullback-Leibler divergence is minimised as a function of p, which happens when p(zt | Ct, Ct) =
q(zt | Ct) for all t.

B MODEL DETAILS

We restrict our study to a class of current state-of-the-art variational sequence models: that of resid-
ual state-space models. The fact that inference is not performed on the full latent state, but merely
the residual, allows more efficient learning through better gradient flow (Karl et al., 2017b; Fraccaro
et al., 2016).

Generative Model The two Markov assumptions that every observation only depends on the cur-
rent state and every state only depends on the previous state and condition lead to the following
model:

p(x1:T , z1:T | u1:T ) =

T∏
t=1

p(xt | zt)p(zt | zt−1,ut−1),

where u1:T are additional conditions from the data set (such as control signals) and z0 = u0 := ∅.
Such models can be represented efficiently by choosing a convenient parametric form (e. g. neural
networks) which map the conditions to the parameters of an appropriate distributionD. In this work,
we let the emission model Dx be a feed-forward neural network parameterised by θE :

p(xt | zt) = Dx(FNNθE (zt)).

For example, we might use a Gaussian distribution that is parameterised by its mean and variance,
which are outputs of a feed-forward neural network (FNN).

Further, we represent the transition model as a deterministic step plus a component-wise scaled
residual:

zt = FNNθT (zt−1,ut−1) + FNNθG(zt−1)� εt, εt ∼ Dε.

Here FNNθG(zt−1) produces a gain with which the residual is multiplied element-wise. The resid-
ual distributionDε is assumed to be zero-centred and independent across time steps. Gaussian noise
is hence a convenient choice.

The initial state z1 needs to have a separate implementation, as it has no predecessor z0 and is
hence structurally different. In this work, we consider a base distribution that is transformed into the
distribution of interest by a bijective map, ensuring tractability. We use an inverse auto-regressive
flow (Kingma et al., 2016) and write pθz1 (z1) to indicate the dependence on trainable parameters,
but do not specify the base distribution further for clarity.
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Amortised Inference Models This formulation allows for an efficient implementation of infer-
ence models. Given the residual, the state is a deterministic function of the preceding state—and
hence it is only necessary to infer the residual. Consequently we implement the inference model as
such:

q(εt | z1:t−1,x1:T ,u1:T ) = D̂εt(FNNφε(z̃t, ft)).

Note that that the state-space assumptions imply p(εt | z1:t−1,x1:T ) = p(εt | zt−1,xt+1:T )
(Sarkka, 2013). We reuse the deterministic part of the transition z̃t = FNNθT (zt−1,ut−1). Fea-
tures f1:T = f1:T = (f1, f2, . . . , fT ) define whether the inference is partially-conditioned and are
explained below.

Due to the absence of a predecessor, the initial latent state z1 needs special treatment as in the
generative case. We employ a separate feed-forward neural network to yield the parameters of the
variational posterior at the first time step:

q(z1 | x1:T ,u1:T ) = D̂z1

(
FNNφz1

(f1)
)
.

Under-, Semi-, and Fully-Conditioned Posteriors We control whether a variational posterior
is partially-, semi- or fully conditioned by the design of the features f1:T . In the case of a fully-
conditioned approximate posterior, we employ a bidirectional RNN (Schuster & Paliwal, 1997):

f1:T = BiRNNφft
(x1:T ,u1:T ),

For the case of an partially-conditioned model, a unidirectional RNN is an option. Since it is com-
mon practice (Karl et al., 2017b) to condition the initial inference model on parts of the future as
well, we let the feature at the first time step sneak peek into a chunk of length k of the future:

f1 = FNNφf1
(x1:k,u1:k)

f2:T = RNNφft
(x1:T ,u1:T ),

where the recurrent network is unidirectional. We call this approach a semi-conditioned model.
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C DETAILS ON THE EXPERIMENTAL SETUP OF UAV MODELLING

We go with a typical split into training, validation and test data. Each consists of 10,240 sequences
of 25 time steps starting out at the origin. The distribution of the residuals Dε and approximate pos-
teriors D̂z1

, D̂ε is Gaussian. A hyper-parameter search of 128 experiments was conducted. Models
were trained by stochastic gradient descent using Adam (Bottou, 2010; Kingma & Ba, 2015) on
the negative ELBO. We selected the best model for semi- and fully-conditioned models separately
according to the respective ELBOs on the validation set after 30,000 updates, which was sufficient
for all models to converge.

C.1 HYPER-PARAMETER SEARCH SPACE

field range

batch size Choice([8, 16, 32, 64, 128])
optimizer.learning rate Choice([0.003, 0.001, 0.0003, 0.0001, 3e-05])
optimizer.beta1 Choice([0.5, 0.8, 0.9])
n latent Range(low=16, high=33)
initial.n flows Choice([2, 4, 8, 12])
initial.layer sizes.0 Choice([8, 16, 32, 64])
initial.layer sizes.1 Choice([8, 16, 32, 64])
transition.kind stochastic
transition.func kind Choice([’residual’, ’highway’, ’plain’])
transition.layers.0.units Choice([16, 32, 64, 128, 192])
transition.layers.0.activation Choice([’softsign’, ’softplus’, ’relu’, ’tanh’])
transition.layers.1.units Choice([16, 32, 64, 128, 192])
transition.layers.1.activation Choice([’softsign’, ’softplus’, ’relu’, ’tanh’])
inv initial.layers.0.units Choice([16, 32, 64, 128])
inv initial.layers.0.activation Choice([’softsign’, ’softplus’, ’relu’, ’tanh’])
inv initial.layers.1.units Choice([16, 32, 64, 128])
inv initial.layers.1.activation Choice([’softsign’, ’softplus’, ’relu’, ’tanh’])
inv disturbance.layers.0.units Choice([16, 32, 64, 128])
inv disturbance.layers.0.activation Choice([’softsign’, ’softplus’, ’relu’, ’tanh’])
inv disturbance.layers.1.units Choice([16, 32, 64, 128])
inv disturbance.layers.1.activation Choice([’softsign’, ’softplus’, ’relu’, ’tanh’])
feature rnn.n states Choice([32, 64, 128])
feature rnn.n layers Choice([1, 2])
feature rnn.bidirectional True
feature rnn.cell type gru
feature rnn.initial mlp.prefix length 7
feature rnn.initial mlp.layers.0.units Choice([16, 32, 64, 128])
feature rnn.initial mlp.layers.0.activation Choice([’softsign’, ’softplus’, ’relu’, ’tanh’])
feature rnn.initial mlp.layers.1.units Choice([16, 32, 64, 128])
feature rnn.initial mlp.layers.1.activation Choice([’softsign’, ’softplus’, ’relu’, ’tanh’])
emission.scale kind fixed
emission.scale array([0.15 , 0.15 , 0.075])
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C.2 HYPER-PARAMETERS OF SEMI-CONDITIONED MODEL

field value

batch size 16
optimizer.learning rate 0.001
optimizer.beta1 0.9
n latent 22
initial.n flows 12
initial.layer sizes.0 8
initial.layer sizes.1 8
transition.kind stochastic
transition.func kind residual
transition.layers.0.units 16
transition.layers.0.activation tanh
transition.layers.1.units 32
transition.layers.1.activation softplus
inv initial.layers.0.units 16
inv initial.layers.0.activation tanh
inv initial.layers.1.units 16
inv initial.layers.1.activation softsign
inv disturbance.layers.0.units 64
inv disturbance.layers.0.activation tanh
inv disturbance.layers.1.units 128
inv disturbance.layers.1.activation relu
feature rnn.n states 128
feature rnn.n layers 1
feature rnn.bidirectional True
feature rnn.cell type gru
feature rnn.initial mlp.prefix length 7
eature rnn.initial mlp.layers.0.units 32
eature rnn.initial mlp.layers.0.activation softplus
eature rnn.initial mlp.layers.1.units 32
eature rnn.initial mlp.layers.1.activation softsign
emission.scale kind fixed
emission.scale array([0.15 , 0.15 , 0.075])

C.3 HYPER-PARAMETERS OF FULLY-CONDITIONED MODEL

field value

batch size 32
optimizer.learning rate 0.003
optimizer.beta1 0.8
n latent 20
initial.n flows 12
initial.layer sizes.0 16
initial.layer sizes.1 8
transition.kind stochastic
transition.func kind highway
transition.layers.0.units 64
transition.layers.0.activation softplus
transition.layers.1.units 16
transition.layers.1.activation softplus
inv initial.layers.0.units 32
inv initial.layers.0.activation tanh
inv initial.layers.1.units 128
inv initial.layers.1.activation relu
inv disturbance.layers.0.units 128
inv disturbance.layers.0.activation tanh
inv disturbance.layers.1.units 128
inv disturbance.layers.1.activation relu
feature rnn.n states 128
feature rnn.n layers 1
feature rnn.bidirectional True
feature rnn.cell type gru
feature rnn.initial mlp.prefix length 7
feature rnn.initial mlp.layers.0.units 128
feature rnn.initial mlp.layers.0.activation softsign
feature rnn.initial mlp.layers.1.units 32
feature rnn.initial mlp.layers.1.activation softplus
emission.scale kind fixed
emission.scale array([0.15 , 0.15 , 0.075])
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D DETAILS ON THE EXPERIMENTAL SETUP OF MNIST MODELLING

We conducted a hyper parameter search of 64 experiments for 15,000 iterations. The 5 best experi-
ments (according to the ELBO at the last iteration) were continued for 85,000 further iterations. Test
ELBOs are reported in table 2b.

D.1 HYPER-PARAMETERS OF PARTIALLY-CONDITIONED MODEL

field range

batch size 32
optimizer.learning rate 0.003
optimizer.beta1 0.8
n latent 25
initial.n flows 12
initial.layer sizes.0 64
initial.layer sizes.1 32
emission.scale kind learnable
emission.scale 0.2
emission.layers.0.units 16
emission.layers.0.activation relu
emission.layers.1.units 32
emission.layers.1.activation softplus
transition.kind stochastic
transition.func kind highway
transition.layers.0.units 32
transition.layers.0.activation softsign
transition.layers.1.units 128
transition.layers.1.activation softplus
inv initial.layers.0.units 32
inv initial.layers.0.activation softsign
inv initial.layers.1.units 64
inv initial.layers.1.activation tanh
inv disturbance.layers.0.units 64
inv disturbance.layers.0.activation softplus
inv disturbance.layers.1.units 64
inv disturbance.layers.1.activation softsign
feature rnn.n states 128
feature rnn.bidirectional True
feature rnn.cell type gru
feature rnn.initial mlp.prefix length 1
feature rnn.initial mlp.layers.0.units 16
feature rnn.initial mlp.layers.1.units 32
feature rnn.initial mlp.layers.0.activation softplus
feature rnn.initial mlp.layers.1.activation softsign

D.2 HYPER-PARAMETERS OF FULLY-CONDITIONED MODEL

field value

batch size 128
optimizer.learning rate 0.003
optimizer.beta1 0.9
n latent 25
initial.n flows 4
initial.layer sizes.0 64
initial.layer sizes.1 32
emission.scale kind learnable
emission.scale 0.02
emission.layers.0.units 64
emission.layers.0.activation softsign
emission.layers.1.units 64
emission.layers.1.activation softplus
transition.kind stochastic
transition.func kind highway
transition.layers.0.units 192
transition.layers.0.activation relu
transition.layers.1.units 192
transition.layers.1.activation tanh
inv initial.layers.0.units 64
inv initial.layers.0.activation softsign
inv initial.layers.1.units 16
inv initial.layers.1.activation relu
inv disturbance.layers.0.units 64
inv disturbance.layers.0.activation relu
inv disturbance.layers.1.units 16
inv disturbance.layers.1.activation softsign
feature rnn.n states 32
feature rnn.bidirectional True
feature rnn.cell type gru
feature rnn.initial mlp.prefix length 1
feature rnn.initial mlp.layers.0.units 16
feature rnn.initial mlp.layers.0.activation tanh
feature rnn.initial mlp.layers.1.units 128
feature rnn.initial mlp.layers.1.activation softplus
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E DETAILS ON THE EXPERIMENTAL SETUP OF TRAFFIC FLOW MODELLING

The data is down-sampled to contain average speeds over 30 minute windows from 6:30 to 19:00,
resulting in 26 time steps per day. The data was split into training, validation and testing data by
months, January up to July for training, July to September for validation and the remainder for
testing. The standard deviation σ2

x was determined during hyper-parameter optimisation along with
the architectural and optimisation parameters. A hyper parameter search of 128 configurations was
conducted. After 150,000 weight updates, the model for each partially-, semi- and fully-conditioned
with the lowest negative ELBO on the validation set was selected.

E.1 HYPER-PARAMETER SEARCH SPACE

field range

batch size Choice([8, 16, 32, 64, 128])
optimizer.learning rate Choice([0.0003, 0.0001, 3e-05])
optimizer.beta1 Choice([0.5, 0.8, 0.9])
n latent 64
initial.n flows 4
initial.layer sizes.0 Choice([8, 16, 32, 64])
initial.layer sizes.1 Choice([8, 16, 32, 64])
transition.kind stochastic
transition.func kind Choice([’residual’, ’highway’, ’plain’])
transition.layers.0.units 64
transition.layers.0.activation softsign
transition.layers.0.kernel initia... orthogonal
inv initial.layers.0.units 64
inv initial.layers.0.activation softplus
inv initial.layers.0.kernel initi... glorot normal
inv disturbance.layers.0.units 64
inv disturbance.layers.0.activation softplus
inv disturbance.layers.0.kernel i... glorot normal
feature rnn.n states 64
feature rnn.n layers 1
feature rnn.bidirectional True
feature rnn.cell type gru
feature rnn.initial mlp.prefix length 7
feature rnn.initial mlp.layers.0.units Choice([16, 32, 64, 128])
feature rnn.initial mlp.layers.0.activation Choice([’softsign’, ’softplus’, ’relu’, ’tanh’])
feature rnn.initial mlp.layers.1.units Choice([16, 32, 64, 128])
feature rnn.initial mlp.layers.1.activation Choice([’softsign’, ’softplus’, ’relu’, ’tanh’])
emission.scale kind fixed
emission.scale Choice([0.1, 0.2689655172413793, 0.43793103448...
emission.layers.0.units 64
emission.layers.0.activation softplus
emission.layers.0.kernel initializer glorot normal
n hidden 64
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E.2 HYPER-PARAMETERS OF PARTIALLY-CONDITIONED MODEL

field value

batch size 8
optimizer.learning rate 0.0001
optimizer.beta1 0.5
n latent 64
initial.n flows 4
initial.layer sizes.0 32
initial.layer sizes.1 64
transition.kind stochastic
transition.func kind plain
transition.layers.0.units 64
transition.layers.0.activation softsign
transition.layers.0.kernel initia... orthogonal
inv initial.layers.0.units 64
inv initial.layers.0.activation softplus
inv initial.layers.0.kernel initi... glorot normal
inv disturbance.layers.0.units 64
inv disturbance.layers.0.activation softplus
inv disturbance.layers.0.kernel i... glorot normal
feature rnn.n states 64
feature rnn.n layers 1
feature rnn.bidirectional True
feature rnn.cell type gru
feature rnn.initial mlp.prefix length 1
feature rnn.initial mlp.layers.0.activation softsign
feature rnn.initial mlp.layers.0.units 128
feature rnn.initial mlp.layers.1.activation relu
feature rnn.initial mlp.layers.1.units 128
emission.scale kind fixed
emission.scale 2.97241
emission.layers.0.units 64
emission.layers.0.activation softplus
emission.layers.0.kernel initializer glorot normal
n hidden 64

E.3 HYPER-PARAMETERS OF SEMI-CONDITIONED MODEL

field value

batch size 128
optimizer.learning rate 0.0003
optimizer.beta1 0.5
n latent 64
initial.n flows 4
initial.layer sizes.0 8
initial.layer sizes.1 32
transition.kind stochastic
transition.func kind plain
transition.layers.0.units 64
transition.layers.0.activation softsign
transition.layers.0.kernel initia... orthogonal
inv initial.layers.0.units 64
inv initial.layers.0.activation softplus
inv initial.layers.0.kernel initi... glorot normal
inv disturbance.layers.0.units 64
inv disturbance.layers.0.activation softplus
inv disturbance.layers.0.kernel i... glorot normal
feature rnn.n states 64
feature rnn.n layers 1
feature rnn.bidirectional True
feature rnn.cell type gru
feature rnn.initial mlp.prefix length 7
feature rnn.initial mlp.layers.0.units 128
feature rnn.initial mlp.layers.1.units 16
feature rnn.initial mlp.layers.0.activation softsign
feature rnn.initial mlp.layers.1.activation tanh
emission.scale kind fixed
emission.scale 0.775862
emission.layers.0.units 64
emission.layers.0.activation softplus
emission.layers.0.kernel initializer glorot normal
n hidden 64
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E.4 HYPER-PARAMETERS OF FULLY-CONDITIONED MODEL

field value

batch size 8
optimizer.learning rate 0.0003
optimizer.beta1 0.8
n latent 64
initial.n flows 4
initial.layer sizes.0 8
initial.layer sizes.1 8
transition.kind stochastic
transition.func kind plain
transition.layers.0.units 64
transition.layers.0.activation softsign
transition.layers.0.kernel initia... orthogonal
inv initial.layers.0.units 64
inv initial.layers.0.activation softplus
inv initial.layers.0.kernel initi... glorot normal
inv disturbance.layers.0.units 64
inv disturbance.layers.0.activation softplus
inv disturbance.layers.0.kernel i... glorot normal
feature rnn.n states 64
feature rnn.n layers 1
feature rnn.bidirectional True
feature rnn.cell type gru
feature rnn.initial mlp.prefix length 7
feature rnn.initial mlp.layers.0.units 64
feature rnn.initial mlp.layers.0.activation relu
feature rnn.initial mlp.layers.1.units 32
feature rnn.initial mlp.layers.1.activation softsign
emission.scale kind fixed
emission.scale 1.28276
emission.layers.0.units 64
emission.layers.0.activation softplus
emission.layers.0.kernel initializer glorot normal
n hidden 64
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