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Abstract001

As AI agents take on complex, goal-driven002
workflows, response-level evaluation becomes003
insufficient. Trajectory-level evaluation of-004
fers deeper insight but typically relies on005
high-quality reference trajectories that are006
costly to curate or prone to LLM sampling007
noise. We introduce Traxgen, a Python toolkit008
that constructs gold-standard trajectories via di-009
rected acyclic graphs (DAGs) built from struc-010
tured workflow specifications and user data.011
Traxgen generates deterministic trajectories012
that align perfectly with human-validated refer-013
ences and achieve average median speedups of014
over 17,000× compared to LLM-based meth-015
ods. To probe LLM reasoning, we compared016
multiple models across three workflow com-017
plexities (simple, intermediate, complex), two018
input formats (natural language vs. JSON),019
and three prompt styles (vanilla, ReAct, and020
ReAct-few-shot). While LLM performance021
varied, Traxgen outperformed every configu-022
ration in both accuracy and efficiency. Our023
results shed light on LLM planning limita-024
tions and establish Traxgen as a more scalable,025
resource-efficient alternative for reproducible026
evaluation of planning-intensive AI agents.027

1 Introduction028

Modern AI agents are increasingly expected to go029

beyond generating plausible responses; they must030

execute structured, goal-driven workflows that are031

auditable, policy-aligned, and robust to model or032

prompt changes. As these systems grow more com-033

plex, traditional response-level evaluation becomes034

insufficient (Yehudai et al., 2025). Instead, evalua-035

tion must consider the trajectory—the ordered se-036

quence of tool calls or decisions an agent makes to037

complete a task. These trajectories expose whether038

an agent is reasoning effectively, choosing appropri-039

ate tools, and respecting task-specific constraints.040

Recent frameworks have introduced support for041

trajectory-level benchmarking, typically by com-042

paring an agent’s behavior to a ground truth tra- 043

jectory (LangChain, 2024; Google Cloud, 2024). 044

However, these evaluations rely on or benefit from 045

the availability of high-quality reference trajecto- 046

ries, which are often manually constructed. While 047

LLMs have also been explored as a means to gen- 048

erate ground truth trajectories (Yao et al., 2024; 049

Zhang et al., 2025), the effects of model size and 050

workflow complexity on their performance are still 051

poorly understood. Moreover, there are no stan- 052

dardized tools for generating high-quality reference 053

trajectories, limiting reproducibility and rigorous 054

evaluation. To address this gap, we present an au- 055

tomated framework for generating and evaluating 056

agent trajectories, enabling more consistent bench- 057

marking in both single- and multi-agent settings. 058

Our contributions are as follows: 059

• A Python toolkit for ground truth trajectory gen- 060

eration in single- and multi-agent settings, sup- 061

porting conditional logic, synthetic data genera- 062

tion, and integration with popular platforms. Our 063

approach achieves speedups of several orders of 064

magnitude over LLM-based trajectory generation 065

while also seeing improved performance1. 066

• An empirical study evaluating the trajectory 067

planning capabilities of six diverse LLMs across 068

varying prompt styles, input formats, and infer- 069

ence strategies. We evaluate LLMs performance 070

on a curated suite of tasks spanning nine domains 071

and three levels of workflow complexity, and 072

compare direct generation against a search-based 073

planning baseline. 074

Experimentation and code is available here. 075

2 Related Work 076

2.1 Evaluation Strategies for Agents 077

Evaluating multi-agent dialogue systems remains a 078

complex challenge, requiring the assessment of in- 079

1See the package on PyPI
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dividual message quality, outcome correctness, and080

the overall effectiveness of the agents. A common081

approach uses LLMs as judges to rate responses082

based on metrics like helpfulness, relevance, and083

coherence (Zheng et al., 2023; Gu et al., 2024).084

However, such approaches emphasize surface-level085

dialogue quality and often overlook agents’ inter-086

nal reasoning or coordination dynamics (Son et al.,087

2024; Feuer et al., 2024). To address limitations,088

recent work looks beyond conversation-level met-089

rics. τ -Bench compares final database states with090

annotated ground truth goals to measure tool-use091

reliability across trials (Yao et al., 2024). LTM092

Benchmark evaluates agents’ ability to retain and093

apply long-term memory in dynamic user interac-094

tions (Castillo-Bolado et al., 2024). CURATe ex-095

plores agents’ ability to personalize recommenda-096

tions using safety-critical user data across sessions097

(Alberts et al., 2024).098

Another emerging direction focuses on099

trajectory-level evaluations. Recent work has100

explored capturing tool choices, reasoning, and101

key decisions in agent workflows. MetaTool, for102

instance, examines tool selection under ambiguity103

(Huang et al., 2023). ToolLLaMA provides104

datasets that capture reasoning steps and interme-105

diate tool calls(Qin et al., 2023b), though it lacks106

support for collaborative settings. ToolSandbox107

introduces Milestones and Minefields, events that108

must or must not occur, to track critical events in109

agent workflows (Lu et al., 2024b).110

Trajectory evaluation is essential for understand-111

ing agent performance in multi-step interactions.112

While frameworks such as the OpenAI Agents113

SDK (OpenAI, 2025) and platforms like Langchain114

(LangChain, 2024), Vertex AI (Google Cloud,115

2024), and Labelbox (Labelbox, 2025) offer agent116

tracing and evaluation tools, they typically assume117

and/or benefit from ground truth trajectories. In118

real-world systems driven by proprietary work-119

flows, such ground truths are rarely available, ex-120

posing a critical shortfall in existing methodolo-121

gies. There is a pressing need for an automated122

framework capable of generating trajectories that123

accurately capture internal reasoning and the col-124

laborative dynamics of multi-agent interactions.125

2.2 Trajectory Ground Truth Generation126

Evaluating LLM agents in complex, tool-127

augmented tasks requires high-quality ground truth128

trajectories. However, existing generation methods129

are either labor-intensive or prone to errors. Exist-130

ing approaches to trajectory generation broadly fall 131

into two paradigms: human-in-the-loop LLM gen- 132

eration and fully automated LLM-driven methods. 133

In the human-in-the-loop paradigm, MetaTool 134

Benchmark (Huang et al., 2023) utilizes human 135

experts to label user queries based on tool neces- 136

sity, supplemented by LLM-driven verification and 137

manual review of ambiguous outputs. Similarly, 138

ToolSandbox (Lu et al., 2024a) employs human an- 139

notators who incrementally create complex, branch- 140

ing scenarios from simpler cases, which are then 141

validated through LLM-based consistency checks. 142

DataSciBench (Zhang et al., 2025) initially gener- 143

ates responses using LLMs and subsequently relies 144

on human experts to resolve inconsistencies. τ - 145

Bench (Yao et al., 2024) similarly integrates human- 146

written examples and LLM-generated dialogues, 147

with an emphasis on human curation. 148

Automated LLM-driven approaches aim to min- 149

imize human involvement. APIBench-MT (Prab- 150

hakar et al., 2025) first creates an LLM-reviewed 151

blueprint for intent and API use, then uses it to 152

collect trajectories via simulating human-agent in- 153

teractions. ToolLLM (Qin et al., 2023a) generates 154

trajectories using LLMs based on defined instruc- 155

tions, tools, and execution examples. ToolLLM 156

adopts a Depth-First Search-based Decision Tree 157

algorithm guided by LLM reasoning to construct 158

trajectories iteratively. Despite their scalability and 159

cost-effectiveness (better than ReAct generated tra- 160

jectories(Yao et al., 2023)), these methods often 161

suffer from incomplete or incorrect trajectories due 162

to reliance on the model’s capability to correctly 163

predict termination conditions. 164

3 Traxgen 165

In contrast to prior stochastic or hybrid approaches, 166

we introduce a fully deterministic trajectory gen- 167

eration paradigm. Our toolkit (MIT-license) trans- 168

forms high-level workflow specifications and cus- 169

tomer profiles into trajectories specifying which 170

agents should invoke which tools, in what or- 171

der, with all required parameters and values re- 172

solved. These trajectories serve as the gold- 173

standard blueprint for execution and can be dis- 174

tinct across users based on conditional logic, tool 175

availability, and customer attributes. Instructions 176

on how to install and run it are provided in the 177

Appendix A.1. 178
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3.1 Required Inputs179

3.1.1 Workflow180

Inspired by symbolic AI planning (Chen et al.,181

2024), workflow modeling (Russell et al., 2006),182

and rule-based expert systems (Grosan and Abra-183

ham, 2011), a workflow in Traxgen is a structured184

specification that encodes a sequence of tool-based185

operations required to accomplish a task. Work-186

flows are JSON objects with three key components:187

Steps: An ordered list of tool calls defining the188

actions in the workflow. Each step includes a tool189

name and parameter templates indicating where to190

source values from user-provided or system data.191

The list enumerates all possible tool invocations for192

the workflow.193

Soft Ordering: A set of lists indicating groups of194

steps that can execute in any order. This introduces195

flexible sequencing, generating multiple valid tra-196

jectories by permuting the relative order of these197

steps. For example, a group of two steps produces198

two permutations (2!). Multiple groups multiply199

the number of generated trajectories accordingly.200

Conditionals: Logic blocks that dynamically in-201

fluence the trajectory based on user data, exter-202

nal JSON inputs, or tool outputs. Condition-203

als specify actions such as skip, end_after,204

and override_params targeting specific steps, en-205

abling pruning, early termination, or parameter206

overrides in the trajectory generation (See Ap-207

pendix Table 4 for all action definitions).208

Examples of workflows can be found in the Ap-209

pendix starting on section A.5.210

3.1.2 User Data211

Traxgen workflows operate with user-specific data212

that drives conditional branching and parameter213

binding. User data is provided as JSON ob-214

jects including fields such as (a) agent sequence215

(a list of workflows to be executed), (b) cus-216

tomer_id or other domain-specific identifiers, and217

(c) user_provided_info as the subset of information218

that a client LLM provides to the agent during in-219

teraction. An example customer data can be found220

in the Appendix section A.14.221

3.2 Supported Trajectory Formats222

Traxgen supports multiple trajectory formats (see223

Appendix section A.15), enabling interoperability224

with existing frameworks and tools:225

Tool Only: Minimalistic format listing only the 226

sequence of tool calls. 227

Google Style: Format supported by Google’s Ver- 228

tex AI evaluation service. 229

LangChain Tool Style: Format compatible with 230

LangChain tool evaluation ecosystem. 231

Traxgen Style: Format capturing the agent name 232

as well as the tool calls with associated arguments 233

in tool call format. 234

3.3 System Architecture 235

The toolkit comprises four modular stages, repre- 236

sented in Algorithm 1: 237

(1) Workflow Interpretation. Each JSON work- 238

flow is parsed into an intermediate planner object 239

that formalizes all possible valid tool sequences, 240

given the specified logic. The planner applies: con- 241

ditional pruning based on user attributes, parame- 242

ter overrides, reordering respecting soft/hard con- 243

straints. 244

The logic system supports branching, re- 245

planning, and early termination. 246

(2) Trajectory Planning. Traxgen builds a di- 247

rected acyclic graph whose nodes are the remain- 248

ing tool steps and whose edges encode mandatory 249

precedences. The process unfolds as follows: 250

Node insertion: All candidate steps (from the 251

workflow’s ordered list) become nodes in an ini- 252

tially empty graph. 253

Conditional pruning: Nodes flagged by skip or 254

past an end_after target are removed, along with 255

their incident edges. 256

Edge wiring: The pruned list of steps is recon- 257

nected into a linear chain, creating one edge from 258

each step to its successor, enforcing hard ordering. 259

Cycle check: We assert the graph remains acyclic, 260

catching contradictory constraints. 261

Soft ordering: For each soft-ordering block (all of 262

whose members survived pruning), we generate all 263

intra-block permutations and splice them back into 264

the DAG’s fixed inter-block structure. 265

This yields a DAG backbone that guarantees 266

correctness under hard constraints, onto which soft- 267

block permutations layer to produce all valid tra- 268

jectories (see Algorithm 1). 269

(3) Output Realization. For each customer pro- 270

file, a fully grounded agent-level trajectory is gen- 271

erated and returned in all requested formats. 272
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(4) Visualization and Auditing. To support273

transparency and debugging, the toolkit provides274

visualizations of the pruned dependency graph.275

Multi-agent workflows are color-coded to highlight276

agent-specific behaviors.277

3.4 Robustness and Validation278

We implement a validation layer that enforces syn-279

tactic and semantic correctness at each stage. Er-280

rors such as malformed workflows, invalid cus-281

tomer profiles, missing tool parameters, or unsup-282

ported API flags are detected early.283

Algorithm 1 Traxgen Trajectory Generation

Require: Customers C, workflows W , formats F , visualize
flag v

Ensure: Trajectories T
1: for all customer c ∈ C do
2: A← c.agent_sequence
3: if |A| > 1 then
4: (τ, π)← GEN_MULTI_AGENT(A, c,W )
5: else
6: π ← PARSE_WORKFLOW(W [A[0]], c)

▷ prune unreachable nodes, apply value overrides
7: APPLY_CONDITIONAL_ACTIONS(π)

▷ build pruned DAG including relevant tool calls
8: ADD_TOOLS_TO_GRAPH(π)

▷ generate valid paths (respect soft-blocks,
deduplicate)

9: τ ← π.GENERATE_VALID_TRAJECTORIES()
10: replicate π for each τi
11: end if
12: for all (τi, πi) do
13: for all f ∈ F do
14: Tc,f += FORMAT(πi, τi, f)
15: end for
16: if v then
17: VISUALIZE(πi, τi, A)
18: end if
19: end for
20: T [c]← merge Tc,∗ if multi-agent else Tc,∗
21: end for
22: return T

4 Experimentation284

4.1 Data Construction285

We generate data for nine customer-service work-286

flows using a structured three-stage process:287

Stage I: Workflow design. We manually de-288

fine structured JSON workflows, specifying the se-289

quence of tool calls, parameter bindings, and policy290

constraints using a compact control-flow language291

(e.g., skip, end_after, override_trajectory).292

Three workflows were generated for each of the293

three complexity tiers (see §4.3).294

Stage II: Customer profile generation. For each295

workflow, we create a pool of diverse customer296

profiles in JSON form, populated via templated 297

sampling supported by Traxgen. Profiles include 298

relevant user-specific information (e.g., address, 299

product ID, leave dates) required to instantiate tool 300

parameters. 301

Stage III: Trajectory Annotation and Verifica- 302

tion. We use TraxGen to compile each work- 303

flow–profile pair into a fully grounded, determinis- 304

tic trajectory. Two annotators, blinded to the gener- 305

ation source, validate whether each output trajec- 306

tory strictly adheres to the policy logic defined in 307

the routine and is consistent with the correspond- 308

ing customer data. Annotators were provided with 309

structured scoring guidelines to assess tool order, 310

parameter correctness, conditional execution, and 311

agent boundaries. A trajectory is marked as valid 312

only if it fully satisfies all policy constraints. De- 313

tailed annotation instructions and error tag defini- 314

tions are provided in Appendix A.16. 315

4.2 Key Characteristics 316

Deterministic Trajectory-Based Evaluation We 317

differ from prior tool-use benchmarks (Qin et al., 318

2023a; Yao et al., 2024) by abstracting away open- 319

ended creativity and nuanced interpretation from 320

the evaluation process. Rather than relying on 321

live API calls or stochastic user goals with binary 322

success/failure outcomes, we implement a repro- 323

ducible, rule-based evaluation framework focused 324

on trajectory conformance. 325

Each task is constructed with a fixed user in- 326

tent and a fully specified customer profile, ensur- 327

ing that there exists a predetermined set of correct 328

trajectories consistent with domain policy. This 329

design enables exact-match comparison between 330

model outputs and gold reference paths, evaluat- 331

ing performance not just on final outcomes but 332

on whether models follow the correct sequence of 333

actions throughout the entire process. The focus 334

on trajectory conformance rather than end-state 335

success directly mirrors enterprise workflow re- 336

quirements, where compliance, auditability, and 337

traceability are non-negotiable for production de- 338

ployment. 339

Multi-Intent and Multi-Agent Tasks To simu- 340

late longer-horizon interactions, we also include a 341

subset of tasks that require planning across multi- 342

ple linked intents (e.g., BookFlight followed by 343

CancelFlight). These tasks are modeled as modu- 344

lar, multi-agent trajectories, where each sub-intent 345

is handled by an individual policy workflow. This 346
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structure supports evaluation of inter-agent coordi-347

nation and policy handoff.348

4.3 Data Distribution and Complexity Levels349

Workflow Complexity We categorize workflow350

into three levels of complexity: simple (linear or351

near-linear flows with minimal conditionals), in-352

termediate (moderate branching and optional soft353

ordering), and complex (nested conditionals, soft354

orderings across multiple tool sets, and strong re-355

liance on contextual variables).356

Data Distribution To balance annotation effort357

and task coverage, we sample 100 customer pro-358

files per complex intent, 75 per intermediate in-359

tent, and 50 per simple intent. This distribution360

reflects the increased diversity and error surface in361

complex workflows, while ensuring robust metric362

stability across all tiers. In total, we include 775363

task instances and 71 unique tools, with over 10%364

comprising multi-intent cases.

Intent Complexity Domain # Test Cases # APIs

checkOrderStatus Simple E-Commerce 50 3
checkProductAvailability Simple E-Commerce 50 5
resendEmailReceipt Simple E-Commerce 50 4
submitTimeOffRequest Intermediate HR 75 8
updateAddress Intermediate HR 75 7
accountSuspensionRequest Intermediate HR 75 7
bookFlight Complex Travel 100 12
cancelFlight Complex Travel 100 12
flightDisruption Complex Travel 100 13

Table 1: Intents categorized by complexity, domain,
number of test cases, and number of APIs.

365

4.4 General Experimentation Setup366

Across all experiments, we task models with gener-367

ating agent trajectories conditioned on a user intent,368

customer profile, and workflow. We evaluate a369

range of prompting strategies (vanilla, ReAct, Re-370

Act with few-shot), input representations (natural371

language vs. structured JSON), and workflow com-372

plexity levels. Both our custom generation pack-373

age Traxgen and multiple LLMs are tested under374

these conditions. Outputs are compared against the375

human-validated reference trajectories.376

4.5 Evaluation Metrics377

To handle multiple predicted and gold trajecto-378

ries—due to soft ordering or multi-output mod-379

els—we align each prediction to its best-matching380

ground-truth trajectory using the Hungarian algo-381

rithm (Kuhn, 1955), maximizing a chosen similar-382

ity metric. We then evaluate the aligned pairs using383

the metrics below.384

Let G and P be the sets of ground-truth 385

and predicted trajectories (each a sequence of 386

(tool, params) steps). 387

Exact Match and Count Agreement We com- 388

pute Exact Match as 1(P = G), a binary indicator 389

of set equality (ignoring order), and Count Agree- 390

ment as
(
|P|
|G|

)
× 100%, capturing over- or under- 391

prediction in number of trajectories predicted. 392

Tool- and Parameter-Level PRF We flatten 393

each matched trajectory pair into a multiset of 394

tools T = [t1, t2, . . . ] and a multiset of parame- 395

ter triplets P = [(t, k, v)j ], where each t is a tool, 396

k a parameter key, and v its value. We compute 397

precision, recall, and F1 based on multiset overlap 398

(ignoring order): true positives (TP), false posi- 399

tives (FP), and false negatives (FN) are counted by 400

comparing predicted elements against ground truth. 401

Standard PRF metrics are reported separately for 402

tools and parameter triplets. 403

Contiguous Overlap Length (CO) Measures 404

the longest substring C shared between G and P: 405

C = max{k : Gi+ℓ = Pj+ℓ for ℓ = 0, . . . , k−1}. 406

We report the percentage of G recovered in a single 407

uninterrupted chunk as 100× C
|G| . 408

Prefix Length. Captures the longest common 409

prefix L between G and P: 410

L = max{k : Gi = Pi for all i = 1, . . . , k}. 411

We report the normalized percentage as 412

PrefixScore(G,P) = 100× L
|G| . 413

Unmatched ground-truth trajectories are ex- 414

cluded from PRF and length calculations but con- 415

tribute to the Count Agreement metric. This sepa- 416

ration ensures trajectory-level quality is evaluated 417

independently from prediction quantity. 418

5 Experiment 1: Traxgen Evaluation 419

5.1 Experiment-Specific Setup 420

We assess Traxgen’s ability to generate accurate 421

trajectories from structured workflows and user 422

profiles. We evaluated Traxgen on the same inputs 423

and compared its outputs to the validated refer- 424

ences using the metrics in 4.5. As a control, we 425

include LLM baselines prompted with either (a) the 426

5



Routine Complexity DeepSeek Gemini GPT4.1 Llama4 Mistral Sonnet Package

Complex workflow 28.82 5.01 4.48 14.26 8.70 7.43 0.00048337
Intermediate workflow 16.78 2.87 3.52 7.45 5.06 4.81 0.00017534
Simple workflow 9.30 1.53 2.08 3.28 3.22 3.60 0.00009979

Table 2: Average runtime (seconds) per trajectory by model across routine complexities.

original JSON workflows or (b) equivalent natural-427

language descriptions, isolating the impact of struc-428

tured input. A full analysis of LLM performance429

appears in Section 6.430

5.2 Results431

Traxgen achieves 100% alignment with the gold432

trajectories across all evaluation metrics, validat-433

ing its ability to deterministically and accurately434

capture conditional workflow logic (see Appendix435

Table 5). This confirms its suitability as a ground-436

truth generator for downstream benchmarking.437

Compared to twelve LLM configurations (six438

models each run with both JSON-structured and439

natural-language workflow inputs under a uniform440

prompting strategy) Traxgen consistently outper-441

forms across all evaluation metrics. While the442

full LLM benchmark is deferred to Section 6, we443

note here that Traxgen’s performance is not only444

more accurate but also significantly more efficient.445

Traxgen eliminates the need for token-based in-446

ference, achieving median speedups of 30,000×447

on simple workflow and over 17,000× across all448

complexity levels (see Table 2). Moreover, unlike449

LLMs, which process an average of 750–3,400450

tokens per example (see Appendix tables 6, 7),451

Traxgen executes near-instantaneously and incurs452

minimal compute and energy costs. Our method453

lowers environmental impact and enhances repro-454

ducibility, offering a more sustainable and efficient455

solution for large-scale benchmarking.456

6 Experiment 2: LLM Benchmarking457

To assess in-context planning, we design a suite of458

controlled experiments that isolate the planning459

stage of tool use. The benchmark abstracts away460

execution, focusing on the model’s ability to461

generate policy-compliant trajectories from user462

instructions and structured workflows. Each task re-463

quires reasoning over customer data and multi-step464

workflows—selecting tools, binding parameters,465

and handling conditionals—in a single forward466

pass. To ensure broad coverage, we evaluate six467

diverse LLMs spanning architectures, openness,468

and scale: open models DeepSeek-Chat-v3-0324,469

Mistral-7B-Instruct, LLaMA-4-Maverick, 470

and proprietary ones Gemini-2.0-Flash-001, 471

Claude-3.7-Sonnet, and GPT-4.1. Our setup 472

follows plan-first evaluation protocols (Zheng 473

et al., 2024), enabling deterministic assessment of 474

planning quality without interactive noise. 475

6.1 Experiment-Specific Setup 476

We perform three controlled studies, each isolat- 477

ing a different variable that can affect trajectory- 478

planning quality: representation of the workflow, 479

prompt engineering, and inference-time search. 480

The same nine workflows and evaluation metrics 481

are used throughout, so any performance change 482

can be attributed to the factor under study. 483

Study 1: Input Representation (Natural Lan- 484

guage vs. JSON. Trajectory planning often in- 485

volves structured task representations (e.g., graphs, 486

trees, JSON). However, it remains unclear how 487

much of an LLM’s success stems from the struc- 488

ture itself versus the model’s understanding of task 489

semantics. To isolate this factor, we compared each 490

model’s performance when given (a) the natural 491

language description of the workflow, and (b) the 492

equivalent structured JSON representation (used in 493

Traxgen) across the three complexity levels. All 494

other prompt elements were held constant. 495

Study 2: Prompt-Engineering Strategies Prompt- 496

ing strategies influence model behavior, espe- 497

cially in constrained reasoning tasks. We tested 498

three prompt designs: Vanilla prompt, a mini- 499

mal instruction-only setup with no reasoning steps; 500

ReAct-style prompt, which interleaves reasoning 501

(thought) and action steps; and ReAct + few-shot, 502

which follows the same format as ReAct but is aug- 503

mented with a worked example matched to the rou- 504

tine’s complexity. This sub-experiment used two 505

representative models—Llama-4 Maverick (open) 506

and Sonnet 3.7 (proprietary)—to strike a balance 507

between coverage and depth. 508

Study 3: Direct Generation vs. Guided Search 509

A third variable in our experimental setup is the 510

inference strategy. Recent work on ToolLLM intro- 511

duced DFSDT, a depth-first search–based decision- 512
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tree algorithm that augments an LLM with explicit513

backtracking and branch exploration (Qin et al.,514

2023b). We adapt DFSDT by replacing live APIs515

with static, simulated tool functions, enabling deter-516

ministic and side-effect-free execution within each517

task. The same underlying LLM is used to gener-518

ate both ReAct-style direct trajectories (Direct) and519

search-guided trajectories via DFSDT, enabling a520

clean comparison of (i) pure in-context planning521

versus (ii) planning with external tool-based feed-522

back. To strike a balance between evaluation cost523

and insight depth, we limited this sub-experiment524

to 50 customers per domain. This subset was suffi-525

cient to capture meaningful trends in performance526

while controlling for DFSDT’s longer execution527

time and additional system complexity.528

6.2 Results529

Trajectory Quality Evaluation The raw trajec-530

tories generated by the LLMs often required addi-531

tional cleaning before they could be directly used or532

compared to the ground truth. To address this, we533

developed a Python script to standardize and clean534

the outputs. Common issues included the presence535

of markdown fences surrounding the code, bracket536

mismatches, and null literals. Notably, DeepSeek537

showed a higher tendency to hallucinate, frequently538

returning plain code snippets without proper struc-539

ture. Detailed cleaning metrics and error frequen-540

cies are reported in the appendix table 9.541

Model Comparison Model performance on com-542

plex workflows shows a stratification by model543

class and format. For both JSON and natural544

language, Gemini and Sonnet outperform other545

models across nearly all metrics. Sonnet demon-546

strates strong tool and parameter-level accuracy on547

complex workflow, while Gemini shows compa-548

rable or better performance on intermediate work-549

flows. LLaMA4 and GPT-4.1 follow closely, with550

strong F1 and prefix scores but lower exact match 551

and CMR. In contrast, Mistral and DeepSeek trail 552

behind across most metrics, particularly on com- 553

plex workflows. These findings suggest that Gem- 554

ini and Sonnet are best suited for handling high- 555

complexity, multi-step tasks in both formats. 556

Complexity Comparison LLM performance 557

varies across different level of complexities. Figure 558

1 shows how all models except Mistral performed 559

relatively well based on F1 score for tool and pa- 560

rameters in simple complexity tasks. However, 561

models show inconsistent performance in interme- 562

diate tasks illustrated by larger variance, and tend 563

to degrade over complexity in JSON prompt for- 564

matting. 565

Prompt Formatting Comparison For intermedi- 566

ate workflow, JSON formatting consistently outper- 567

formed all other options across every model and 568

metric. In contrast, simple workflow showed mini- 569

mal sensitivity to formatting choice—performance 570

differences were negligible and varied idiosyncrati- 571

cally by model. The most striking effects emerged 572

in complex workflow, where formatting had a sub- 573

stantial impact: while JSON remained optimal for 574

the most capable models (such as GPT-4.1 and 575

Claude Sonnet), Python formatting yielded dra- 576

matic improvements for mid-tier and open-source 577

models (including Deepseek, Gemini, and Llama4) 578

Prompt Engineering Method Comparison Re- 579

sults indicate that prompt style influences perfor- 580

mance differently depending on routine complex- 581

ity and model type (see Appendix Table 11). For 582

simple workflow, all prompt types achieved near- 583

perfect exact-match and parameter F1 scores, with 584

slight gains observed in the ReAct format. For inter- 585

mediate workflow, the vanilla prompt surprisingly 586

yielded the highest exact-match scores for Llama-4 587

in natural language format, while Sonnet favored 588

ReAct prompts, suggesting model- and domain- 589

Figure 1: Mean F1 scores for tool and parameter extraction across models and workflow formats, stratified by
workflow complexity.
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Model Format Exact-Match (%) Count (%) Tool F1 Param F1 CMR % tools CMR % params Prefix % tools Prefix % params
Complex workflow

Mistral J 0.0 ± 0.0 69.8 ± 34.4 0.525 ± 0.335 0.414 ± 0.307 36.7 ± 29.2 29.4 ± 24.9 33.5 ± 29.6 18.3 ± 26.6
Deepseek J 5.5 ± 22.8 73.9 ± 34.7 0.706 ± 0.291 0.659 ± 0.322 48.1 ± 30.6 46.6 ± 30.3 32.4 ± 35.4 27.2 ± 35.7
Gemini J 11.5 ± 31.9 84.2 ± 36.6 0.759 ± 0.333 0.762 ± 0.340 67.1 ± 34.2 66.3 ± 34.0 57.1 ± 40.8 56.4 ± 40.4
Sonnet J 38.5 ± 48.7 69.8 ± 34.2 0.975 ± 0.059 0.977 ± 0.059 93.6 ± 15.8 91.9 ± 16.9 92.9 ± 18.0 91.2 ± 18.9
Llama4 J 15.2 ± 36.0 100.3 ± 37.8 0.877 ± 0.117 0.870 ± 0.135 66.2 ± 25.8 63.9 ± 25.9 60.8 ± 30.8 58.5 ± 30.6
Gpt4.1 J 26.0 ± 43.9 70.4 ± 34.5 0.940 ± 0.098 0.938 ± 0.112 76.1 ± 25.0 75.2 ± 25.0 73.8 ± 28.1 73.1 ± 27.9
Mistral P 0.2 ± 5.0 69.8 ± 34.3 0.505 ± 0.311 0.432 ± 0.293 30.6 ± 24.7 24.0 ± 19.6 26.4 ± 24.9 12.1 ± 19.0
Deepseek P 13.5 ± 34.2 74.1 ± 34.1 0.775 ± 0.235 0.718 ± 0.291 58.1 ± 31.3 55.4 ± 31.8 43.3 ± 41.0 39.9 ± 41.6
Gemini P 23.8 ± 42.6 87.1 ± 25.3 0.914 ± 0.129 0.918 ± 0.139 77.6 ± 22.9 76.8 ± 23.5 65.1 ± 36.3 65.1 ± 36.3
Sonnet P 16.5 ± 37.2 70.1 ± 34.2 0.954 ± 0.071 0.962 ± 0.064 84.0 ± 19.1 82.7 ± 20.4 75.4 ± 30.1 74.9 ± 30.1
Llama4 P 14.8 ± 35.5 84.9 ± 28.5 0.920 ± 0.123 0.924 ± 0.127 75.6 ± 25.0 73.5 ± 25.8 69.1 ± 32.3 67.3 ± 32.7
Gpt4.1 P 16.5 ± 37.2 71.0 ± 33.8 0.930 ± 0.088 0.929 ± 0.086 72.6 ± 26.4 70.1 ± 27.0 65.5 ± 33.3 64.2 ± 32.6

Intermediate workflow
Mistral J 2.7 ± 16.1 67.3 ± 23.8 0.658 ± 0.290 0.566 ± 0.333 53.8 ± 28.9 46.5 ± 28.4 50.2 ± 31.1 34.0 ± 35.3
Deepseek J 49.8 ± 50.1 81.8 ± 24.6 0.814 ± 0.291 0.743 ± 0.349 83.6 ± 29.3 75.3 ± 32.4 76.6 ± 40.7 60.8 ± 48.0
Gemini J 76.9 ± 42.2 100.0 ± 0.0 0.972 ± 0.081 0.905 ± 0.205 98.5 ± 7.1 94.3 ± 14.3 98.5 ± 7.1 94.3 ± 14.3
Sonnet J 59.6 ± 49.2 85.1 ± 24.8 0.968 ± 0.094 0.955 ± 0.149 96.3 ± 12.7 96.3 ± 12.7 94.2 ± 20.2 94.2 ± 20.2
Llama4 J 43.1 ± 49.6 107.6 ± 58.1 0.919 ± 0.086 0.912 ± 0.138 92.9 ± 17.7 92.4 ± 18.1 92.5 ± 18.8 92.0 ± 19.1
Gpt4.1 J 63.6 ± 48.2 81.8 ± 24.1 0.994 ± 0.047 0.988 ± 0.089 99.1 ± 6.6 99.1 ± 6.6 99.1 ± 6.6 99.1 ± 6.6
Mistral P 6.7 ± 25.0 67.1 ± 26.0 0.376 ± 0.394 0.325 ± 0.378 28.4 ± 33.4 22.3 ± 30.9 22.2 ± 33.5 14.7 ± 30.7
Deepseek P 3.6 ± 18.6 68.0 ± 24.5 0.452 ± 0.378 0.421 ± 0.405 33.5 ± 30.4 32.9 ± 30.3 9.3 ± 24.7 8.5 ± 23.7
Gemini P 64.0 ± 48.1 83.3 ± 23.6 0.662 ± 0.470 0.657 ± 0.471 65.7 ± 46.9 65.7 ± 46.9 65.4 ± 47.1 65.4 ± 47.1
Sonnet P 35.6 ± 48.0 75.8 ± 29.2 0.600 ± 0.449 0.563 ± 0.462 57.2 ± 45.2 57.2 ± 45.2 54.9 ± 46.4 54.9 ± 46.4
Llama4 P 44.4 ± 49.8 85.6 ± 22.7 0.640 ± 0.449 0.627 ± 0.454 65.8 ± 46.5 65.5 ± 47.0 65.5 ± 47.0 65.5 ± 47.0
Gpt4.1 P 44.9 ± 49.8 69.8 ± 29.8 0.662 ± 0.471 0.658 ± 0.472 65.9 ± 47.1 65.9 ± 47.1 65.7 ± 47.2 65.7 ± 47.2

Simple workflow
Mistral J 23.3 ± 42.4 99.3 ± 8.2 0.738 ± 0.325 0.574 ± 0.385 66.5 ± 35.5 49.8 ± 38.3 60.0 ± 42.0 37.3 ± 43.8
Deepseek J 30.0 ± 46.0 99.3 ± 8.2 0.881 ± 0.191 0.912 ± 0.195 81.2 ± 25.4 75.3 ± 24.4 50.0 ± 50.2 30.2 ± 45.9
Gemini J 68.7 ± 46.5 100.0 ± 0.0 0.955 ± 0.068 0.998 ± 0.027 92.0 ± 12.1 92.0 ± 12.1 69.0 ± 46.2 69.0 ± 46.2
Sonnet J 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Llama4 J 96.0 ± 19.7 104.0 ± 19.7 0.999 ± 0.009 0.999 ± 0.012 99.7 ± 4.1 99.7 ± 4.1 99.7 ± 4.1 99.7 ± 4.1
Gpt4.1 J 96.7 ± 18.0 100.0 ± 0.0 0.992 ± 0.042 0.991 ± 0.054 98.5 ± 8.3 98.5 ± 8.3 98.0 ± 11.4 98.0 ± 11.4
Mistral P 32.0 ± 46.8 105.3 ± 74.0 0.700 ± 0.359 0.566 ± 0.407 63.0 ± 39.2 50.7 ± 40.1 56.2 ± 45.1 40.8 ± 45.1
Deepseek P 28.0 ± 45.1 99.3 ± 8.2 0.825 ± 0.214 0.870 ± 0.242 74.3 ± 24.2 68.0 ± 28.7 29.5 ± 45.6 28.8 ± 44.9
Gemini P 44.7 ± 49.9 100.0 ± 0.0 0.874 ± 0.147 0.948 ± 0.132 80.5 ± 20.5 79.8 ± 21.6 44.7 ± 49.9 44.7 ± 49.9
Sonnet P 99.3 ± 8.2 100.0 ± 0.0 0.999 ± 0.012 1.000 ± 0.000 99.8 ± 2.0 99.8 ± 2.0 99.3 ± 8.2 99.3 ± 8.2
Llama4 P 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Gpt4.1 P 96.0 ± 19.7 100.0 ± 0.0 0.994 ± 0.028 1.000 ± 0.000 99.0 ± 4.9 99.0 ± 4.9 96.0 ± 19.7 96.0 ± 19.7

Table 3: Performance across simple, intermediate, complex workflows. Format: J=JSON, P=Natural Language.

specific prompt sensitivity. In complex workflows,590

ReAct consistently outperforms the other methods591

in terms of Tool F1. Notably, few-shot prompt-592

ing did not consistently outperform simpler prompt593

designs, indicating that adding examples may not594

universally benefit constrained reasoning tasks.595

Direct Generation and Guided Search Compar-596

ison Appendix Table 10 shows that the DFSDT597

approach underperforms direct generation across598

all complexity levels. One consistent pattern is that599

DFSDT-generated trajectories often skip required600

steps defined in the routine, leading to low exact-601

match and step-level F1 scores. A likely contribu-602

tor is the way in which DFSDT determines when a603

plan is complete—potentially stopping before all604

mandatory steps in the policy have been executed.605

This highlights a limitation of search-based plan-606

ning without explicit end-condition supervision.607

7 Discussion608

We introduced Traxgen, a deterministic trajectory609

generation framework for reproducible, scalable610

benchmarking of tool-augmented LLM agents. The611

toolkit aligns perfectly with manually validated612

ground truth and outperforms LLM-based base- 613

lines by orders of magnitude in both accuracy 614

and efficiency. Crucially, Traxgen ensures full 615

data sovereignty by requiring no external model 616

inference during generation. Beyond performance, 617

Traxgen reframes planning evaluation by remov- 618

ing inference-time randomness, enabling stable, re- 619

peatable comparisons across workflows and agents. 620

Unlike prompting-based methods, which are sensi- 621

tive to phrasing and sampling, it offers a consistent 622

reference point for empirical validation. 623

Our ablation studies show that input struc- 624

ture plays a critical role in LLM planning: 625

JSON schemas consistently outperform natural 626

language, and ReAct-style prompting yields only 627

marginal, inconsistent gains. These trends suggest 628

that architectural improvements—such as schema- 629

constrained decoders—may be more impactful than 630

further prompt tuning. Ultimately, Traxgen pro- 631

vides a reliable foundation for evaluating AI agents 632

in planning-intensive settings, where reproducibil- 633

ity, accuracy, and transparency are essential. 634
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8 Limitations635

While Traxgen enables reproducible, determinis-636

tic evaluation of agent trajectories, it has not yet637

been validated on real-world enterprise workflows,638

which often involve complex interdependencies,639

multimodal inputs (e.g., images, logs), and behav-640

iors like retries or non-idempotent calls. Deter-641

ministic enumeration of soft-order permutations642

can also cause factorial growth, limiting scalabil-643

ity for large workflows; we cap block sizes to en-644

sure tractability, but broader use may require sam-645

pling or summarization. A risk, however, is that646

Traxgen’s rigidity also reduces flexibility: unlike647

generative agents, it cannot adapt to novel or am-648

biguous inputs without pre-specified logic. Finally,649

our LLM benchmarking (T2) is limited by model650

access and prompt design assumptions, which may651

not reflect newer architectures or alternative strate-652

gies. While these limitations impact deployment,653

Traxgen still provides a robust platform for experi-654

mental evaluation.655
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A.1 Generating Trajectories with Traxgen788

pip install traxgen789

790

from traxgen import generate_trajectories791

792

customer_data = json.load(open("test_data/customer_data/simple_routine.json"))793

794

workflow_data = {795

"check_order_status": json.load(open("simple/check_order_status.json")),796

"resend_email_receipt": json.load(open("simple/resend_email_receipt.json")),797

"check_product_availability": json.load(open("simple/check_product_availability.json")),798

}799

800

output = generate_trajectories(801

customer_data=customer_data,802

routine_data=routine_data,803

id_field='customer_id',804

trajectory_format= ['google'],805

output_path = 'output/simple_routines',806

output_mode = return_format,807

enable_visualization=False)808
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A.2 Traxgen supported workflows conditional actions 809

Logic Construct Definition

skip Skips the execution of one or more steps when a specified condition is met.
end_after Terminates the routine immediately after the specified step if the condition is met.
override_trajectory Replaces the default step sequence with a new list of steps, enabling a custom path.
all_of A composite condition that is satisfied only if **all** subconditions are true. Used within an if clause.
any_of A composite condition that is satisfied if **any** subcondition is true. Used within an if clause.

Table 4: Definitions of conditional actions supported in Traxgen JSON workflows.
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A.3 Traxgen Evaluation Results810

Routine Model Exact-Match (%) Count (%) Tool F1 Param F1 CO % tools CO % params Prefix % tools Prefix % params

Complex Package 100.0 ± 0.0 100.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Intermediate Package 100.0 ± 0.0 100.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Simple Package 100.0 ± 0.0 100.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 5: Package evaluation results across all routine complexities. All metrics are reported as mean ± standard
deviation across evaluation splits.
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A.4 Main LLM Experiment Results 811

Workflow DeepSeek Gemini GPT-4.1 LLaMA 4 Mistral Sonnet 3.7

Complex 2703.58 3371.62 2429.05 2872.32 3528.30 2921.56
Intermediate 1445.40 1707.81 1307.93 1388.18 1722.44 1536.91
Simple 868.06 984.62 786.44 791.65 1123.87 977.76

Table 6: Average total token usage per workflow complexity using structured JSON workflow instructions.

Routine DeepSeek Gemini GPT-4.1 LLaMA 4 Mistral Sonnet

Complex 2615.45 3366.92 2425.30 2621.34 3279.63 2818.16
Intermediate 1041.62 1357.16 1001.81 1034.91 1448.38 1224.04
Simple 869.46 941.53 771.91 801.27 1133.48 953.47

Table 7: Average total token usage per workflow complexity using natural language workflow instructions.

Routine Py DeepSeek Py Gemini Py GPT4.1 Py Llama4 Py Mistral Py Sonnet

Complex workflow 24.90 5.59 4.63 10.64 9.05 7.79
Intermediate workflow 10.59 2.55 3.12 5.05 7.08 5.32
Simple workflow 8.60 1.42 1.79 3.25 3.97 3.61

Table 8: Average runtime (seconds) per trajectory by Natural Language -based models across routine complexities.
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Table 9: LLM Output Cleaning Metrics by Workflow Type, Workflow Format, and Model

Workflow Format Model In
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simple json deepseek 105 102 2 4 1 0 0 0 94 0 0 1 0 0 0
json gemini 150 150 0 0 0 0 0 0 150 0 0 0 0 0 0
json gpt4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
json llama4 17 17 0 0 0 0 0 0 17 0 0 0 0 0 0
json mistral 65 64 1 2 0 0 0 5 1 0 7 0 1 0 15
json sonnet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
py deepseek 114 109 2 9 3 0 0 0 103 0 0 3 0 0 0
py gemini 150 150 0 0 0 0 0 0 150 0 0 0 0 0 0
py gpt4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
py llama4 10 10 0 0 0 0 0 0 10 0 0 0 0 0 0
py mistral 85 83 2 3 0 0 0 21 5 0 12 2 1 2 9
py sonnet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

intermediate json deepseek 130 123 6 15 1 0 0 0 102 2 0 1 0 0 0
json gemini 225 225 0 0 0 0 0 0 225 0 0 0 0 0 0
json gpt4.1 37 37 0 0 0 0 0 0 0 0 0 0 0 0 0
json llama4 71 71 0 0 0 0 0 0 71 0 0 0 0 0 0
json mistral 58 58 0 3 0 0 0 14 5 0 8 4 2 5 4
json sonnet 7 7 0 0 0 0 0 0 0 0 1 0 0 0 0
py deepseek 164 157 3 10 4 0 0 0 147 3 2 1 1 0 3
py gemini 225 225 0 0 0 0 0 0 225 0 0 0 0 0 0
py gpt4.1 45 45 0 0 0 0 0 0 0 0 0 0 0 0 0
py llama4 155 155 0 1 0 0 0 0 155 0 3 12 0 0 0
py mistral 114 113 1 4 0 0 0 13 15 0 6 2 0 12 9
py sonnet 8 8 0 0 0 0 0 0 0 0 5 0 0 0 0

complex json deepseek 289 264 19 18 6 1 0 1 246 2 0 16 0 1 0
json gemini 400 400 0 0 0 0 0 0 400 0 0 6 0 0 0
json gpt4.1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
json llama4 126 125 1 1 0 0 0 0 124 0 0 13 0 0 0
json mistral 111 109 2 14 0 2 5 9 2 1 5 9 1 7 56
json sonnet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
py deepseek 302 297 1 15 4 0 0 0 289 0 0 3 0 0 1
py gemini 400 400 0 2 0 0 0 0 400 0 0 33 0 0 0
py gpt4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
py llama4 160 159 1 1 0 0 0 0 158 0 0 7 0 0 0
py mistral 145 144 1 10 0 0 8 15 12 2 8 27 0 24 48
py sonnet 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
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Model Format Exact-Match (%) Tool F1 Param F1 CMR % tools CMR % params Prefix % tools Prefix % params
Complex workflow

Sonnet P 0.0 ± 0.0 0.354 ± 0.419 0.228 ± 0.263 26.3 ± 35.9 16.7 ± 21.5 24.4 ± 36.4 15.0 ± 21.6
Llama4 P 0.0 ± 0.0 0.279 ± 0.253 0.227 ± 0.258 17.6 ± 20.6 14.9 ± 18.3 12.1 ± 20.1 10.7 ± 18.0
Gpt4.1 P 0.0 ± 0.0 0.516 ± 0.321 0.400 ± 0.191 33.3 ± 31.6 23.6 ± 18.7 25.3 ± 35.5 16.2 ± 21.2

Intermediate workflow
Sonnet P 0.0 ± 0.0 0.478 ± 0.254 0.306 ± 0.198 38.7 ± 30.9 23.7 ± 17.1 31.0 ± 34.8 19.5 ± 19.0
Llama4 P 0.0 ± 0.0 0.531 ± 0.222 0.314 ± 0.205 41.6 ± 30.0 27.3 ± 14.8 34.4 ± 33.1 22.3 ± 17.6
Gpt4.1 P 0.0 ± 0.0 0.556 ± 0.159 0.353 ± 0.176 44.1 ± 24.8 26.7 ± 14.5 33.1 ± 31.0 22.0 ± 17.2

Simple workflow
Sonnet P 8.0 ± 27.2 0.949 ± 0.121 0.110 ± 0.289 94.9 ± 12.0 38.7 ± 18.1 94.9 ± 12.1 38.7 ± 18.1
Llama4 P 14.7 ± 35.5 0.840 ± 0.178 0.438 ± 0.452 82.2 ± 23.4 55.6 ± 27.2 67.1 ± 35.8 43.8 ± 28.7
Gpt4.1 P 8.7 ± 28.2 0.892 ± 0.141 0.307 ± 0.429 86.9 ± 16.3 45.1 ± 21.2 75.3 ± 37.1 34.0 ± 24.6

Table 10: Model performance across complex, intermediate, and simple workflow.

Model Format Prompt Type Exact-Match (%) Count (%) Tool F1 Param F1 CMR % tools CMR % params Prefix % tools Prefix % params
Complex workflow

Llama4 J react few shot 10.8 ± 31.0 91.2 ± 41.7 0.834 ± 0.183 0.831 ± 0.195 71.3 ± 23.4 68.8 ± 23.7 69.5 ± 25.8 66.8 ± 26.2
Llama4 J react 15.2 ± 36.0 100.3 ± 37.8 0.877 ± 0.117 0.870 ± 0.135 66.2 ± 25.8 63.9 ± 25.9 60.8 ± 30.8 58.5 ± 30.6
Llama4 J vanilla 12.5 ± 33.1 91.7 ± 40.7 0.817 ± 0.167 0.812 ± 0.181 65.4 ± 25.5 64.6 ± 26.0 58.9 ± 31.9 58.5 ± 32.0
Llama4 P react few shot 20.0 ± 40.1 86.3 ± 31.0 0.898 ± 0.150 0.896 ± 0.154 83.3 ± 21.2 81.8 ± 21.4 80.7 ± 25.5 79.3 ± 25.3
Llama4 P react 14.8 ± 35.5 84.9 ± 28.5 0.920 ± 0.123 0.924 ± 0.127 75.6 ± 25.0 73.5 ± 25.8 69.1 ± 32.3 67.3 ± 32.7
Llama4 P vanilla 15.5 ± 36.2 82.7 ± 27.3 0.882 ± 0.155 0.887 ± 0.162 74.4 ± 25.1 73.7 ± 25.6 68.4 ± 32.2 68.1 ± 32.3
Sonnet J react few shot 41.8 ± 49.4 80.5 ± 30.0 0.944 ± 0.138 0.945 ± 0.136 96.4 ± 10.2 94.5 ± 11.9 96.4 ± 10.2 94.5 ± 11.9
Sonnet J react 38.5 ± 48.7 69.8 ± 34.2 0.975 ± 0.059 0.977 ± 0.059 93.6 ± 15.8 91.9 ± 16.9 92.9 ± 18.0 91.2 ± 18.9
Sonnet J vanilla 50.5 ± 50.1 80.4 ± 30.5 0.919 ± 0.186 0.919 ± 0.188 90.1 ± 22.0 88.8 ± 22.4 87.6 ± 26.4 86.5 ± 26.5
Sonnet P react few shot 19.5 ± 39.7 76.1 ± 32.1 0.925 ± 0.142 0.926 ± 0.139 88.3 ± 17.9 86.7 ± 18.3 85.9 ± 22.4 84.4 ± 22.5
Sonnet P react 16.5 ± 37.2 70.1 ± 34.2 0.954 ± 0.071 0.962 ± 0.064 84.0 ± 19.1 82.7 ± 20.4 75.4 ± 30.1 74.9 ± 30.1
Sonnet P vanilla 0.0 ± 0.0 69.6 ± 34.3 0.049 ± 0.071 0.031 ± 0.050 4.2 ± 7.1 1.0 ± 4.4 0.0 ± 0.0 0.0 ± 0.0

Intermediate workflow
Llama4 J react few shot 62.2 ± 48.6 96.4 ± 13.7 0.937 ± 0.132 0.911 ± 0.180 95.6 ± 15.2 94.4 ± 16.6 94.6 ± 18.6 92.9 ± 21.0
Llama4 J react 43.1 ± 49.6 107.6 ± 58.1 0.919 ± 0.086 0.912 ± 0.138 92.9 ± 17.7 92.4 ± 18.1 92.5 ± 18.8 92.0 ± 19.1
Llama4 J vanilla 39.1 ± 48.9 100.2 ± 21.4 0.917 ± 0.110 0.903 ± 0.170 87.4 ± 22.4 86.3 ± 23.3 87.1 ± 22.9 85.6 ± 24.6
Llama4 P react few shot 56.0 ± 49.7 83.3 ± 23.6 0.652 ± 0.456 0.629 ± 0.469 64.6 ± 46.0 62.6 ± 46.7 63.7 ± 47.1 62.0 ± 47.2
Llama4 P react 44.4 ± 49.8 85.6 ± 22.7 0.640 ± 0.449 0.627 ± 0.454 65.8 ± 46.5 65.5 ± 47.0 65.5 ± 47.0 65.5 ± 47.0
Llama4 P vanilla 90.7 ± 29.2 100.0 ± 0.0 0.985 ± 0.064 0.971 ± 0.113 98.1 ± 8.7 96.8 ± 12.1 96.9 ± 15.1 95.2 ± 18.6
Sonnet J react few shot 26.2 ± 44.1 68.4 ± 24.2 0.827 ± 0.371 0.826 ± 0.374 82.2 ± 37.3 82.2 ± 37.3 81.6 ± 38.3 81.6 ± 38.3
Sonnet J react 59.6 ± 49.2 85.1 ± 24.8 0.968 ± 0.094 0.955 ± 0.149 96.3 ± 12.7 96.3 ± 12.7 94.2 ± 20.2 94.2 ± 20.2
Sonnet J vanilla 66.2 ± 47.4 90.4 ± 19.7 0.970 ± 0.075 0.964 ± 0.106 98.7 ± 7.5 98.7 ± 7.5 98.1 ± 11.4 98.1 ± 11.4
Sonnet P react few shot 45.3 ± 49.9 73.8 ± 25.0 0.636 ± 0.470 0.635 ± 0.476 62.8 ± 46.8 62.6 ± 47.0 59.1 ± 48.8 59.1 ± 48.8
Sonnet P react 35.6 ± 48.0 75.8 ± 29.2 0.600 ± 0.449 0.563 ± 0.462 57.2 ± 45.2 57.2 ± 45.2 54.9 ± 46.4 54.9 ± 46.4
Sonnet P vanilla 0.0 ± 0.0 66.4 ± 24.0 0.078 ± 0.098 0.035 ± 0.074 7.8 ± 9.8 1.5 ± 6.2 0.0 ± 0.0 0.0 ± 0.0

Simple workflow
Llama4 J react few shot 67.3 ± 47.1 100.0 ± 0.0 0.955 ± 0.065 0.948 ± 0.076 91.2 ± 13.3 91.2 ± 13.3 91.2 ± 13.3 91.2 ± 13.3
Llama4 J react 96.0 ± 19.7 104.0 ± 19.7 0.999 ± 0.009 0.999 ± 0.012 99.7 ± 4.1 99.7 ± 4.1 99.7 ± 4.1 99.7 ± 4.1
Llama4 J vanilla 76.0 ± 42.9 112.0 ± 38.3 0.967 ± 0.080 0.958 ± 0.110 94.5 ± 11.9 94.5 ± 11.9 93.8 ± 15.0 93.8 ± 15.0
Llama4 P react few shot 60.0 ± 49.2 102.0 ± 14.0 0.946 ± 0.070 0.935 ± 0.085 90.5 ± 12.2 90.5 ± 12.2 90.5 ± 12.2 90.5 ± 12.2
Llama4 P react 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Llama4 P vanilla 99.3 ± 8.2 100.0 ± 0.0 1.000 ± 0.000 0.996 ± 0.054 100.0 ± 0.0 99.5 ± 6.1 100.0 ± 0.0 99.5 ± 6.1
Sonnet J react few shot 99.3 ± 8.2 100.0 ± 0.0 0.999 ± 0.012 0.999 ± 0.016 99.8 ± 2.0 99.8 ± 2.0 99.8 ± 2.0 99.8 ± 2.0
Sonnet J react 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Sonnet J vanilla 97.3 ± 16.2 100.0 ± 0.0 0.996 ± 0.023 1.000 ± 0.000 99.3 ± 4.0 99.3 ± 4.0 97.3 ± 16.2 97.3 ± 16.2
Sonnet P react few shot 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Sonnet P react 99.3 ± 8.2 100.0 ± 0.0 0.999 ± 0.012 1.000 ± 0.000 99.8 ± 2.0 99.8 ± 2.0 99.3 ± 8.2 99.3 ± 8.2
Sonnet P vanilla 93.3 ± 25.0 100.0 ± 0.0 0.990 ± 0.039 1.000 ± 0.000 98.3 ± 6.3 98.3 ± 6.3 93.3 ± 25.0 93.3 ± 25.0

Table 11: Model performance across complex, intermediate, and simple workflow.
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A.5 Simple Workflow - Check Order Status812

JSON Format
{

"agent": "check_order_status",
"steps": [

"ask_for_order_id() -> [order_id]",
"get_order_status(order_id = user_provided_info['order_id']) -> [status]",
"return_order_status(order_status = order_status)",
"close_case(order_id = user_provided_info['order_id'])"

],
"soft_ordering": [],
"conditionals": []

}
813

Natural Language (PY) Format

- Ask the user for their order ID using ask_for_order_id().
- Look up the order status by calling get_order_status(order_id = user_provided_

info['order_id ']).
- Inform the user of their current order status with return_order_status(order_

status = order_status).
- Finally , mark the request as complete by calling close_case(order_id = user_

provided_info['order_id ']).

814
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A.6 Simple Workflow - Check Product Availability 815

JSON Format
{

"agent": "check_product_availability",
"steps": [
"ask_for_product_id() -> [product_id]",
"check_inventory(product_id = user_provided_info['product_id']) -> [availability]",
"return_product_availability(product_id = user_provided_info['product_id'],
availability = inventory_info[user_provided_info['product_id']]['availability'])",
"close_case(customer_id = customer_id)"

],
"soft_ordering": [],
"conditionals": []

}
816

Natural Language (PY) Format

- Ask the user for the product ID by calling `ask_for_product_id()`.
- Check inventory by invoking `check_inventory(product_id = user_provided_info['

product_id '])`, which returns availability.
- Return the p r o d u c t s availability by calling

`return_product_availability(product_id = user_provided_info['product_id '],
availability = inventory_info[user_provided_info['

product_id ']][' availability ']) `.
- Finally , wrap up the interaction with `close_case(customer_id = customer_id)`.

817
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A.7 Simple Workflow - Resend Email Request818

JSON Format
{

"agent": "resend_email_receipt",
"steps": [
"ask_for_order_id() -> [order_id]",
"check_order_exists(order_id = user_provided_info['order_id']) -> [exists]",
"send_email_receipt(order_id = user_provided_info['order_id'])",
"escalate_to_support(order_id = user_provided_info['order_id'])",
"complete_case(customer_id = customer_id)"

],
"soft_ordering": [],
"conditionals": [

{
"if": [

{
"field": "user_provided_info['order_id']",
"operator": "==",
"compare_to": "order_id"

}
],
"then": [{"action": "skip", "target": "escalate_to_support"}],
"else": [{"action": "skip", "target": "send_email_receipt"}]

}
]

}
819

Natural Language (PY) Format

- Begin by asking the user for their order ID using ask_for_order_id().
- Check if the order exists by calling check_order_exists(order_id = user_

provided_info['order_id ']).
- If the "user_provided_info['order_id ']" matches the number in 'order_id',

proceed to send the receipt via email using send_email_receipt(order_id =
user_provided_info['order_id ']).

- If they do not match match , escalate the issue to support using escalate_to
_support(order_id = user_provided_info['order_id ']).

- Finally , mark the case as complete by calling complete_case(customer_id =
customer_id).

820
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A.8 Intermediate Workflow - Account Suspension Request 821

JSON Format
{

"agent": "account_suspension_request",
"steps": [
"ask_suspension_type() -> [suspension_type]",
"ask_suspension_reason() -> [reason]",
"get_user_status(employee_id = employee_id) -> [status]",
"notify_already_suspended(employee_id = employee_id)",
"ask_reactivation_date() -> [reactivation_date]",
"suspend_account(employee_id = employee_id, type = user_provided_info['suspension_type'],
reason = user_provided_info['suspension_reason'])",
"send_suspension_confirmation(employee_id = employee_id)",
"close_case(suspension_id = suspension['suspension_id'])"

],
"soft_ordering": [

["ask_suspension_type", "ask_suspension_reason"]
],
"conditionals": [

{
"if": [

{
"field": "suspension['suspension_status']",
"operator": "==",
"value": "suspended"

}
],
"then": [

{
"action": "end_after",
"target": "notify_already_suspended"

}
],
"else": [

{
"action": "skip",
"target": "notify_already_suspended"

}
]

},
{

"if": [
{
"field": "user_provided_info['suspension_type']",
"operator": "!=",
"value": "temporary"

}
],
"then": [

{
"action": "skip",
"target": "ask_reactivation_date"

}],
"else": [

{
"action": "override_params",
"target": "suspend_account",
"params": {

"employee_id": "employee_id",
"type": "user_provided_info['suspension_type']",
"reason": "user_provided_info['suspension_reason']",
"reactivation_date": "user_provided_info['reactivation_date']"

}}
]

}
]

}

822
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Natural Language (PY) Format

1. Ask the user which type of suspension they need (temporary or permanent) by
calling `ask_suspension_type()`.

2. Ask the user to explain their reason for suspension by calling `ask_suspension
_reason ()`.
*(Steps 1 and 2 can happen in any order , but both must be completed before

moving forward .)*

3. Retrieve the u s e r s current suspension status by calling `get_user_status(
employee_id = employee_id)`.

4. If the suspension['suspension_status '] is already "suspended ":
- Call `notify_already_suspended(employee_id = employee_id)` to inform the

user.
- End the process here.

5. If the suspension type is ** temporary **:
- Ask for the desired reactivation date by calling `ask_reactivation_date()`.

6. Call `suspend_account (...)` with the following parameters:
- `employee_id = employee_id`
- `type = user_provided_info['suspension_type ']`
- `reason = user_provided_info['suspension_reason ']`
- If the suspension is temporary , also include `reactivation_date = user_

provided_info['reactivation_date ']`.

7. Send a confirmation message by calling `send_suspension_confirmation(employee_
id = employee_id)`.

8. Close the case by calling `close_case(suspension_id = suspension['suspension_
id ']) `.

823
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A.9 Intermediate Workflow - Submit Time Off Request 824

JSON Format
{

"agent": "submit_time_off_request",
"steps": [

"ask_for_pto_dates() -> [start_date, end_date]",
"get_pto_balance(employee_id = employee_id) -> [pto_balance]",
"inform_employee_balance_low()",
"check_conflicts(start_date = user_provided_info['start_date'],
end_date = user_provided_info['end_date'], pto_balance = vacation['pto_balance'])
-> [conflict_status]",
"inform_employee_conflict()",

"submit_leave_request(employee_id = employee_id, start_date = user_provided_info['start_date'],
end_date = user_provided_info['end_date'])
-> [leave_request_id]",

"notify_manager(manager_id = manager_id, leave_request_id = vacation['leave_request_id']) ->
[manager_notification_status]",

"send_confirmation(employee_id = employee_id, leave_request_id = vacation['leave_request_id']) ->
[confirmation_status]",
"close_case(leave_request_id = vacation['leave_request_id'])"

],
"soft_ordering": [["ask_for_pto_dates", "get_pto_balance" ]],
"conditionals": [

{
"if": [

{
"field": "vacation['pto_balance']",
"operator": "<",
"value": 1

}
],
"then": [

{
"action": "end_after",
"target": "inform_employee_balance_low"

}
],
"else": [

{
"action": "skip",
"target": "inform_employee_balance_low"

}
]

},
{

"if": [
{

"field": "conflict_status",
"operator": "==",
"value": true

}
],
"then": [

{
"action": "end_after",
"target": "inform_employee_conflict"

}
],
"else": [

{
"action": "skip",
"target": "inform_employee_conflict"

}]}]}
825
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Natural Language (PY) Format

- Begin by asking the user for their desired time off dates using ask_for_pto_
dates(). This returns start_date and end_date.

- Retrieve the employee 's current PTO balance using get_pto_balance(employee_id =
employee_id).
- If vacation['pto_balance '] is less than 1, inform the employee their

balance is too low using inform_employee_balance_low(), then end the
trajectory.

- Check for any scheduling conflicts by calling check_conflicts(start_date = user
_provided_info['start_date '], end_date = user_provided_info['end_date '], pto_
balance = vacation['pto_balance ']).
- If conflict_status is true , notify the employee about the conflict using

inform_employee_conflict (), then end the trajectory.
- If there are no issues , submit the leave request using submit_leave_request(

employee_id = employee_id, start_date = user_provided_info['start_date '], end
_date = user_provided_info['end_date ']). This returns a leave_request_id.

- Notify the employee 's manager about the request using notify_manager(manager_id
= manager_id, leave_request_id = vacation['leave_request_id ']).

- Send a confirmation to the employee with send_confirmation(employee_id =
employee_id, leave_request_id = vacation['leave_request_id ']).

- Finally , close the case using close_case(leave_request_id = vacation['leave_
request_id ']).

Note on Soft Ordering: You can either call ask_for_pto_dates() first and then get
_pto_balance (), or do it the other way around; the order of those two
functions d o e s n t matter.
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A.10 Intermediate Workflow - Update Address 827

JSON Format
{

"agent": "update_address",
"steps": [

"get_employment_details(employee_id = employee_id) -> [employment_type, employee_status]",
"validate_address(address = user_provided_info['address']) -> [validation_status]",
"escalate_to_hr(employee_id = employee_id)",

"update_employee_address(employee_id = employee_id, address = user_provided_info['address']) ->
[notification_status]",
"notify_payroll(employee_id = employee_id) -> [notification_status]",
"check_contact_info(employee_id = employee_id) -> [has_contact_info]",

"update_contact_info(employee_id = employee_id, new_phone = user_provided_info['new_phone']) ->
[phone_update_status]",
"complete_case(employee_id = employee_id)"

],
"soft_ordering": [],
"conditionals": [

{
"if": [

{
"field": "validation_status",
"operator": "==",
"value": "invalid"

}
],
"then": [

{
"action": "end_after",
"target": "escalate_to_hr"

}
],
"else": [

{
"action": "skip",
"target": "escalate_to_hr"

}
]

},{
"if": [

{
"field": "employment_type",
"operator": "not in",
"value": [

"Full Time"
]

}
],
"then": [

{
"action": "skip",
"target": "notify_payroll"

}
]

},{
"if": [

{
"field": "has_contact_info",
"operator": "==",
"value": false

}
],
"then": [

{
"action": "skip",
"target": "update_contact_info"

}]}]}
828
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Natural Language (PY) Format

- Start by retrieving the user 's employment details using get_employment_details(
employee_id = employee_id), which returns employment_type and employee_status
.

- Validate the new address using validate_address(address = user_provided_info['
address ']).
- If validation_status is "invalid", escalate the issue to HR by calling

escalate_to_hr(employee_id = employee_id), then end the trajectory.
- If the address is valid , update the e m p l o y e e s address using update_employee_

address(employee_id = employee_id, address = user_provided_info['address ']).
- If the employee 's employment_type is "Full Time", notify the payroll team using

notify_payroll(employee_id = employee_id). Otherwise , skip this step.
- Check if the employee has contact information by calling check_contact_info(

employee_id = employee_id), which returns has_contact_info.
- If has_contact_info is false , skip updating the contact info.
- Otherwise , update the phone number using update_contact_info(employee_id =

employee_id, new_phone = user_provided_info['new_phone ']).
- Finally , mark the case as complete using complete_case(employee_id = employee_

id).
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A.11 Complex Workflow - Book Flight 830

JSON Format
{

"agent": "book_flight",
"steps": [
"ask_for_basic_flight_details() -> [origin, destination, departure_date, return_date]",
"get_customer_preferences(customer_id = customer_id) -> [cabin_preference, seat_preference]",
"get_customer_frequent_traveler_status(customer_id = customer_id) -> frequent_traveler_status",
"search_regular_flights(origin = user_provided_info['origin'],
destination = user_provided_info['destination'], departure_date =
user_provided_info['departure_date'],
return_date = user_provided_info['return_date'], cabin_preference =
user_provided_info['cabin_preference'], seat_preference =
user_provided_info['seat_preference']) ->
[flight_number]",
"search_priority_flights(origin = user_provided_info['origin'], destination =
user_provided_info['destination'], departure_date = user_provided_info['departure_date'],
return_date = user_provided_info['return_date'], cabin_preference =

user_provided_info['cabin_preference'], seat_preference = user_provided_info['seat_preference'])
->[flight_number]",
"get_passport_visa_info(customer_id = customer_id)",
"check_visa_requirements(customer_id = customer_id,
destination = user_provided_info['destination']) -> [visa_status]",
"get_customer_payment_method(customer_id = customer_id) -> [payment_method]",
"create_booking(flight_number = user_provided_info['flight_number']) -> [booking_id]",

"create_booking_with_points(flight_number = user_provided_info['flight_number']) -> [booking_id]",
"add_special_services(booking_id = booking_info['booking_id'],
service_type = traveler_info['special_assistance'])",
"notify_airport_ground_team(customer_id = customer_id, booking_id = booking_info['booking_id'],
service_type =
traveler_info['special_assistance'])",
"complete_case(customer_id = customer_id)"],

"soft_ordering": [],
"conditionals": [{

"if": [
{"field": "traveler_info['frequent_traveler_status']", "operator": "==", "value": null}],

"then": [{ "action": "skip", "target": "search_priority_flights" }],
"else": [{ "action": "skip", "target": ["search_regular_flights", "get_passport_visa_info"] }]},{

"if": [{
"field": "payment_method['payment_type']",
"operator": "==",
"value": "Points" }],

"then": [{ "action": "skip", "target": "create_booking" }],
"else": [{ "action": "skip", "target": "create_booking_with_points" }]},{
"if": [{

"all_of": [
{

"field": "traveler_info['frequent_traveler_status']",
"operator": "in",
"value": ["Gold", "Platinum"]

},{
"field": "traveler_info['special_assistance']",
"operator": "!=",
"value": null}]}],

"then": [],
"else": [{ "action": "skip", "target": "notify_airport_ground_team"}]},

{
"if": [

{"field": "traveler_info['special_assistance']",
"operator": "==",
"value": null}],

"then": [{ "action": "skip", "target": "add_special_services" }]},{
"if": [{"field": "traveler_info['is_blacklisted']",

"operator": "==",
"value": true}],

"then": [{ "action": "end_after", "target": "check_visa_requirements" }]}]}
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Natural Language (PY) Format

## Step 1: Ask for Basic Flight Details
- Call the ask_for_basic_flight_details () function to ask the customer for:

Origin , Destination , Departure date , and Return date.
## Step 2: Retrieve Customer Preferences
- Call `get_customer_preferences(customer_id = customer_id)` to check if the

customer has preferences for the flight booking.
## Step 3: Check Frequent Traveler Status
- Call `get_customer_frequent_traveler_status(customer_id = customer_id)` to

determine if the customer is a frequent traveler.
- **If frequent traveler status is None **:

- Proceed to Step 4 (Search Regular Flights).
- **If frequent traveler status is not None **:

- Skip Step 4 and Step 6.
- Proceed to Step 5 (Search Priority Flights).

## Step 4: Search Regular Flights (Only if not a frequent traveler)
- Call `search_regular_flights(origin = user_provided_info['origin '], destination

= user_provided_info['destination '], departure_date = user_provided_info['
departure_date '], return_date = user_provided_info['return_date '], cabin_
preference = user_provided_info['cabin_preference '], seat_preference = user_
provided_info['seat_preference ']) `.

- Proceed to Step 6.
## Step 5: Search Priority Flights (Only if frequent traveler)
- Call `search_priority_flights(origin = user_provided_info['origin '],

destination = user_provided_info['destination '], departure_date = user_
provided_info['departure_date '], return_date = user_provided_info['return_
date '], cabin_preference = user_provided_info['cabin_preference '], seat_
preference = user_provided_info['seat_preference ']) `.

- Proceed to Step 7.
## Step 6: Check Passport and Visa Requirements (Only for non -frequent travelers)
- Call `get_passport_visa_info(customer_id = customer_id)` to retrieve passport

and visa information.
- Then call `check_visa_requirements(customer_id = customer_id, destination =

user_provided_info['destination '])` to determine if a visa is required.
- **If the customer is blacklisted **: End the flow after this step and notify

the customer accordingly.
- ** Otherwise **: Inform the customer about the visa requirement status.

- Proceed to Step 7.
## Step 6: Retrieve Passport and Visa Information
Call get_passport_visa_info(customer_id = customer_id) to retrieve passport and

visa information.
## Step 7: Check Visa Requirements
Call check_visa_requirements(customer_id = customer_id, destination = user_

provided_info['destination ']) to determine if a visa is required.
If the customer is blacklisted (traveler_info['is_blacklisted '] is true): End the

flow after this step and notify the customer accordingly.
## Step 8: Retrieve Payment Method and Create Booking
- Call `get_customer_payment_method(customer_id = customer_id)` to get the

c u s t o m e r s payment method.
- **If the payment method is 'Points '**: Call `create_booking_with_points(

flight_number = user_provided_info['flight_number ']) `.
- ** Otherwise **: Call `create_booking(flight_number = user_provided_info['

flight_number ']) `.
- Proceed to Step 9.
## Step 9: Add Special Services
- **If the customer has listed any special assistance needs **: Call `add_special_

services(booking_id = booking_info['booking_id '], service_type = traveler_
info['special_assistance '])",`.

- Proceed to Step 10.
## Step 10: Notify Airport Ground Team
- **If the customer is Gold or Platinum frequent traveler AND has special

assistance needs **:
- Call `notify_airport_ground_team(customer_id = customer_id, booking_id =

booking_info['booking_id '], service_type = traveler_info['special_
assistance ']) `.

## Step 11: Final Confirmation and Case Completion
- Share the booking ID and confirmation details with the customer.
- Call `complete_case(customer_id = customer_id)` to finalize the process.
- Thank the customer: "Thank you for booking with us. Have a pleasant journey !"
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A.12 Complex Workflow - Cancel Flight 833

JSON Format
{

"agent": "cancel_flight",
"steps": [
"get_customer_loyalty_info(customer_id = customer_id) -> [frequent_flyer_status, loyalty_points]",
"get_booking_details(customer_id = customer_id) -> [booking_id, booking_date,
payment_method, total_paid, is_refundable, purchased_insurance, booking_channel]",
"check_cancellation_policy(booking_id = booking_info['booking_id']) -> [is_refundable]",
"calculate_cancellation_fee(booking_id = booking_info['booking_id']) -> [cancellation_fee]",
"waive_cancellation_fee(loyalty_points = traveler_info['loyalty_points'], booking_id =
booking_info['booking_id']) -> [fee_waived]",
"offer_alternate_flight_options(customer_id = customer_id, original_booking_id =
booking_info['booking_id']) -> [flight_options]",
"process_flight_change(old_booking_id = booking_info['booking_id'])",
"cancel_flight(booking_id = booking_info['booking_id'])",

"get_customer_payment_method(customer_id = customer_id, booking_id = booking_info['booking_id']) ->
[payment_method]",
"process_refund(booking_id = booking_info['booking_id'], payment_method =
payment_method['payment_type'])",
"issue_travel_credit(customer_id = customer_id, amount = booking_info['total_paid'])",
"complete_case(customer_id = customer_id)"

],
"soft_ordering": [

["get_customer_loyalty_info", "get_booking_details"],
["check_cancellation_policy", "calculate_cancellation_fee"]

],
"conditionals": [

{"if": [{
"field": "user_provided_info['change_flight']",
"operator": "==",
"value": true

}],
"then": [{ "action": "skip", "target": ["cancel_flight", "get_customer_payment_method",
"process_refund", "issue_travel_credit"] }
],
"else": [{ "action": "skip", "target": ["process_flight_change"] }]},

{"if": [
{

"any_of": [
{ "field":"booking_info['is_refundable']",

"operator":"==",
"value": true },

{ "field":"booking_info['purchased_insurance']",
"operator":"==",
"value": true }

]}],
"then": [{ "action":"skip", "target":"issue_travel_credit" }
],
"else": [{ "action":"skip", "target":"process_refund" }]},

{"if": [{
"field": "traveler_info['loyalty_points']",
"operator": ">=",
"value": 10000}],

"then": [{ "action": "override_trajectory", "target": ["get_customer_loyalty_info",
"get_booking_details", "waive_cancellation_fee", "cancel_flight", "process_refund",
"complete_case"]}],
"else": [{ "action": "skip", "target": ["waive_cancellation_fee"] }]}]}
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Natural Language (PY) Format

## Step 1: Retrieve Customer Loyalty Information
- Call `get_customer_loyalty_info(customer_id = customer_id)` to retrieve:

- ** Frequent flyer status **
- ** Loyalty points **

## Step 2: Retrieve Booking Details
- Call `get_booking_details(customer_id = customer_id)` to retrieve:

- ** Booking ID**, booking date , payment method , total paid
- **Is refundable **, purchased insurance , booking channel

## Step 3: Shortcut for High Loyalty Customers
- If `traveler_info['loyalty_points '] >= 10000`:

- ** Override the trajectory **: perform only:
1. `get_customer_loyalty_info `
2. `get_booking_details `
3. `waive_cancellation_fee`
4. `cancel_flight `
5. `process_refund `
6. `complete_case `

- **Skip** all other steps (Steps 4, 5, 7, 9, 11).
- Then return from the routine.

## Step 4: Check Cancellation Policy
- Call `check_cancellation_policy(booking_id = booking_info['booking_id '])` to

determine if the booking is refundable.
- **Note **: Can be done before or after Step 5 per soft ordering.

## Step 5: Calculate Cancellation Fee
- Call `calculate_cancellation_fee(booking_id = booking_info['booking_id '])` to

retrieve the fee amount.
- If `traveler_info['loyalty_points '] < 10000`, **skip** Step 6 and proceed to

Step 7.
## Step 6: Waive Cancellation Fee
- Call `waive_cancellation_fee(loyalty_points = traveler_info['loyalty_points '],

booking_id = booking_info['booking_id '])` to waive the fee.
- **Only executed if** `traveler_info['loyalty_points '] >= 10000`. Otherwise

skipped.
## Step 7: Offer Flight Change Option
- Call `offer_alternate_flight_options(customer_id = customer_id, original_

booking_id = booking_info['booking_id '])` to offer alternatives.
- If `user_provided_info['change_flight '] == True `:

- Call `process_flight_change(old_booking_id = booking_info['booking_id ']) `.
- **Skip** the following:

- Step 8: `cancel_flight `
- Step 9: `get_customer_payment_method `
- Step 10: `process_refund `
- Step 11: `issue_travel_credit `

- Then return from the routine.
- Else:

- Continue to Step 8.
## Step 8: Cancel Flight
- Call `cancel_flight(booking_id = booking_info['booking_id '])` to finalize

cancellation.
## Step 9: Retrieve Payment Method
- Call `get_customer_payment_method(customer_id = customer_id, booking_id =

booking_info['booking_id '])` to determine the original payment type.
## Step 10: Process Refund
- If `booking_info['is_refundable '] == True ` **or** `booking_info['purchased_

insurance '] == True `:
- Call `process_refund(booking_id = booking_info['booking_id '], payment_method

= payment_method['payment_type ']) `.
- **Skip** Step 11.

- Else:
- **Skip** this step (Step 10) and proceed to Step 11.

## Step 11: Issue Travel Credit
- Call `issue_travel_credit(customer_id = customer_id, amount = booking_info['

total_paid '])` to issue credit.
- **Only executed if** booking is n o n refundable and no insurance. Otherwise

skipped.
## Step 12: Complete the Case
- Call `complete_case(customer_id = customer_id)` to mark the process as complete

.
**Note on Soft Ordering :**
- You may call `get_customer_loyalty_info ` before or after `get_booking_details `.
- You may call `check_cancellation_policy ` before or after `calculate_

cancellation_fee `.
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A.13 Complex Workflow - Flight Disruption 836

JSON Format
{"agent": "handle_flight_disruption",

"steps": ["get_booking_details(customer_id=customer_id) -> [booking_id, origin, destination]",
"check_flight_status(flight_number=
booking_info['flight_number'], flight_date=booking_info['flight_date'])
-> [status, estimated_delay_minutes, delay_reason]",

"notify_customer_disruption(customer_id=customer_id, flight_number=booking_info['flight_number'],
status = flight_info['status'], delay_reason=flight_info['delay_reason'], estimated_delay_minutes =
flight_info['estimated_delay_minutes'])",
"ask_rebooking_preference(customer_id=customer_id) -> [wants_rebook]",

"search_alternate_flights(origin=booking_info['origin'], destination=booking_info['destination'],
flight_date=booking_info['flight_date'],
cabin_class=booking_info['cabin_class']) -> [alternate_flights]",
"offer_flight_options_to_customer(customer_id=customer_id, flights=
search_results['alternate_flights']) ->[selected_flight_id]",
"create_rebooking(original_booking_id=booking_info['booking_id'], new_flight_id=
user_provided_info['selected_flight_id']) -> [new_booking_id, fare_difference]",

"process_fare_difference(customer_id=customer_id, fare_difference=search_results['fare_difference'])",
"check_overnight_need(estimated_delay_minutes=flight_info['estimated_delay_minutes']) ->
[needs_overnight_accommodation]",

"arrange_accommodation(customer_id=customer_id) -> [hotel_booking_id]",
"arrange_transport(customer_id=customer_id, hotel_booking_id=search_results['hotel_booking_id'])",
"issue_meal_vouchers(customer_id=customer_id, delay=flight_info['estimated_delay_minutes']) ->
[voucher_codes]",
"offer_compensation(customer_id=customer_id, delay_reason=flight_info['delay_reason']) ->
[compensation_details]",
"complete_case(customer_id=customer_id)"],

"soft_ordering": [["arrange_accommodation", "arrange_transport"]],
"conditionals": [{

"if": [{"field": "flight_info['status']", "operator": "==", "value": "On Time"}],
"then": [{"action": "override_params", "target": "notify_customer_disruption", "params": {

"customer_id": "customer_id",
"flight_number": "booking_info['flight_number']",
"status": "flight_info['status']"}},

{ "action": "end_after", "target": "notify_customer_disruption" }}},
{"if": [{

"field": "flight_info['status']",
"operator": "==",
"value": "Cancelled"}],

"then": [{"action": "override_params", "target": "notify_customer_disruption", "params": {
"customer_id": "customer_id",
"flight_number": "booking_info['flight_number']",
"status": "flight_info['status']",
"delay_reason": "flight_info['delay_reason']"}}]},

{"if": [{"all_of": [
{"field": "flight_info['status']", "operator": "==", "value": "Cancelled"},
{"field": "flight_info['delay_reason']", "operator": "in", "value": ["Mechanical",
"Crew Issue"]}]}],

"then": [{ "action": "override_trajectory",
"target": ["get_booking_details", "offer_flight_options_to_customer", "create_rebooking",

"arrange_accommodation", "arrange_transport", "offer_compensation", "update_loyalty_points",
"complete_case"]}]},
{"if": [{"field": "user_provided_info['wants_rebook']","operator": "==","value": false}],

"then": [{"action": "skip","target": ["search_alternate_flights",
"offer_flight_options_to_customer","create_rebooking","process_fare_difference"]}]},

{"if": [{"field": "flight_info['estimated_delay_minutes']","operator": "<","value": 360}],
"then": [{ "action": "skip", "target":["arrange_accommodation", "arrange_transport",
"issue_meal_vouchers"]}]},

{"if": [{"all_of": [{"field": "traveler_info['frequent_traveler_status']","operator": "in","value":
["Gold", "Platinum", "Diamond"]},{"field": "flight_info['delay_reason']",
"operator": "!=","value": "Weather"}]}],

"then": [{"action": "override_params", "target": "offer_compensation","params": { "customer_id":
"customer_id", "delay_reason": "flight_info['delay_reason']","extra_miles":
"booking_info['compensation_allowed']"}}]},{
"if": [{ "field": "flight_info['delay_reason']","operator": "==", "value": "Weather"}],
"then": [{"action": "skip","target":["offer_compensation"]}]}]}
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Natural Language (PY) Format

Step 1: Retrieve Booking Details
- Call get_booking_details(customer_id=customer_id) and capture booking_id and

origin & destination
Step 2: Check Flight Status
- Call check_flight_status(flight_number=booking_info['flight_number '], flight_

date=booking_info['flight_date ']) and capture: status ( On T i m e ,
Delayed , Cancelled ), estimated_delay_minutes , delay_reason (if

cancelled)
Step 3: Notify the Customer of the Disruption
- Call notify_customer_disruption () with the following parameters based on the

value of flight_info['status ']".
- If flight_info['status ']" is On Time , use parameters: customer_id=customer_id,

flight_number=booking_info['flight_number '], status=flight_info['status '])
and end the flow here.

- If flight_info['status '] is Cancelled , use parameters: customer_id=customer_id,
flight_number=booking_info['flight_number '], status = flight_info['status '],
delay_reason=flight_info['delay_reason ']

- If flight_info['status '] is Delayed , use parameters: customer_id=customer_id,
flight_number=booking_info['flight_number '], status = flight_info['status '],
delay_reason=flight_info['delay_reason '], estimated_delay_minutes = flight_
info['estimated_delay_minutes ']

Step 4: Ask Rebooking Preference
- Call ask_rebooking_preference(customer_id=customer_id) and capture wants_rebook

. - If user_provided_info['wants_rebook '] == false , skip Steps 5 8 .
Step 5: Search for Alternate Flights
- Call search_alternate_flights(origin=booking_info['origin '], destination=

booking_info['destination '], flight_date=booking_info['flight_date '], cabin_
class=booking_info['cabin_class '],) and capture alternate_flights

Step 6: Offer Flight Options
- Call offer_flight_options_to_customer(customer_id=customer_id, flights=search_

results['alternate_flights ']) and capture selected_flight_id
Step 7: Create the New Booking
- Call create_rebooking(original_booking_id=booking_info['booking_id '], new_

flight_id=user_provided_info['selected_flight_id ']) and capture new_booking_
id and fare_difference

Step 8: Process Any Fare Difference
- Call process_fare_difference(customer_id=customer_id, fare_difference=search_

results['fare_difference ']).
Step 9: Check Overnight Accommodation Need
- Call check_overnight_need( estimated_delay_minutes=flight_info['estimated_delay

_minutes ']) and capture needs_overnight_accommodation
Steps 10 & 11: Arrange Hotel and Transport
- Only if flight_info['estimated_delay_minutes '] is over 360, call arrange_

accommodation(customer_id=customer_id) and capture hotel_booking_id
- Call arrange_transport(customer_id=customer_id, hotel_booking_id=search_results

['hotel_booking_id ']).
- (These two steps may execute in either order.)
Step 12: Issue Meal Vouchers
- If flight_info['estimated_delay_minutes '] under 360, skip this step.
- Otherwise , call issue_meal_vouchers(customer_id=customer_id, delay=flight_info

['estimated_delay_minutes ']) and capture voucher_codes
Step 13: Offer Compensation
- Call offer_compensation(customer_id=customer_id, delay_reason=flight_info['

delay_reason '],) and capture compensation_details.
- If traveler_info['frequent_traveler_status '] in ["Gold", "Platinum", "Diamond

"], include extra_miles = booking_info['compensation_allowed '] in the
parameters to become offer_compensation( customer_id=customer_id, delay_
reason=flight_info['delay_reason '], extra_miles = booking_info['compensation_
allowed '])

- If flight_info['status '] == "Cancelled" and flight_info['delay_reason '] in ["
Mechanical", "Crew Issue"], override the trajectory to execute in order with
the parameters defined above:
1. get_booking_details ()
2. offer_flight_options_to_customer ()
3. create_rebooking ()
4. arrange_accommodation ()
5. arrange_transport ()
6. offer_compensation ()
7. update_loyalty_points ()
8. complete_case()

Step 14: Complete the Case
- Call complete_case(customer_id=customer_id).
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A.14 User Data Example 839

User Data Example Provided to Traxgen

{
"agent_sequence": [

"submit_time_off_request"
],
"employee_id": 2709079,
"manager_id": 7215773,
"conflict_status": false,
"employment_type": "Full Time",
"has_contact_info": false,
"suspension": {

"suspension_id": 601790,
"suspension_status": "not suspended"

},
"vacation": {

"leave_request_id": 191059,
"pto_balance": 9

},
"validation_status": "valid",
"user_provided_info": {

"address": "12 Grimmauld Place, London, UK",
"end_date": "2025-06-27",
"new_phone": 6512227804,
"reactivation_date": "2025-06-03",
"start_date": "2025-06-12",
"suspension_reason": "Leave of Absence",
"suspension_type": "temporary"

}
}
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A.15 Traxgen Trajectory Format841

Traxgen Style

[
[
"agent: assistant",
"tool: ask_for_order_id()",
"tool: get_order_status(order_id=63920)",
"tool: return_order_status(order_status=Delivered)",
"tool: close_case(order_id=63920)"

]
]

842

Google Style

[[
{'tool_name': 'ask_for_order_id', 'tool_input': {}},
{'tool_name': 'get_order_status', 'tool_input': {'order_id': 63920}},
{'tool_name': 'return_order_status', 'tool_input': {'order_status': 'Delivered'}},
{'tool_name': 'close_case', 'tool_input': {'order_id': 63920}}
]]

843

Langchain Style

[
[

{
"role": "assistant",
"tool_calls": [

{ "name": "ask_for_order_id", "arguments": {} }
]

},
{

"role": "assistant",
"tool_calls": [

{ "name": "get_order_status", "arguments": { "order_id": 63920 } }
]

},
{

"role": "assistant",
"tool_calls": [

{ "name": "return_order_status", "arguments": { "order_status": "Delivered" } }
]

},
{

"role": "assistant",
"tool_calls": [

{ "name": "close_case", "arguments": { "order_id": 63920 } }
]

}
]

]
844

Tool-Only Style

['ask_for_order_id', 'get_order_status', 'return_order_status', 'close_case']
845
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A.16 Annotator Instructions 846

Annotator Instructions
"""
# Trajectory Annotation Instructions

## Objective

You will review tool-call trajectories generated by our `TraxGen-py` toolkit to ensure they follow
the defined **routine logic** and are consistent with the provided **customer data**.

Each annotation task includes:
- A **routine** (structured JSON workflow)
- A **customer profile** (database-like JSON input)
- A **generated trajectory** (tool calls + parameters)

Your goal is to determine whether the generated trajectory **adheres to the policy** defined
in the routine and fully satisfies the task requirements.
---
## When to Mark as `Pass`
Mark the trajectory as `Pass` if all of the following conditions are met:

1. **All required tool calls** are present in the correct order (allowing for soft ordering if applicable
2. **Conditional logic** (`skip`, `end_after`, `override_trajectory`) is triggered appropriately based
on customer data.
3. **No extra tool calls** are included, unless explicitly allowed by the routine.
4. **Tool parameters** are fully and correctly filled using customer data and routine-defined rules.
5. In multi-agent workflows, each agent only calls tools defined in its assigned sub-intent.
---
## When to Mark as `Fail`

Mark the trajectory as `Fail` if any of the following issues are present:

- A required tool is **missing**.
- Tools are called in the **wrong order**, violating hard constraints.
- A conditional rule is **misapplied** (e.g., skipped when it should not be).
- A tool has **incorrect or missing parameters**.
- **Extra tools** are called that are not defined in the routine or allowed by policy.
- In multi-intent workflows, an agent calls tools outside its scope (**agent boundary violation**).
---
## Common Error Tags

If a trajectory is marked as `Fail`, please include one or more of the following tags:
| Tag | Description |
|------------------|--------------------------------------------------------------|
| `missing_tool` | A required tool was not called. |
| `wrong_order` | Tools were called in the incorrect order. |
| `wrong_condition` | A condition (e.g., `skip`, `end_after`) was applied wrongly.|
| `bad_param` | Tool parameters were missing or incorrect. |
| `extra_tool` | Unnecessary or invalid tool calls were included. |
| `agent_violation` | A tool was used by the wrong agent in a multi-intent task. |
---
## Output Format

Each task should be annotated using this format:

```json
{

"customer_id": "1802531",
"annotator_id": "A1",
"result": "fail",
"tags": ["missing_tool", "bad_param"],
"comments": "Missing confirmation step; booking ID param was null in 'GetFlightInfo'."

}
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