Traxgen: Ground-Truth Trajectory Generation for AI Agent Evaluation

Anonymous ACL submission

Abstract

As Al agents take on complex, goal-driven
workflows, response-level evaluation becomes
insufficient. Trajectory-level evaluation of-
fers deeper insight but typically relies on
high-quality reference trajectories that are
costly to curate or prone to LLM sampling
noise. We introduce Traxgen, a Python toolkit
that constructs gold-standard trajectories via di-
rected acyclic graphs (DAGs) built from struc-
tured workflow specifications and user data.
Traxgen generates deterministic trajectories
that align perfectly with human-validated refer-
ences and achieve average median speedups of
over 17,000x compared to LLM-based meth-
ods. To probe LLM reasoning, we compared
multiple models across three workflow com-
plexities (simple, intermediate, complex), two
input formats (natural language vs. JSON),
and three prompt styles (vanilla, ReAct, and
ReAct-few-shot). While LLM performance
varied, Traxgen outperformed every configu-
ration in both accuracy and efficiency. Our
results shed light on LLM planning limita-
tions and establish Traxgen as a more scalable,
resource-efficient alternative for reproducible
evaluation of planning-intensive Al agents.

1 Introduction

Modern Al agents are increasingly expected to go
beyond generating plausible responses; they must
execute structured, goal-driven workflows that are
auditable, policy-aligned, and robust to model or
prompt changes. As these systems grow more com-
plex, traditional response-level evaluation becomes
insufficient (Yehudai et al., 2025). Instead, evalua-
tion must consider the trajectory—the ordered se-
quence of tool calls or decisions an agent makes to
complete a task. These trajectories expose whether
an agent is reasoning effectively, choosing appropri-
ate tools, and respecting task-specific constraints.
Recent frameworks have introduced support for
trajectory-level benchmarking, typically by com-

paring an agent’s behavior to a ground truth tra-
jectory (LangChain, 2024; Google Cloud, 2024).
However, these evaluations rely on or benefit from
the availability of high-quality reference trajecto-
ries, which are often manually constructed. While
LLMs have also been explored as a means to gen-
erate ground truth trajectories (Yao et al., 2024;
Zhang et al., 2025), the effects of model size and
workflow complexity on their performance are still
poorly understood. Moreover, there are no stan-
dardized tools for generating high-quality reference
trajectories, limiting reproducibility and rigorous
evaluation. To address this gap, we present an au-
tomated framework for generating and evaluating
agent trajectories, enabling more consistent bench-
marking in both single- and multi-agent settings.
Our contributions are as follows:

* A Python toolkit for ground truth trajectory gen-
eration in single- and multi-agent settings, sup-
porting conditional logic, synthetic data genera-
tion, and integration with popular platforms. Our
approach achieves speedups of several orders of
magnitude over LLM-based trajectory generation
while also seeing improved performance’.

* An empirical study evaluating the trajectory
planning capabilities of six diverse LLMs across
varying prompt styles, input formats, and infer-
ence strategies. We evaluate LLMs performance
on a curated suite of tasks spanning nine domains
and three levels of workflow complexity, and
compare direct generation against a search-based
planning baseline.

Experimentation and code is available here.

2 Related Work

2.1 Evaluation Strategies for Agents

Evaluating multi-agent dialogue systems remains a
complex challenge, requiring the assessment of in-

'See the package on PyPI

https://anonymous.4open.science/r/trajectory-experimentation-6585/README.md
https://pypi.org/project/traxgen/

dividual message quality, outcome correctness, and
the overall effectiveness of the agents. A common
approach uses LLMs as judges to rate responses
based on metrics like helpfulness, relevance, and
coherence (Zheng et al., 2023; Gu et al., 2024).
However, such approaches emphasize surface-level
dialogue quality and often overlook agents’ inter-
nal reasoning or coordination dynamics (Son et al.,
2024; Feuer et al., 2024). To address limitations,
recent work looks beyond conversation-level met-
rics. T7-Bench compares final database states with
annotated ground truth goals to measure tool-use
reliability across trials (Yao et al., 2024). LTM
Benchmark evaluates agents’ ability to retain and
apply long-term memory in dynamic user interac-
tions (Castillo-Bolado et al., 2024). CURATe ex-
plores agents’ ability to personalize recommenda-
tions using safety-critical user data across sessions
(Alberts et al., 2024).

Another emerging direction focuses on
trajectory-level evaluations. Recent work has
explored capturing tool choices, reasoning, and
key decisions in agent workflows. MetaTool, for
instance, examines tool selection under ambiguity
(Huang et al., 2023). ToolLLaMA provides
datasets that capture reasoning steps and interme-
diate tool calls(Qin et al., 2023b), though it lacks
support for collaborative settings. ToolSandbox
introduces Milestones and Minefields, events that
must or must not occur, to track critical events in
agent workflows (Lu et al., 2024b).

Trajectory evaluation is essential for understand-
ing agent performance in multi-step interactions.
While frameworks such as the OpenAl Agents
SDK (OpenAl, 2025) and platforms like Langchain
(LangChain, 2024), Vertex Al (Google Cloud,
2024), and Labelbox (Labelbox, 2025) offer agent
tracing and evaluation tools, they typically assume
and/or benefit from ground truth trajectories. In
real-world systems driven by proprietary work-
flows, such ground truths are rarely available, ex-
posing a critical shortfall in existing methodolo-
gies. There is a pressing need for an automated
framework capable of generating trajectories that
accurately capture internal reasoning and the col-
laborative dynamics of multi-agent interactions.

2.2 Trajectory Ground Truth Generation

Evaluating LLM agents in complex, tool-
augmented tasks requires high-quality ground truth
trajectories. However, existing generation methods
are either labor-intensive or prone to errors. Exist-

ing approaches to trajectory generation broadly fall
into two paradigms: human-in-the-loop LLM gen-
eration and fully automated LLM-driven methods.

In the human-in-the-loop paradigm, MetaTool
Benchmark (Huang et al., 2023) utilizes human
experts to label user queries based on tool neces-
sity, supplemented by LLM-driven verification and
manual review of ambiguous outputs. Similarly,
ToolSandbox (Lu et al., 2024a) employs human an-
notators who incrementally create complex, branch-
ing scenarios from simpler cases, which are then
validated through LLM-based consistency checks.
DataSciBench (Zhang et al., 2025) initially gener-
ates responses using LL.Ms and subsequently relies
on human experts to resolve inconsistencies. 7-
Bench (Yao et al., 2024) similarly integrates human-
written examples and LLM-generated dialogues,
with an emphasis on human curation.

Automated LLM-driven approaches aim to min-
imize human involvement. APIBench-MT (Prab-
hakar et al., 2025) first creates an LLM-reviewed
blueprint for intent and API use, then uses it to
collect trajectories via simulating human-agent in-
teractions. ToolLLM (Qin et al., 2023a) generates
trajectories using LL.Ms based on defined instruc-
tions, tools, and execution examples. ToolLLM
adopts a Depth-First Search-based Decision Tree
algorithm guided by LLM reasoning to construct
trajectories iteratively. Despite their scalability and
cost-effectiveness (better than ReAct generated tra-
jectories(Yao et al., 2023)), these methods often
suffer from incomplete or incorrect trajectories due
to reliance on the model’s capability to correctly
predict termination conditions.

3 Traxgen

In contrast to prior stochastic or hybrid approaches,
we introduce a fully deterministic trajectory gen-
eration paradigm. Our toolkit (MIT-license) trans-
forms high-level workflow specifications and cus-
tomer profiles into trajectories specifying which
agents should invoke which tools, in what or-
der, with all required parameters and values re-
solved. These trajectories serve as the gold-
standard blueprint for execution and can be dis-
tinct across users based on conditional logic, tool
availability, and customer attributes. Instructions
on how to install and run it are provided in the
Appendix A.1.

3.1 Required Inputs
3.1.1 Workflow

Inspired by symbolic Al planning (Chen et al.,
2024), workflow modeling (Russell et al., 2006),
and rule-based expert systems (Grosan and Abra-
ham, 2011), a workflow in Traxgen is a structured
specification that encodes a sequence of tool-based
operations required to accomplish a task. Work-
flows are JSON objects with three key components:

Steps: An ordered list of tool calls defining the
actions in the workflow. Each step includes a tool
name and parameter templates indicating where to
source values from user-provided or system data.
The list enumerates all possible tool invocations for
the workflow.

Soft Ordering: A set of lists indicating groups of
steps that can execute in any order. This introduces
flexible sequencing, generating multiple valid tra-
jectories by permuting the relative order of these
steps. For example, a group of two steps produces
two permutations (2!). Multiple groups multiply
the number of generated trajectories accordingly.

Conditionals: Logic blocks that dynamically in-
fluence the trajectory based on user data, exter-
nal JSON inputs, or tool outputs. Condition-
als specify actions such as skip, end_after,
and override_params targeting specific steps, en-
abling pruning, early termination, or parameter
overrides in the trajectory generation (See Ap-
pendix Table 4 for all action definitions).

Examples of workflows can be found in the Ap-
pendix starting on section A.5.

3.1.2 User Data

Traxgen workflows operate with user-specific data
that drives conditional branching and parameter
binding. User data is provided as JSON ob-
jects including fields such as (a) agent sequence
(a list of workflows to be executed), (b) cus-
tomer_id or other domain-specific identifiers, and
(c) user_provided_info as the subset of information
that a client LLM provides to the agent during in-
teraction. An example customer data can be found
in the Appendix section A.14.

3.2 Supported Trajectory Formats

Traxgen supports multiple trajectory formats (see
Appendix section A.15), enabling interoperability
with existing frameworks and tools:

Tool Only: Minimalistic format listing only the
sequence of tool calls.

Google Style: Format supported by Google’s Ver-
tex Al evaluation service.

LangChain Tool Style: Format compatible with
LangChain tool evaluation ecosystem.

Traxgen Style: Format capturing the agent name
as well as the tool calls with associated arguments
in tool call format.

3.3 System Architecture

The toolkit comprises four modular stages, repre-
sented in Algorithm 1:

(1) Workflow Interpretation. Each JSON work-
flow is parsed into an intermediate planner object
that formalizes all possible valid tool sequences,
given the specified logic. The planner applies: con-
ditional pruning based on user attributes, parame-
ter overrides, reordering respecting soft/hard con-
straints.

The logic system supports branching, re-
planning, and early termination.

(2) Trajectory Planning. Traxgen builds a di-
rected acyclic graph whose nodes are the remain-
ing tool steps and whose edges encode mandatory
precedences. The process unfolds as follows:

Node insertion: All candidate steps (from the
workflow’s ordered list) become nodes in an ini-
tially empty graph.

Conditional pruning: Nodes flagged by skip or
past an end_after target are removed, along with
their incident edges.

Edge wiring: The pruned list of steps is recon-
nected into a linear chain, creating one edge from
each step to its successor, enforcing hard ordering.

Cycle check: We assert the graph remains acyclic,
catching contradictory constraints.

Soft ordering: For each soft-ordering block (all of
whose members survived pruning), we generate all
intra-block permutations and splice them back into
the DAG’s fixed inter-block structure.

This yields a DAG backbone that guarantees
correctness under hard constraints, onto which soft-
block permutations layer to produce all valid tra-
jectories (see Algorithm 1).

(3) Output Realization. For each customer pro-
file, a fully grounded agent-level trajectory is gen-
erated and returned in all requested formats.

(4) Visualization and Auditing. To support
transparency and debugging, the toolkit provides
visualizations of the pruned dependency graph.
Multi-agent workflows are color-coded to highlight
agent-specific behaviors.

3.4 Robustness and Validation

We implement a validation layer that enforces syn-
tactic and semantic correctness at each stage. Er-
rors such as malformed workflows, invalid cus-
tomer profiles, missing tool parameters, or unsup-
ported API flags are detected early.

Algorithm 1 Traxgen Trajectory Generation

Require: Customers C, workflows W, formats F', visualize
flag v
Ensure: Trajectories 7
1: for all customer ¢ € C do

2: A < c.agent_sequence
3: if |[A] > 1 then
4: (7,7) < GEN_MULTI_AGENT(A, ¢, W)
5: else
6: T <— PARSE_WORKFLOW (W [A[0]], ¢)
> prune unreachable nodes, apply value overrides
7: APPLY_CONDITIONAL_ACTIONS(7)
> build pruned DAG including relevant tool calls
8: ADD_TOOLS_TO_GRAPH(7)

> generate valid paths (respect soft-blocks,
deduplicate)

9: T < T.GENERATE_VALID_TRAJECTORIES()
10: replicate 7 for each 7;
11: end if
12: for all (7, 7;) do
13: for all f € F'do
14: T, 5 += FORMAT(7;, Ti, f)
15: end for
16: if v then
17: VISUALIZE(7;, T3, A)
18: end if
19: end for
20: T e] + merge T . if multi-agent else T «
21: end for
22: return T

4 Experimentation

4.1 Data Construction

We generate data for nine customer-service work-
flows using a structured three-stage process:

Stage I: Workflow design. We manually de-
fine structured JSON workflows, specifying the se-
quence of tool calls, parameter bindings, and policy
constraints using a compact control-flow language
(e.g., skip, end_after, override_trajectory).
Three workflows were generated for each of the
three complexity tiers (see §4.3).

Stage I1: Customer profile generation. For each
workflow, we create a pool of diverse customer

profiles in JSON form, populated via templated
sampling supported by Traxgen. Profiles include
relevant user-specific information (e.g., address,
product ID, leave dates) required to instantiate tool
parameters.

Stage III: Trajectory Annotation and Verifica-
tion. We use TraxGen to compile each work-
flow—profile pair into a fully grounded, determinis-
tic trajectory. Two annotators, blinded to the gener-
ation source, validate whether each output trajec-
tory strictly adheres to the policy logic defined in
the routine and is consistent with the correspond-
ing customer data. Annotators were provided with
structured scoring guidelines to assess tool order,
parameter correctness, conditional execution, and
agent boundaries. A trajectory is marked as valid
only if it fully satisfies all policy constraints. De-
tailed annotation instructions and error tag defini-
tions are provided in Appendix A.16.

4.2 Key Characteristics

Deterministic Trajectory-Based Evaluation We
differ from prior tool-use benchmarks (Qin et al.,
2023a; Yao et al., 2024) by abstracting away open-
ended creativity and nuanced interpretation from
the evaluation process. Rather than relying on
live API calls or stochastic user goals with binary
success/failure outcomes, we implement a repro-
ducible, rule-based evaluation framework focused
on trajectory conformance.

Each task is constructed with a fixed user in-
tent and a fully specified customer profile, ensur-
ing that there exists a predetermined set of correct
trajectories consistent with domain policy. This
design enables exact-match comparison between
model outputs and gold reference paths, evaluat-
ing performance not just on final outcomes but
on whether models follow the correct sequence of
actions throughout the entire process. The focus
on trajectory conformance rather than end-state
success directly mirrors enterprise workflow re-
quirements, where compliance, auditability, and
traceability are non-negotiable for production de-
ployment.

Multi-Intent and Multi-Agent Tasks To simu-
late longer-horizon interactions, we also include a
subset of tasks that require planning across multi-
ple linked intents (e.g., BookFlight followed by
CancelFlight). These tasks are modeled as modu-
lar, multi-agent trajectories, where each sub-intent
is handled by an individual policy workflow. This

structure supports evaluation of inter-agent coordi-
nation and policy handoff.

4.3 Data Distribution and Complexity Levels

Workflow Complexity We categorize workflow
into three levels of complexity: simple (linear or
near-linear flows with minimal conditionals), in-
termediate (moderate branching and optional soft
ordering), and complex (nested conditionals, soft
orderings across multiple tool sets, and strong re-
liance on contextual variables).

Data Distribution To balance annotation effort
and task coverage, we sample 100 customer pro-
files per complex intent, 75 per intermediate in-
tent, and 50 per simple intent. This distribution
reflects the increased diversity and error surface in
complex workflows, while ensuring robust metric
stability across all tiers. In total, we include 775
task instances and 71 unique tools, with over 10%
comprising multi-intent cases.

Intent Complexity Domain # Test Cases # APIs
checkOrderStatus Simple E-Commerce 50 3
checkProductAvailability Simple E-Commerce 50 5
resendEmailReceipt Simple E-Commerce 50 4
submitTimeOffRequest Intermediate HR 75 8
updateAddress Intermediate HR 75 7
accountSuspensionRequest Intermediate HR 75 7
bookFlight Complex Travel 100 12
cancelFlight Complex Travel 100 12
flightDisruption Complex Travel 100 13

Table 1: Intents categorized by complexity, domain,
number of test cases, and number of APIs.

4.4 General Experimentation Setup

Across all experiments, we task models with gener-
ating agent trajectories conditioned on a user intent,
customer profile, and workflow. We evaluate a
range of prompting strategies (vanilla, ReAct, Re-
Act with few-shot), input representations (natural
language vs. structured JSON), and workflow com-
plexity levels. Both our custom generation pack-
age Traxgen and multiple LLMs are tested under
these conditions. Outputs are compared against the
human-validated reference trajectories.

4.5 Evaluation Metrics

To handle multiple predicted and gold trajecto-
ries—due to soft ordering or multi-output mod-
els—we align each prediction to its best-matching
ground-truth trajectory using the Hungarian algo-
rithm (Kuhn, 1955), maximizing a chosen similar-
ity metric. We then evaluate the aligned pairs using
the metrics below.

Let G and P be the sets of ground-truth
and predicted trajectories (each a sequence of
(tool, params) steps).

Exact Match and Count Agreement We com-
pute Exact Match as 1(P = G), a binary indicator
of set equality (ignoring order), and Count Agree-

ment as (%) x 100%, capturing over- or under-

prediction in number of trajectories predicted.

Tool- and Parameter-Level PRF We flatten
each matched trajectory pair into a multiset of
tools 7 = [t1,t2,...]| and a multiset of parame-
ter triplets P = [(t, k, v);], where each ¢ is a tool,
k a parameter key, and v its value. We compute
precision, recall, and F1 based on multiset overlap
(ignoring order): true positives (TP), false posi-
tives (FP), and false negatives (FN) are counted by
comparing predicted elements against ground truth.
Standard PRF metrics are reported separately for
tools and parameter triplets.

Contiguous Overlap Length (CO) Measures
the longest substring C' shared between G and P:

C =max{k:Git¢=Pjpeforl =0,...,k—1}.

We report the percentage of G recovered in a single
uninterrupted chunk as 100 x %

Prefix Length. Captures the longest common
prefix L between G and P:

L =max{k:G, =P;foralli=1,...,k}.

We report the normalized percentage as
PrefixScore(G, P) = 100 x ﬁ

Unmatched ground-truth trajectories are ex-
cluded from PRF and length calculations but con-
tribute to the Count Agreement metric. This sepa-
ration ensures trajectory-level quality is evaluated
independently from prediction quantity.

5 Experiment 1: Traxgen Evaluation

5.1 Experiment-Specific Setup

We assess Traxgen’s ability to generate accurate
trajectories from structured workflows and user
profiles. We evaluated Traxgen on the same inputs
and compared its outputs to the validated refer-
ences using the metrics in 4.5. As a control, we
include LLM baselines prompted with either (a) the

Routine Complexity DeepSeek Gemini GPT4.1 Llama4 Mistral Sonnet Package

Complex workflow 28.82 5.01 4.48 14.26 8.70 7.43 0.00048337
Intermediate workflow 16.78 2.87 3.52 7.45 5.06 4.81 0.00017534
Simple workflow 9.30 1.53 2.08 3.28 322 3.60 0.00009979

Table 2: Average runtime (seconds) per trajectory by model across routine complexities.

original JSON workflows or (b) equivalent natural-
language descriptions, isolating the impact of struc-
tured input. A full analysis of LLM performance
appears in Section 6.

5.2 Results

Traxgen achieves 100% alignment with the gold
trajectories across all evaluation metrics, validat-
ing its ability to deterministically and accurately
capture conditional workflow logic (see Appendix
Table 5). This confirms its suitability as a ground-
truth generator for downstream benchmarking.

Compared to twelve LLM configurations (six
models each run with both JSON-structured and
natural-language workflow inputs under a uniform
prompting strategy) Traxgen consistently outper-
forms across all evaluation metrics. While the
full LLM benchmark is deferred to Section 6, we
note here that Traxgen’s performance is not only
more accurate but also significantly more efficient.
Traxgen eliminates the need for token-based in-
ference, achieving median speedups of 30,000x
on simple workflow and over 17,000x across all
complexity levels (see Table 2). Moreover, unlike
LLMs, which process an average of 750-3,400
tokens per example (see Appendix tables 6, 7),
Traxgen executes near-instantaneously and incurs
minimal compute and energy costs. Our method
lowers environmental impact and enhances repro-
ducibility, offering a more sustainable and efficient
solution for large-scale benchmarking.

6 Experiment 2: LLM Benchmarking

To assess in-context planning, we design a suite of
controlled experiments that isolate the planning
stage of tool use. The benchmark abstracts away
execution, focusing on the model’s ability to
generate policy-compliant trajectories from user
instructions and structured workflows. Each task re-
quires reasoning over customer data and multi-step
workflows—selecting tools, binding parameters,
and handling conditionals—in a single forward
pass. To ensure broad coverage, we evaluate six
diverse LLMs spanning architectures, openness,
and scale: open models DeepSeek-Chat-v3-0324,

Mistral-7B-Instruct, LLaMA-4-Maverick,
and proprietary ones Gemini-2.0-Flash-001,
Claude-3.7-Sonnet, and GPT-4.1. Our setup
follows plan-first evaluation protocols (Zheng
et al., 2024), enabling deterministic assessment of
planning quality without interactive noise.

6.1 Experiment-Specific Setup

We perform three controlled studies, each isolat-
ing a different variable that can affect trajectory-
planning quality: representation of the workflow,
prompt engineering, and inference-time search.
The same nine workflows and evaluation metrics
are used throughout, so any performance change
can be attributed to the factor under study.

Study 1: Input Representation (Natural Lan-
guage vs. JSON. Trajectory planning often in-
volves structured task representations (e.g., graphs,
trees, JSON). However, it remains unclear how
much of an LLM’s success stems from the struc-
ture itself versus the model’s understanding of task
semantics. To isolate this factor, we compared each
model’s performance when given (a) the natural
language description of the workflow, and (b) the
equivalent structured JSON representation (used in
Traxgen) across the three complexity levels. All
other prompt elements were held constant.

Study 2: Prompt-Engineering Strategies Prompt-
ing strategies influence model behavior, espe-
cially in constrained reasoning tasks. We tested
three prompt designs: Vanilla prompt, a mini-
mal instruction-only setup with no reasoning steps;
ReAct-style prompt, which interleaves reasoning
(thought) and action steps; and ReAct + few-shot,
which follows the same format as ReAct but is aug-
mented with a worked example matched to the rou-
tine’s complexity. This sub-experiment used two
representative models—ILlama-4 Maverick (open)
and Sonnet 3.7 (proprietary)—to strike a balance
between coverage and depth.

Study 3: Direct Generation vs. Guided Search
A third variable in our experimental setup is the

inference strategy. Recent work on ToolLLM intro-

duced DFSDT, a depth-first search—based decision-

tree algorithm that augments an LLM with explicit
backtracking and branch exploration (Qin et al.,
2023b). We adapt DFSDT by replacing live APIs
with static, simulated tool functions, enabling deter-
ministic and side-effect-free execution within each
task. The same underlying LLM is used to gener-
ate both ReAct-style direct trajectories (Direct) and
search-guided trajectories via DFSDT, enabling a
clean comparison of (i) pure in-context planning
versus (ii) planning with external tool-based feed-
back. To strike a balance between evaluation cost
and insight depth, we limited this sub-experiment
to 50 customers per domain. This subset was suffi-
cient to capture meaningful trends in performance
while controlling for DFSDT’s longer execution
time and additional system complexity.

6.2 Results

Trajectory Quality Evaluation The raw trajec-
tories generated by the LLMs often required addi-
tional cleaning before they could be directly used or
compared to the ground truth. To address this, we
developed a Python script to standardize and clean
the outputs. Common issues included the presence
of markdown fences surrounding the code, bracket
mismatches, and null literals. Notably, DeepSeek
showed a higher tendency to hallucinate, frequently
returning plain code snippets without proper struc-
ture. Detailed cleaning metrics and error frequen-
cies are reported in the appendix table 9.

Model Comparison Model performance on com-
plex workflows shows a stratification by model
class and format. For both JSON and natural
language, Gemini and Sonnet outperform other
models across nearly all metrics. Sonnet demon-
strates strong tool and parameter-level accuracy on
complex workflow, while Gemini shows compa-
rable or better performance on intermediate work-
flows. LLaMA4 and GPT-4.1 follow closely, with

strong F1 and prefix scores but lower exact match
and CMR. In contrast, Mistral and DeepSeek trail
behind across most metrics, particularly on com-
plex workflows. These findings suggest that Gem-
ini and Sonnet are best suited for handling high-
complexity, multi-step tasks in both formats.

Complexity Comparison LLM performance
varies across different level of complexities. Figure
1 shows how all models except Mistral performed
relatively well based on F1 score for tool and pa-
rameters in simple complexity tasks. However,
models show inconsistent performance in interme-
diate tasks illustrated by larger variance, and tend
to degrade over complexity in JSON prompt for-
matting.

Prompt Formatting Comparison For intermedi-
ate workflow, JSON formatting consistently outper-
formed all other options across every model and
metric. In contrast, simple workflow showed mini-
mal sensitivity to formatting choice—performance
differences were negligible and varied idiosyncrati-
cally by model. The most striking effects emerged
in complex workflow, where formatting had a sub-
stantial impact: while JSON remained optimal for
the most capable models (such as GPT-4.1 and
Claude Sonnet), Python formatting yielded dra-
matic improvements for mid-tier and open-source
models (including Deepseek, Gemini, and Llama4)

Prompt Engineering Method Comparison Re-
sults indicate that prompt style influences perfor-
mance differently depending on routine complex-
ity and model type (see Appendix Table 11). For
simple workflow, all prompt types achieved near-
perfect exact-match and parameter F1 scores, with
slight gains observed in the ReAct format. For inter-
mediate workflow, the vanilla prompt surprisingly
yielded the highest exact-match scores for Llama-4
in natural language format, while Sonnet favored
ReAct prompts, suggesting model- and domain-

Tool + Parameter F1 Scores by Model and Workflow Type

Mean Param F1 Score
o o o o =
v » o o o

e
o

Mistral
JSON

Mistral Gemini
Python

llllll Llama4

Python

Llama4
JSON

T T

S

Model
(Workflow Format)

onnet 3.7 Sonnet 3.7
JSON

] TR

Complex

Deepseek
JSON

Gptd.1
JSON

onnet Deepseek Gpta.1
Python Python Python

Figure 1: Mean F1 scores for tool and parameter extraction across models and workflow formats, stratified by

workflow complexity.

Workflow Complexity

Intermediate

Model [Format | Exact-Match (%) | Count (%) [ToolFI | ParamF1 [CMR % tools [CMR % params [Prefix % tools [Prefix % params
Complex workflow
Mistral J 0.0 + 0.0 69.8 + 34.4 0.525 + 0.335 | 0.414 £+ 0.307 | 36.7 £29.2 29.4 +24.9 33.5+29.6 18.3 £ 26.6
Deepseek J 5.5+228 73.9 £34.7 [0.706 & 0.291 | 0.659 £ 0.322 | 48.1 £ 30.6 46.6 £ 30.3 324 +354 27.2 £35.7
Gemini J 11.5+ 319 84.2 +36.6 | 0.759 4 0.333 | 0.762 4+ 0.340 | 67.1 £ 34.2 66.3 + 34.0 57.1 £40.8 56.4 + 40.4
Sonnet J 38.5 +48.7 69.8 +34.2 [0.975 + 0.059 | 0.977 £ 0.059 | 93.6 £ 15.8 919 £+ 16.9 929 + 18.0 91.2 + 189
Llama4 J 15.2 £+ 36.0 100.3 +37.8 | 0.877 £0.117 | 0.870 £ 0.135 | 66.2 4 25.8 63.9 +£25.9 60.8 + 30.8 58.5 + 30.6
Gpt4.1 J 26.0 +43.9 70.4 £ 34.5 [0.940 & 0.098 | 0.938 £ 0.112 | 76.1 £ 25.0 75.2 £25.0 73.8 +28.1 73.1 £27.9
“Mistral | TP 7|7 0.2£50 T 69.8£343[0.505£0311]0432F0.2937 30.6 £24.7 | 240£196 | 264£249 | 2TE£19.0
Deepseek P 13.5+34.2 74.1 £34.1 [0.775 £ 0.235|0.718 £ 0.291 | 58.1 £31.3 554 +31.8 433 £ 41.0 399 +41.6
Gemini P 23.8 +42.6 87.1 =253 |0.914 £0.129 [0.918 & 0.139 | 77.6 +22.9 76.8 £+ 23.5 65.1 + 36.3 65.1 +36.3
Sonnet P 16.5 +£37.2 70.1 £ 34.2 [0.954 4+ 0.071 | 0.962 &+ 0.064 | 84.0 + 19.1 82.7 + 204 754 + 30.1 74.9 + 30.1
Llama4 P 148 £35.5 84.9 +28.5 | 0.920 £ 0.123 [0.924 4 0.127 | 75.6 + 25.0 73.5 £ 258 69.1 +32.3 67.3 £+ 32.7
Gpt4.1 P 16.5 +37.2 71.0 £ 33.8 [0.930 & 0.088 | 0.929 + 0.086 | 72.6 £ 26.4 70.1 £27.0 65.5 £+ 33.3 64.2 + 32.6
Intermediate workflow
Mistral J 2.7+ 16.1 67.3 £23.8 [0.658 + 0.290 | 0.566 + 0.333 | 53.8 £ 28.9 46.5 £ 28.4 50.2 + 31.1 34.0 +35.3
Deepseek J 49.8 + 50.1 81.8 +24.6 | 0.814 £0.291 | 0.743 4+ 0.349 | 83.6 +-29.3 753+ 324 76.6 + 40.7 60.8 + 48.0
Gemini J 76.9 £ 42.2 100.0 £ 0.0 {0.972 4 0.081 | 0.905 + 0.205 | 98.5 + 7.1 94.3 + 14.3 985+ 7.1 943 £+ 14.3
Sonnet J 59.6 + 49.2 85.1 = 24.8 | 0.968 £ 0.094 | 0.955 £ 0.149 | 96.3 4 12.7 96.3 + 12.7 94.2 +20.2 94.2 +20.2
Llama4 J 43.1 £49.6 107.6 £ 58.1 | 0.919 £ 0.086 | 0.912 £ 0.138 | 92.9 4+ 17.7 924 +18.1 92.5+ 18.8 92.0 £ 19.1
Gpt4.1 J 63.6 £ 48.2 81.8 & 24.1 | 0.994 £ 0.047 | 0.988 4+ 0.089 | 99.1 £ 6.6 99.1 £ 6.6 99.1 £ 6.6 99.1 £ 6.6
“MistralT | TP 7| T 6.7£250 T 67.14£26.0 |0.376 £0.394]0.325£0.3787 284 £33.4 | 223£309 | 222£335 |7 T4T7E£30.7
Deepseek P 3.6+ 18.6 68.0 +24.5 [0.452 + 0.378 | 0.421 £ 0.405 | 33.5 +30.4 32.9 +30.3 9.3 +24.7 8.5 +23.7
Gemini P 64.0 + 48.1 83.3 +23.6 | 0.662 £ 0.470 | 0.657 &= 0.471 | 65.7 & 46.9 65.7 + 46.9 65.4 +47.1 65.4 +47.1
Sonnet P 35.6 +48.0 75.8 £29.2 [0.600 & 0.449 | 0.563 £ 0.462 | 57.2 £45.2 572 +452 549 + 46.4 54.9 + 46.4
Llama4 P 444 +49.8 85.6 +22.7 | 0.640 £ 0.449 | 0.627 4 0.454 | 65.8 4+ 46.5 65.5 +47.0 65.5 +47.0 65.5 +47.0
Gpt4.1 P 449 +49.8 69.8 +29.8 [0.662 +0.471 | 0.658 + 0.472 | 65.9 £+ 47.1 65.9 +47.1 65.7 +47.2 65.7 £ 47.2
Simple workflow
Mistral J 233+ 424 99.3 +£8.2 |0.738 £0.325 | 0.574 £ 0.385 | 66.5 4+ 35.5 49.8 +38.3 60.0 + 42.0 37.3 +43.8
Deepseek J 30.0 + 46.0 99.3 +£8.2 |0.881 £0.191 | 0.912 £ 0.195 | 81.2 & 254 75.3 +£24.4 50.0 + 50.2 30.2 +45.9
Gemini J 68.7 £ 46.5 100.0 + 0.0 | 0.955 4 0.068 | 0.998 + 0.027 | 92.0 £ 12.1 92.0 £ 12.1 69.0 + 46.2 69.0 £ 46.2
Sonnet J 100.0 £ 0.0 100.0 = 0.0 | 1.000 = 0.000 | 1.000 £ 0.000 | 100.0 % 0.0 100.0 + 0.0 100.0 + 0.0 100.0 + 0.0
Llama4 J 96.0 + 19.7 104.0 £ 19.7 | 0.999 £ 0.009 | 0.999 £ 0.012 | 99.7 + 4.1 99.7 + 4.1 99.7 + 4.1 99.7 £ 4.1
Gpt4.1 J 96.7 £+ 18.0 100.0 £ 0.0 {0.992 4 0.042 | 0.991 + 0.054 | 98.5 +8.3 98.5 £ 8.3 98.0 £ 11.4 98.0 114
“Mistral | TP 7| T 32.0£46.8 1053 F 74.0 | 0.700 £ 0.359 | 0.566 £ 0.407 | 63.0 £39.2 |” 507 E£40.1 | 562£451 |7 08 FE451
Deepseek P 28.0 & 45.1 993 +£8.2 |0.825+£0.214 | 0.870 £ 0.242 | 74.3 +24.2 68.0 + 28.7 29.5+45.6 28.8 +£44.9
Gemini P 447 £ 499 100.0 + 0.0 | 0.874 £0.147 | 0.948 £ 0.132 | 80.5 4 20.5 79.8 £ 21.6 447 £ 49.9 447+ 499
Sonnet P 99.3 + 8.2 100.0 £ 0.0 {0.999 4+ 0.012 | 1.000 + 0.000 | 99.8 + 2.0 99.8 +£2.0 99.3 £ 8.2 99.3 +£8.2
Llama4 P 100.0 £ 0.0 100.0 £ 0.0 | 1.000 4 0.000 | 1.000 % 0.000 | 100.0 + 0.0 100.0 £ 0.0 100.0 £ 0.0 100.0 £ 0.0
Gpt4.1 P 96.0 + 19.7 100.0 £ 0.0 | 0.994 4 0.028 | 1.000 = 0.000 | 99.0 4.9 99.0 £ 4.9 96.0 + 19.7 96.0 + 19.7

Table 3: Performance across simple, intermediate, complex workflows. Format: J=JSON, P=Natural Language.

specific prompt sensitivity. In complex workflows,
ReAct consistently outperforms the other methods
in terms of Tool F1. Notably, few-shot prompt-
ing did not consistently outperform simpler prompt
designs, indicating that adding examples may not
universally benefit constrained reasoning tasks.

Direct Generation and Guided Search Compar-
ison Appendix Table 10 shows that the DFSDT
approach underperforms direct generation across
all complexity levels. One consistent pattern is that
DFSDT-generated trajectories often skip required
steps defined in the routine, leading to low exact-
match and step-level Fj scores. A likely contribu-
tor is the way in which DFSDT determines when a
plan is complete—potentially stopping before all
mandatory steps in the policy have been executed.
This highlights a limitation of search-based plan-
ning without explicit end-condition supervision.

7 Discussion

We introduced Traxgen, a deterministic trajectory
generation framework for reproducible, scalable
benchmarking of tool-augmented LLM agents. The
toolkit aligns perfectly with manually validated

ground truth and outperforms LL.M-based base-
lines by orders of magnitude in both accuracy
and efficiency. Crucially, Traxgen ensures full
data sovereignty by requiring no external model
inference during generation. Beyond performance,
Traxgen reframes planning evaluation by remov-
ing inference-time randomness, enabling stable, re-
peatable comparisons across workflows and agents.
Unlike prompting-based methods, which are sensi-
tive to phrasing and sampling, it offers a consistent
reference point for empirical validation.

Our ablation studies show that input struc-
ture plays a critical role in LLM planning:
JSON schemas consistently outperform natural
language, and ReAct-style prompting yields only
marginal, inconsistent gains. These trends suggest
that architectural improvements—such as schema-
constrained decoders—may be more impactful than
further prompt tuning. Ultimately, Traxgen pro-
vides a reliable foundation for evaluating Al agents
in planning-intensive settings, where reproducibil-
ity, accuracy, and transparency are essential.

8 Limitations

While Traxgen enables reproducible, determinis-
tic evaluation of agent trajectories, it has not yet
been validated on real-world enterprise workflows,
which often involve complex interdependencies,
multimodal inputs (e.g., images, logs), and behav-
iors like retries or non-idempotent calls. Deter-
ministic enumeration of soft-order permutations
can also cause factorial growth, limiting scalabil-
ity for large workflows; we cap block sizes to en-
sure tractability, but broader use may require sam-
pling or summarization. A risk, however, is that
Traxgen’s rigidity also reduces flexibility: unlike
generative agents, it cannot adapt to novel or am-
biguous inputs without pre-specified logic. Finally,
our LLM benchmarking (T2) is limited by model
access and prompt design assumptions, which may
not reflect newer architectures or alternative strate-
gies. While these limitations impact deployment,
Traxgen still provides a robust platform for experi-
mental evaluation.

References

Lize Alberts, Benjamin Ellis, Andrei Lupu, and Jakob
Foerster. 2024. Curate: Benchmarking personalised
alignment of conversational ai assistants. arXiv
preprint arXiv:2410.21159.

David Castillo-Bolado, Joseph Davidson, Finlay Gray,
and Marek Rosa. 2024. Beyond prompts: Dynamic
conversational benchmarking of large language mod-
els. arXiv preprint arXiv:2409.20222.

Dillon Z. Chen, Pulkit Verma, Siddharth Srivastava,
Michael Katz, and Sylvie Thiébaux. 2024. Ai plan-
ning: A primer and survey (preliminary report).
Preprint, arXiv:2412.05528.

Benjamin Feuer, Micah Goldblum, Teresa Datta,
Sanjana Nambiar, Raz Besaleli, Samuel Dooley,
Max Cembalest, and John P Dickerson. 2024.
Style outweighs substance: Failure modes of llm
judges in alignment benchmarking. arXiv preprint
arXiv:2409.15268.

Google Cloud. 2024. Introducing agent evaluation in
vertex ai gen ai evaluation service. Accessed: 2025-
04-13.

Crina Grosan and Ajith Abraham. 2011. Rule-Based
Expert Systems, pages 149-185. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, and 1 others.
2024. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhengiang Gong, and 1 others. 2023. Meta-
tool benchmark for large language models: Deciding
whether to use tools and which to use. arXiv preprint
arXiv:2310.03128.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83-97.

Labelbox. 2025. How to train and evaluate ai agents and
trajectories with labelbox. Accessed: 2025-04-13.

LangChain. 2024. Evaluation concepts. Accessed:

2025-04-13.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au-
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma,
Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming
Pang. 2024a. Toolsandbox: A stateful, conversa-
tional, interactive evaluation benchmark for 1lm tool
use capabilities. Preprint, arXiv:2408.04682.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Au-
mayer, Feng Nan, Felix Bai, Shuang Ma, Shen Ma,
Mengyu Li, Guoli Yin, and 1 others. 2024b. Tool-
sandbox: A stateful, conversational, interactive eval-
uation benchmark for llm tool use capabilities. arXiv
preprint arXiv:2408.04682.

OpenAl. 2025. Openai agents sdk. Accessed: 2025-04-
13.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo
Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles,
Shelby Heinecke, Weiran Yao, Huan Wang, Sil-
vio Savarese, and Caiming Xiong. 2025. Apigen-
mt: Agentic pipeline for multi-turn data genera-
tion via simulated agent-human interplay. Preprint,
arXiv:2504.03601.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2023a. Toolllm:
Facilitating large language models to master 16000+
real-world apis. Preprint, arXiv:2307.16789.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, and 1 others. 2023b. Toolllm: Facilitating
large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789.

N.C. Russell, A.H.M. Hofstede, ter, W.M.P. Aalst, van
der, and N.A. Mulyar. 2006. Workflow control-flow
patterns : a revised view. BPM reports. BPMcenter.
org.

Guijin Son, Hyunwoo Ko, Hoyoung Lee, Yewon Kim,
and Seunghyeok Hong. 2024. Lim-as-a-judge & re-
ward model: What they can and cannot do. arXiv
preprint arXiv:2409.11239.

https://arxiv.org/abs/2412.05528
https://arxiv.org/abs/2412.05528
https://arxiv.org/abs/2412.05528
https://cloud.google.com/blog/products/ai-machine-learning/introducing-agent-evaluation-in-vertex-ai-gen-ai-evaluation-service
https://cloud.google.com/blog/products/ai-machine-learning/introducing-agent-evaluation-in-vertex-ai-gen-ai-evaluation-service
https://cloud.google.com/blog/products/ai-machine-learning/introducing-agent-evaluation-in-vertex-ai-gen-ai-evaluation-service
https://doi.org/10.1007/978-3-642-21004-4_7
https://doi.org/10.1007/978-3-642-21004-4_7
https://doi.org/10.1007/978-3-642-21004-4_7
https://labelbox.com/blog/how-to-train-and-evaluate-ai-agents-and-trajectories-with-labelbox/#enhance-agent-trajectory
https://labelbox.com/blog/how-to-train-and-evaluate-ai-agents-and-trajectories-with-labelbox/#enhance-agent-trajectory
https://labelbox.com/blog/how-to-train-and-evaluate-ai-agents-and-trajectories-with-labelbox/#enhance-agent-trajectory
https://docs.smith.langchain.com/evaluation/concepts#evaluators
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2408.04682
https://openai.github.io/openai-agents-python/
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik
Narasimhan. 2024. Taubench: A benchmark for
tool-agent-user interaction in real-world domains.
Preprint, arXiv:2406.12045.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Asaf Yehudai, Lilach Eden, Alan Li, Guy Uziel, Yilun
Zhao, Roy Bar-Haim, Arman Cohan, and Michal
Shmueli-Scheuer. 2025. Survey on evaluation of 1lm-
based agents. arXiv preprint arXiv:2503.16416.

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li,
Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu Hu,
Jie Tang, and Yisong Yue. 2025. Datascibench: An
Ilm agent benchmark for data science. Preprint,
arXiv:2502.13897.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, and
Denny Zhou. 2024. Natural plan: Benchmark-
ing llms on natural language planning. Preprint,
arXiv:2406.04520.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2023. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36:46595-46623.

10

https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2502.13897
https://arxiv.org/abs/2502.13897
https://arxiv.org/abs/2502.13897
https://arxiv.org/abs/2406.04520
https://arxiv.org/abs/2406.04520
https://arxiv.org/abs/2406.04520

A Appendix Contents
% it

Generating Trajectories with Traxgen i v v i vt ittt v o e 12
A.2 Traxgen supported workflows conditional actions 13
A3 TraxgenEvaluation Results i i i it i i it it ittt e e e e 14
A4 Main LLM ExperimentResults, 15
A.5 Simple Workflow - Check Order Status0ttt eeeeenn 18
A.6 Simple Workflow - Check Product Availability 19
A.7 Simple Workflow - Resend EmailRequest 20
A.8 Intermediate Workflow - Account Suspension Request 21
A.9 Intermediate Workflow - Submit Time Off Request 23
A.10 Intermediate Workflow - Update Address 25
A.11 Complex Workflow - Book Flighto 27
A.12 Complex Workflow - Cancel Flight, 29
A.13 Complex Workflow - Flight Disruption 31
Add UserDataExample ittt ittt tneenneeeeens 33
A.15 Traxgen Trajectory Format 0 i i i it i ittt ittt et e e 34
A.16 Annotator Instructions L e e e e e 35
Ad7 Acknowledgment L e e e e e e e 36

11

A.1 Generating Trajectories with Traxgen

pip install traxgen
from traxgen import generate_trajectories
customer_data = json.load(open("test_data/customer_data/simple_routine.json"))

workflow_data = {
"check_order_status”: json.load(open("simple/check_order_status.json")),
"resend_email_receipt”: json.load(open("simple/resend_email_receipt.json")),
"check_product_availability”: json.load(open("”simple/check_product_availability.json")),

output = generate_trajectories(
customer_data=customer_data,
routine_data=routine_data,
id_field='customer_id',
trajectory_format= ['google'],
output_path = 'output/simple_routines',
output_mode = return_format,
enable_visualization=False)

12

A.2 Traxgen supported workflows conditional actions

Logic Construct Definition

skip Skips the execution of one or more steps when a specified condition is met.

end_after Terminates the routine immediately after the specified step if the condition is met.
override_trajectory Replaces the default step sequence with a new list of steps, enabling a custom path.

all_of A composite condition that is satisfied only if **all** subconditions are true. Used within an if clause.
any_of A composite condition that is satisfied if **any** subcondition is true. Used within an if clause.

Table 4: Definitions of conditional actions supported in Traxgen JSON workflows.

13

A.3 Traxgen Evaluation Results

Routine Model Exact-Match (%) Count (%) Tool F1 Param F1 CO % tools CO % params Prefix % tools Prefix % params
Complex Package 100.0 £ 0.0 100.0 £ 0.0 1.0+0.0 1.0+0.0 100.0 £ 0.0 100.0 £ 0.0 100.0 £ 0.0 100.0 £ 0.0
Intermediate Package 100.0 £0.0 100.0 £ 0.0 1.0£0.0 1.0£0.0 100.0 £ 0.0 100.0 £0.0 100.0 £0.0 100.0 £0.0
Simple Package 100.0 £ 0.0 100.0 £ 0.0 1.0£0.0 1.0£0.0 100.0 £0.0 100.0 £0.0 100.0 £0.0 100.0 £ 0.0

Table 5: Package evaluation results across all routine complexities.

deviation across evaluation splits.

14

All metrics are reported as mean + standard

A.4 Main LLM Experiment Results

Workflow DeepSeek Gemini GPT-4.1 LLaMA4 Mistral Sonnet 3.7

Complex 2703.58 3371.62 2429.05 2872.32 3528.30 2921.56
Intermediate 1445.40 1707.81 1307.93 1388.18 1722.44 1536.91
Simple 868.06 984.62 786.44 791.65 1123.87 977.76

Table 6: Average total token usage per workflow complexity using structured JSON workflow instructions.

Routine DeepSeek Gemini GPT-4.1 LLaMA4 Mistral Sonnet
Complex 261545 3366.92 242530 2621.34 3279.63 2818.16
Intermediate 1041.62 1357.16 1001.81 103491 1448.38 1224.04
Simple 869.46 941.53 771.91 801.27 1133.48 953.47

Table 7: Average total token usage per workflow complexity using natural language workflow instructions.

Routine Py DeepSeek Py Gemini Py GPT4.1 PyLlamad4 Py Mistral Py Sonnet
Complex workflow 24.90 5.59 4.63 10.64 9.05 7.79
Intermediate workflow 10.59 2.55 3.12 5.05 7.08 5.32
Simple workflow 8.60 1.42 1.79 3.25 3.97 3.61

Table 8: Average runtime (seconds) per trajectory by Natural Language -based models across routine complexities.

15

Table 9: LLM Output Cleaning Metrics by Workflow Type, Workflow Format, and Model

=] g @« g
2 2 5 . g % 2 2
= S E § § E & ¢ . E
T Z T £ § = = 3 E = £ &
T 03 s = 3 % S : £ 3 £ s £
= e 4] z 3 S 3 £
= 5 : g £ & 2 & 2 i 2 =2 9 3 %
= z 3 =< = . —] 2 S
Workflow Format Model = & 5 & = = = 2 = = = z A =2 =
simple json deepseek 105 102 2 4 1 0 0 0 94 0 0 1 0 0 0
json gemini 150 150 0 0 0 0 0 0 150 0 0 0 0 0 0
json gpt4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
json llama4 17 17 0 0 0 0 0 0 17 0 0 0 0 0 0
json mistral 65 64 1 2 0 0 0 5 1 0 7 0 1 0 15
json sonnet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
py deepseek 114 109 2 9 3 0 0 0 103 0 0 3 0 0 0
py gemini 150 150 0 0 0 0 0 0 150 0 0 0 0 0 0
py gpt4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
py llama4 10 10 0 0 0 0 0 0 10 0 0 0 0 0 0
py mistral 85 83 2 3 0 0 0 21 5 0 12 2 1 2 9
py sonnet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
intermediate json deepseek 130 123 6 15 1 0 0 0 102 2 0 1 0 0 0
json gemini 225 225 0 0 0 0 0 0 225 0 0 0 0 0 0
json gptd.1 37 37 0 0 0 0 0 0 0 0 0 0 0 0 0
json llama4 71 71 0 0 0 0 0 0 71 0 0 0 0 0 0
json mistral 58 58 0 3 0 0 0 14 5 0 8 4 2 5 4
json sonnet 7 7 0 0 0 0 0 0 0 0 1 0 0 0 0
py deepseek 164 157 3 10 4 0 0 0 147 3 2 1 1 0 3
py gemini 225 225 0 0 0 0 0 0 225 0 0 0 0 0 0
py gptd.1 45 45 0 0 0 0 0 0 0 0 0 0 0 0 0
py llama4 155 155 0 1 0 0 0 0 155 0 3 12 0 0 0
py mistral 114 113 1 4 0 0 0 13 15 0 6 2 0 12 9
py sonnet 8 8 0 0 0 0 0 0 0 0 5 0 0 0 0
complex json deepseek 289 264 19 18 6 1 0 1 246 2 0 16 0 1 0
json gemini 400 400 0 0 0 0 0 0 400 0 0 6 0 0 0
json gpt4.1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
json llama4 126 125 1 1 0 0 0 0 124 0 0 13 0 0 0
json mistral 111 109 2 14 0 2 5 9 2 1 5 9 1 7 56
json sonnet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
py deepseek 302 297 1 15 4 0 0 0 289 0 0 3 0 0 1
py gemini 400 400 0 2 0 0 0 0 400 0 0 33 0 0 0
py gpt4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
py llama4 160 159 1 1 0 0 0 0 158 0 0 7 0 0 0
py mistral 145 144 1 10 0 0 8 15 12 2 8 27 0 24 48
py sonnet 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

16

Model [Format [Exact-Match (%) [Tool FI [ParamF1 [CMR % tools | CMR % params [Prefix % tools [Prefix % params
Complex workflow
Sonnet P 0.0 £ 0.0 0.354 £0.419 | 0.228 £ 0.263 | 26.3 4+ 35.9 16.7 £ 21.5 244 +36.4 15.0 £ 21.6
Llama4 P 0.0 £ 0.0 0.279 £ 0.253 | 0.227 £ 0.258 | 17.6 4 20.6 149 + 18.3 12.1 +20.1 10.7 + 18.0
Gpt4.1 P 0.0 £ 0.0 0.516 4 0.321 | 0.400 = 0.191 | 33.3 £ 31.6 23.6 £ 18.7 253 £355 162 £21.2
Intermediate workflow
Sonnet P 0.0 £0.0 0.478 £+ 0.254 | 0.306 = 0.198 | 38.7 £ 30.9 237 £17.1 31.0 £34.8 19.5 £ 19.0
Llama4 P 0.0 £ 0.0 0.531 4+ 0.222 [0.314 4+ 0.205 | 41.6 £ 30.0 273+ 14.8 344 +33.1 223 +£17.6
Gpt4.1 P 0.0 £ 0.0 0.556 £ 0.159 | 0.353 £ 0.176 | 44.1 +24.8 26.7 £+ 14.5 33.1 +£31.0 220+ 172
Simple workflow
Sonnet P 8.0 +272 0.949 £0.121 [0.110 £ 0.289 | 94.9 4+ 12.0 38.7 £ 18.1 949 + 12.1 38.7 £ 18.1
Llama4 P 14.7 £ 35.5 0.840 £ 0.178 | 0.438 4+ 0.452 | 82.2 4234 55.6 £27.2 67.1 +£35.8 43.8 +28.7
Gpt4.1 P 8.7 +282 0.892 4 0.141 | 0.307 4+ 0.429 | 86.9 £ 16.3 45.1 £21.2 753 £37.1 34.0 + 24.6

Table 10: Model performance across complex, intermediate, and simple workflow.

Model [Format [Prompt Type [Exact-Match (%) [Count (%) [ToolFI [ParamF1 [CMR % tools [CMR % params [Prefix % tools [Prefix % params
Complex workflow
Llama4 J react few shot 10.8 £ 31.0 91.2 £41.7 | 0.834 £0.183 | 0.831 £ 0.195 | 71.3 234 68.8 £ 23.7 69.5 £25.8 66.8 £ 26.2
Llama4 J react 15.2 £36.0 100.3 + 37.8 | 0.877 = 0.117 | 0.870 4= 0.135 | 66.2 £ 25.8 63.9 £ 259 60.8 + 30.8 58.5 £ 30.6
Llama4 J vanilla 12.5 £33.1 91.7 £40.7 | 0.817 £ 0.167 | 0.812 £ 0.181 | 65.4 +25.5 64.6 £ 26.0 58.9 £31.9 58.5 £32.0
“Llamad |~ P ~ |Treactfewshot | ~ 20.0+£40.1" T 86.3 £31T.0 | 0.898 = 0.1507| 0.896 = 0.154 833 £21.2 | 8§1.8£2T4 | 80.7£255 | 793£253 ~
Llama4 P react 14.8 +35.5 84.9 +28.5 [0.920 +0.123 | 0.924 £ 0.127 | 75.6 = 25.0 735 +£258 69.1 £32.3 67.3 £ 32.7
Llama4 P vanilla 15.5 £36.2 82.7 +27.3 [0.882 + 0.155 | 0.887 £ 0.162 | 74.4 £ 25.1 73.7 £25.6 68.4 £+ 32.2 68.1 £32.3
“Sonnet | ~ T T |TreactTew shot | ~ 41.8449.47 T 80.54730.0 | 0.944 £ 0.13870.945 £0.136 | 964 £10.2 |~ 945£ 119 [96F4£102 | 435 £119 ~
Sonnet J react 38.5 +48.7 69.8 £ 34.2 | 0.975 £ 0.059 | 0.977 £ 0.059 | 93.6 &+ 15.8 91.9 £ 16.9 92.9 + 18.0 91.2 £ 189
Sonnet J vanilla 50.5 4+ 50.1 80.4 £ 30.5 | 0.919 £ 0.186 | 0.919 4 0.188 | 90.1 £ 22.0 88.8 +22.4 87.6 + 26.4 86.5 £ 26.5
“Sonnet |~ P 7 |Treactfew shot| ~ 19.5439.7" T 76.1432.17|0.925+10.14270.926 £ 0.139] 883 £ 179 | 86.7+ 18.3 [85.9£224 |~ 844 £225 ~
Sonnet P react 16.5 £37.2 70.1 £34.2 | 0.954 £ 0.071 | 0.962 £ 0.064 | 84.0 & 19.1 82.7 + 20.4 75.4 £ 30.1 74.9 £ 30.1
Sonnet P vanilla 0.0 £ 0.0 69.6 £ 34.3 |0.049 £+ 0.071 | 0.031 £0.050 | 42+7.1 1.0+ 44 0.0 £ 0.0 0.0 £ 0.0
Intermediate workflow
Llama4 J react few shot 62.2 £+ 48.6 96.4 £ 13.7 {0937 £0.132| 0911 £ 0.180 | 95.6 & 15.2 94.4 £ 16.6 94.6 £ 18.6 929 £21.0
Llama4 J react 43.1 £ 49.6 107.6 £ 58.1 | 0.919 4 0.086 [0.912 4+ 0.138 | 92.9 + 17.7 92.4 £ 18.1 925+ 18.8 92.0 £ 19.1
Llama4 J vanilla 39.1 +489 100.2 £21.4 {0917 £ 0.110 [0.903 4+ 0.170 | 87.4 £ 22.4 86.3 + 23.3 87.1 +22.9 85.6 + 24.6
“Llamad |~ P 7~ |Treactfew shot| ~ 56.0 £49.7" | 83.34£23.6 | 0.652 £ 0.456 | 0.629 £ 0469 64.6 £46.0 |~ 626 £46.7 | 63.7£47.1 |~ 620£472 ~
Llama4 P react 444 +49.8 85.6 £ 22.7 | 0.640 &= 0.449 | 0.627 £ 0.454 | 65.8 & 46.5 65.5 £47.0 65.5 £47.0 65.5 £47.0
Llama4 P vanilla 90.7 £ 29.2 100.0 £ 0.0 | 0.985 + 0.064 | 0.971 £ 0.113 | 98.1 +8.7 96.8 £ 12.1 96.9 £+ 15.1 952 £ 18.6
“Sonnet |~ T T |Treactfewshot| T 26.24+ 441" T 68.4£24.27|0.827 1037170826 = 0.374 822 £37.3 | 822£373 | 81.6£383 | 81.6+£383
Sonnet J react 59.6 £ 49.2 85.1 +24.8 [0.968 & 0.094 | 0.955 £ 0.149 | 96.3 £ 12.7 96.3 £ 12.7 94.2 +20.2 94.2 £20.2
Sonnet J vanilla 66.2 + 47.4 90.4 £+ 19.7 [0.970 4+ 0.075 | 0.964 + 0.106 | 98.7 + 7.5 98.7+7.5 98.1 £ 114 98.1 £ 114
“Sonnet |~ P 7 |Treactfew shot| ~ 45.3449.97 T 73.8425.0 | 0.636 = 0.470 | 0.635 £ 0.476 | 62.8 £46.8 | 62.6£47.0 [59.T£488 | 59.T£488 ~
Sonnet P react 35.6 £48.0 75.8 £29.2 | 0.600 + 0.449 | 0.563 £+ 0.462 | 57.2 +-45.2 572 +£452 549 £ 464 549 £ 464
Sonnet P vanilla 0.0 £ 0.0 66.4 £ 24.0 |0.078 £ 0.098 | 0.035 £ 0.074 | 7.8 9.8 1.5+62 0.0 £ 0.0 0.0 £ 0.0
Simple workflow
Llama4 J react few shot 67.3 £ 47.1 100.0 £ 0.0 | 0.955 £ 0.065 | 0.948 £+ 0.076 | 91.2 + 13.3 912 £133 912 £ 133 912 £133
Llama4 J react 96.0 £+ 19.7 104.0 £ 19.7 | 0.999 4 0.009 | 0.999 + 0.012 | 99.7 + 4.1 99.7 £ 4.1 99.7 £ 4.1 99.7 + 4.1
Llama4 J vanilla 76.0 £ 42.9 112.0 £ 38.3 | 0.967 4= 0.080 | 0.958 +0.110 | 94.5 £ 11.9 945+ 119 93.8 £ 15.0 93.8 £ 15.0
“Llamad |~ P |Treactfew shot| ~ 60.0 +49.27 [102.0 £ 14.0'| 0.946 =0.070 | 0.935 £ 0.085] 90.5 £12.2 |~ 90.5£12.2° [905 £12.27 |~ 905 £12.2° ~
Llama4 P react 100.0 + 0.0 100.0 + 0.0 | 1.000 % 0.000 | 1.000 &£ 0.000 | 100.0 £ 0.0 100.0 + 0.0 100.0 + 0.0 100.0 + 0.0
Llama4 P vanilla 99.3 £8.2 100.0 £ 0.0 | 1.000 + 0.000 | 0.996 £ 0.054 | 100.0 4 0.0 99.5 £ 6.1 100.0 £ 0.0 99.5 £ 6.1
“Sonnet |~ T |Treactfew shot| ~ 993 £82 " T 100.0 £ 0.0 | 0.999 £ 0.0120.999 £0.016 | 998 £ 20" |~ 998 F20 [998 E20 | 998 E20 ~
Sonnet J react 100.0 + 0.0 100.0 £ 0.0 | 1.000 = 0.000 | 1.000 =£ 0.000 | 100.0 & 0.0 100.0 £ 0.0 100.0 £ 0.0 100.0 £ 0.0
Sonnet J vanilla 97.3 £ 16.2 100.0 + 0.0 [0.996 4 0.023 | 1.000 & 0.000 | 99.3 4.0 99.3 £ 4.0 97.3 £16.2 97.3 £16.2
“Sonnet |~ P 7 |Treactfew shot| ~ 100.0 £ 0.0~ | 100.0 & 0.0" | T.000 =% 0.000 | 1:000 & 0.000] T00.0 0.0 |~ 1000 £0.0 [100.0F£ 0.0 |~ 100.0+0.0
Sonnet P react 99.3 £8.2 100.0 £ 0.0 | 0.999 + 0.012 | 1.000 £ 0.000 | 99.8 + 2.0 99.8 £2.0 99.3 £8.2 99.3 £ 8.2
Sonnet P vanilla 93.3 £25.0 100.0 £ 0.0 | 0.990 + 0.039 | 1.000 £ 0.000 | 98.3 + 6.3 98.3 £6.3 93.3 £25.0 93.3 £25.0
Table 11: Model performance across complex, intermediate, and simple workflow.

17

A.5 Simple Workflow - Check Order Status

JSON Format

{
"agent"”: "check_order_status”,
"steps": [

"ask_for_order_id() -> [order_id]",
"get_order_status(order_id = user_provided_info['order_id']) -> [status]”,
"return_order_status(order_status = order_status)"”,
"close_case(order_id = user_provided_info['order_id'])"
]:
"soft_ordering”: [],
"conditionals”: []

Natural Language (PY) Format

- Ask the user for their order ID using ask_for_order_id().

- Look up the order status by calling get_order_status(order_id = user_provided_
info['order_id"']).

- Inform the user of their current order status with return_order_status(order_
status = order_status).

- Finally, mark the request as complete by calling close_case(order_id = user_
provided_info['order_id"']).

18

A.6 Simple Workflow - Check Product Availability

JSON Format

{
"agent”: "check_product_availability",
"steps”: [

"ask_for_product_id() -> [product_id]",
"check_inventory(product_id = user_provided_info['product_id']) -> [availability]”,
"return_product_availability(product_id = user_provided_info['product_id'],
availability = inventory_info[user_provided_info['product_id']]['availability'])",
"close_case(customer_id = customer_id)"
1,
"soft_ordering”: [],
"conditionals"”: []

Natural Language (PY) Format

- Ask the user for the product ID by calling ~ask_for_product_id() .
- Check inventory by invoking ~check_inventory(product_id = user_provided_info['
product_id"']) >, which returns availability.
- Return the products availability by calling
“return_product_availability(product_id = user_provided_info['product_id'],
availability = inventory_info[user_provided_infol['
product_id']J]['availability ']) .
- Finally, wrap up the interaction with “close_case(customer_id = customer_id) .

19

A.7 Simple Workflow - Resend Email Request

JSON Format

{
"agent”: "resend_email_receipt”,
"steps”: [

"ask_for_order_id() -> [order_id]",

"check_order_exists(order_id = user_provided_info['order_id']) -> [exists]",
"send_email_receipt(order_id = user_provided_info['order_id'])",
"escalate_to_support(order_id = user_provided_info['order_id'])",
"complete_case(customer_id = customer_id)"

]y
"soft_ordering”: [],
"conditionals"”: [

nifre [
{
"field": "user_provided_info['order_id']",
"operator”: "=="
"compare_to": "order_id"
}
]

"then": [{"action”: "skip", "target": "escalate_to_support”}],
"else": [{"action”: "skip", "target": "send_email_receipt”}]
}
]
}

Natural Language (PY) Format

- Begin by asking the user for their order ID using ask_for_order_id().
- Check if the order exists by calling check_order_exists(order_id = user_
provided_info['order_id"']).
- If the "user_provided_info['order_id']"” matches the number in 'order_id"',
proceed to send the receipt via email using send_email_receipt(order_id =
user _provided_info['order_id"']).
- If they do not match match, escalate the issue to support using escalate_to
_support(order_id = user_provided_info['order_id']).
- Finally, mark the case as complete by calling complete_case(customer_id =
customer_id).

20

A.8 Intermediate Workflow - Account Suspension Request

JSON Format

{
"agent"”: "account_suspension_request”,
"steps”: [

"ask_suspension_type() -> [suspension_type]”,

"ask_suspension_reason() -> [reasonl]”,

"get_user_status(employee_id = employee_id) -> [status]”,
"notify_already_suspended(employee_id = employee_id)",

"ask_reactivation_date() -> [reactivation_date]”,

"suspend_account(employee_id = employee_id, type = user_provided_info['suspension_type'],
reason = user_provided_info['suspension_reason'])",
"send_suspension_confirmation(employee_id = employee_id)",

"close_case(suspension_id = suspension['suspension_id'])"

]y
"soft_ordering”: [
["ask_suspension_type"”, "ask_suspension_reason"]
1
"conditionals"”: [
{
"if": [
{
"field": "suspension['suspension_status']",
"operator"”: "==",
"value": "suspended”
3
:ly
"then": [
{
"action”: "end_after”,
"target”: "notify_already_suspended”
3
:ly
"else": [
{
"action": "skip",
"target": "notify_already_suspended”
3
]
}’
{
"if": [
"field": "user_provided_info['suspension_type']",
"operator”: "!="
"value": "temporary"
}
:lr
"then": [
{
"action”: "skip",
"target"”: "ask_reactivation_date”
31,
"else": [
{
"action"”: "override_params”,
"target": "suspend_account”,
"params”: {
"employee_id": "employee_id",
"type": "user_provided_info['suspension_type']",
"reason”: "user_provided_info['suspension_reason']",
"reactivation_date"”: "user_provided_info['reactivation_date']"
13
]
}
1

21

Natural Language (PY) Format

e

Ask the user which type of suspension they need (temporary or permanent) by
calling "~ask_suspension_type() .

Ask the user to explain their reason for suspension by calling ~ask_suspension

_reason() ~.

*(Steps 1 and 2 can happen in any order, but both must be completed before
moving forward.)=*

Retrieve the users current suspension status by calling “get_user_status(
employee_id = employee_id) ~.

If the suspension['suspension_status'] is already "suspended”:

- Call “notify_already_suspended(employee_id = employee_id)~ to inform the
user.

- End the process here.

If the suspension type is **xtemporaryxx:

- Ask for the desired reactivation date by calling “ask_reactivation_date() .

Call “suspend_account(...) with the following parameters:

- “employee_id = employee_id"

- “type = user_provided_info['suspension_type']"

- “reason = user_provided_info['suspension_reason']"

- If the suspension is temporary, also include “reactivation_date = user_
provided_info['reactivation_date '] .

Send a confirmation message by calling ~send_suspension_confirmation(employee
id = employee_id) .

Close the case by calling “close_case(suspension_id = suspension['suspension_
id'1) .

22

A.9 Intermediate Workflow - Submit Time Off Request

JSON Format

{
"agent”: "submit_time_off_request”,
"steps": [

"ask_for_pto_dates() -> [start_date, end_date]”,
"get_pto_balance(employee_id = employee_id) -> [pto_balance]”,
"inform_employee_balance_low()",
"check_conflicts(start_date = user_provided_info['start_date'],
end_date = user_provided_info['end_date'], pto_balance = vacation['pto_balance'])
-> [conflict_status]”,
"inform_employee_conflict()",
"submit_leave_request(employee_id = employee_id, start_date = user_provided_info['start_date'],
end_date = user_provided_info['end_date'])
-> [leave_request_id]",
"notify_manager(manager_id = manager_id, leave_request_id = vacation['leave_request_id']) ->
[manager_notification_status]”,
"send_confirmation(employee_id = employee_id, leave_request
[confirmation_status]”,
"close_case(leave_request_id = vacation['leave_request_id'])"

id = vacation['leave_request_id']) ->

]:
"soft_ordering”: [["ask_for_pto_dates”, "get_pto_balance” 11,
"conditionals": [

{
Ilif!l: [
{
"field": "vacation['pto_balance']",
"operator”: "<",
"value": 1
}
:lr
"then": [
{
"action”: "end_after”,
"target"”: "inform_employee_balance_low”
}
:lr
"else": [
{
"action”: "skip",
"target"”: "inform_employee_balance_low”
}
]
}Y
{
Ilif’ll: [
{
"field": "conflict_status”,
"operator”: "==",
"value": true
}
1,
"then": [
{
"action”: "end_after”,
"target”: "inform_employee_conflict”
}
:ly
"else": [
{
"action”: "skip",
"target”: "inform_employee_conflict”
31313

23

Natural Language (PY) Format

- Begin by asking the user for their desired time off dates using ask_for_pto_
dates (). This returns start_date and end_date.
- Retrieve the employee's current PTO balance using get_pto_balance(employee_id =
employee_id).
- If vacation['pto_balance'] is less than 1, inform the employee their
balance is too low using inform_employee_balance_low(), then end the
trajectory.

- Check for any scheduling conflicts by calling check_conflicts(start_date = user
_provided_info['start_date'], end_date = user_provided_info['end_date'], pto_
balance = vacation['pto_balance']).

- If conflict_status is true, notify the employee about the conflict using
inform_employee_conflict(), then end the trajectory.
- If there are no issues, submit the leave request using submit_leave_request(

employee_id = employee_id, start_date = user_provided_info['start_date'], end
_date = user_provided_info['end_date']). This returns a leave_request_id.

- Notify the employee's manager about the request using notify_manager (manager_id
= manager_id, leave_request_id = vacation['leave_request_id']).

- Send a confirmation to the employee with send_confirmation(employee_id =
employee_id, leave_request_id = vacation['leave_request_id']).

- Finally, close the case using close_case(leave_request_id = vacation['leave_

request_id']).
Note on Soft Ordering: You can either call ask_for_pto_dates() first and then get

_pto_balance(), or do it the other way around; the order of those two
functions doesnt matter.

24

A.10 Intermediate Workflow - Update Address

JSON Format

{
"agent"”: "update_address”,
"steps": [

"get_employment_details(employee_id = employee_id) -> [employment_type, employee_status]”,
"validate_address(address = user_provided_info['address']) -> [validation_status]”,
"escalate_to_hr(employee_id = employee_id)",
"update_employee_address(employee_id = employee_id, address = user_provided_info['address']) ->
[notification_status]”,
"notify_payroll (employee_id = employee_id) -> [notification_status]”,
"check_contact_info(employee_id = employee_id) -> [has_contact_info]",
"update_contact_info(employee_id = employee_id, new_phone = user_provided_info['new_phone']) ->
[phone_update_status]”,
"complete_case(employee_id = employee_id)"
])
"soft_ordering”: [],
"conditionals”: [

{
Ilif“: [
{
"field": "validation_status”,
"operator”: "==",
"value"”: "invalid"
}
:ly
"then": [
{
"action”: "end_after”,
"target”: "escalate_to_hr"
}
]’
"else": [
{
"action"”: "skip",
"target”: "escalate_to_hr"
}
]
3ol
IIi_FII: [
{
"field": "employment_type",
"operator”: "not in",
"value": [
"Full Time"
1
}
]’
"then": [
{
"action”: "skip",
"target”: "notify_payroll”
}
]
3ol
Hifll: [
{
"field”: "has_contact_info”,
"operator”: "==",
"value": false
}
:ly
"then": [
{
"action”: "skip"”,
"target”: "update_contact_info”
31313

25

Natural Language (PY) Format

- Start by retrieving the user's employment details using get_employment_details(

employee_id = employee_id), which returns employment_type and employee_status

- Validate the new address using validate_address(address = user_provided_info['
address ']) .
- If validation_status is "invalid"”, escalate the issue to HR by calling
escalate_to_hr(employee_id = employee_id), then end the trajectory.
- If the address is valid, update the employees address using update_employee_
address(employee_id = employee_id, address = user_provided_info['address']).
- If the employee's employment_type is "Full Time", notify the payroll team using
notify_payroll (employee_id = employee_id). Otherwise, skip this step.
- Check if the employee has contact information by calling check_contact_info(
employee_id = employee_id), which returns has_contact_info.
- If has_contact_info is false, skip updating the contact info.
- Otherwise, update the phone number using update_contact_info(employee_id =
employee_id, new_phone = user_provided_info['new_phone ']).
- Finally, mark the case as complete using complete_case(employee_id = employee_
id).

26

A.11 Complex Workflow - Book Flight

JSON Format

{
"agent”: "book_flight",
"steps”: [
"ask_for_basic_flight_details() -> [origin, destination, departure_date, return_date]”,
"get_customer_preferences(customer_id = customer_id) -> [cabin_preference, seat_preference]”,
"get_customer_frequent_traveler_status(customer_id = customer_id) -> frequent_traveler_status”,
"search_regular_flights(origin = user_provided_info['origin'],
destination = user_provided_info['destination'], departure_date =
user_provided_info['departure_date'],
return_date = user_provided_info['return_date'], cabin_preference =
user_provided_info['cabin_preference'], seat_preference =
user_provided_info['seat_preference']) ->
[flight_number]"”,
"search_priority_flights(origin = user_provided_info['origin'], destination =
user_provided_info['destination'], departure_date = user_provided_info['departure_date'],
return_date = user_provided_info['return_date'], cabin_preference =
user_provided_info['cabin_preference'], seat_preference = user_provided_info['seat_preference'])
->[flight_number]”,
"get_passport_visa_info(customer_id = customer_id)",
"check_visa_requirements(customer_id = customer_id,
destination = user_provided_info['destination']) -> [visa_status]”,
"get_customer_payment_method(customer_id = customer_id) -> [payment_method]",
"create_booking(flight_number = user_provided_info['flight_number']) -> [booking_id]",
"create_booking_with_points(flight_number = user_provided_info['flight_number']) -> [booking_id]",
"add_special_services(booking_id = booking_info['booking_id'],
service_type = traveler_info['special_assistance'])"”,
"notify_airport_ground_team(customer_id = customer_id, booking_id = booking_info['booking_id'],
service_type =
traveler_info['special_assistance'])",
"complete_case(customer_id = customer_id)"],
"soft_ordering”: [],
"conditionals”: [{
"if": [
{"field": "traveler_info['frequent_traveler_status']"”, "operator”: "==", "value”: null}],
"then": [{ "action”: "skip"”, "target": "search_priority_flights” }1,
"else": [{ "action”: "skip", "target": ["search_regular_flights", "get_passport_visa_info"] }1},{

"iFT [f
"field": "payment_method['payment_type']",
"operator"”: "==",

"value"”: "Points"” }],

"then": [{ "action”: "skip"”, "target": "create_booking"” }7,
"else": [{ "action": "skip"”, "target": "create_booking_with_points” }13},{

"if [{
"all_of": [
"field"”: "traveler_info['frequent_traveler_status']”,
"operator”: "in",
"value": ["Gold”, "Platinum”]
Joll
"field": "traveler_info['special_assistance']",
"operator”: "!=",
"value"”: null}]}],
"then": [1],
"else": [{ "action": "skip"”, "target"”: "notify_airport_ground_team"}]},
{
"if": [
{"field": "traveler_info['special_assistance']",
"operator”: "==",

"value”: null}],
"then": [{ "action": "skip"”, "target"”: "add_special_services” }]},{
"if": [{"field”: "traveler_info['is_blacklisted']",

"operator”: "==",
"value": true}],
"then": [{ "action”: "end_after”, "target": "check_visa_requirements” }]1}1}

27

Natural Language (PY) Format

Step 1: Ask for Basic Flight Details

- Call the ask_for_basic_flight_details() function to ask the customer for:
Origin, Destination, Departure date, and Return date.

Step 2: Retrieve Customer Preferences

- Call “get_customer_preferences(customer_id = customer_id)~ to check if the
customer has preferences for the flight booking.

Step 3: Check Frequent Traveler Status

- Call “get_customer_frequent_traveler_status(customer_id = customer_id)~ to
determine if the customer is a frequent traveler.

- xxIf frequent traveler status is None*x:
- Proceed to Step 4 (Search Regular Flights).
- xxIf frequent traveler status is not Nonexx*:

- Skip Step 4 and Step 6.
- Proceed to Step 5 (Search Priority Flights).

Step 4: Search Regular Flights (Only if not a frequent traveler)

- Call “search_regular_flights(origin = user_provided_info['origin'], destination
= user_provided_info['destination'], departure_date = user_provided_info['
departure_date '], return_date = user_provided_info['return_date'], cabin_
preference = user_provided_info['cabin_preference'], seat_preference = user_
provided_info['seat_preference']) .

- Proceed to Step 6.

Step 5: Search Priority Flights (Only if frequent traveler)

- Call “search_priority_flights(origin = user_provided_info['origin'],
destination = user_provided_info['destination'], departure_date = user_
provided_info['departure_date'], return_date = user_provided_info['return_
date '], cabin_preference = user_provided_info['cabin_preference'], seat_
preference = user_provided_info['seat_preference'])".

- Proceed to Step 7.
Step 6: Check Passport and Visa Requirements (Only for non-frequent travelers)

- Call “get_passport_visa_info(customer_id = customer_id)~ to retrieve passport
and visa information.
- Then call “check_visa_requirements(customer_id = customer_id, destination =

user_provided_info['destination'])" to determine if a visa is required.

- **If the customer is blacklisted**: End the flow after this step and notify
the customer accordingly.

- *xx0therwisexx: Inform the customer about the visa requirement status.

- Proceed to Step 7.

Step 6: Retrieve Passport and Visa Information

Call get_passport_visa_info(customer_id = customer_id) to retrieve passport and
visa information.

Step 7: Check Visa Requirements

Call check_visa_requirements(customer_id = customer_id, destination = user_
provided_info['destination']) to determine if a visa is required.

If the customer is blacklisted (traveler_info['is_blacklisted'] is true): End the
flow after this step and notify the customer accordingly.

Step 8: Retrieve Payment Method and Create Booking

- Call “get_customer_payment_method(customer_id = customer_id)~ to get the
customers payment method.

- xxIf the payment method is 'Points'**: Call ~create_booking_with_points(
flight_number = user_provided_info['flight_number ']) .

- *x0therwisex*x: Call “create_booking(flight_number = user_provided_infol['
flight_number ']) ~.

- Proceed to Step 9.

Step 9: Add Special Services

- x*If the customer has listed any special assistance needsx*: Call ~add_special_
services (booking_id = booking_info['booking_id'], service_type = traveler_
info['special_assistance'])"”, ~.

- Proceed to Step 10.

Step 10: Notify Airport Ground Team

- xxIf the customer is Gold or Platinum frequent traveler AND has special
assistance needs*x:

- Call “notify_airport_ground_team(customer_id = customer_id, booking_id =
booking_info['booking_id'], service_type = traveler_info['special_
assistance ']) .

Step 11: Final Confirmation and Case Completion

- Share the booking ID and confirmation details with the customer.

- Call “~complete_case(customer_id = customer_id)~ to finalize the process.

- Thank the customer: "Thank you for booking with us. Have a pleasant journey!”

28

A.12 Complex Workflow - Cancel Flight

JSON Format

{

"agent”: "cancel_flight",

"steps": [

"get_customer_loyalty_info(customer_id = customer_id) -> [frequent_flyer_status, loyalty_points]”,
"get_booking_details(customer_id = customer_id) -> [booking_id, booking_date,
payment_method, total_paid, is_refundable, purchased_insurance, booking_channel]”,
"check_cancellation_policy(booking_id = booking_info['booking_id']) -> [is_refundable]”,
"calculate_cancellation_fee(booking_id = booking_info['booking_id']) -> [cancellation_fee]”,
"waive_cancellation_fee(loyalty_points = traveler_info['loyalty_points'], booking_id =
booking_info['booking_id']) -> [fee_waived]”,
"offer_alternate_flight_options(customer_id = customer_id, original_booking_id =
booking_info['booking_id']) -> [flight_options]”,
"process_flight_change(old_booking_id = booking_info['booking_id']1)",
"cancel_flight(booking_id = booking_info['booking_id'])",

"get_customer_payment_method(customer_id = customer_id, booking_id = booking_info['booking_id']) ->
[payment_method]",
"process_refund(booking_id = booking_info['booking_id'], payment_method =
payment_method['payment_type'])",
"issue_travel_credit(customer_id = customer_id, amount = booking_info['total_paid'])",
"complete_case(customer_id = customer_id)"

]7

"soft_ordering”: [
["get_customer_loyalty_info", "get_booking_details"],

["check_cancellation_policy”, "calculate_cancellation_fee"]
]7
"conditionals"”: [
{"if": [{
"field": "user_provided_info['change_flight']",
"operator"”: "==",
"value": true
1,
"then": [{ "action": "skip"”, "target"”: ["cancel_flight"”, "get_customer_payment_method”,
"process_refund”, "issue_travel_credit”] }
]’
"else": [{ "action"”: "skip", "target": ["process_flight_change"] }13},
it [
{
"any_of": [
{ "field":"booking_info['is_refundable']",
"operator”:"==",
"value": true },
{ "field":"booking_info['purchased_insurance']",
"operator”:"==",
"value”: true }
131,
"then": [{ "action":"skip", "target":"issue_travel_credit” }
:ly
"else": [{ "action":"skip", "target":"process_refund” }1},
{"if": [{
"field": "traveler_info['loyalty_points']",
"operator”: ">=",
"value"”: 10000}],
"then": [{ "action”: "override_trajectory”, "target": ["get_customer_loyalty_info”,
"get_booking_details”, "waive_cancellation_fee"”, "cancel_flight”, "process_refund”,
"complete_case”]1}],
"else”: [{ "action": "skip"”, "target"”: ["waive_cancellation_fee"] }1}1}

29

Natural Language (PY) Format

Step 1: Retrieve Customer Loyalty Information
- Call “get_customer_loyalty_info(customer_id = customer_id)"~ to retrieve:
- *xFrequent flyer status*x
- *xLoyalty pointsx*x
Step 2: Retrieve Booking Details
- Call “get_booking_details(customer_id = customer_id)~ to retrieve:
- *xBooking ID#**, booking date, payment method, total paid
- *xxIs refundable*x, purchased insurance, booking channel
Step 3: Shortcut for High Loyalty Customers
- If “traveler_info['loyalty_points'] >= 10000 :
- **Qverride the trajectory=**: perform only:
1. “get_customer_loyalty_info~
“get_booking_details "
“waive_cancellation_fee”
“cancel_flight~
“process_refund’
6. “complete_case”
- *xxSkip*x all other steps (Steps 4, 5, 7, 9, 11).
- Then return from the routine.
Step 4: Check Cancellation Policy
- Call “check_cancellation_policy(booking_id = booking_info['booking_id'])"~ to
determine if the booking is refundable.
- *xNotex*: Can be done before or after Step 5 per soft ordering.
Step 5: Calculate Cancellation Fee
- Call “calculate_cancellation_fee(booking_id = booking_info['booking_id'])" to
retrieve the fee amount.
- If “traveler_info['loyalty_points'] < 10000, xxskipx* Step 6 and proceed to

g~ w N

Step 7.
Step 6: Waive Cancellation Fee
- Call “waive_cancellation_fee(loyalty_points = traveler_info['loyalty_points'],

booking_id = booking_info['booking_id']) " to waive the fee.
- *%*0nly executed if** “traveler_info['loyalty_points'] >= 10000 . Otherwise

skipped.
Step 7: Offer Flight Change Option
- Call ~“offer_alternate_flight_options(customer_id = customer_id, original_
booking_id = booking_info['booking_id'])" to offer alternatives.
- If “user_provided_info['change_flight'] == True :

- Call “process_flight_change(old_booking_id = booking_info['booking_id"']) ™.
- *xxSkip*x the following:

- Step 8: “cancel_flight~

- Step 9: “get_customer_payment_method"

- Step 10: “process_refund"
- Step 11: “issue_travel_credit"
- Then return from the routine.
- Else:

- Continue to Step 8.
Step 8: Cancel Flight
- Call “cancel_flight(booking_id = booking_info['booking_id'])" to finalize
cancellation.
Step 9: Retrieve Payment Method
- Call “get_customer_payment_method(customer_id = customer_id, booking_id =
booking_info['booking_id'])~ to determine the original payment type.
Step 10: Process Refund
- If “booking_info['is_refundable'] == True ~ x*xor*x ~booking_info['purchased_
insurance '] == True :
- Call “process_refund(booking_id = booking_info['booking_id'], payment_method
= payment_method['payment_type']) ~.
- *xSkipx* Step 11.
- Else:
- xxSkipx* this step (Step 10) and proceed to Step 11.
Step 11: Issue Travel Credit
- Call “issue_travel_credit(customer_id = customer_id, amount = booking_info['
total_paid'])™ to issue credit.
- *x0Only executed if*x booking is n o n refundable and no insurance. Otherwise
skipped.
Step 12: Complete the Case
- Call “complete_case(customer_id = customer_id)~ to mark the process as complete

*xNote on Soft Ordering:x*x

- You may call “get_customer_loyalty_info~ before or after ~get_booking_details".

- You may call ~check_cancellation_polic before or after ~calculate_
cancellation_fee .

A.13 Complex Workflow - Flight Disruption
JSON Format

{"agent": "handle_flight_disruption”,
"steps"”: ["get_booking_details(customer_id=customer_id) -> [booking_id, origin, destination]”,

"check_flight_status(flight_number=

booking_info['flight_number'], flight_date=booking_info['flight_date'])

-> [status, estimated_delay_minutes, delay_reason]”,
"notify_customer_disruption(customer_id=customer_id, flight_number=booking_info['flight_number'],
status = flight_info['status'], delay_reason=flight_info['delay_reason'], estimated_delay_minutes =

flight_info['estimated_delay_minutes'])",

"ask_rebooking_preference(customer_id=customer_id) -> [wants_rebook]",
"search_alternate_flights(origin=booking_info['origin'], destination=booking_info['destination'],

flight_date=booking_info['flight_date'],

cabin_class=booking_info['cabin_class']) -> [alternate_flights]"”,

"offer_flight_options_to_customer(customer_id=customer_id, flights=

search_results['alternate_flights']) ->[selected_flight_id]",

"create_rebooking(original_booking_id=booking_info['booking_id'], new_flight_id=

user_provided_info['selected_flight_id']) -> [new_booking_id, fare_difference]”,
"process_fare_difference(customer_id=customer_id, fare_difference=search_results['fare_difference'])",

"check_overnight_need(estimated_delay_minutes=flight_info['estimated_delay_minutes']) ->
[needs_overnight_accommodation]”,

"arrange_accommodation(customer_id=customer_id) -> [hotel_booking_id]",
"arrange_transport(customer_id=customer_id, hotel_booking_id=search_results['hotel_booking_id'])",

"issue_meal_vouchers(customer_id=customer_id, delay=flight_info['estimated_delay_minutes']) ->

[voucher_codes]",

"offer_compensation(customer_id=customer_id, delay_reason=flight_info['delay_reason']) ->

[compensation_details]"”,

"complete_case(customer_id=customer_id)"],

"soft_ordering"”: [["arrange_accommodation”, "arrange_transport”]],
"conditionals": [{
"if": [{"field": "flight_info['status']”, "operator”: "==", "value”: "On Time"}],
"then": [{"action”: "override_params”, "target”: "notify_customer_disruption”, "params": {
"customer_id": "customer_id",

"flight_number”: "booking_infol['flight_number']",
"status”: "flight_info['status']"}},

{ "action": "end_after”, "target": "notify_customer_disruption” }}3},
{if: [{
"field": "flight_info['status']”,
"operator”: "==",
"value"”: "Cancelled"}],
"then": [{"action”: "override_params”, "target”: "notify_customer_disruption”, "params": {
"customer_id": "customer_id",

"flight_number”: "booking_info['flight_number']",

"status": "flight_info['status']"”,

"delay_reason”: "flight_info['delay_reason']"}}1},
"if": [{"all_of": [

{"field": "flight_info['status']", "operator”: "==", "value": "Cancelled"},
{"field": "flight_info['delay_reason']", "operator”: "in", "value": ["Mechanical”,
"Crew Issue”]13}1}1,
"then”: [{ "action"”: "override_trajectory”,
"target": ["get_booking_details”, "offer_flight_options_to_customer”, "create_rebooking",

"arrange_accommodation”, "arrange_transport”, "offer_compensation”, "update_loyalty_points”,

"complete_case”]}]},

{"if": [{"field": "user_provided_info['wants_rebook']","operator”: "==" "value"”: false}],
"then": [{"action”: "skip","target"”: ["search_alternate_flights",
"offer_flight_options_to_customer”,"”create_rebooking"”, "process_fare_difference”]1}1},

{"if": [{"field": "flight_info['estimated_delay_minutes']","operator”: "<", 6 "value": 360}],
"then": [{ "action”: "skip"”, "target":["arrange_accommodation”, "arrange_transport"”,
"issue_meal_vouchers”"]1}1},

{"if": [{"all_of": [{"field": "traveler_info['frequent_traveler_status']"”, "operator”: "in", "value":

["Gold", "Platinum”, "Diamond"”]},{"field"”: "flight_info['delay_reason']",

"operator”: "!=","value": "Weather"}1}],
"then": [{"action”: "override_params”, "target": "offer_compensation”,"params”: { "customer_id":
"customer_id", "delay_reason”: "flight_info['delay_reason']"”,"extra_miles":
"booking_info['compensation_allowed']"}}1},{
"if": [{ "field": "flight_info['delay_reason']","operator”: "==", "value”: "Weather”}],

"then": [{"action”: "skip","target":["offer_compensation”]1}13}1}

31

Natural Language (PY) Format

Step 1: Retrieve Booking Details

- Call get_booking_details(customer_id=customer_id) and capture booking_id and
origin & destination

Step 2: Check Flight Status

- Call check_flight_status(flight_number=booking_info['flight_number '], flight_
date=booking_info['flight_date']l) and capture: status (On Time ,

Delayed s Cancelled), estimated_delay_minutes, delay_reason (if
cancelled)

Step 3: Notify the Customer of the Disruption

- Call notify_customer_disruption() with the following parameters based on the
value of flight_info['status']".

- If flight_info['status']"” is On Time, use parameters: customer_id=customer_id,
flight_number=booking_info['flight_number '], status=flight_info['status'])
and end the flow here.

- If flight_info['status'] is Cancelled, use parameters: customer_id=customer_id,
flight_number=booking_info['flight_number '], status = flight_info['status'],
delay_reason=flight_info['delay_reason']

- If flight_info['status'] is Delayed, use parameters: customer_id=customer_id,
flight_number=booking_info['flight_number '], status = flight_info['status'],
delay_reason=flight_info['delay_reason'], estimated_delay_minutes = flight_
info['estimated_delay_minutes ']

Step 4: Ask Rebooking Preference

- Call ask_rebooking_preference(customer_id=customer_id) and capture wants_rebook
. - If user_provided_info['wants_rebook'] == false, skip Steps 5 8

Step 5: Search for Alternate Flights

- Call search_alternate_flights(origin=booking_info['origin'], destination=
booking_info['destination'], flight_date=booking_info['flight_date'], cabin_
class=booking_info['cabin_class'],) and capture alternate_flights

Step 6: Offer Flight Options

- Call offer_flight_options_to_customer (customer_id=customer_id, flights=search_
results['alternate_flights']) and capture selected_flight_id

Step 7: Create the New Booking

- Call create_rebooking(original_booking_id=booking_info['booking_id'], new_
flight_id=user_provided_info['selected_flight_id']) and capture new_booking_
id and fare_difference

Step 8: Process Any Fare Difference

- Call process_fare_difference(customer_id=customer_id, fare_difference=search_
results['fare_difference']).

Step 9: Check Overnight Accommodation Need

- Call check_overnight_need(estimated_delay_minutes=flight_info['estimated_delay
_minutes ']) and capture needs_overnight_accommodation

Steps 10 & 11: Arrange Hotel and Transport

- Only if flight_info['estimated_delay_minutes'] is over 360, call arrange_
accommodation(customer_id=customer_id) and capture hotel_booking_id

- Call arrange_transport(customer_id=customer_id, hotel_booking_id=search_results
['hotel _booking_id']).

- (These two steps may execute in either order.)

Step 12: Issue Meal Vouchers

- If flight_info['estimated_delay_minutes'] under 360, skip this step.

- Otherwise, call issue_meal_vouchers(customer_id=customer_id, delay=flight_info
['estimated_delay_minutes']) and capture voucher_codes

Step 13: Offer Compensation

- Call offer_compensation(customer_id=customer_id, delay_reason=flight_info['
delay_reason'],) and capture compensation_details.

- If traveler_info['frequent_traveler_status'] in ["Gold”, "Platinum”, "Diamond
"], include extra_miles = booking_info['compensation_allowed'] in the
parameters to become offer_compensation(customer_id=customer_id, delay_
reason=flight_info['delay_reason'], extra_miles = booking_info['compensation_
allowed '])

- If flight_info['status'] == "Cancelled” and flight_info['delay_reason'] in ["
Mechanical”, "Crew Issue”], override the trajectory to execute in order with

the parameters defined above:

1. get_booking_details ()
offer_flight_options_to_customer ()
create_rebooking ()
arrange_accommodation ()
arrange_transport ()
offer_compensation ()
update_loyalty_points ()

. complete_case()

Step 14: Complete the Case 32
- Call complete_case(customer_id=customer_id).

0N U~ WN

A.14 User Data Example
User Data Example Provided to Traxgen

{
"agent_sequence”: [
"submit_time_off_request”
:l:
"employee_id": 2709079,
"manager_id": 7215773,
"conflict_status”: false,
"employment_type"”: "Full Time",
"has_contact_info"”: false,
"suspension”: {
"suspension_id": 601790,
"suspension_status”: "not suspended”
}!
"vacation”: {
"leave_request_id": 191059,
"pto_balance”: 9
by
"validation_status”: "valid”,
"user_provided_info": {
"address"”: "12 Grimmauld Place, London,
"end_date"”: "2025-06-27",
"new_phone": 6512227804,
"reactivation_date"”: "2025-06-03",
"start_date": "2025-06-12",
"suspension_reason”: "Leave of Absence",
"suspension_type"”: "temporary"”

UK,

33

A.15 Traxgen Trajectory Format

Traxgen Style

L
L
"agent: assistant”,
"tool: ask_for_order_id()",
"tool: get_order_status(order_id=63920)",
"tool: return_order_status(order_status=Delivered)"”,
"tool: close_case(order_id=63920)"
1
1
Google Style
LC

{'tool_name':
{'tool_name':
{'tool_name':

'ask_for_order_id",
'get_order_status',
'return_order_status',

{'tool_name': 'close_case',
1]
Langchain Style
L
L
{
"role": "assistant”,
"tool_calls": [
{ "name": "ask_for_order_id",
]
} ,
{
"role": "assistant”,
"tool_calls": [
{ "name": "get_order_status”,
]
} ,
{
"role”: "assistant”,
"tool_calls": [
{ "name"”: "return_order_status”,
]
} ,
{
"role”: "assistant”,
"tool_calls": [
{ "name"”: "close_case"”,
]
3
]
]

Tool-Only Style

['ask_for_order_id"',

'get_order_status',

'tool_input': {}},
'tool_input': {'order_id': 63920}},
'tool_input': {'order_status':

"arguments”:

"arguments”:

"arguments”:

"arguments”:

'return_order_status',

34

'Delivered'}},

'tool_input': {'order_id': 63920}}

{312

{ "order_id": 63920 } }

{ "order_status"”: "Delivered” } }

{ "order_id": 63920 } }

'close_case']

A.16 Annotator Instructions
Annotator Instructions

nnn

Trajectory Annotation Instructions
Objective

You will review tool-call trajectories generated by our ~TraxGen-py~ toolkit to ensure they follow
the defined **routine logic** and are consistent with the provided *xcustomer data*x.

Each annotation task includes:

- A *xroutinexx (structured JSON workflow)

- A *xcustomer profile*x (database-like JSON input)

- A *xgenerated trajectory** (tool calls + parameters)

Your goal is to determine whether the generated trajectory xxadheres to the policyx* defined
in the routine and fully satisfies the task requirements.

When to Mark as ~Pass”

Mark the trajectory as “Pass™ if all of the following conditions are met:

1. *xAll required tool calls*x are present in the correct order (allowing for soft ordering if applicable
2. xxConditional logic** (“skip™, “end_after”, ~override_trajectory™) is triggered appropriately based
on customer data.

3. x*No extra tool calls** are included, unless explicitly allowed by the routine.

4. x*Tool parameters** are fully and correctly filled using customer data and routine-defined rules.
5. In multi-agent workflows, each agent only calls tools defined in its assigned sub-intent.

When to Mark as “Fail"
Mark the trajectory as “Fail® if any of the following issues are present:

- A required tool is **missingxx.

- Tools are called in the **wrong order**, violating hard constraints.

- A conditional rule is **misapplied** (e.g., skipped when it should not be).

- A tool has x*incorrect or missing parameters*x.

- x*Extra toolsx* are called that are not defined in the routine or allowed by policy.

- In multi-intent workflows, an agent calls tools outside its scope (**agent boundary violationxx).

Common Error Tags

If a trajectory is marked as “Fail™, please include one or more of the following tags:

| Tag | Description |
. | = |
“missing_tool"”	A required tool was not called.
“wrong_order"	Tools were called in the incorrect order.
“wrong_condition™	A condition (e.g., “skip™, “end_after”) was applied wrongly.
“bad_param”	Tool parameters were missing or incorrect.
“extra_tool®	Unnecessary or invalid tool calls were included.
“agent_violation™	A tool was used by the wrong agent in a multi-intent task.

Output Format

Each task should be annotated using this format:

“Tjson
{

"customer_id": "1802531",

"annotator_id": "A1",

"result”: "fail"”,

"tags": ["missing_tool”, "bad_param"],

"comments”: "Missing confirmation step; booking ID param was null in 'GetFlightInfo'."
}

35

A7 Acknowledgment

Al assistance is used in this paper.

36

	Introduction
	Related Work
	Evaluation Strategies for Agents
	Trajectory Ground Truth Generation

	Traxgen
	Required Inputs
	Workflow
	User Data

	Supported Trajectory Formats
	System Architecture
	Robustness and Validation

	Experimentation
	Data Construction
	Key Characteristics
	Data Distribution and Complexity Levels
	General Experimentation Setup
	Evaluation Metrics

	Experiment 1: Traxgen Evaluation
	Experiment-Specific Setup
	Results

	Experiment 2: LLM Benchmarking
	Experiment-Specific Setup
	Results

	Discussion
	Limitations
	Appendix
	Appendix Contents
	Generating Trajectories with Traxgen
	Traxgen supported workflows conditional actions
	Traxgen Evaluation Results
	Main LLM Experiment Results
	Simple Workflow - Check Order Status
	Simple Workflow - Check Product Availability
	Simple Workflow - Resend Email Request
	Intermediate Workflow - Account Suspension Request
	Intermediate Workflow - Submit Time Off Request
	Intermediate Workflow - Update Address
	Complex Workflow - Book Flight
	Complex Workflow - Cancel Flight
	Complex Workflow - Flight Disruption
	User Data Example
	Traxgen Trajectory Format
	Annotator Instructions
	Acknowledgment

