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ABSTRACT

Large vision-language models (LVLMs) have significantly improved multimodal
reasoning tasks, such as visual question answering and image captioning. These
models embed multimodal facts within their parameters, rather than relying on
external knowledge bases to store factual information explicitly. However, the
content discerned by LVLMs may deviate from factuality due to inherent bias or
incorrect inference. In this work, we introduce MFC-Bench, a rigorous and com-
prehensive benchmark designed to evaluate the factual accuracy of LVLMs across
three stages of verdict prediction for multimodal fact-checking (MFC): Manip-
ulation, Out-of-Context, and Veracity Classification. Through our evaluation on
MFC-Bench, we benchmarked a dozen diverse and representative LVLMs, un-
covering that current models still fall short in MFC and demonstrate insensitivity
to various forms of manipulated content. We hope that MFC-Bench could raise
attention to the trustworthy AI potentially assisted by LVLMs in the future.

1 INTRODUCTION

Recent advancements in natural language processing (NLP), particularly with large language mod-
els (LLMs) (Chang et al., 2023), have introduced tools like ChatGPT and GPT-4 (OpenAI, 2023)
that excel in understanding human instructions using strategies such as instruction tuning and rein-
forcement learning from human feedback (Ouyang et al., 2022). These models demonstrate strong
zero-shot or few-shot capabilities, performing tasks without additional fine-tuning (Kojima et al.,
2022; Lin et al., 2023). Simultaneously, large vision-language models (LVLMs) (Dai et al., 2023;
Gong et al., 2023) have extended this proficiency to multimodal understanding tasks (Fu et al.,
2023). These advancements mark a significant step forward in artificial intelligence, enabling more
cohesive applications across modalities.

Recent studies have thoroughly investigated the extent to which LLMs hold factual information
and their capacity to reason with such knowledge (Hu et al., 2024), which hypothesized that LLMs,
trained on vast data, could adequately substitute for evidence retrieval and conduct fact-checking au-
tonomously, relying solely on their parametric knowledge. Beyond text-only fact-checking (Thorne
et al., 2018; Lin et al., 2022a; Guo et al., 2022), multimodal content is often perceived as more
credible and spreads more quickly than similar textual claims (Li & Xie, 2020; Newman et al.,
2012). However, the capabilities and limitations of LVLMs in managing multimodal reasoning
tasks (Akhtar et al., 2023) related to factuality, particularly in identifying online unverified infor-
mation within multimodal inputs, remain underexplored. These multimodal fact-checking tasks
(Nakamura et al., 2020; Shao et al., 2023; Yao et al., 2023) are crucial for understanding social
dynamics and require sophisticated social judgment and decision-making abilities. Thus, a funda-
mental question remains: Can LVLMs discern factuality in a multimodal context? Given that LVLMs
are trained on extensive and varied image-text corpora and demonstrate remarkable generalization
capabilities (Liu et al., 2023a), it is vital to evaluate both their strengths and potential challenges
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Squirreluman hath
chosen sides and
gandalf was merely in
the way.

Photoshop

InteracteHarper Beckham on
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necklace.

Face  Swap

Marty Hahne, a magician from
Ozark, MO, is burdened by the
excessive regulations of the
Agriculture Department, which not
only demands a license for his
performance rabbit but also insists
on a pointless written disaster plan.

Marty Hahne a magician from
Ozark Mo has a rabbit that he pulls
out of his hat during his magic acts
The Agriculture Department
requires him to have a license for
that rabbit as well as a written
disaster plan.
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A Trump supporter
outside NBC studios.

Hillary Rodham Clinton
speaks at a town hall
meeting in Las Vegas on
Tuesday.

Background Change

OOC
Classification

Elephants think of humans
as 'cute' in the same manner
that humans think of kittens
or puppies. Veracity 

Classification

Todd Stern angrily rebuffed
the suggestion that US used
strongarm tactics to force
countries to sign up to the
Copenhagen Accord.

Face Attribute Edit

Figure 1: MFC-Bench is a comprehensive benchmark designed to evaluate the LVLMs across three
stages of verdict prediction for MFC: Manipulation Classification, Out-of-Context Classification,
and Veracity Classification.

in handling factual knowledge and reasoning. This inquiry is particularly relevant to ensuring trust-
worthy insights, focusing on how LVLMs analyze and integrate complex visual and textual elements
accurately and responsibly.

Previous literature (Akhtar et al., 2023) has surveyed that there are three important stages for verdict
prediction in multimodal fact-checking process: 1) Manipulation Classification; 2) Out-of-Context
(OOC) Classification; 3) Veracity Classification. In this work, we aim to comprehensively explore
the helpfulness of LVLMs in benchmarking multimodal fact-checking within these three tasks.
To this end, we introduce MFC-Bench as shown in Figure 1, a comprehensive Multimodal Fact-
Checking testbed designed to evaluate LVLM in terms of identifying factual inconsistencies and
counterfactual scenarios. MFC-Bench encompasses a wide range of visual and textual queries, or-
ganized into the three verdict prediction tasks: Manipulation Classification, OOC Classification,
and Veracity Classification. These three sub-tasks of multimodal fact-checking draw from a mix of
diverse datasets (Newman et al., 2012; Shao et al., 2023; Yao et al., 2023) and our newly created
datasets specifically designed for analyzing awareness of multimodal facts: 1) The Manipulation
Classification task targets various alterations like face swapping, face attribute editing, background
changing, image generation, photoshop, entity replacement, and style transfer; 2) The OOC Clas-
sification task focuses on identifying the false connection between the image and text that may be
both true; 3) The Veracity Classification task is the multimodal counterpart to classifying the verac-
ity of textual claims given the visual evidence, by leveraging the inherent knowledge embedded in
LVLMs. As a result, such a three-task design philosophy could facilitate evaluating the effective-
ness of LVLMs in supporting verdict prediction during the multimodal fact-checking process. We
presented MFC tasks to LVLMs with carefully crafted prompts, gathered the model’s feedback, and
conducted a comprehensive analysis of the outcomes, which ensures a thorough understanding of
LVLMs’ capabilities and limitations on MFC-Bench.

Through MFC-Bench, we comprehensively assess the ability of various LVLMs (Bai et al., 2023;
Dai et al., 2023; Liu et al., 2023a; OpenAI, 2023) to accurately identify manipulated and misleading
content within multimodal inputs. Our benchmark offers a rigorous examination of current LVLMs,
highlighting the considerable gaps in their performance. Tasks aimed at detecting false connections,
such as OOC Classification, reveal pronounced disparities in LVLM efficacy. For more intricate
tasks like Manipulation Classification, which necessitates deep background knowledge and sophis-
ticated reasoning, LVLMs typically demonstrate only mediocre performance. Besides, we further
explore the justification production of LVLMs for multimodal fact-checking with human subject
evaluation. Overall, MFC-Bench is designed to provide researchers with a multi-dimensional under-
standing of their LVLMs’ capabilities in multimodal fact-checking. Our goal is to advance auditing
insights within LVLMs, playing a crucial role in curbing the spread of online disinformation and
promoting the stability and cohesion of diverse communities.
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Table 1: Dataset sources, description, and distribution.

Types Description Sources Distribution

Fact. Non-Fact. All

Manipulation

Face Swap DGM4 (Shao et al., 2023) 4,000 2,000 6,000
Face Attribute Edit DGM4 (Shao et al., 2023) 4,000 2,000 6,000
Background Change - 1,000 2,000 3,000
CLIP-based SD Generate - 5,000 5,000 10,000
Photoshop Fakeddit (Nakamura et al., 2020) 1,000 1,000 2,000
Textual Entity Replace - 1,162 838 2,000
Text Style Transfer - 1,000 1,000 2,000

OOC Detect out of context NewsCLIPpings (Luo et al., 2021) 1,000 1,000 2,000

Veracity Verify the claim w/ image Mocheg (Yao et al., 2023) 469 1,531 2,000

Our contributions are three-fold: 1) We introduce MFC-Bench, a comprehensive testbed with
35K multimodal samples across three stage sub-tasks of verdict prediction in the multimodal fact-
checking process to assess LVLMs’ trustworthiness; 2) Extensive evaluation of a dozen advanced
LVLMs reveals significant challenges, with GPT-4o only achieving F1 scores of 69.4% on the MFC-
Bench; 3) We provide a detailed analysis of performance variations among different LVLMs on
prompting strategies and justification production.

2 DATASET CONSTITUTION

To systematically assess the visual and textual factual knowledge related to inconsistencies and
counterfactual reasoning abilities of LVLMs, we have formulated our benchmark into three de-
composed sub-tasks of verdict prediction for the multimodal fact-checking process: Manipulation
Classification, Out-of-Context Classification, and Veracity Classification, by considering prevalent
multimodal misinformation types (Akhtar et al., 2023).

For these multimodal misinformation types of data for verification, we carefully curate appropriate
visual and textual queries from a variety of sources to ensure a comprehensive evaluation of LVLMs
in multimodal fact-checking, as summarized in Table 1.

2.1 MFC DATA TYPES

2.1.1 MANIPULATION CLASSIFICATION

Manipulation Classification is a task meticulously designed to ascertain whether multimodal data
encompasses fabricated elements (Qi et al., 2019) by using LVLMs. To investigate LVLMs’ profi-
ciency in identifying multimodal content altered through various manipulative techniques, in MFC-
Bench, we utilized seven types of manipulation methods1: The first five focus on visual alterations,
while the last two target textual modifications.

Method 1: Face Swap (FS). Face Swap involves the process of cutting a face from one image and
replacing it with a different face in another image. As shown in Figure 1, through the use of face
swap, Beckham’s face has been replaced with a different face. We include the Face Swap data to
assess whether LVLMs can recognize public figures and retrieve information related to individuals,
finding the counterfactuals that emerge from these swapped faces in the multimodal context.

Method 2: Face Attribute Edit (AE). Face Attribute Edit achieves deception by altering the facial
expressions of humans like newsmakers. For example, in Figure 1, Todd Stern originally had an
angry expression, which was changed to a happy expression through Face Attribute Edit. This
inclusion allows us to evaluate the multimodal fact-checking capabilities of LVLMs in recognizing
the scene, identifying personal information and detecting the correctness of face’s status in visual
content assisted with an accompanying text.

1Here, we consider the most challenging setting (Akhtar et al., 2023) that the correct content in one modality,
accompanied by the manipulated content in the other modality, which increases credibility.
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Method 3: Background Change (BC). Background Change alters images, transforming public
individuals into scenes where he/she never showed up in reality. As depicted in Figure 1, Hillary
Rodham Clinton was originally indoors, but BC makes it seem like she is now outside. The objective
is to examine the capability of LVLMs for accurate identification of individuals and scenes in images,
evaluating their correspondence and authenticity in relation to the descriptions provided in texts.

Method 4: CLIP-based Stable Diffusion Generate (CG). CLIP-based Stable Diffusion (Ramesh
et al., 2022) features an image-to-image generation pipeline that enables the manipulated image
to retain the linguistic information from the original image, producing stable-diffusion versions for
image replacement. Originally, Figure 1 showed Howe speaking, but with the CG method, the image
was altered to display a generated individual giving the speech, retaining much of the original visual
content. This design enables us to assess the fact-checking capabilities of LVLMs regarding their
awareness of whether multimodal content is fabricated, even when the manipulated image retains
elements of the original alongside the raw text.

Method 5: Photoshop (PS). Photoshop has long been a leading manipulation for manual image
editing, enabling users to alter human figures and merge different images to create potentially mis-
leading visuals. As demonstrated in Figure 1, using Photoshop, an ordinary squirrel can be seen
battling Gandalf in a single picture. Including this data type allows us to assess whether LVLMs can
discern the traces of human manipulation in image accompanying the original text.

Method 6: Textual Entity Replace (ER). Textual Entity Replace involves substituting entities other
than the target persons in the data, with randomly chosen locations and time. As exemplified in
Figure 1, Justin Trudeau was originally shown greeting in Saint John, New Brunswick, Canada, but
with Textual Entity Replace, it was changed to him greeting at another country, the Tower of London,
British. This method seeks to assess the capability of LVLMs to effectively associate individuals with
the entities depicted in both images and texts, discerning any inconsistencies with multimodal facts
in commonsense.

Method 7: Text Style Transfer (ST). Text Style Transfer is the process of modifying the tone and
style of a text to alter the perception of the same person or event, potentially leading to a different
factual impression (Wu et al., 2024). As Figure 1, by Text Style Transfer, the tone shifts from a
neutral, factual statement about Marty Hahne needing a license and disaster plan for his rabbit, to
a more critical and dramatic tone, portraying the requirements as burdensome and excessive. The
process examines LVLMs’ ability to rigorously comprehend the events and associated sentiments
depicted in images and claims, and to correctly correlate them.

2.1.2 OUT-OF-CONTEXT CLASSIFICATION

Out-of-Context (OOC) Classification in MFC-Bench aims to decipher the coherence and correspon-
dence of context across various modalities (Luo et al., 2021) with LVLMs. We collected multimodal
samples from the NewsCLIPpings dataset (Luo et al., 2021). Unlike the aforementioned manipu-
lation techniques that require modifying images and texts, OOC Classification combines real but
misused images and texts. If the image and the text are contextually aligned, the relationship is re-
garded as true, naturally representing fact. Conversely, if the image and the text are not contextually
aligned, the relationship is regarded as false, indicating non-fact.

2.1.3 VERACITY CLASSIFICATION

Veracity Classification in MFC-Bench serves to classify the factuality of textual claims based on
visual evidence (Yao et al., 2023) by employing LVLMs. Based on the image evidence, the LVLMs
need to predict the truthfulness of the textual claim. We curated a subset of the Mocheg dataset (Yao
et al., 2023) for this task. If the image evidence supports the truthfulness of the textual claim, the
relationship between the image and the claim is supported, indicating fact. Otherwise, the claim is
treated as refuted by the image, exhibiting non-fact.

2.2 LABEL SETTING

To unify the three tasks and facilitate a more effective analysis of benchmark results, we formulate
the tasks into binary classification, we define the label L = {Fact., Non-Fact.}. The Manipulation
Classification task involves determining whether multimodal news is fabricated, with labels indi-
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cating “Manipulated” (Non-Fact.) or “Not Manipulated” (Fact.). The OOC Classification task
assesses whether the image and claim are inconsistent, with labels indicating “Matched” (Fact.) or
“Not Matched” (Non-Fact.). The Veracity Classification task evaluates whether the claim is true
based on image evidence, with labels indicating “Supported” (Fact.) or “Refuted” (Non-Fact.).

2.3 QUALITY ASSURANCE

Multiple levels of measures are implemented to guarantee data reliability. First, we utilize estab-
lished and reputable technologies such as Stable Diffusion and GPT-4 for data processing, ensuring
that the operations are reasonable and aligned with our expectations. Second, we incorporate other
well-regarded datasets that are time-tested and frequently cited. The tasks represented by these
datasets coincide with the objectives of our benchmark. Third, after constructing the dataset, we
conduct a Human Quality Check by performing partial sampling. Specifically, we randomly se-
lect 100 entries from each new category (i.e., BC, CG, ER, and ST) to verify the self-constructed
dataset’s integrity and ensure the effectiveness of the manipulation methods we have applied. Fi-
nally, our benchmarking includes two types of human-involved experiments. The first type involves
comparing the LVLM’s performance to human performance; the second type entails human subject
evaluation of the LVLM’s performance based on its justification production.

Human Quality Check This research involved a human subject study to evaluate the quality
of multimodal data manipulated by our adopted techniques. To assure the quality of the self-
constructed data, we employed three human evaluators, who are senior undergraduate or graduate
students majoring in computer science. Each evaluator was presented with the manipulated data and
the original data to judge whether the data had been successfully manipulated using manipulation
techniques for the reliability and credibility of the multimodal data. Each evaluator completed the
quality assurance process independently. Further details regarding the evaluation process are pro-
vided in Appendix §C.2. The manipulation accuracy for each task is presented in Table 2, which
highlights the effectiveness of our techniques. Additionally, the intra-class agreement score is 0.705.
The average Spearman’s correlation coefficient between any two annotators is 0.714. These figures
reflect the reliability of our data manipulation methods and the consistency of the evaluators’ assess-
ments.

Table 2: Manipulation Accurary for Different Types.

Types Accuracy

Background Change 0.97
CLIP-based SD Generate 1.00
Textual Entity Replace 0.99
Text Style Transfer 0.98

3 METHODOLOGY

3.1 MODELS

To provide an exhaustive perspective on the current state of emerging LVLMs within the context
of multimodal fact-checking, we conducted comprehensive evaluations on representative accessi-
ble LVLMs. Our selection encompasses a range of models from diverse organizations, differing in
size, which allows for a thorough understanding of the capabilities and limitations of LVLMs in
handling multimodal content concerned with actuality For the open-source and accessible LVLMs,
we adopt the representative models like Emu2 (Sun et al., 2023), InternVL (Chen et al., 2023c),
CogVLM (Wang et al., 2023a), LLaVA-NeXT (Liu et al., 2024a), InstructBLIP (Dai et al., 2023),
Pixtral2, MiniCPM-V-2.6 (Yao et al., 2024), LLaVA-OneVsion (Li et al., 2024a), Molmo (Deitke
et al., 2024), Qwen-VL (Bai et al., 2023), Qwen2-VL (Wang et al., 2024b), Yi-VL (Young et al.,
2024) and xGen-MM (Xue et al., 2024). As five of the most powerful closed-source LVLMs,
GPT-4o, GPT-4V, Claude3.5-Sonnet, Claude3-Haiku and Gemini-1.5-Pro are included in our testing
scope.

2https://mistral.ai/news/pixtral-12b/
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 Question  Given a caption "Harper Beckham on the frow wearing a Tiffany necklace." and its image, is this multimodal
content manipulated? 
Answer yes or no.

 Question  Given a caption "Hillary 
Rodham Clinton speaks at a
town hall meeting in  Las Vegas
on Tuesday."  and its image, is
this multimodal content
manipulated?
Answer yes or no.
 Answer: Yes. 

 Question  Given a caption "Hillary 
Rodham Clinton speaks at a
town hall meeting in  Las Vegas
on Tuesday."  and its image, is
this multimodal content
manipulated?
Answer yes or no.
 Answer: Yes. 

 Question  Given a caption "Hillary  Rodham Clinton
speaks at a town hall  meeting in  Las Vegas on Tuesday." 
and its image, is this multimodal content manipulated?
Answer yes or no.
Rationale: The inconsistency between the described event
 (town hall meeting) and the visible background (open
sky with clouds) strongly suggests that the background
has been altered.
 Answer: Yes. 

 Question  Given a caption "Hillary  Rodham Clinton
speaks at a town hall  meeting in  Las Vegas on Tuesday." 
and its image, is this multimodal content manipulated?
Answer yes or no.
Rationale: The inconsistency between the described event
 (town hall meeting) and the visible background (open
sky with clouds) strongly suggests that the background
has been altered.
 Answer: Yes. 

 Task  Manipulation encompasses various alterations such as face swapping, face attribute editing, background changing, image
generation, entity replacement, and style transfer. Your task is to determine if the image and caption have been manipulated.

 Question  Given a caption "Harper Beckham on the frow wearing a Tiffany necklace." and its image, is this multimodal
content manipulated? (CoT Optional: Let's think step-by-step.)
Answer yes or no.

 Image 

 Question  Given a caption "Hillary 
Rodham Clinton speaks at a
town hall meeting in  Las Vegas
on Tuesday."  and its image, is
this multimodal content
manipulated?
Answer yes or no.
 Answer: Yes. 

 Image 

(a) Zero Shot (Optional: CoT)

 xN Examples 

 Image 

(b) Few Shot (Optional: CoT)

 Question  Given a caption "Hillary  Rodham Clinton
speaks at a town hall  meeting in  Las Vegas on Tuesday." 
and its image, is this multimodal content manipulated?
Answer yes or no.
 Rationale  The inconsistency between the described event
 (town hall meeting) and the visible background (open
sky with clouds) strongly suggests that the background
has been altered.
 Answer: Yes. 

 Image 

 xN Examples 
 w/ CoT 

Figure 2: Comparison of prompts in zero-shot and few-shot scenarios with and without CoT.

3.2 PROMPT STRATEGY

We define a multimodal content M = {I, C} as a tuple consisting of an image I and an accompa-
nying textual claim C to be fact-checked.

Given that our benchmark comprises three important decomposed sub-tasks for verdict prediction
in the MFC process (Akhtar et al., 2023), we have developed three task instructions Ti specifically
designed to elicit the multimodal fact-checking capabilities of the LVLMs as follows:

Manipulation Classification (Task T1): “Manipulation encompasses various alterations such as
face swapping, face attribute editing, background changing, image generation, entity replacement,
and style transfer. Your task is to determine if the image and caption have been manipulated.”

Out-of-Context Classification (Task T2): “Out-of-Context Classification is a task in which the goal
is to identify whether a given image and accompanying text are contextually mismatched or falsely
connected. Your task is to identify whether a given image and its accompanying text are contextually
mismatched or falsely connected.”

Veracity Classification (Task T3): “The Veracity task in a multimodal context involves assessing
the truthfulness or accuracy of textual claims by using visual evidence. Your task is to determine the
truthfulness of textual claims based on the accompanying visual evidence.”

Besides, we carefully design three questions for the three MFC sub-tasks and incorporate the image
I and claim C into them, to enable the model to answer questions for verdict prediction as follows:

Manipulation Classification (Question Q1): “Given a claim {C} and its image {I}, is this multi-
modal content manipulated?”

Out-of-Context Classification (Question Q2): “Does this claim {C} match its image {I}?”

Veracity Classification (Question Q3): “Based on the image {I}, is this claim {C} true?”

At the end of each prompt template, we instruct the required output format F : “Answer yes or
no.”. As demonstrated in Figure 2, to explore the effect of different prompt strategies like Chain-
of-Thought (CoT) (Wei et al., 2022) or In-Context Learning (ICL) prompting, we utilized the four
following prompt methods for the MFC-Bench: Zero-shot, Zero-shot with CoT (Kojima et al., 2022),
Few-shot, and Few-shot with CoT (Wei et al., 2022). Specifically, we design the prompt as follows:

Zero-shot Prompt. We initially employed the zero-shot setting to activate the fact-checking capa-
bilities of LVLMs. Given a task instruction Ti, a question unit Qi, and the return format F , the
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LVLMs f(·) are expected to determine whether the output Y = f(Ti, Qi, F ) is “Yes” or “No”, as
depicted in Figure 2(a). To extend the Zero-shot with CoT setting in LLMs described in Kojima
et al. (2022), we simply incorporated the CoT prompt Cp “Let’s think step by step” into the original
prompt, to encourage the LVLMs to implicitly conduct complex reasoning by retrieving internal ev-
idence, for determining the label L. Consequently, LVLMs will process f(Ti, Qi, Cp, F ) and finally
return the answer to multimodal fact verification.

Few-shot Prompt. Previous literature has indicated that pre-trained LLMs can significantly benefit
from the inclusion of a few ICL demonstrations (Brown et al., 2020). To assess whether the LVLMs
could gain similar advantages from the in-context demonstrations in multimodal fact-checking, we
employed the few-shot setting. For the Few-shot examples, we define each example E = {Qi, L}
consisting of a question Qi and its corresponding factuality label L for fact verification. The inputs
of LVLMs are given as {Ti, E

N , Qi, F}, where EN represents multiple examples and N denotes the
number of examples, as demonstrated in Figure 2(b). In terms of the Few-shot with CoT prompt,
we manually curated a rationale R for each example to guide the LVLMs, where the example is
represented as Ec = {Qi, R, L} and the input is {Ti, E

N
c , Qi, F}.

Justification Production Furthermore, to gain deeper insights into the model interpretability of
LVLMs, we expand our research on the evaluation of the justification production of LVLMs. The
output format F : “Answer yes or no.” was removed to allow the model to produce more intermediate
reasoning steps. The model’s interpretability was evaluated by GPT-4 and humans across four di-
mensions: Misleadingness (M), Informativeness (I), Soundness (S), and Readability (R). A 5-point
Likert scale was used, where 1 indicates the lowest quality and 5 the highest for Informativeness,
Soundness, and Readability, but the scale is reversed for Misleadingness. Detailed explanations of
Misleadingness (M), Informativeness (I), Soundness (S), and Readability (R), as well as the prompts
we used, can be found in Appendix §E.6.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

We conduct extensive experiments on the MFC-Bench to evaluate a total of 18 representative
LVLMs: 1) GPT-4o; 2) GPT-4V; 3) Claude3.5-Sonnet; 4) Claude3-Haiku; 5) Gemini-1.5-Pro;
6) Emu2; 7) InternVL; 8) CogVLM; 9) LLaVA-NeXT; 10) InstructBLIP; 11) Pixtral; 12) MiniCPM-
V-2.6; 13) LLava-OneVsion; 14) Molmo; 15) Qwen-VL; 16) Qwen2-VL; 17) Yi-VL; 18) xGen-
MM. To ensure our results are reproducible, we set the temperature as 0 without any sampling
mechanism. We also have incorporated human performance as the benchmark baseline for compar-
ison. We use the accuracy and macro-averaged F1 score (dominant) as the evaluation metrics. More
implementation details and baseline descriptions are provided in Appendix §B-§C.

4.2 MAIN RESULTS

In Table 3, we present the average outcomes of the listed 18 accessible and representative LVLMs
in a zero-shot setting on the MFC-Bench. From the results, we derive the following observations:

1) For the overall performance of the LVLMs on the Manipulation Classification, the proprietary
model Gemini-1.5-Pro achieves the best performance with the 61.6% F1 score. In open-source
models, Molmo performs the best, with the 59.3% F1 score. Counterintuitively, the more power-
ful closed-source models, namely GPT-4V, Claude3.5-Sonnet and Claude3-Haiku, fail to produce
promising results in this sub-task. 2) None of the models exceeded the 62% F1 score, exposing
weaknesses in vision-language models for this multimodal fact-checking stage. In contrast, hu-
man performance reached over 75%, indicating significant room for improvement in LVLMs. This
discrepancy highlights that computational power alone does not ensure superior performance in Ma-
nipulation Classification. 3) In OOC Classification, GPT-4o stands out as the preeminent model with
the highest 84.8% F1 score. In terms of Veracity Classification, Qwen2-VL is distinguished by its
considerable F1 score of 75.5%. 4) Overall, we can find most of the LVLMs could achieve better
performance on OOC Classification but worse on Manipulation Classification, and performance on
Veracity Classification lies in the intermediate range. This pattern underscores the rational distribu-
tion of task difficulty within our proposed benchmark, MFC-Bench, which comprehensively spans a
spectrum from challenging to straightforward multimodal fact-checking tasks. 5) In comparison to
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Table 3: Results of different LVLMs on the MFC-Bench, in the zero-shot setting. The accuracy and
macro-averaged F1 score (%) are reported as the metrics. The best and second test results are in
bold and underlined, respectively.

Models Size Manipulation OOC Veracity Overall

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Proprietary Models
GPT-4o - 65.7 60.4 84.8 84.8 80.1 63.0 67.7 69.4
GPT-4V - 58.4 50.2 75.8 75.2 77.4 60.0 60.6 61.8
Claude3.5-Sonnet - 59.9 41.7 49.9 37.6 72.7 47.4 60.1 42.2
Claude3-Haiku - 51.4 37.8 59.8 59.5 80.3 57.4 53.7 51.6
Gemini-1.5-Pro - 64.2 61.6 80.2 80.1 79.6 56.6 66.1 66.1

Open-Source Models
Emu2 37B 38.7 33.0 51.9 51.1 70.0 52.6 41.4 45.6
InternVL 25.5B 60.1 44.6 73.4 73.0 80.0 57.4 62.1 58.3
CogVLM 17B 56.3 52.3 61.4 56.2 76.4 63.4 57.8 57.3
LLaVA-NeXT 13B 62.5 56.5 61.8 57.2 78.4 51.3 63.4 55.0
InstructBLIP 13B 41.7 30.5 59.5 52.3 49.6 49.3 43.3 44.0
Pixtral 12B 58.5 43.9 64.8 63.5 80.9 65.0 60.2 57.5
MiniCPM-V-2.6 8B 58.9 39.7 71.2 71.0 80.4 65.1 60.9 58.6
LLaVA-OneVision 7B 61.5 55.5 75.7 75.4 80.9 60.3 63.5 63.7
Molmo 7B 59.3 59.3 58.9 52.3 79.9 57.6 60.5 56.4
Qwen-VL 7B 45.7 45.4 69.7 69.4 82.7 69.3 49.4 61.4
Qwen2-VL 7B 59.9 46.6 80.1 80.1 85.7 75.5 62.7 67.4
Yi-VL 6B 56.4 43.8 70.4 70.4 78.4 60.0 58.6 58.1
xGen-MM 5B 42.7 33.8 50.0 44.8 64.7 48.7 44.5 42.4

Human
Human - 75.7 75.6 74.0 73.5 96.0 91.7 76.8 80.3

Table 4: Justification Evaluated by GPT-4 and Human.

Models Misleadingness Informativeness Soundness Readability
GPT-4 Human GPT-4 Human GPT-4 Human GPT-4 Human

LLaVA-NeXT(7B) 3.82 3.56 2.96 3.02 3.30 3.71 4.39 4.46
LLaVA-NeXT(13B) 3.61 3.68 3.07 3.50 3.48 3.77 4.49 4.63
InstructBLIP(7B) 3.41 3.36 1.06 2.22 1.63 2.45 2.35 3.22
InstructBLIP(13B) 3.32 3.32 1.16 2.21 1.71 2.54 2.46 3.51
Qwen-VL 3.76 3.61 1.77 2.63 2.63 3.11 3.68 3.64
Yi-VL 3.04 3.30 2.04 2.34 3.31 3.56 4.20 4.50

humans, LVLMs show considerable potential for further development in addressing more complex
fact-checking challenges like Manipulation Classification. Despite this, their performance is solid
in simpler tasks like OOC Classification.

4.3 MODEL INTERPRETABILITY

We conducted a post-hoc interpretability analysis about Justification Production across six selected
models: LLaVA-NeXT (7B&13B), InstructBLIP (7B&13B), Qwen-VL, and Yi-VL. This investiga-
tion explored the differences in justification production within the same model family yet varying
parameter sizes, as well as the differences between distinct models. In Table 4, evaluations by GPT-
4 and human evaluators show that the LLaVA-NeXT models perform exceptionally well, achieving
high scores in Informativeness, Soundness, and Readability. In contrast, the InstructBLIP models
struggle with interpretability. We speculate the reason is that the models are often limited to binary
‘yes’ or ‘no’ biased responses, and additional prompts fail to improve their explanatory capabilities.
Additionally, an increase in the size of the LVLMs, from 7 billion to 13 billion parameters, corre-
lates with enhanced interpretability, as observed in the improved metrics for both LLaVA-NeXT and
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Table 5: Fleiss’ Kappa (κ) scores for human evaluation of different models.

Models κ(M) κ(I) κ(S) κ(R)

Human Evaluation
LLaVA-NeXT(7B) 0.72 0.68 0.74 0.75
LLaVA-NeXT(13B) 0.70 0.69 0.76 0.77
InstructBLIP(7B) 0.65 0.60 0.67 0.70
InstructBLIP(13B) 0.63 0.58 0.65 0.72
Qwen-VL 0.71 0.66 0.72 0.74
Yi-VL 0.68 0.64 0.70 0.73

Table 6: Results of selected emerging LVLMs on the MFC-Bench with the zero-shot CoT setting.

Models Manipulation OOC Veracity

Acc. F1 Acc. F1 Acc. F1

Proprietary Models
GPT-4o 65.8 59.6 67.6 65.0 77.6 51.9

Open-Source Models
LLaVA-NeXT 58.1 55.1 52.4 39.1 77.2 46.2
InstructBLIP 41.9 31.0 57.0 47.6 37.2 36.9
LLaVA-OneVision 61.2 58.3 73.3 72.7 81.3 61.6
Qwen-VL 45.7 45.2 71.9 71.8 81.8 65.3
Qwen2-VL 59.3 47.0 79.8 79.8 86.6 77.1
Yi-VL 59.9 42.5 69.4 69.3 78.0 56.1

InstructBLIP families. The Fleiss’ Kappa (κ) scores shown in Table 5, reflects strong consistency
among the annotators. More details of human evaluation and bias are in Appendix §E.5-§E.8.

4.4 EFFECT OF COT

The comparison between Table 3 and Table 6 shows that the impact of CoT in the zero-shot setting
varies across different selected representative LMMs on MFC-Bench. For Manipulation Classifi-
cation, the impact of CoT on model performance differs, as seen in GPT-4o, where the F1 score
decreases from 60.4% to 59.6%, and in LLaVA-OneVision, where it rises from 55.5% to 58.3%. In
the case of OOC Classification, CoT proves beneficial for some LVLMs, such as Qwen-VL, while it
negatively affects others, like Qwen2-VL. For Veracity Classification, CoT generally does not sig-
nificantly impact performance and may even reduce it for certain models. In few-shot settings, as
shown in Figure 3, CoT does not enhance the performance of LLaVA-OneVision and Qwen2-VL.
For LLaVA-OneVision, CoT has a minimal to slightly positive impact on performance in Manipula-
tion Classification and a somewhat negative impact in Veracity Classification. Conversely, the effect
of CoT on the GPT-4o is continuously negative. The possible reasons for these observations include
the underdeveloped ability of the LVLM to handle multiple image inputs and the excessive length
of the rationale, which diminishes the model’s ability to understand the task effectively.

4.5 EFFECT OF ICL

To thoroughly investigate the impact of In-Context Learning (ICL) on model performance, we se-
lected GPT-4o, Qwen2-VL and LLaVA-OneVision that support multiple image inputs to conduct
few-shot experiments. We calculated the macro-averaged F1 scores as the evaluation metric. 1)
The results, as illustrated in Figure 3, indicate that the implementation of few-shot learning does not
enhance the fact-checking capabilities of these models. 2) For the performance of Qwen2-VL in
Figure 3, the few-shot prompt (i.e., ICL) did not result in a performance improvement. Instead, we
found that it induced model inertia, leading it to predominantly respond with “no” in most instances.
We provide more qualitative analysis in Appendix §E.
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Figure 3: Comparison between few-shot conditions w/ and w/o CoT for GPT-4o, LLaVA-OneVision
and Qwen2-VL.

5 ETHICS STATEMENT

The aim of this research is to focus on the multimodal fact-checking issue related to LVLMs, to curb
the dissemination of multimodal disinformation, and to protect individuals from exposure to fake
news. However, we acknowledge the risk that malicious actors might attempt to reverse-engineer
misinformation that could evade detection by AI systems trained on LVLMs. We vehemently dis-
courage and denounce such practices, and emphasize that human moderation is essential to prevent
such occurrences. Our utilization of data adheres to the terms of the datasets (Shao et al., 2023; Luo
et al., 2021; Yao et al., 2023). All the data in this work only includes text and image modalities and
does not contain any user information on social media.

To protect our human evaluators, we establish three guidelines: 1) ensuring their acknowledgment of
viewing potentially uncomfortable content, 2) limiting weekly evaluations and encouraging a lighter
daily workload, and 3) advising them to stop if they feel overwhelmed. Finally, we regularly check
in with evaluators to ensure their well-being.

6 CONCLUSION AND FUTURE WORK

In this study, we aim to investigate the trustworthy insight of LVLMs by examining the multimodal
fact-checking ability of LVLMs across a spectrum of data categories. For this purpose, we have
developed the MFC-Bench, a comprehensive testbed consisting of 35K multimodal samples, span-
ning three tasks of varied complexity. Our evaluation of various LVLMs using different prompting
methods, including those with CoT or ICL prompts, on the MFC-Bench reveals that these models
still exhibit limitations in accurately addressing multimodal fact-checking tasks. In our future work,
we plan to systematically study justification production for multimodal fact-checking with LVLMs.
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Miller, and Sebastian Riedel. How context affects language models’ factual predictions. In Auto-
mated Knowledge Base Construction, 2020.

David MW Powers. Evaluation: from precision, recall and f-measure to roc, informedness, marked-
ness and correlation. arXiv preprint arXiv:2010.16061, 2020.

Peng Qi, Juan Cao, Tianyun Yang, Junbo Guo, and Jintao Li. Exploiting multi-domain visual infor-
mation for fake news detection. In 2019 IEEE international conference on data mining (ICDM),
pp. 518–527. IEEE, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. ArXiv, abs/2204.06125, 2022. URL https://
api.semanticscholar.org/CorpusID:248097655.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
parameters of a language model? In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 5418–5426, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Ekraam Sabir, Wael AbdAlmageed, Yue Wu, and Prem Natarajan. Deep multimodal image-
repurposing detection. In Proceedings of the 26th ACM International Conference on Multime-
dia, MM ’18, pp. 1337–1345, New York, NY, USA, 2018. Association for Computing Machin-
ery. ISBN 9781450356657. doi: 10.1145/3240508.3240707. URL https://doi.org/10.1145/
3240508.3240707.

Rui Shao, Tianxing Wu, and Ziwei Liu. Detecting and grounding multi-modal media manipula-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6904–6913, June 2023.

Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Zhengxiong Luo, Yueze Wang,
Yongming Rao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models
are in-context learners. ArXiv, abs/2312.13286, 2023. URL https://api.semanticscholar.
org/CorpusID:266374640.

15

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:248097655
https://api.semanticscholar.org/CorpusID:248097655
https://doi.org/10.1145/3240508.3240707
https://doi.org/10.1145/3240508.3240707
https://api.semanticscholar.org/CorpusID:266374640
https://api.semanticscholar.org/CorpusID:266374640


Published at Building Trust Workshop at ICLR 2025

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Siamak Shakeri, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Denny Zhou, Neil
Houlsby, and Donald Metzler. Ul2: Unifying language learning paradigms, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: A family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-
scale dataset for fact extraction and verification. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pp. 809–819, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Neeraj Varshney, Swaroop Mishra, and Chitta Baral. Investigating selective prediction approaches
across several tasks in iid, ood, and adversarial settings. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pp. 1995–2002, 2022.

Bin Wang and C.-C. Jay Kuo. Sbert-wk: A sentence embedding method by dissecting bert-based
word models. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:2146–
2157, 2020. URL https://api.semanticscholar.org/CorpusID:211133229.

Bo Wang, Jing Ma, Hongzhan Lin, Zhiwei Yang, Ruichao Yang, Yuan Tian, and Yi Chang. Explain-
able fake news detection with large language model via defense among competing wisdom. In
Proceedings of the ACM on Web Conference 2024, pp. 2452–2463, 2024a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024b.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi Li, Yuxiao Dong, Ming Ding, and Jie Tang.
Cogvlm: Visual expert for pretrained language models. ArXiv, abs/2311.03079, 2023a. URL
https://api.semanticscholar.org/CorpusID:265034288.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. arXiv
preprint arXiv:2311.03079, 2023b.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions,
2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, 2022.

Jiaying Wu, Jiafeng Guo, and Bryan Hooi. Fake news in sheep’s clothing: Robust fake news detec-
tion against llm-empowered style attacks. In Proceedings of the 30th ACM SIGKDD conference
on knowledge discovery and data mining, pp. 3367–3378, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions, 2023.

16

https://api.semanticscholar.org/CorpusID:211133229
https://api.semanticscholar.org/CorpusID:265034288


Published at Building Trust Workshop at ICLR 2025

Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Vi-
raj Prabhu, Yutong Dai, Michael S Ryoo, Shrikant Kendre, Jieyu Zhang, Can Qin, Shu Zhang,
Chia-Chih Chen, Ning Yu, Juntao Tan, Tulika Manoj Awalgaonkar, Shelby Heinecke, Huan
Wang, Yejin Choi, Ludwig Schmidt, Zeyuan Chen, Silvio Savarese, Juan Carlos Niebles, Caim-
ing Xiong, and Ran Xu. xgen-mm (blip-3): A family of open large multimodal models, 2024.
URL https://arxiv.org/abs/2408.08872.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
juan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 9(1), 2023.

Barry Menglong Yao, Aditya Shah, Lichao Sun, Jin-Hee Cho, and Lifu Huang. End-to-end mul-
timodal fact-checking and explanation generation: A challenging dataset and models. In Pro-
ceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’23, pp. 2733–2743, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9781450394086. doi: 10.1145/3539618.3591879. URL
https://doi.org/10.1145/3539618.3591879.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yi Zhou, Junyan Wang, Anwen Hu,
Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong Xu, Hehong Chen, Junfeng Tian, Qiang
Qi, Ji Zhang, and Feiyan Huang. mplug-owl: Modularization empowers large language mod-
els with multimodality. ArXiv, abs/2304.14178, 2023a. URL https://api.semanticscholar.
org/CorpusID:258352455.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen
Hu, Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models
with multimodality. arXiv preprint arXiv:2304.14178, 2023b.

Zhenfei Yin, Jiong Wang, Jianjian Cao, Zhelun Shi, Dingning Liu, Mukai Li, Lu Sheng, Lei Bai,
Xiaoshui Huang, Zhiyong Wang, et al. Lamm: Language-assisted multi-modal instruction-tuning
dataset, framework, and benchmark. arXiv preprint arXiv:2306.06687, 2023.

01.AI Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue,
Senbin Yang, Shiming Yang, Tao Yu, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao
Niu, Pengcheng Nie, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu,
and Zonghong Dai. Yi: Open foundation models by 01.ai. ArXiv, abs/2403.04652, 2024. URL
https://api.semanticscholar.org/CorpusID:268264158.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are strong
context generators. In The Eleventh International Conference on Learning Representations, 2022.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition: Visual
commonsense reasoning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 6720–6731, 2019.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Peng Zhang, Yuxiao Dong, and Jie Tang. Glm-130b: An open bilingual pre-trained model,
2023.

Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, Dan Su, Chenhui Chu, and Dong Yu. Mm-
llms: Recent advances in multimodal large language models. arXiv preprint arXiv:2401.13601,
2024.

17

https://arxiv.org/abs/2408.08872
https://doi.org/10.1145/3539618.3591879
https://api.semanticscholar.org/CorpusID:258352455
https://api.semanticscholar.org/CorpusID:258352455
https://api.semanticscholar.org/CorpusID:268264158


Published at Building Trust Workshop at ICLR 2025

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
Lima: Less is more for alignment, 2023.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

A DISTRIBUTION

The dataset is publicly available on the Hugging Face anonymous page: Manipulation Classification,
OOC Classification and Veracity Classification.

The dataset is accompanied by Croissant metadata and licensing information all available on Hug-
ging Face Hub.

B DESCRIPTIONS OF LVLM BASELINES

We conduct extensive experiments on the MFC-Bench to evaluate the following representative
LVLMs:

• GPT-4o, the latest flagship model developed by OpenAI, designed for real-time reasoning
across audio, visual, and textual inputs. It excels in understanding both vision and audio,
offering significant improvements over previous models in these areas. We specifically
utilize the “gpt-4o-2024-05-13” version.

• GPT-4V (OpenAI, 2023), developed by OpenAI, is a version of the GPT-4 architecture
that includes capabilities for processing and generating images in addition to text. We
specifically utilize the “gpt-4-vision-preview” version.

• Claude3.5-Sonnet developed by Anthropic with significant improvements most evident
in visual reasoning tasks like interpreting charts and graphs, and it can accurately transcribe
text from imperfect images We specifically utilize the “claude-3-5-sonnet-20240620” ver-
sion.

• Claude3-Haiku3, developed by Anthropic, possesses sophisticated vision capabilities
comparable to other leading models. It can process a wide range of visual formats, in-
cluding photos, charts, graphs, and technical diagrams. We specifically utilize the “claude-
3-haiku-20240307” version.

• Gemini-1.5-Pro developed by google, can perform highly-sophisticated understanding
and reasoning tasks for different modalities, including vision. We specifically utilize the
“gemini-1.5-pro” version

• Emu2 (Sun et al., 2023) is a generative multimodal model with 37 billion parameters,
designed to enhance task-agnostic in-context learning capabilities through effective scaling.
We specifically utilize the “Emu2” version.

• InternVL (Chen et al., 2023c) is a large-scale vision-language foundation model, scaling
up the vision foundation model to 6 billion parameters and progressively aligning it with
the LLM, using web-scale image-text data from various sources. We specifically utilize the
“InternVL-Chat-V1-5” version.

• CogVLM (Wang et al., 2023a) is a powerful open-source visual language foundation model
that achieves state-of-the-art performance on multiple cross-modal benchmarks by using a
trainable visual expert module for deep fusion of vision and language features. We specifi-
cally utilize the “cogvlm-chat” version.

3https://claude.ai/
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• LLaVA-NeXT (Liu et al., 2024a) is the new version of LLaVA (Liu et al., 2023a), with
improved reasoning, OCR, and world knowledge capabilities. We specifically utilize the
“llava-v1.6-vicuna-7b, llava-v1.6-vicuna-13b, llava-v1.6-34b” version.

• InstructBLIP (Dai et al., 2023) introduces a novel vision-language instruction-tuning
framework utilizing BLIP-2 models to enhance zero-shot generalization performance
across diverse vision-language tasks. We specifically utilize the “instructblip-vicuna-7b,
instructblip-vicuna-13b” version.

• Pixtral4 developed by Mistral Ai, is trained to understand both natural images and docu-
ments, demonstrates strong abilities in tasks such as chart and figure understanding, docu-
ment question answering, multimodal reasoning, and instruction following. We specifically
utilize the “Pixtral-12B-2409” version.

• MiniCPM-V-2.6 (Yao et al., 2024) is the latest and most capable model in the MiniCPM-V
series developed by OpenBMB, achieves an average score of 65.2 on the latest version of
OpenCompass, a comprehensive evaluation over 8 popular benchmarks. We specifically
utilize the “openbmb/MiniCPM-V-2 6” version.

• LLaVA-OneVision (Li et al., 2024a) is the first single model that can simultaneously push
the performance boundaries of open LMMs in three important computer vision scenar-
ios: single-image, multi-image, and video scenarios. We specifically utilize the “lmms-
lab/llava-onevision-qwen2-7b-ov” version.

• Molmo (Deitke et al., 2024) developed by Allen Ai, is powerful model closes the gap
between open and proprietary systems across a wide range of academic benchmarks as
well as human evaluation. We specifically utilize the “allenai/Molmo-7B-D-0924” version.

• Qwen-VL (Bai et al., 2023) is Alibaba Cloud’s multimodal large vision-language model
that excels in multilingual text recognition, fine-grained understanding, and multi-image
interleaved conversations, significantly outperforming other large vision-language models
in various benchmarks. We specifically utilize the “Qwen/Qwen-VL-Chat” version.

• Qwen2-VL (Wang et al., 2024b) is the latest addition to the vision-language models in
the Qwen series, building upon the capabilities of Qwen-VL. We specifically utilize the
“Qwen/Qwen2-VL-7B-Instruct” version.

• mPLUG-Owl (Ye et al., 2023a), developed by DAMO Academy, is a training approach
that enhances LLMs with multimodal capabilities by integrating a foundational LLM with
a visual knowledge module and a visual abstractor module, using a two-stage method to
align image and text. We specifically utilize the “mplug-owl-llama-7b” version.

• MiniGPT-v2 (Chen et al., 2023b) is a unified vision-language model designed for diverse
tasks such as image description and visual question answering, utilizing unique task iden-
tifiers for improved performance and efficiency. We specifically built the model based on
the “llama-2-7b-chat” LLaMA version with the checkpoint of the online developing demo.

• Yi-VL (Young et al., 2024) is an open-source multimodal vision-language model from the
Yi LLM series, excelling in content comprehension and multi-round image conversations,
and leading in recent English and Chinese benchmarks. We specifically utilize the “Yi-VL-
6B” version.

• xGen-MM (Xue et al., 2024) is a series of the latest foundational Large Multimodal Models
(LMMs) developed by Salesforce AI Research. This series advances upon the successful
designs of the BLIP series, incorporating fundamental enhancements that ensure a more ro-
bust and superior foundation. We specifically utilize the “Salesforce/xgen-mm-phi3-mini-
instruct-r-v1” version.

• MiniCPM-V-25 is a robust multimodal large language model designed for efficient end-side
deployment. It is built on the foundation of SigLip-400M and MiniCPM-2.4B, connected
by a perceiver resampler. We specifically utilize the “MiniCPM-V 2.0” version.

4https://mistral.ai/news/pixtral-12b/
5https://huggingface.co/openbmb/MiniCPM-V-2
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C IMPLEMENTATION DETAILS

The data processing for our datasets is centered around Figure 4, which handles both image and text
data to construct the benchmark.

Diffusion
GAN

Photoshop

Data

Construction

Marty Hahne a magician from
Ozark Mo has a rabbit that he pulls
out of his hat during his magic acts
The Agriculture Department
requires him to have a license for
that rabbit as well as a written
disaster plan.

Marty Hahne, a magician from Ozark,
MO, is burdened by the excessive
regulations of the Agriculture
Department, which not only
demands a license for his
performance rabbit but also insists
on a pointless written disaster plan.

GPT-4 Transfer
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Figure 4: The pipeline of dataset construction.

C.1 DATA CONSTRUCTION

C.1.1 MANIPULATION CLASSIFICATION

To explore the potential capacity of LVLMs on Manipulation Classification in a multimodal con-
text, we designed seven types of manipulation, selecting data from the DGM4 dataset (Shao et al.,
2023) and constructing additional datasets ourselves. The initial data was sourced from the Visu-
alNews (Liu et al., 2021) datasets. The DGM4 dataset complies with the Apache-2.0 license. The
VisualNews dataset is available upon request.

• Method 1: Face Swap (FS). Face Swap involves the process of cutting a face from one
image and replacing it with a different face in another image. It can be used to create
realistic but fake images of public figures, such as politicians, celebrities, or journalists,
appearing to do things they never did. It is important for LVLMs not only to verify the
authenticity of news text content but also to accurately identify whether the individuals in
the accompanying photos correspond to the reported events. We have sampled and chosen
a Face Swap subset of the DGM4 dataset (Shao et al., 2023) as part of our benchmark
to detect Whether LVLMs can recognize public figures and retrieve information related to
individuals from its internal parametric knowledge through multimodal data.
Data processing: A Face Swap subset of the DGM4 dataset (Shao et al., 2023) was sam-
pled and selected.

• Method 2: Face Attribute Edit (AE). Unlike Face Swap, Face Attribute Edit achieves
deception by altering the facial expressions of humans like newsmakers. This can be po-
tentially harmful to the public, as it can particularly portray a public figure laughing in-
appropriately in a serious context, which is highly misleading and infuriating. To identify
such discrepancies, LVLMs must precisely recognize the type of event and the expected
demeanor of the individuals involved. Our benchmark randomly selected visual and tex-
tual samples related to face attribute editing from the previously established DGM4 dataset
(Shao et al., 2023). This inclusion allows us to evaluate the multimodal fact-checking capa-
bilities of LVLMs in recognizing the scene, identifying personal information and detecting
the correctness of face’s status in visual content in the multimodal context.
Data processing: Visual and textual samples related to face attribute editing were randomly
selected from the previously established DGM4 dataset (Shao et al., 2023).

• Method 3: Background Change (BC). The same individuals, involving the same events,
can take place in different locations. Before the emergence of diffusion models, manip-
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ulating a suitable scene was extremely challenging. However, with the advent of dif-
fusion models (Rombach et al., 2022), we can now effortlessly alter the background of
images, thereby creating scenes that did not originally exist in fact. Specifically, we
are interested in whether LVLMs can exactly determine if the time and location of an
event align with the actual scene. We utilized Grounding DINO (Liu et al., 2023b) and
stable-diffusion-inpainting6 models to generate a background for a manipulated and
unrealistic outdoor scene. Our objective was to examine the capability of LVLMs in faith-
fully identifying these artificially constructed counterfactual scenarios.
Data processing: Backgrounds for outdoor scenes were generated using Grounding
DINO (Liu et al., 2023b) and stable-diffusion-inpainting techniques. First, we used
Grounding DINO to detect the people in the photos and create inverse masks. Then, we
provided these masks along with the original images for stable-diffusion-inpainting. The
pipeline was implemented using ComfyUI.

• Method 4: CLIP-based Stable Diffusion Generate (CG). Stable diffusion (SD) tradi-
tionally employs the text-to-image generation. However, by incorporating CLIP (Radford
et al., 2021), we can transform the process into an image-to-image generation (Ramesh
et al., 2022), enabling the manipulated image to retain the linguistic information from
the original image. It is crucial for LVLMs to accurately discern between authentic
and fabricated images by incorporating their internal knowledge, Using StabilityAI’s
Stable-Diffusion-2-1-Unclip7, we generated stable diffusion versions of the original
images for replacement. This design allows us to test the fact-checking capacity of LVLMs
for awareness of whether the multimodal contents have been manipulated with the original
image information.
Data processing: Stable diffusion versions of the original images were generated using
StabilityAI’s Stable-Diffusion-2-1-Unclip. By utilizing Stable-Diffusion-2-1-Unclip, we
input the original claim and image into the model to generate the manipulated images.

• Method 5: Photoshop (PS). Photoshop has long been a leading tool for manual image
editing, enabling users to alter human figures and merge different images to create poten-
tially misleading visuals. This capability can have serious consequences, as it may lead
to the spread of misinformation, manipulate public perception, and distort reality. LVLMs
must leverage their inherent knowledge, which encompasses a vast understanding of con-
text, patterns, and nuances in visual data, to effectively identify and analyze such issues
of manipulation and misinformation. This facilitates our assessment of whether LVLMs
can discern the traces of human manipulation, thereby fulfilling the requirements of the
fact-checking task.
Data processing: To evaluate the effectiveness of LVLMs in detecting human manipula-
tion, we utilize the photoshop subset of Fakeddit (Nakamura et al., 2020).

• Method 6: Textual Entity Replace (ER). Textual Entity Replace is a traditional method
of text manipulation. Using Named Entity Recognition (NER) (Lample et al., 2016) from
bert-base-NER8, we identified named entities corresponding to persons within a given
claim where newsmakers are mentioned. Subsequently, we randomly selected the location
or time from an NER candidate set consisting of thousands of entities, to replace the target
location or time entities in the claim. This creates counterfactual scenarios where the photos
and claims contain the same individuals, but the events depicted are different. This scenario
challenges the ability of LVLMs to keenly associate individuals with events, relying on their
internal factual knowledge.
Data processing: Named entities corresponding to persons within a given claim were iden-
tified using Named Entity Recognition (NER) (Lample et al., 2016) from bert-base-NER,
and the surrounding contextual texts of the person would be replaced with other contexts
of contradicted and different locations and time. To ensure that the claims contain people,
we first screened the data and selected only the claims that included individuals.

• Method 7: Text Style Transfer (ST). Similar to Face Attribute Edit, Text Style Transfer
can alter the perception of the same person and event, giving a different factual impres-

6https://huggingface.co/runwayml/stable-diffusion-inpainting
7https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip
8https://huggingface.co/dslim/bert-base-NER
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sion (Wu et al., 2024). For instance, an originally sad event can be described in a way that
makes it seem humorous. This poses a substantial challenge for fact-checking efforts as it
requires LVLMs not only to detect the factual content but also to understand the tone and
style nuances that might misrepresent the underlying truth of the situation. Hence, we first
utilized GPT-4 (OpenAI, 2023) to determine whether the sentiment of the text is positive
or negative. Then, leveraging the advanced text style transfer capabilities of GPT-4, we
rewrote the text to express the opposite sentiment. The process examines LVLMs’ abil-
ity to rigorously comprehend the events and associated sentiments depicted in images and
claims, and to correctly correlate them.
Data processing: The sentiment of the text was first determined using GPT-4 (OpenAI,
2023), and then the text was rewritten to express the opposite sentiment using GPT-4’s
advanced text style transfer capabilities.

C.1.2 OUT-OF-CONTEXT CLASSIFICATION

Out-of-Context (OOC) Classification (Luo et al., 2021) aims to evaluate the coherence and corre-
spondence of context across various modalities. Unlike the aforementioned manipulation techniques
that require modifying images and texts, OOC Classification combines real but misused images and
texts. If the image and claim are contextually aligned, we define the relationship as true. Conversely,
if the image and claim are not contextually aligned, we define the relationship as false. We collected
multimodal samples from the NewsCLIPpings dataset (Luo et al., 2021), using embedding methods
such as CLIP and SBERT-WK (Wang & Kuo, 2020) to extract the most similar misused images, for
the evaluation of LVLMs’ ability in discerning subtle semantic inconsistencies between images and
texts in OOC Classification.

Data processing: The Out-of-Context Classification data is sourced from the NewsCLIPpings (Luo
et al., 2021) dataset. The NewsCLIPpings dataset is available upon request.

C.1.3 VERACITY CLASSIFICATION

Veracity Classification (Yao et al., 2023) involves classifying the veracity of textual claims given
retrieved visual evidence. Based on the image evidence, the LVLMs need to predict the truthfulness
(Supported, Refuted) of the claim. We curated a subset of the Mocheg dataset (Yao et al., 2023) for
this task. If the image supports the truthfulness of the claim, we label the relationship between the
image and the claim as “Supported” indicating a true label. Otherwise, it is labeled as “Refuted”
indicating a false label. This is a cross-modal semantic transformation task designed to test whether
LVLMs can accurately interpret and analyze visual information to support or refute textual claims.

Data processing: the Veracity Classification data is obtained and sampled randomly from the
Mocheg dataset (Yao et al., 2023). Mocheg dataset complies with the Apache-2.0 license.

C.2 QUALITY ASSURANCE

This research involved a human subjects study to evaluate the quality of multimodal data manipu-
lated by our adopted techniques. To assure the quality of the self-constructed data, we employed
three human evaluators, who are senior undergraduate or graduate students majoring in computer
science. Each student is presented with the manipulated data and the original data to judge whether
the data has been successfully manipulated with the manipulation techniques for the reliability and
credibility of the multimodal data. Each evaluator completes the quality assurance process indepen-
dently.

The following considerations were adhered to ensure the protection and ethical treatment of partic-
ipants: 1) Voluntary Participation: All participants were informed about the nature of the research
and their role in it. Participation was entirely voluntary, with participants having the right to with-
draw at any time without any consequences. 2) Informed Consent: Written informed consent was
obtained from all participants. This consent form detailed the purpose of the research, the proce-
dures involved, potential risks, and measures taken to safeguard participant data. 3) Data Anonymity
and Confidentiality: All data collected during the study were anonymized. Personal identifiers were
removed to maintain confidentiality and data were stored securely to prevent unauthorized access.
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4) Minimal Risk: The study involved minimal risk to participants. The tasks performed were similar
to everyday activities, and no sensitive personal information was requested or recorded.

C.3 BENCHMARK COMPARISON

As shown in Table 7, our benchmark includes more comprehensive data and covers a wider range of
sub-tasks in multimodal fact-checking. Our dataset consists of three types of tasks and nine specific
data categories.

Table 7: Comparison of datasets related to multimodal fact-checking.

Datasets Manipulation OOC Veracity
FS AE BC CG PS ER ST

Fakeddit (Nakamura et al., 2020) % % % % " % % " %

DGM4 (Shao et al., 2023) " " % % % % % % %

MEIR (Sabir et al., 2018) % % % % " " % % %

EMU (Da et al., 2021) % % % % " % % % %

Mocheg (Yao et al., 2023) % % % % % % % % "

NewsCLIPpings (Luo et al., 2021) % % % % % % % " %

MAIM (Jaiswal et al., 2017) % % % % % % % " %

COSMOS (Aneja et al., 2023) % % % % % % % " %

MMFakeBench (Liu et al., 2024b) % % % " " " % " "

MFC-Bench " " " " " " " " "

C.4 GPUS USAGE

We utilized the high-performance computing platform and employed Slurm to request 2-4 A800
GPUs for benchmarking multimodal fact-checking with LVLMs.

D RELATED WORK

D.1 LLMS AND LVLMS

Recent advancements have seen LLMs excel across various domains, with major tech companies
developing high-performing proprietary models such as OpenAI’s GPT-3 (Brown et al., 2020) and
GPT-4 (OpenAI, 2023), Google’s PaLM (Chowdhery et al., 2022) and Gemini (Team et al., 2023),
and Anthropic’s Claude. These models, however, are often only accessible via specific APIs or not
at all. In contrast, the AI community has embraced the emergence of open-source LLMs, making
significant contributions like MistralAI’s Mistral-series (Jiang et al., 2023), Google’s UL2-20B (Tay
et al., 2023) and Gemma (Mesnard et al., 2024), Tsinghua University’s GLM-130B (Zeng et al.,
2023), and Meta’s OPT (Zhang et al., 2022) and the LLaMA series (Touvron et al., 2023a;b; Meta,
2024), enhanced by extensive alignment efforts (Wang et al., 2023c; Xu et al., 2023; Luo et al.,
2023b;a; Mukherjee et al., 2023; Zhou et al., 2023; Li et al., 2023b).

LVLMs have significantly advanced the understanding of both textual and visual data within
a unified framework (Chen et al., 2023a; Zhang et al., 2024). Innovative models such as
Flamingo (Alayrac et al., 2022) and PaLM-E (Driess et al., 2023) have demonstrated the ability
to integrate visual and textual information effectively, without the need for task-specific training.
Concurrently, the development of diverse multimodal datasets (Yang et al., 2023) stemming from
GPT-4 and GPT-4V (OpenAI, 2023) has spurred the fine-tuning of models like LLaVA (Liu et al.,
2023a), MiniGPT-4 (Zhu et al., 2023), mPLUG-Owl (Ye et al., 2023b), InstructBLIP (Dai et al.,
2023), and others (Bai et al., 2023; Wang et al., 2023b; Gong et al., 2023; Team et al., 2023; Bav-
ishi et al., 2023), highlighting a trend towards more versatile and real-world applicable multimodal
systems.
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D.2 FACTUAL KNOWLEDGE IN LMS

Previous studies have established that language models (LMs) can function as repositories of fac-
tual knowledge, serving effectively as knowledge bases (Petroni et al., 2019; 2020; Heinzerling &
Inui, 2021). This reservoir of factual information acquired during pretraining proves beneficial for
knowledge-intensive tasks, such as question-answering and fact-checking (Roberts et al., 2020; Yu
et al., 2022; Pan et al., 2023). Petroni et al. (2019) used cloze tests involving triples and tailored
prompts to evaluate the factual knowledge embedded in language models, while Jiang et al. (2020)
focused on optimizing prompt design to enhance factual retrieval from these models.

Despite these advancements, the reliability of these methods has been questioned. Elazar et al.
(2021) highlighted the inconsistency in rank-based probing methods when using paraphrased con-
texts. Similarly, Cao et al. (2021) argued that biased prompting and the leakage of correct answers
can often lead to an overestimation of LM’s knowledge retention. On the other hand, Varshney et al.
(2022) employed question-answering formats to gauge models’ uncertainty about specific facts, sug-
gesting a different approach to measure factual accuracy. Our methodology aligns more closely with
the approaches of Kadavath et al. (2022); Lin et al. (2022b); Hu et al. (2024), which involve querying
models directly to self-evaluate their accuracy in delivering factual responses, offering a more direct
assessment of their knowledge capabilities. But differently, this work focuses on the multimodal
nature of fact checking to explore the complex reasoning capability of LVLMs.

D.3 MULTIMODAL FACT-CHECKING

Multimodal Fact-Checking refers to the systematic process of identifying counterfactuals or incon-
sistencies between facts across different modalities within multimodal data (Akhtar et al., 2023).
Common manifestations of multimodal misinformation include claims about digitally manipulated
context (Agarwal et al., 2019; Shao et al., 2023) and the amalgamation of context from disparate
modalities and contexts (Luo et al., 2021; Aneja et al., 2021). The former is predominantly asso-
ciated with deepfake technologies (Maras & Alexandrou, 2018; Dolhansky et al., 2019), while the
latter is linked with cheapfake methodologies (Aneja et al., 2021). An essential Multimodal Fact-
Checking pipeline consists of evidence retrieval and the adjudication process. Evidence retrieval fur-
nishes the foundational basis for subsequent multimodal judgments. Within the adjudication phase,
tasks are delineated into distinct categories, such as Manipulation Classification, Out-of-Context
Classification, and Veracity Classification.

Manipulation Classification (Shao et al., 2023) is a task meticulously designed to ascertain whether
multimodal data encompasses fabricated elements. Out-of-Context Classification (Luo et al., 2021)
aims to evaluate the coherence and correspondence of context across various modalities. Veracity
Classification (Yao et al., 2023) involves assessing whether the context from one modality aligns
with or accurately reflects the context from another modality. Collectively, these tasks constitute
the comprehensive process of multimodal fact-checking. In this work, we employed six different
manipulation techniques to assess whether LVLMs can detect manipulations in multimodal news.
Data from the NewsCLIPpings dataset is used to challenge LVLMs’ ability to discern semantic
differences between real images and real text, specifically for OOC classification. Similar to text,
the cross-modal Veracity task is used to evaluate LVLMs’ ability to perform factual inference across
different modalities.

D.4 BENCHMARKS FOR LVLMS

Traditional multimodal benchmarks have been centered around specific skills such as visual recogni-
tion (Goyal et al., 2017), image description (Agrawal et al., 2019), and visual commonsense reason-
ing (Zellers et al., 2019). However, the advent of advanced LVLMs has necessitated the development
of new benchmarks to keep pace with their robust zero-shot capabilities, which often exceed those
measured by conventional metrics. This has exposed shortcomings in their ability to match answers
accurately, highlighting issues with robustness. To address these limitations, the research commu-
nity has introduced several innovative benchmarks, such as MME (Fu et al., 2023), MMBench (Liu
et al., 2023c), MM-Vet (Yu et al., 2023), SEED-Bench (Li et al., 2023a), GOAT-Bench (Lin et al.,
2024b), LAMM (Yin et al., 2023) and MMCode (Li et al., 2024b). These benchmarks are designed
to facilitate structured evaluations of complex multimodal tasks and reveal the flaws of traditional
methods. Distinct from these, our proposed benchmark is tailored to systematically assess multi-
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Table 8: Results of different LVLMs on the MFC-Bench, in the zero-shot setting. The accuracy and
macro-averaged F1 score (%) are reported as the metrics.

Models Size Manipulation OOC Veracity

Accuracy F1 Accuracy F1 Accuracy F1

Proprietary Models
GPT-4o - 65.7 60.4 84.8 84.8 80.1 63.0
GPT-4V - 58.4 50.2 75.8 75.2 77.4 60.0
Claude3.5-Sonnet - 59.9 41.7 49.9 37.6 72.7 47.4
Claude3-Haiku - 51.4 37.8 59.8 59.5 80.3 57.4
Gemini-1.5-Pro - 57.7 36.6 80.2 80.1 79.6 56.6

Open-Source Models
Emu2 37B 38.7 33.0 51.9 51.1 70.0 52.6
InternVL 25.5B 60.1 44.6 73.4 73.0 80.0 57.4
CogVLM 17B 56.3 52.3 61.4 56.2 76.4 63.4
LLaVA-NeXT 13B 62.5 56.5 61.8 57.2 78.4 51.3
InstructBLIP 13B 41.7 30.5 59.5 52.3 49.6 49.3
Pixtral 12B 58.5 43.9 64.8 63.5 80.9 65.0
MiniCPM-V-2.6 8B 58.9 39.7 71.2 71.0 80.4 65.1
LLaVA-OneVision 7B 61.5 55.5 75.7 75.4 80.9 60.3
Molmo 7B 59.3 59.3 58.9 52.3 79.9 57.6
Qwen-VL 7B 45.7 45.4 69.7 69.4 82.7 69.3
Qwen2-VL 7B 59.9 46.6 80.1 80.1 85.7 75.5
mPLUG-Owl 7B 45.7 45.4 48.3 46.1 60.8 49.7
Yi-VL 6B 56.4 43.8 70.4 70.4 78.4 60.0
xGen-MM 5B 42.7 33.8 50.0 44.8 64.7 48.7
MiniCPM-V-2 2.8B 64.0 56.6 67.2 66.3 81.8 65.5

Human
Human - 75.7 75.6 74.0 73.5 96.0 91.7

modal factual knowledge, especially concerning disinformation detection in the realm of deepfakes
and cheapfakes. This testbed would allow for a more thorough exploration of LVLMs’ trustworthy
awareness concerning a wider range of task types associated with multimodal factuality.

E MORE RESULTS AND ANALYSIS

E.1 ZERO-SHOT EVALUATION RESULTS

Table 8 shows the zero-shot evaluation results of a total of 20 LVLMs on the MFC-Bench in the
zero-shot setting.

E.2 POTENTIAL TEST SET LEAKAGE

For the open-source LVLMs, test set leakage is not a concern, as the literature explicitly delineates
the datasets and instruction-tuning procedures employed in their training, none of which encompass
the multimodal data utilized in our MFC-Bench. However, we cannot fully guarantee the exclusion
of potential data leakage with the proprietary models, as its internal workings remain opaque. Nev-
ertheless, as evidenced by the results in the experiments, where all LVLMs were evaluated directly
on the MFC-Bench, the absence of significant test set leakage is implied. This is inferred from the
fact that direct application of the LVLMs did not yield disproportionately high performance, which
would be expected if the models were benefiting from test set leakage.
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Figure 5: Effect of prompts specifically designed for different types of manipulation techniques.

E.3 RESULTS ON DIFFERENT MANIPULATION TECHNIQUES

We further provide the detailed results of the representative LVLMs on the Manipulation Classifica-
tion with respect to the seven manipulation methods, as depicted in Table 9.

Table 9: Detailed results of LVLMs on the Manipulation Classification in the zero-shot setting.

Models Size FS AE BC CG PS ER ST

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Proprietary Models
GPT-4o - 61.4 45.7 60.8 42.9 78.6 73.2 63.6 60.8 80.4 80.4 58.1 53.7 56.8 49.5
GPT-4V - 52.5 40.7 49.5 37.1 82.2 81.3 52.3 44.6 77.3 77.2 47.5 36.3 47.3 34.2
Claude3.5-Sonnet - 62.7 41.0 64.4 39.7 69.0 47.6 53.7 36.9 59.3 49.2 58.7 38.8 51.0 35.5
Claude3-Haiku - 50.2 35.8 50.2 36.1 50.0 35.5 50.2 35.7 51.4 42.3 57.4 42.3 50.7 37.2
Gemini-1.5-Pro - 63.2 49.1 62.8 47.3 77.8 71.1 54.4 45.5 84.3 84.3 61.2 51.0 56.8 48.3

Open-Source Models
Emu2 37B 35.5 30.7 35.3 30.0 32.7 25.9 33.6 28.8 57.3 52.6 57.7 42.6 49.8 38.1
InternVL 25.5B 64.4 44.4 65.1 43.9 78.9 71.3 53.0 41.5 52.1 39.4 57.8 37.0 50.5 36.2
CogVLM 17B 54.0 51.6 53.1 50.4 71.7 70.5 60.7 58.9 50.0 33.4 41.9 29.5 48.2 41.1
LLaVA-NeXT 13B 60.7 51.2 60.5 50.7 81.8 79.9 61.9 59.6 63.5 59.9 54.2 41.5 55.5 51.2
InstructBLIP 13B 33.6 25.7 33.6 25.8 33.6 25.7 50.5 35.8 49.1 33.4 42.2 30.9 50.7 36.7
Pixtral 12B 64.4 44.9 64.5 44.9 66.9 50.5 50.5 38.7 57.3 52.7 57.2 42.5 52.0 41.1
MiniCPM-V-2.6 8B 66.2 41.6 66.3 42.0 68.1 45.8 50.4 35.5 54.0 43.3 57.6 37.5 49.9 34.2
LLaVA-OneVision 7B 59.9 51.3 58.7 49.9 78.5 73.0 60.9 56.2 71.6 71.0 55.2 37.9 48.2 35.1
Molmo 7B 51.4 50.2 52.3 51.0 64.6 64.3 70.4 69.8 61.4 56.0 47.1 45.9 51.2 51.1
Qwen-VL 7B 45.4 45.2 46.3 46.1 46.9 46.8 46.9 46.2 41.6 41.6 47.2 46.4 40.2 40.0
Qwen2-VL 7B 64.8 45.5 64.7 44.7 74.5 64.5 51.0 37.9 65.8 65.7 55.5 37.6 51.7 39.0
mPLUG-Owl 7B 45.5 45.5 45.1 45.1 47.7 47.7 50.5 49.4 47.1 46.2 50.3 44.7 49.2 48.2
Yi-VL 6B 65.3 44.2 64.7 43.7 68.9 50.5 51.2 40.2 64.7 63.5 56.4 37.4 49.6 36.8
xGen-MM 5B 35.3 29.6 35.4 29.7 35.1 29.5 49.9 36.5 50.0 33.6 48.4 43.0 49.5 36.3
MiniCPM-V-2 2.8B 62.2 50.4 62.5 50.1 83.7 85.8 63.1 59.9 70.7 70.2 56.8 39.2 49.6 38.9

Human
Human - 63.0 62.9 71.0 70.9 92.0 92.0 91.0 91.0 75.9 75.4 59.0 58.8 78.0 77.9

E.4 EFFECT OF PROMPTS ON MANIPULATION CLASSIFICATION

To verify the model’s understanding of manipulation data, we designed prompts for six different
manipulation methods and tested them on twelve models (see §F). As shown in Figure 5, the model’s
performance on each sub-task was consistent with that of a single prompt. This suggests that the
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Table 10: Results of human evaluation on the MFC-Bench across different multimodal fact-checking
tasks in a zero-shot setting.

Tasks Accuracy F1

Manipulation Classification 75.67 75.58
OOC Classification 74.00 73.50

Veracity Classification 96.00 91.70

Table 11: Detailed results of human evaluation on the Manipulation Classification in the zero-shot
setting.

Tasks Accuracy F1

FS 63.0 62.9
AE 71.0 70.9
BC 92.0 92.0
CG 91.0 91.0
PS 75.9 75.4
ER 59.0 58.8
ST 78.0 77.9

model struggles with manipulation fact-checking. For the Background Change task, the scenarios
we set might have been too simple, making it easy for the model to detect the manipulations.

E.5 HUMAN EVALUATION

To assess the effectiveness of the MFC-Bench and better evaluate the performance of LVLMs, we
conducted human evaluation experiments. For each sub-task, as illustrated in Figure 1, we randomly
selected 100 samples, resulting in a total of 900 examples for human evaluation. 3 professional fact-
checking annotators (between the ages of 26 and 29) were asked to judge the truthfulness of each
sample (i.e., “Fact.” or “Non-Fact.”) in the zero-shot evaluation setting. Then the voting results were
regarded as the answers. The results from their votes were then considered as the final evaluation.

As demonstrated in Table 10 and Table 11: 1) The accuracy of human predictions significantly sur-
passes LVLMs in Manipulation Classification. Humans achieved an accuracy of 75.67% and an F1
score of 75.58%. In Background Change and CLIP-based Stable Diffusion Generation methods, hu-
man accuracy exceeded 90%. Human fact-checking ability in Manipulation Classification surpasses
that of LVLMs, suggesting that there is considerable room for improvement in LVLM performance.
2) Human performance in OOC classification is on par with the best-performing LVLMs, such as
GPT-4V. Without manipulating the text and image, LVLMs can effectively identify the false connec-
tions between them. 3) For Veracity Classification, humans achieved an accuracy of over 95%. This
high accuracy can be attributed to two factors: the strong fact-checking abilities of humans and the
high degree of correlation within the dataset, which allowed humans to draw on their experience.

Human performance exceeds that of most LVLMs, especially in Manipulation Classification. This
indicates that there is still significant potential for improvement in the fact-checking capabilities of
LVLMs.

E.6 MODEL INTERPRETABILITY

To gain deeper insights into the model interpretability of LVLMs, we expand our research on the
evaluation of the justification production of LVLMs. The output format F : “Answer yes or no.” was
removed to allow the model to produce more intermediate reasoning steps.

For the evaluation of justification production, traditional automated evaluation metrics are inade-
quate to assess the output results of LVLMs (Chang et al., 2024). Fortunately, GPT-4 has been
demonstrated to excel in assessing text quality from multiple angles, even in the absence of ref-
erence texts (Lin et al., 2024a; Wang et al., 2024a). Thus the model’s justification was evaluated
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Table 12: Model Interpretability Evaluated by GPT-4 and Human.

Models Size Manipulation OOC Veracity
M I S R M I S R M I S R

Evaluated by GPT-4
LLaVA-NeXT(7B) 7B 3.95 3.09 3.24 4.39 3.82 3.09 3.54 4.56 3.68 2.69 3.12 4.22
LLaVA-NeXT(13B) 13B 3.83 3.16 3.36 4.46 3.57 3.17 3.70 4.61 3.44 2.89 3.39 4.41
InstructBLIP(7B) 7B 3.86 1.06 1.47 2.24 3.04 1.11 1.87 2.60 3.32 1.00 1.54 2.21
InstructBLIP(13B) 13B 3.67 1.42 1.92 2.71 2.88 1.06 1.69 2.44 3.42 1.00 1.53 2.23
Qwen-VL 7B 4.02 1.83 2.61 3.73 3.82 1.64 2.45 3.47 3.43 1.85 2.83 3.85
Yi-VL 6B 3.44 2.18 3.20 4.20 3.02 2.12 3.35 4.23 2.65 1.82 3.39 4.16

Evaluated by Human
LLaVA-NeXT(7B) 7B 3.43 3.15 3.83 4.47 3.82 2.09 3.54 4.56 3.42 3.82 3.76 4.34
LLaVA-NeXT(13B) 13B 3.63 3.43 3.96 4.87 3.57 3.17 3.70 4.61 3.83 3.89 3.64 4.42
InstructBLIP(7B) 7B 3.80 2.13 2.41 2.63 3.04 2.11 2.87 3.45 3.25 2.41 2.06 3.57
InstructBLIP(13B) 13B 3.78 2.17 2.83 2.76 2.88 2.06 2.69 3.95 3.30 2.40 2.11 3.83
Qwen-VL 7B 3.46 2.74 3.52 3.13 3.45 2.20 2.45 3.47 3.91 2.96 3.35 4.31
Yi-VL 6B 3.54 2.53 3.81 4.56 3.23 2.20 3.35 4.23 3.14 2.28 3.52 4.72

by GPT-4 and Human subjects across four dimensions: Misleadingness (M), Informativeness (I),
Soundness (S), and Readability (R). A 5-point Likert scale was used, where 1 indicates the lowest
quality and 5 the highest for Informativeness, Soundness, and Readability, but the scale is reversed
for Misleadingness.

• Misleadingness (M) assesses whether the model’s explanation is consistent with the real
veracity label of a claim, with a rating scale ranging from 1 (not misleading) to 5 (very
misleading).

• Informativeness (I) measures how much the explanation provides new information, such
as explaining the background and additional context, with a rating scale ranging from 1
(not informative) to 5 (very informative).

• Soundness (S) describes whether the explanation seems valid and logical, with a rating
scale ranging from 1 (not sound) to 5 (very sound).

• Readability (R) evaluates whether the explanation follows proper grammar and structural
rules, and whether the sentences in the explanation fit together and are easy to follow with
a rating scale ranging from 1 (not fluent) to 5 (very fluent).

To use GPT-4 to evaluate the model interpretability of LVLMs, we carefully designed the following
prompt. First, we give the GPT-4 system prompt “You are now the judge of the model output.”; Next,
we provide GPT-4 with both the label L and model output Y using the format “Label:{L}, Model
output {Y}”. Finally, GPT-4 evaluates the output in four dimensions and returns in JSON format.
Below is the complete prompt we use for GPT-4:

Label:{L}
Model output: {Y}
Please rate in four dimensions:

1. Misleadingness -assesses whether the model’s explanation is consistent with the real veracity
label of a claim, with a rating scale ranging from 1 (not misleading) to 5 (very misleading)

2. Informativeness - assesses whether the explanation provides new information, such as explaining
the background and additional context, with a rating scale ranging from 1 (not informative) to 5
(very informative)

3. Soundness - describes whether the explanation seems valid and logical, with a rating scale
ranging from 1 (not sound) to 5 (very sound)

4. Readability - evaluates whether the explanation follows proper grammar and structural rules,
and whether the sentences in the explanation fit together and are easy to follow with a rating scale
ranging from 1 (poor) to 5 (excellent).
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Scores 1-5, returned in json format.

We conducted model interpretability analysis across six models: LLaVA-NeXT (7B), LLaVA-NeXT
(13B), InstructBLIP (7B), InstructBLIP (13B), Qwen-VL, and Yi-VL. This investigation explored
the differences within the same model family with varying parameter sizes, as well as the differences
between distinct models. For the human subject study, the 3 professional annotators were asked to
judge the model interpretability. The Fleiss’ Kappa (κ) scores are shown in Table 5. Moreover, the
intra-class agreement score is 0.685. The results are shown in Table 12.

E.7 EFFECT OF MODEL SIZE

To explore the impact of model size on factual capabilities, we analyzed two families of LVLMs: In-
structBLIP and LLaVA-NeXT, which both utilize the same language backbone, i.e., Vicuna (Chiang
et al., 2023), and employ similar CLIP models, with InstructBLIP using EVA CLIP-g and LLava-
NeXT using CLIP ViT-L/14. Specifically, we examined InstructBLIP (7B), InstructBLIP (13B),
LLava-NeXT (7B), LLava-NeXT (13B), and LLava-NeXT (34B). As shown in Figure 6, the fol-
lowing observations were made: 1) In Manipulation Classification, there is a minimal correlation
between the model size of the specific LVLMs family and the performance. 2) Regarding OOC Clas-
sification and Veracity Classification, the model performance generally improves with the increased
model size.
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Figure 6: Model size effects of LVLMs.

E.8 YES/NO BIAS

During benchmarking, we identified a Yes/No Bias issue with the tested LVLMs, where it tends
to consistently respond with either “yes” or “no”. We have chosen two key metrics to evalu-
ate the Yes/No bias of the model for the Manipulation Classification task: 1) False Positive Rate
(FPR) (Fawcett, 2006) and 2) False Negative Rate (FNR) (Powers, 2020).

In Figure 7, models such as GPT-4V, Claude3-Haiku, Yi-VL, and InternVL tend to answer “no”
more frequently. Conversely, models like Emu2, MiniGPT-v2, and InstructBLIP are more inclined
to answer “yes”. Meanwhile, LLaVA-NeXT, CogVLM, Qwen-VL, and mPLUG-Owl exhibit a
balanced performance without a strong bias towards either affirmative or negative classifications.
Given that these models were not specifically trained for this task, the presence of such biases is
not unexpected. This underscores the necessity of MFC-Bench, aiming to guide the enhancement of
fact-checking capabilities in LVLMs for future developments.

E.9 CASE STUDY

To better understand the reasoning process of the model in fact-checking, we are conducting a study
on the correct and incorrect reasoning processes of the GPT-4V model. Figure 8 illustrates an in-
stance where GPT-4V fails to identify manipulated content, specifically a face swap involving Joe
Biden and another individual. This oversight underscores a significant limitation of GPT-4V in ac-
curately recognizing individuals within images. The model’s rationale primarily emphasizes overall
scene consistency and plausible historical context, but it fails to detect the specific manipulation of
Joe Biden’s identity. In contrast, Figure 9 showcases GPT-4V’s successful identification of manip-
ulated content by accurately discerning the discrepancy between the emotional state depicted in the
image and the corresponding caption. Todd Stern’s smiling expression contrasts with the caption’s
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Figure 7: Yes/No Bias in tested LVLMs.

Joe Biden looks on as
President Obama
pitches his executive
actions to reduce gun
violence at the White
House last week.

 Image 

 Caption 

 Rationale  Upon reviewing the image and the caption, the rationale for determining whether
the multimodal content is manipulated involves analyzing a few key aspects:
1. Image Analysis: The image shows two individuals, one of whom appears to be former
President Barack Obama, and the other resembles Joe Biden. This matches the description
given in the caption.
2. Caption Context: The caption "Joe Biden looks on as President Obama pitches his
executive actions to reduce gun violence at the White House last week" aligns with the
visual content. Joe Biden is indeed seen looking on while Barack Obama appears to be
speaking.
3. Visual Consistency: The image does not show any signs of obvious manipulation such
as mismatched lighting, unusual blurring, or inconsistent shadows that would suggest digital
alteration. Both individuals are well-lit and appear naturally within the context of the scene.
4. Historical Context: The scenario described in the caption is a plausible historical event,
as Barack Obama and Joe Biden often appeared together during their tenure in the White
House, particularly on significant policy announcements.
Given these points, there is no evidence from the provided image and caption to suggest
that the content is manipulated. Therefore, the answer is no, the content does not appear to
be manipulated.

Figure 8: Example of wrongly predicted manipulation by GPT-4V with rationale.

description of him angrily rebuffing a suggestion. GPT-4V effectively recognizes this emotional
mismatch, demonstrating its capability to evaluate the coherence between visual and textual ele-
ments.

E.10 ERROR ANALYSIS

In zero-shot settings, the model’s performance relies solely on its understanding of the instructions,
its comprehension of the images and claims, and ultimately making a judgment based on this under-
standing(see also §E.9). The main results indicate that the model’s fact-checking ability is weak. As
discussed in §E.8, the Yes/No Bias also highlights this issue.
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US Special Envoy Todd Stern angrily rebuffed the suggestion that America used strongarm
tactics to force countries to sign up to the Copenhagen Accord

 Image  Caption 

 Rationale  The rationale for determining that the content is manipulated is based on the mismatch between the
visual and textual elements:
1. Visual Element (Image): The image shows Todd Stern smiling, suggesting a positive or neutral emotional state.
2. Textual Element (Caption): The caption describes Todd Stern as angrily rebuffing a suggestion, indicating a
negative or confrontational emotional state.
The emotional tone conveyed by the image does not match the emotional tone described in the caption. This
incongruity between the image and the caption suggests that they do not correspond to the same context or
moment, indicating manipulation of the multimodal content.

Figure 9: Example of correctly predicted manipulation by GPT-4V with rationale.

In few-shot settings, the model does not gain insights from the examples. For example, LLaVA-
NeXT’s usable response rate decreases, and it starts outputting gibberish instead of “yes” or “no”.
Specifically, in few-shot with CoT conditions, LLaVA-NeXT does not generate its own reasoning
process but merely copies the rationale from previous examples. For example, one output from
LLaVA-NeXT is, “Answer yes or no. Rationale: The image shows what seems to be an unnatural or
edited blend of faces, particularly noticeable in the features of the man and the child. This indicates
that the image may have been digitally altered.”, which is already included in the demonstrations of
the prompt.

F PROMPTS DESIGNED FOR MANIPULATION TECHNIQUES

1. Face Swap is a manipulation technique of cutting a face from one image and replacing it with a
different face in another image. Your task is to determine if the claim and its image have used Face
Swap. Answer yes or no.

2. Face Attribute Edit is a manipulation technique for altering facial expressions. Your task is to
determine if the claim and its image have used Face Attribute Edit. Answer yes or no.

3. Background Change is a manipulation technique that involves altering the background of images.
Your task is to determine if the claim and its image have used Background Change. Answer yes or
no.

4. CLIP-based Stable Diffusion Generation is a manipulation technique that utilizes an image-to-
image generation pipeline to produce manipulated images. Your task is to determine if the claim
and its image have used CLIP-based Stable Diffusion Generate. Answer yes or no.

5. Textual Entity Replace is a manipulation technique that involves identifying named entities corre-
sponding to persons in one text, locating these entities in another text, and swapping the surrounding
contextual texts between the two. Your task is to determine if the claim and its image have used Tex-
tual Entity Replace. Answer yes or no.

6. Text Style Transfer is a manipulation technique that rewrites text to express the opposite senti-
ment. Your task is to determine if the claim and its image have used Text Style Transfer. Answer
yes or no.

G DISCUSSION OF LABEL SETTING

We considered the following points in adopting this design philosophy for label setting:

• Simplicity and Clarity: As the first study to benchmark MFC with LVLMs, our design
allows us to quantitatively assess the performance of LVLMs in a straightforward and in-
tuitive manner. This simplicity facilitates preliminary in-depth analyses that more complex
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settings might not easily provide. We find it exciting to cleverly and flexibly unify three
significant data types under the MFC umbrella without adding unnecessary complexity.

• Poor Performance of LVLMs: Despite high F1 score of 84.8% on OOC Classification, the
tasks are not too simple, as evidenced by lower F1 scores of 61.6% and 75.5% on Ma-
nipulation Classification and Veracity Classification. Besides, the best Accuracy and F1
on Manipulation Classification only achieve 64.0% and 56.6% by a lightweight LVLM,
MiniCPM-V-2 (2.8B), leaving significant room to improve larger LVLMs that perform
worse on this task.

• Appropriate Difficulty Levels: Our benchmark is designed to balance difficulty levels (i.e.,
OOC Classification: relatively easy; Veracity Classification: moderate; Manipulation Clas-
sification: relatively difficult), reflecting varying complexities to assess LVLM capabilities
comprehensively. This integration allows for a broader evaluation of LVLMs’ adaptability
and generalization across diverse MFC data types.

• Foundation for Future Research: Our work lays the groundwork for future studies, which
could incorporate more systematic human subject studies to explore interpretability and
additional analytical dimensions. This potential for expansion underscores the value of our
initial simplification and sets the stage for more complex investigations.

H DISCUSSION OF REAL-WORLD SCENARIOS

The main contribution of our benchmark is to provide insights into the trustworthy issue for cur-
rent researchers studying existing emerging LVLMs. For a real-world fact-checking process, there
are stages like claim detection, evidence retrieval, claim verification, justification production, etc.
Our work just directly provides the check-worthy data so that the claim detection stage could be
omitted. Then, the LVLM is evaluated by retrieving the inherent evidence embedded in its internal
parameters, which can be regarded as the evidence retrieval stage in this benchmark work. Finally,
for fact verification, the LVLM is used to verify the factuality in the verdict prediction stage with
produced justification. Our human subjects evaluations have verified the soundness and alignment
of the multimodal data for real-world needs.

I LIMITATIONS

As this is the first benchmark work to evaluate the multimodal fact-checking capacity of LVLMs,
there are no doubt multiple efforts needed to improve the work in the future: 1) The dynamic and
context-specific nature of multimodal fact-checking presents a challenge in interpretation and anal-
ysis. The current benchmark may not fully capture this complexity, potentially limiting the general-
izability of our findings. Human interpretation of multimodal disinformation is inherently intricate
and contextual. Real-world data from diverse domains will help advance this benchmark into various
use case applications. Adding temporal dynamics will provide value when fact-checking historical
facts. Additionally, future studies could be enhanced by a more comprehensive examination of bias
and fairness in model evaluations to prevent the reinforcement or exacerbation of stereotypical hal-
lucinations. 2) During the benchmarking process, we not only explore the three stages of verdict
prediction for MFC: Manipulation Classification, OOC Classification, and Veracity Classification,
but also investigate the last stage: Justification Production which requires the selected models to pro-
vide the post-hoc explanations. However, there might be a deeper model interpretability that is not
touched in this work, which is to explain how an LVLM works internally. In future work, we should
investigate the model’s internal reasoning mechanisms and how it arrives at its conclusions from
the perspective of the model architecture. Furthermore, the current LVLM demonstrates grounding
capabilities that can be leveraged to better understand the model’s interpretation of images and its
fact-checking judgments. 3) Expanding the scope to include a broader array of models could en-
hance the robustness and applicability of the results. Incorporating diverse multilingual datasets,
the audio modality, and emerging LVLMs into our benchmark work could provide a more nuanced
understanding of LVLMs’ capabilities across various languages. Although there is a long way to go,
where there is a will, there is a way.
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