
Published as a conference paper at ICLR 2024

IGRAPHMIX: INPUT GRAPH MIXUP METHOD FOR
NODE CLASSIFICATION

Jongwon Jeong1∗, Hoyeop Lee2, Hyui Geon Yoon2, Beomyoung Lee2, Junhee Heo2,
Geonsoo Kim2, Jin Seon Kim2

KRAFTON1, NCSOFT Co.2

ABSTRACT

Recently, Input Mixup, which augments virtual samples by interpolating input
features and corresponding labels, is one of the promising methods to alleviate the
over-fitting problem on various domains including image classification and natural
language processing because of its ability to generate a variety of virtual samples,
and ease of usability and versatility. However, designing Input Mixup for the
node classification is still challenging due to the irregularity issue that each node
contains a different number of neighboring nodes for input and the alignment issue
that how to align and interpolate two sets of neighboring nodes is not well-defined
when two nodes are interpolated. To address the issues, this paper proposes a novel
Mixup method, called iGraphMix, tailored to node classification. Our method gen-
erates virtual nodes and their edges by interpolating input features and labels, and
attaching sampled neighboring nodes. The virtual graphs generated by iGraphMix
serve as inputs for graph neural networks (GNNs) training, thereby facilitating
its easy application to various GNNs and enabling effective combination with
other augmentation methods. We mathematically prove that training GNNs with
iGraphMix leads to better generalization performance compared to that without
augmentation, and our experiments support the theoretical findings.

1 INTRODUCTION

Mixup (Zhang et al., 2018) is one of the effective data augmentation methods that help prevent the over-
fitting problem of neural networks, particularly caused by a lack of labeled data in training. Mixup
augments data by randomly selecting two samples from training sets and linearly interpolating samples
and corresponding labels. Previous Mixup methods can be categorized into Input Mixup (Zhang
et al., 2018; Yun et al., 2019), which directly interpolates input features and corresponding labels,
and Manifold Mixup (Guo et al., 2019; Verma et al., 2019), which accesses the intermediate layer of
neural networks to get hidden representations and interpolates them and corresponding labels.

Recent studies in Mixup have been primarily focused on Input Mixup in various domains including
image classification and natural language processing, due to its two advantages. First, Input Mixup
allows for the generation of a wider range of samples compared to Manifold Mixup. This is because
Input Mixup can generate a variety of virtual samples by employing several interpolation methods
via input characteristics of each domain, such as patch incorporation from two images (Yun et al.,
2019) and substructure merging from two sentences (Zhang et al., 2022). In contrast, the mixing
hidden representation has limitations on the diversity of interpolation because the embedding model
projects an input space into an ambiguous space (Yoon et al., 2021). Second, Input Mixup has ease
of usability and versatility. It does not need to access the intermediate layers, thus eliminating the
need for modifications to the models and making it applicable to any model architecture (Yoon et al.,
2021). In addition, it can be versatile with other augmentation techniques, enabling further extension
studies (Berthelot et al., 2019).

Due to the dissimilar input structure of graph neural networks (GNNs), irregularity and alignment
issues may arise in applying Input Mixup straightforwardly to the node classification (Wang et al.,
2021). These issues render the application of Input Mixup challenging in the context of GNNs for

∗This work was done at NCSOFT Co. Correspondence to: Jongwon Jeong<jwjeong@krafton.com>.

1

Published as a conference paper at ICLR 2024

node classification. GNNs receive not only the target nodes but also their corresponding neighboring
nodes for the inputs. Then, GNNs employ a message-passing process to propagate information
from neighboring nodes to the target nodes, followed by an aggregation process that combines the
information of the neighboring and target nodes for prediction. This process introduces the irregularity
and alignment issues that make it difficult to design Input Mixup for GNNs. The irregularity issue
arises from the input of various numbers of neighboring nodes among target nodes, resulting in
different input sizes between two target nodes in GNNs for interpolation. The alignment issue stems
from the lack of inherent ordering among two neighboring node sets, leading to the challenge of how
the nodes are applied to the message-passing and the aggregation process even though the inputs are
interpolated. As a result, previous works (Verma et al., 2021; Wang et al., 2021) on Mixup for node
classification have relied on Manifold Mixup. They prevent these issues but sacrifice the advantages
of Input Mixup due to accessing hidden representations.

To cope with the two issues of designing Input Mixup to node classification in GNNs while sustaining
the two advantages, we propose a simple yet effective Input Mixup method, called iGraphMix. The
proposed method interpolates two nodes’ input features, labels, and edges as follows. First, to
generate a virtual feature and label for a virtual training node, iGraphMix interpolates nodes’ input
features and associated labels, as the original Input Mixup does. Second, to construct virtual edges
for a virtual node, iGraphMix randomly selects the neighboring nodes from each node. Then, our
method attaches all selected neighboring nodes to generate the virtual edges. This attaching process
for the virtual edges enables iGraphMix to avoid the irregularity issue occurring at interpolating the
different edges of two nodes. Our method also helps to prevent the alignment issue by employing the
message-passing and aggregation processes with the virtual edges. Furthermore, randomly selecting
neighboring nodes in our method enables the generation of diverse virtual nodes without model
modification, thus retaining the two advantages of Input Mixup.

Our study provides three main contributions. First, to the best of our knowledge, iGraphMix is the
first Input Mixup method designed specifically for node classification in the graph domain, addressing
the irregularity and alignment issues of designing Input Mixup for GNNs. We believe that this work
can serve as foundation research for Input Mixup on graphs, similar to recent developments in various
domains such as image classification (Yun et al., 2019) and natural language processing (Kong et al.,
2022). Second, we provide theoretical analysis and experimental validation of how our method
reduces the generalization gap. The results emphasize the importance and effectiveness of iGraphMix
to regularize GNNs. Last, we experimentally confirm that training GNNs with the proposed method
outperforms GNNs trained without augmentations by an average of 2.84% in terms of the micro-F1
score across five benchmark datasets using three GNN models. We conclude that iGraphMix is an
effective method to prevent the over-fitting problem and improve the performance of GNNs.

2 RELATED WORKS

Mixup Mixup has been recently highlighted due to its ability to mitigate the distorted interrelation-
ship problem arising in input data augmentation methods (Shorten & Khoshgoftaar, 2019; Naveed
et al., 2021). Since they perturb only inputs (DeVries & Taylor, 2017; Singh et al., 2018; Edunov
et al., 2018; Kobayashi, 2018), neural networks may learn the distorted interrelationship between aug-
mented inputs and their corresponding labels (Zhang et al., 2018). Mixup can alleviate this problem
by interpolating samples and their labels. While Mixup can be categorized into Input Mixup (Zhang
et al., 2018) and Manifold Mixup (Verma et al., 2019), recent studies have mainly focused on Input
Mixup due to the ability to generate diverse virtual nodes and usability and versatility. Therefore,
several Input Mixup methods were proposed to generate a variety of virtual samples depending on
the characteristics of input structures in many domains (Kim et al., 2020; Qin et al., 2020; Liu et al.,
2022b; Kong et al., 2022; Zhang et al., 2022). For instance, in the image classification, Yun et al.
(2019) extracted patches from two images and replaced each other to get augmented images. In
natural language processing, Yoon et al. (2021) mixed two sentences by replacing a span of words,
which is a meaningful set of words in one sentence, with that in others. In contrast, iGraphMix is the
first Input Mixup method designed especially for node classification that considers the characteristics
of the input graph structure, setting it apart from Input Mixup methods in other domains.

Data Augmentation for Node Classification Data augmentation is an effective regularization
technique to alleviate the over-fitting problem that often occurs in node classification due to a lack of

2

Published as a conference paper at ICLR 2024

labeled nodes (Zhao et al., 2022). Several works tried to augment input graph structures to alleviate
this problem. For instance, DropEdge (Rong et al., 2020) and its variant (Gao et al., 2021) randomly
drop edges in the training graphs. DropNode (Feng et al., 2020; You et al., 2020) arbitrarily masks
nodes and connected edges to augment training graphs. DropMessage (Fang et al., 2023) randomly
permutes passing messages from neighboring nodes. Other methods (Wang et al., 2020; Zhao et al.,
2021; Park et al., 2021; Liu et al., 2022a) generate synthetic sub-graphs via auxiliary models or losses.

Meanwhile, some methods (Verma et al., 2021; Wang et al., 2021) were proposed to design Manifold
Mixup methods to augment inputs and corresponding labels for node classification due to alleviating
the distorted interrelationship problem. They relied on auxiliary techniques to access hidden represen-
tations due to the irregularity and alignment issues on the input graph. Specifically, GraphMix (Verma
et al., 2021) utilizes not only GNNs but also introduces an additional fully connected neural network.
Then, it applies Manifold Mixup on the nodes’ hidden representation of the additional network.
M-Mixup (Wang et al., 2021) augments two graph batches by permuting the order of nodes and
edges in its augmentation process. Then, it interpolates the hidden representations of these two graph
batches at each layer within GNNs. However, it was often challenging to generate diverse samples
from those methods due to linearly interpolating hidden representation. Additionally, they lacked
theoretical insights into the factors that contribute to the enhanced performance of GNNs through
their methods. This paper proposes iGraphMix that directly addresses the issues for designing Input
Mixup on node classification as well as preserves the two advantages that Input Mixup has. Also, we
provide theoretical insight into why iGraphMix in node classification reduces the generalization gap.

3 PRELIMINARIES

Notations Let G = (V, E) be an undirected graph with n nodes vi ∈ V and edges (vi, vj) ∈ E . For
ease of mathematical manipulation, we define the matrix X ∈ Rn×d0 is the node feature matrix of n
nodes with feature dimension d0, A ∈ Rn×n is the adjacency matrix with Aij = 1 if (vi, vj) ∈ E
and Aij = 0 if (vi, vj) /∈ E . Y ∈ Rn×c is the one-hot label matrix for nodes with given c classes.
Note that, Xv indicates a v-th row vector of matrix X . It means that each node v associates features
Xv and corresponding label Yv .

Graph Neural Networks GNNs have shown remarkable success in node classification through
message-passing and aggregation processes (Kipf & Welling, 2017; Veličković et al., 2018; Wu
et al., 2019). The objective of training GNNs is to learn a differentiable function f such that
Y ≈ Z = f(X,A). One basic structure of GNNs is a graph convolutional network (GCN). The
K-layer GCN model f is formulated as

Hk = σ
(
ĀHk−1W k

)
, ∀k ∈ {1, · · · ,K − 1}

Z = ĀHK−1WK ,
(1)

where W k ∈ Rdk−1×dk and WK ∈ RdK−1×c are the weight matrix of k-th layer for k < K and
K-th layer respectively, and Ā be the adjacency diffusion operator. Here, we initialize H0 = X , and
σ are the point-wise activation functions that are assumed to be Lipschitz functions with Lipschitz
constant Lσ, respectively. The most popular adjacency diffusion operators are Ā = A + I and
Ā = (D + I)−

1
2 (A + I)(D + I)−

1
2 where D is a degree matrix of A (Kipf & Welling, 2017).

Also, diffusion operators are formulated as attention methods so that different importance weights of
edges are applied to the aggregation process (Veličković et al., 2018; Brody et al., 2022).

Theoretical Analysis on GNNs For the theoretical analysis, we focus GCN on the transductive
node classification task. In transductive node classification, GNNs are trained on a subset of nodes
within a specific graph and subsequently evaluated on the remaining nodes of that same graph. When
training, the information of labeled nodes is backpropagated. Then, we state the generalization loss L
and empirical loss L̂ of GCN model f as follows:

L(f |X,Y ,A) =
1

n−m

n∑
i=m+1

ℓ (Zi,Yi), (2)

L̂(f |X,Y ,A) =
1

m

m∑
i=1

ℓ (Zi,Yi), (3)

3

Published as a conference paper at ICLR 2024

GNN GNN GNN

Mixup

GNN

Mixup

DropEdge M-Mixup iGraphMix (ours)

Figure 1: Illustrative comparison of DropEdge, M-Mixup, and iGraphMix. Red and blue circles
indicate labeled nodes, and pink and sky-blue circles are neighboring nodes. When red and blue
circles are mixed, they become purple. DropEdge randomly drops edge connection, and M-Mixup
interpolates hidden representations. iGraphMix generates a virtual training node by selecting neigh-
boring nodes and interpolating node features.

where the first m nodes are labeled nodes, also called training nodes, and ℓ is the loss function, e.g.,
cross-entropy loss.

Esser et al. (2021) have recently provided a theoretical understanding of GCN. They provided the
generalization gap bound of GCN, i.e., L(f |X,Y ,A) − L̂(f |X,Y ,A), by weights and biases
parameter bounds. For simplicity, we restate the generalization gap bound of two-layer GCN without
bias terms as in Remark 3.1. Here, we refer ∥ · ∥∞ be the maximum absolute sum of rows and
∥ · ∥2→∞ be the maximum 2-norm of columns.
Remark 3.1 (Generalization Gap Bound for GCN (Esser et al., 2021)). If f = {f ⊂ f |∥Wk∥∞ ≤
ω for k ∈ {1, 2}} and σ is Lσ-Lipschitz continuous, the generalization gap bound for two-layer
GCN f satisfies

L(f |X,Y ,A)− L̂(f |X,Y ,A) ≤ nab

m(n−m)
∥Ā∥∞∥ĀX∥2→∞

√
log(n) +O (n,m, δ) ,

with probability 1− δ given certain small δ ∈ (0, 1), a = 2Lσω, b = ω
√

2/d1, and O (n,m, δ) is
certain function of n,m, δ.

DropEdge DropEdge (Rong et al., 2020) prevents over-fitting by randomly dropping edges during
the training. This edge perturbation produces a new graph similar to the original graph so that it
allows the model to be learned through diverse graphs. The only difference between the standard
GNN learning procedure and DropEdge is the adjacency matrix. Let A be the original adjacency
matrix, and Mp be the masking matrix that makes dropping edges with probability p. During the
training, DropEdge replaces the adjacency matrix A with

ADropEdge = Mp ◦A,

where ◦ is the Hadamard product of the matrix. Remark that, Mp is shared with all layers, and we
apply the adjacency diffusion operator on ADropEdge.

4 OUR METHOD: IGRAPHMIX

In this section, we introduce iGraphMix, a simple yet effective Input Mixup method for node
classification, as illustrated in Figure 1. To provide an intuitive understanding of the proposed method,
we present a motivating example that involves two papers from various domains: one in machine
learning and the other in chemistry, each with its own set of citation papers. When writing a new
multidisciplinary paper (i.e., mixing labels) that combines the two aforementioned papers, such as
synthesizing chemical molecules via machine learning, a straightforward approach is to mix the main
text (i.e., mixing features) and cited papers (i.e., mixing adjacency matrix) from both papers. This

4

Published as a conference paper at ICLR 2024

simplistic example shows what iGraphMix aims to do. In Definition 4.1, we present the process of
iGraphMix on node classification in a batch-wise manner.
Definition 4.1 (iGraphMix for node classification). Let Mλ be the masking matrix with λ dropping
probability. iGraphMix mixes feature matrix, one-hot label matrix, and adjacency matrix as follows:

X̃ := λX + (1− λ)X ′,

Ỹ := λY + (1− λ)Y ′,

Ã := M1−λ ◦A+Mλ ◦A′,

(4)

where (X ′,Y ′,A′) is the permuted batch within labeled nodes of (X,Y ,A) .

The most important point of mixing two nodes is blending the edges shown in the last equation
of Eq. (4). The last equation in Eq. (4) may be quite different from our intuition. This is because
we regard the masking matrix as a selecting neighbor matrix. In other words, M1−λ and Mλ

indicate that neighbors are chosen with probability λ and 1 − λ, respectively. Thus, in order to
apply the importance λ to neighbors, we have to multiply M1−λ by A and vice versa. Here, the
mixing coefficient λ is drawn from Beta(α, α) as in Mixup (Zhang et al., 2018). This distribution is
symmetric and becomes a uniform distribution when α = 1. When α becomes smaller and smaller, λ
is sampled with values in the vicinity of zero or one. It means that the proposed method generates a
new virtual node that is very similar to one of the original nodes when α is small. On the contrary,
when α becomes larger and larger, λ is sampled with values in the vicinity of 0.5. In this case, the
proposed method produces a new virtual node in which two original nodes are evenly mixed. Note
that Mλ and M1−λ are shared with all layers. For the detailed implementation of iGraphMix in a
Pytorch-like code, please refer to Appendix A.

5 THEORETICAL ANALYSIS

In this section, we theoretically analyze why GCNs trained with iGraphMix prevent over-fitting
and generalize well compared to GCNs trained without data augmentation on the transductive node
classification. Our theoretical analysis is inspired by Zhang et al. (2021) who analyzed Mixup in the
generalization view, and Esser et al. (2021) who attempted to theoretically explain GCNs’ behavior
on the transductive node classification.

For the theoretical analysis, we consider a simple two-layer GCN with a point-wise ReLU activation
function and one-dimensional output that classifies two classes -1 or 1. The GCN output logits of m
training nodes are

Z:m =
(
Āσ

(
ĀXW1

)
W2

)
:m

=
(
ĀH1W2

)
:m

,
(5)

where Z:m is first m rows of Z. We denote that Z̃ is from substituting node features and adjacency
diffusion operator on Eq. (5) to those defined in Eq. (4). Also, Z̃v,v′ states the v-th output logit
interpolated v-th and v′-th nodes by iGraphMix. Then, we introduce the empirical loss for iGraphMix
to train the GCN model in Eq. (5) as Definition 5.1.
Definition 5.1 (Empirical loss on iGraphMix). Let λ ∼ Beta(α, α), M be the masking matrix.
Then, the empirical loss for iGraphMix can be formulated as

L̂(f |X̃, Ỹ , Ã) =
1

m2
Eλ,M

 m∑
v,v′=1

ℓ
(
Z̃v,v′ , Ỹv,v′

) . (6)

Note that the labeled nodes in Eq. (6) are the same as those in Eq. (3). It means that the only difference
between them is using the Mixup dataset or not. Also, we consider the mean-square error (MSE) loss
function for v-th node defined as ℓ (Zv,Yv) =

1
2∥Zv − Yv∥2 (Zhang et al., 2021).

For the theoretical analysis, we suppose that there is no connection between labeled nodes. This
assumption is quite reasonable for two-layer and the semi-supervised setting, e.g., Citeseer dataset
contains only 1.71% connected edges of labeled nodes out of all edges. Then, Lemma 5.2 shows that
iGraphMix induces additional regularization of the trainable weights for the standard training.

5

Published as a conference paper at ICLR 2024

Lemma 5.2. Let R(W2) be the certain function of the second-order of W2. Then, L̂(f |X̃, Ỹ , Ã) ≈
L̂(f |X,Y ,A) +R(W2).

From the regularization point of view, we can reduce the weight space for iGraphMix with a related
dual form of regularization term as

fiGraphMix := {f ⊂ f |∥W1∥∞ ≤ ω, and R(W2) ≤ ω}, (7)
where ω is the certain scalar values such that ω > 0. Then, we provide the generalization gap bound
with given weight space fiGraphMix in Theorem 5.3.
Theorem 5.3 (Generalization Gap Bound for GNN trained with iGraphMix). For any f in the weight
space of iGraphMix fiGraphMix, we have the generalization gap bound as follows:

L(f |X,Y ,A)− L̂(f |X,Y ,A) ≤ nabc

m(n−m)
∥Ā∥∞∥ĀX∥2→∞

√
log(n) +O (n,m, δ) ,

where a = 2Lσω, b = ω
√
2/d1, and c = Q (α,A,X) when Q(·) is the certain function of (·).

Theorem 5.3 provides the evidence that weight space induced by iGraphMix could provide a tighter
upper bound of generalization gap than standard training for the certain condition of beta distribution’s
parameter α and the data statistics (A,X). It implies that the optimal α could vary with respect to the
graph characteristics. Thus, we easily confirm Corollary 5.4 that an upper bound of the generalization
gap tends to be smaller in iGraphMix compared to standard training with appropriate α.
Corollary 5.4. Let f∗

std and f∗
iGraphMix be the optimally trained model by standard training and

iGraphMix training respectively. Further, U (·) means the upper bound of (·). With appropriate α for
A and X , the following inequality holds with high probability.

U
(
L(f∗

std|X,Y ,A)− L̂(f∗
std|X,Y ,A)

)
≥ U

(
L(f∗

iGraphMix|X,Y ,A)− L̂(f∗
iGraphMix|X,Y ,A)

)
.

The detailed proofs are referred to Appendix B.

6 EXPERIMENTS

We compared the iGraphMix with five graph data augmentation methods: (1) None that trains GNNs
with the graph which is not applied any augmentation methods; (2) DropEdge (Rong et al., 2020)
that trains GNNs with the graph whose edges are randomly removed at each training epoch; (3)
DropNode (Feng et al., 2020) that trains GNNs with the graph whose nodes are randomly masked at
each training epoch; (4) DropMessage (Fang et al., 2023) that trains GNNs with perturbing propagated
messages at each training epoch; (5) M-Mixup (Wang et al., 2021) that trains GNNs by interpolating
nodes’ hidden representations and corresponding labels. As some previous methods (Verma et al.,
2021; Zhao et al., 2021; Liu et al., 2022a) require additional modifications to the model, auxiliary
loss, and training techniques, there is potential for deviating from the authors’ original intent while
forcing them to other GNN models. Therefore, we excluded these methods from our experiments.

For the transductive node classification, We considered five datasets: CiteSeer, CORA, PubMed (Sen
et al., 2008), ogbn-arxiv (Hu et al., 2020), and Flickr (McAuley & Leskovec, 2012). In CiteSeer,
CORA, PubMed, and ogbn-arxiv, the nodes are the papers, and there are edges when one paper cites
another paper. The goal of these datasets is to predict the subject class of each paper. Flickr is a
dataset from an image-sharing SNS. In Flickr, nodes are images, and edges are connected when
images share certain information, e.g., common hashtag. It aims to predict the category or community
class of nodes. Furthermore, we conducted experiments on inductive node classification and link
prediction tasks, and the results are shown in Appendix E. In short, our method experimentally
outperformed comparative methods even for these tasks.

In order to demonstrate the superiority of various GNN models trained using iGraphMix over the
baselines, this study selected three GNNs as the backbone models for evaluation: GCN (Kipf &
Welling, 2017), GATv1 (Veličković et al., 2018), and GATv2 (Brody et al., 2022). We evaluated the
generalization gap and the performance of iGraphMix and other augmentation baselines. Then, we
examined the proposed method and other baselines by manipulating the number of layers and the
number of nodes per class to show consistent improvement of our method. Lastly, we confirmed the
versatility of iGraphMix by combining it with other augmentation methods. We refer to Appendix C
for more details of experimental settings.

6

Published as a conference paper at ICLR 2024

Table 1: Overall Micro-F1 score (%) on the datasets. The results are the average scores and standard
deviations of ten trials with different random seeds. OOM means the out-of-memory.

Backbone Data
Augmentation

Datasets
CiteSeer CORA PubMed ogbn-arxiv Flickr

GCN

None 72.05 (0.56) 82.65 (0.55) 79.32 (0.15) 67.11 (0.75) 52.77 (0.14)
DropEdge 72.07 (0.28) 83.20 (0.07) 79.38 (0.19) 68.17 (0.39) 53.59 (0.07)
DropNode 72.48 (0.44) 82.65 (0.23) 79.52 (0.11) 67.61 (1.17) 53.29 (0.18)

DropMessage 73.35 (0.46) 83.40 (0.61) 79.60 (0.32) 68.71 (0.30) 53.55 (0.10)
M-Mixup 71.52 (0.80) 80.28 (0.66) 78.63 (0.32) 65.82 (0.61) 48.14 (0.25)

iGraphMix (ours) 73.67 (0.61) 83.78 (0.42) 79.93 (0.60) 68.93 (0.35) 53.61 (0.12)

GATv1

None 71.14 (1.13) 79.98 (0.69) 77.75 (0.63) 65.08 (1.03) 52.07 (0.28)
DropEdge 71.45 (1.02) 82.65 (0.60) 77.85 (0.28) 67.98 (0.40) 53.07 (0.21)
DropNode 70.78 (0.65) 81.33 (1.00) 77.11 (0.75) 67.49 (0.65) 53.05 (0.25)

DropMessage 72.20 (0.52) 83.39 (0.60) 78.00 (0.55) 68.45 (0.35) 52.95 (0.30)
M-Mixup 72.02 (0.64) 82.06 (0.85) 78.93 (0.58) OOM 52.09 (0.20)

iGraphMix (ours) 72.28 (0.60) 83.20 (0.63) 78.41 (0.31) 69.49 (0.41) 53.22 (0.18)

GATv2

None 70.41 (1.91) 79.11 (0.80) 77.87 (0.51) 65.63 (0.75) 51.79 (0.43)
DropEdge 71.15 (0.78) 82.20 (0.62) 77.94 (0.51) 67.84 (0.74) 53.23 (0.21)
DropNode 70.33 (1.59) 80.44 (1.84) 77.90 (0.42) 68.64 (0.61) 53.38 (0.61)

DropMessage 71.49 (1.02) 82.27 (1.28) 78.19 (0.63) 68.66 (0.45) 53.06 (0.23)
M-Mixup 72.90 (1.47) 82.06 (0.91) 78.36(0.55) OOM 52.38 (0.20)

iGraphMix (ours) 71.97 (0.66) 82.80 (0.49) 78.73 (0.33) 69.82 (0.31) 53.90 (0.20)

0 1000 2000
Epoch

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L
os

s

Train
Test

(a) Without augmentation

0 1000 2000
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

L
os

s

Train
Test

(b) With iGraphMix

0.0 0.2 0.4 0.6 0.8
Generalization Gap (Test - Train)

M-Mixup

DropMessage

DropNode

DropEdge

iGraphMix

None

G
D

A
M

et
ho

d

(c) Final Generalization Gap

Figure 2: Generalization ability of GCN. (a)-(b): Train and test loss with respect to the training
epochs ((a): Without augmentation, (b): With iGraphMix). (c): Final generalization gap over all
augmentation methods.

6.1 OVERALL RESULTS

The overall results on node classification are summarized in Table 1. We compared iGraphMix
with five graph data augmentation methods in terms of the test micro-F1 score of models at the
best validation micro-F1 score epoch. We found that the proposed method outperforms the models
without data augmentation by 2.84% on average. Reminding Lemma 5.2, this result may indicate
that iGraphMix is the effective regularization method to improve the test micro-F1 score in the
various datasets and backbone models. We also confirmed that iGraphMix outperforms DropEdge,
DropNode, and DropMessage across the five datasets and three backbone models. This result may
imply that iGraphMix generates augmented graph data that mitigates the distorted interrelationship
between augmented graphs and labels better than DropEdge, DropNode, and DropMessage do. In
addition, from the result that iGraphMix outperformed M-Mixup by an average of 2.41%, we may
infer that iGraphMix generates more diverse virtual nodes from the vicinity of original nodes than
M-Mixup, preventing the over-fitting problem more effectively.

7

Published as a conference paper at ICLR 2024

10−3 10−2 10−1 100 101 102

α

0.40

0.45

0.50

0.55

0.60

0.65

0.70

G
en

er
al

iz
at

io
n

G
ap

(T
es

t-
Tr

ai
n)

None
iGraphMix

(a) CiteSeer

10−3 10−2 10−1 100 101 102

α

0.3

0.4

0.5

0.6

0.7

0.8

G
en

er
al

iz
at

io
n

G
ap

(T
es

t-
Tr

ai
n)

None
iGraphMix

(b) ogbn-arxiv

10−3 10−2 10−1 100 101 102

α

0.05

0.10

0.15

0.20

G
en

er
al

iz
at

io
n

G
ap

(T
es

t-
Tr

ai
n)

None
iGraphMix

(c) Flickr

Figure 3: Generalization gap with respect to Beta distribution’s parameter α on various three datasets.

6.2 GENERALIZATION GAP

Compared with Baselines We examined whether iGraphMix can improve the generalization
ability by reducing the generalization gap analyzed in Section 5. Figure 2 shows the generalization
gap of GCNs trained with six augmentation methods on CiteSeer. Compared the loss in Figures 2a
and 2b, we found that the gap between the test and the training loss of GCN trained with iGraphMix is
consistently smaller than that of GCN trained without augmentation methods. This result empirically
supports our theoretical finding that iGraphMix improves the generalization ability of GNN. We
compared the generalization gap of iGraphMix with other augmentation methods in Figure 2c. It
empirically shows that GNNs trained with iGraphMix have a smaller or comparable generalization
gap than GNNs trained with other augmentation methods. We also found the similar results in other
datasets as shown in Appendix D.1.

Beta Distribution Parameters α We verified Corollary 5.4 that the generalization gap becomes
smaller depending on the appropriate beta distribution parameter α for the graph characteristics.
Beta distribution parameter α controls the amount of diverse augmented graphs of iGraphMix for
training. When we set α small, iGraphMix is likely to generate graphs similar to the original graph.
Conversely, when α is large, iGraphMix is likely to generate well-mixed graphs. The generalization
gap with respect to the parameter α is illustrated in Figure 3. We confirmed that the performance
of iGraphMix, which utilizes the data augmentation approach, is similar to the method without
augmentation when α is near zero. Also, we found that the generalization gap of iGraphMix becomes
smaller when α is large. This result reveals that the generalization ability becomes better when
well-mixed graphs are used in training. In addition, by comparing the optimal generalization gap
in CiteSeer, ogbn-arxiv, and Flickr in Figure 3, we verified that the optimal α of these datasets are
100, 10, and 50, respectively. This result empirically supports Corollary 5.4 that the different datasets
require different optimal α to achieve the small generalization gap.

6.3 ANALYSIS ON VARIOUS SETTINGS

In this section, we examined how manipulating the number of layers and labeled nodes affects
the performance of iGraphMix. The results of GCN on the CiteSeer are presented and analyzed.
Comprehensive results obtained from other datasets and models can be found in Appendix D.2.

Number of Layers K We evaluated the micro-F1 score depending on the number of layers K.
Increasing K of GNN leads to the over-smoothing problem (Li et al., 2018), as node embeddings
become indistinguishable by considering the larger-hop relationship between nodes. Thus, this
experiment also tested that the proposed method mitigates the over-smoothing problem. Figure 4a
shows the performance of the proposed method for the different K. We found that training GCN with
iGraphMix improves the micro-F1 score by 2.33%, 6.25%, and 6.39% for two-, four-, and eight-layer
GCNs respectively compared to that without augmentations. This result may imply that our method
improves the micro-F1 score of GNNs with various K. More importantly, the results indicate that
training GNNs with our method may diminish the over-smoothing problem regardless of K. Since
iGraphMix changes connected edges and corresponding labels in each iteration, the proposed method
can mitigate the representation collapse of connected nodes at each training step.

Number of Labeled Nodes per Class L As illustrated in Figure 4b, we assessed the micro-F1
score of the proposed method by changing the number of labeled nodes per class L.We confirmed

8

Published as a conference paper at ICLR 2024

2 3 4 5 6 7 8
Num. Layers

55

60

65

70

M
ic

ro
-F

1
Sc

or
e

(%
)

None
iGraphMix

(a)

10 20 40 80 160 Full
Labeled Nodes / Class

72

74

76

78

80

M
ic

ro
-F

1
Sc

or
e

(%
)

None
iGraphMix

(b)

Figure 4: Analysis of iGraphMix on the various number of (a) layers and (b) nodes per class by
Micro-F1 score (%).

that training GCN with iGraphMix increases the micro-F1 score compared to that without augmen-
tations by 1.41%, 2.33%, 5.22%, 1.39%, 0.80%, and 0.61% for L = 10, 20, 40, 80, 160, and Full,
respectively. Notably, we found that our method can be more effective in improving the micro-F1
score when training with fewer L than fully labeled nodes. This result may imply that iGraphMix
alleviates the over-fitting problem, especially for the lack of labeled data.

6.4 COMBINATION WITH OTHER AUGMENTATION METHODS

Table 2: Micro-F1 score (%) of unifying iGraphMix with other aug-
mentations on CiteSeer.

Data Augmentation Methods PerformanceDropEdge DropNode DropMessage iGraphMix
72.05

✓ 73.67
✓ 72.07
✓ ✓ 73.97

✓ 72.48
✓ ✓ 73.75

✓ 73.35
✓ ✓ 73.93

We verified the versatility
of our method by applying
iGraphMix after other aug-
mentation methods were
employed at each train-
ing step. Table 2 shows
the comparison between
the performance of None,
DropEdge, DropNode, and
DropMixup with that of
unifying iGraphMix and
them on CiteSeer with 2-
layer GCN. We found that
unifying iGraphMix with
other augmentation meth-
ods leads to performance improvement with 1.86% on average. This result shows that iGraphMix is
versatile with other augmentation methods to boost the performance of GNNs, similar to Berthelot
et al. (2019).

7 CONCLUSION

Summary This paper proposed iGraphMix that addresses the irregularity and alignment issues
of Input Mixup on node classification. Specifically, to address the two issues, iGraphMix does
not only interpolate node features and labels but also aggregates the sampled neighboring nodes.
Theoretical analysis of the generalization gap and our experiments on the real-world graphs showed
that the proposed method is effective in regularizing GNNs by generating diverse virtual samples and
preserving high usability and versatility.

Future Works There are two possible directions for future works. The first direction is to find a
better edge sampling method for Input Mixup on node classification, similar to the research on Input
Mixup in the other domains (Kim et al., 2020; Kong et al., 2022). The second direction is to combine
improvements of other techniques in graph learning, such as pseudo-labeling (Verma et al., 2021)
and consistency loss (Feng et al., 2020), with iGraphMix. We hope this work could be the crucial
step to improving Input Mixup on node classification.

9

Published as a conference paper at ICLR 2024

ETHICS STATEMENT

Our method may not consider mitigating biases or inequalities. Our work initially focused on the
technical aspects and did not explicitly address potential biases or inequalities that might arise.
However, we believe that there can be a potential future direction to address biases and inequalities in
algorithms based on our method.

REPRODUCIBILITY STATEMENT

Our method is built on Pytorch 1.12.1. (Paszke et al., 2019) and Pytorch Geometric 2.1.0 (Fey &
Lenssen, 2019). The licenses of Pytorch and Pytorch Geometric are available under BSD-style and
MIT respectively. Our experiments were conducted on NVIDIA V100 with CUDA version 11.3.
Refer to the appendices for further reproducibility details, such as code, hyper-parameters, and so on.

ACKNOWLEDGEMENT

We appreciate Youngin Cho from NCSOFT Co. and Moonseok Choi from KAIST for their valuable
feedback on this paper.

REFERENCES

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A Raf-
fel. Mixmatch: A holistic approach to semi-supervised learning. Advances in Neural Information
Processing Systems, 32, 2019.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 942–950, 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018b.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at scale.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 489–500, 2018.

Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complexity and its applications.
Journal of Artificial Intelligence Research, 35:193–234, 2009.

Pascal Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can
(sometimes) explain generalisation in graph neural networks. Advances in Neural Information
Processing Systems, 34:27043–27056, 2021.

Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang. Dropmessage:
Unifying random dropping for graph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 4267–4275, 2023.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in Neural Information Processing Systems, 33:22092–22103, 2020.

10

Published as a conference paper at ICLR 2024

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Zhan Gao, Subhrajit Bhattacharya, Leiming Zhang, Rick S Blum, Alejandro Ribeiro, and Brian M
Sadler. Training robust graph neural networks with topology adaptive edge dropping. arXiv
preprint arXiv:2106.02892, 2021.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
855–864, 2016.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Augmenting data with mixup for sentence classifica-
tion: An empirical study. arXiv preprint arXiv:1905.08941, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in Neural Information Processing Systems, 30, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
Neural Information Processing Systems, 33:22118–22133, 2020.

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup. In International Conference on Machine Learning, pp. 5275–5285,
2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations, 2017.

Sosuke Kobayashi. Contextual augmentation: Data augmentation by words with paradigmatic
relations. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
452–457, 2018.

Fanshuang Kong, Richong Zhang, Xiaohui Guo, Samuel Mensah, and Yongyi Mao. Dropmix: A
textual data augmentation combining dropout with mixup. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 890–899, 2022.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence, 2018.

Songtao Liu, Rex Ying, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Jun Huang,
and Dinghao Wu. Local augmentation for graph neural networks. In International Conference on
Machine Learning, pp. 14054–14072, 2022a.

Zicheng Liu, Siyuan Li, Di Wu, Zihan Liu, Zhiyuan Chen, Lirong Wu, and Stan Z Li. Automix:
Unveiling the power of mixup for stronger classifiers. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIV, pp. 441–458.
Springer, 2022b.

Julian McAuley and Jure Leskovec. Image labeling on a network: using social-network metadata for
image classification. In European Conference on Computer Vision, pp. 828–841, 2012.

Humza Naveed, Saeed Anwar, Munawar Hayat, Kashif Javed, and Ajmal Mian. Survey: Image
mixing and deleting for data augmentation. arXiv preprint arXiv:2106.07085, 2021.

Hyeonjin Park, Seunghun Lee, Sihyeon Kim, Jinyoung Park, Jisu Jeong, Kyung-Min Kim, Jung-Woo
Ha, and Hyunwoo J Kim. Metropolis-hastings data augmentation for graph neural networks.
Advances in Neural Information Processing Systems, 34:19010–19020, 2021.

11

Published as a conference paper at ICLR 2024

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. Advances in Neural Information Processing Systems, pp. 8024–8035,
2019.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, pp. 1532–1543, 2014.

Jie Qin, Jiemin Fang, Qian Zhang, Wenyu Liu, Xingang Wang, and Xinggang Wang. Resizemix:
Mixing data with preserved object information and true labels. arXiv preprint arXiv:2012.11101,
2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Jun Huang. Dropedge: Towards deep graph convolu-
tional networks on node classification. In International Conference on Learning Representations,
2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–93, 2008.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of Big Data, 6(1):1–48, 2019.

Krishna Kumar Singh, Hao Yu, Aron Sarmasi, Gautam Pradeep, and Yong Jae Lee. Hide-and-seek:
A data augmentation technique for weakly-supervised localization and beyond. arXiv preprint
arXiv:1811.02545, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations, 2018.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz,
and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In
International Conference on Machine Learning, pp. 6438–6447, 2019.

Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and Jian Tang.
Graphmix: Improved training of gnns for semi-supervised learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 10024–10032, 2021.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Juncheng Liu, and Bryan Hooi. Nodeaug:
Semi-supervised node classification with data augmentation. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 207–217, 2020.

Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Proceedings of the Web Conference 2021, pp. 3663–3674, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International Conference on Machine Learning, pp.
6861–6871, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International Conference on Machine Learning, pp. 40–48, 2016.

Soyoung Yoon, Gyuwan Kim, and Kyumin Park. Ssmix: Saliency-based span mixup for text
classification. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp. 3225–3234, 2021.

12

Published as a conference paper at ICLR 2024

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems, 33:
5812–5823, 2020.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In International Conference on Learning
Representations, 2020.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Le Zhang, Zichao Yang, and Diyi Yang. Treemix: Compositional constituency-based data aug-
mentation for natural language understanding. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 5243–5258, 2022.

Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou. How does mixup
help with robustness and generalization? In International Conference on Learning Representations,
2021.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 11015–11023, 2021.

Tong Zhao, Gang Liu, Stephan Günnemann, and Meng Jiang. Graph data augmentation for graph
machine learning: A survey. arXiv preprint arXiv:2202.08871, 2022.

13

Published as a conference paper at ICLR 2024

APPENDICES

In the appendix, we provide the implementation details of iGraphMix, precise proof of our theoretical
findings, and additional experiments on various settings that are not shown in the main text due to
space limitations.

A IMPLEMENTATION DETAILS OF IGRAPHMIX

We provide the PyTorch-like style implementation of iGraphMix for node classification in Algo-
rithm 1.

Algorithm 1 iGraphMix: Pytorch-like Implementation with Torch Geometric.
import numpy as np
import torch
from torch_geometric.data import Data
from torch_geometric.utils import dropout_adj

data: Torch-geometric Graph Data instance consists of node features, edges, and labels.
alpha: Beta distribution hyper-parameter
batch_size: Number of train nodes

def i_graph_mix(data, alpha, batch_size):
0) Sample lambda
lambda_ = np.random.beta(alpha, alpha)

1) Index Permutation
index = torch.randperm(batch_size)
index = torch.cat((index, torch.arange(batch_size, data.x.shape[0])), dim=0)
index_new = torch.zeros(index.shape[0], dtype=torch.long)
index_new[index] = torch.arange(0, index.shape[0])

2) Node feature Mixup
x = data.x.clone().detach()
x_mixup = lambda_ * x + (1-lambda_) * x[index]

3) Label Mixup
y = data.y.clone().detach()
y_mixup = lambda_ * y + (1-lambda_) * y[index]

4) Edge Mixup
edge_index = data.edge_index.clone().detach()
row, col = edge_index.clone().detach()[0], edge_index.clone().detach()[1]
row, col = index_new.clone().detach()[row], index_new.clone().detach()[col]
edge_index_perm = torch.stack([row, col], dim=0)

5) Prepare Mixup Graph
edge_index, _ = dropout_adj(edge_index, p=1-lambda_, training=True)
edge_index_perm, _ = dropout_adj(edge_index_perm, p=lambda_, training=True)
edge_index_mixup = torch.cat((edge_index, edge_index_perm), dim=1)
data_mixup = Data(x=x_mixup, y=y_mixup, edge_index=edge_index_mixup)
data_mixup.train_mask = data.train_mask
data_mixup.val_mask = data.val_mask
data_mixup.test_mask = data.test_mask

return data_mixup

def train(model, data, loss_func, optimizer, alpha, batch_size):
model.train()
1) Mix-up graph
data_mixup = i_graph_mix(data, alpha, batch_size)

2) Model Inference
output = model(data_mixup.x, data_mixup.edge_index)[:batch_size]

3) Calculate and optimize loss
loss = loss_func(output, data_mixup.y[:batch_size])
loss.backward()
optimizer.step()

14

Published as a conference paper at ICLR 2024

B PROOF IN THEORETICAL ANALYSIS

This section provides the proof details of theoretical findings. We state Av and A:,v be v-th row and
column vector of the matrix A respectively. For the theoretical analysis, we consider the adjacency
diffusion operator Ā := A+ I .

As in the Section 5, we assume that there is no connection between labeled train nodes. It means that
AX = AX′ = AX̃ as mixup only applies at labeled nodes. Thus, this assumption can induce the
following equation.

(Ã+ I)vX̃ = (M1−λ ◦A)vX̃ +Mλ ◦A′
vX̃ + IvX̃

= (M1−λ ◦A)vX +Mλ ◦A′
vX

′ + X̃v. (8)

Then, we derive Lemma B.1 to change the output logits in Eq. (5) from the general form to the
iGraphMix form.
Lemma B.1. Given any random variable λ, the permutation P , and the masking matrix M , we have

Eλ,P ,M

[
Z̃:m

]
= Eλ,P ,M

[(
(Ã+ I)H̃1W2

)
:m

]
,

when there is no connection between labeled train nodes, and H̃1 := λH1 + (1− λ)H ′
1.

Proof. Eλ,P ,M

[
Z̃:m

]
can be formulated as follows by Eq. (8).

Eλ,P ,M

[
Z̃:m

]
= Eλ,P ,M

[(
(Ã+ I)σ

(
(Ã+ I)X̃W1

)
W2

)
:m

]
= Eλ,P ,M

[(
(Ã+ I)σ

((
M1−λ ◦AX +Mλ ◦A′X ′ + X̃

)
W1

)
W2

)
:m

]
= Eλ,P ,M

[(
(Ã+ I)σ ((M1−λ ◦AX +Mλ ◦A′X ′ + λX + (1− λ)X ′)W1)W2

)
:m

]
= Eλ,P ,M

[(
(Ã+ I)σ (((M1−λ ◦A+ λI)X + (Mλ ◦A′ + (1− λ)I)X ′)W1)W2

)
:m

]
= Eλ,P ,M

[(
(Ã+ I)σ (((λA+ λI)X + ((1− λ)A′ + (1− λ)I)X ′)W1)W2

)
:m

]
= Eλ,P ,M

[(
(Ã+ I)σ

(
λĀXW1 + (1− λ)Ā′X ′W1

)
W2

)
:m

]
= Eλ,P ,M

[(
(Ã+ I)

(
λσ

(
ĀXW1

)
+ (1− λ)σ

(
Ā′X ′W1

))
W2

)
:m

]
(9)

= Eλ,P ,M

[(
(Ã+ I) (λH1 + (1− λ)H ′

1)W2

)
:m

]
(10)

= Eλ,P ,M

[(
(Ã+ I)H̃1W2

)
:m

]
, (11)

where Eq. (9) holds because σ has a property that σ(λz) = λσ(z) for any z ∈ R, Eq. (10) is from
definition of hidden feature, Eq. (11) is from the definition of mixed hidden feature.

15

Published as a conference paper at ICLR 2024

Also, we introduce Lemma B.2 that the mean of the aggregated representation from iGraphMix is
the same as the mean of the original graph’s aggregated representation. It is utilized in the proof of
Lemma 5.2 and Theorem 5.3.

Lemma B.2. Consider any λ ∼ Pλ, P be the random permutation, i.e. H ′
1 = PH1 and

A′ = PĀP⊤, and M be the masking matrix. Then, 1/m
∑m

v=1 EP ,M

[
(Ã+ I)vH̃1

]
=

1/m
∑m

v=1 ĀvH1.

Proof. We begin with reformulate 1/m
∑m

v=1 ĀvH1 with H̃1 and (Ã+ I).

1

m

m∑
v=1

(
ĀH1

)
v
=

1

m

m∑
v=1

(
ĀH1

)
v

=
1

m

m∑
v=1

[
λ
(
ĀH1

)
v
+ (1− λ)

(
ĀH1

)
v

]
=

1

m

m∑
v=1

EP

[
λ
(
ĀH1

)
v
+ (1− λ)

(
PĀH1

)
v

]
=

1

m

m∑
v=1

EP

[(
λĀH1 + (1− λ)PĀP⊤PH1

)
v

]
(12)

=
1

m

m∑
v=1

EP

[(
λĀH1 + (1− λ)Ā′H ′

1

)
v

]
(13)

=
1

m

m∑
v=1

EP

[(
λĀ(λH1) + λĀ((1− λ)H ′

1)

+ (1− λ)Ā′λH + (1− λ)Ā′(1− λ)H ′
1

)
v

]
+

1

m

m∑
v=1

EP

[(
λĀ((1− λ)(H1 −H ′

1)) + (1− λ)Ā′λ(H ′
1 −H1)

)
v

]
, (14)

where Eq. (12) is due to normal matrix property for permutation matrix, Eq. (13) is due to the
definition of A′, H ′ based on permutation matrix. Since 1/m

∑m
v=1 [Ev′ [(H1 −H ′

1)v]] = 0,
Eq. (14) becomes 0. Then,

1

m

m∑
v=1

(
ĀH1

)
v
=

1

m

m∑
v

EP

[(
λĀ (λH1 + (1− λ)H ′

1) + (1− λ)Ā′ (λH1 + (1− λ)H ′
1)
)
v

]
=

1

m

m∑
v=1

EP

[(
λĀH̃1 + (1− λ)Ā′H̃1

)
v

]
=

1

m

m∑
v=1

EP

[(
(λĀ+ (1− λ)Ā′)H̃1

)
v

]
=

1

m

m∑
v=1

EP

[(
(λA+ (1− λ)A′ + I)H̃1

)
v

]
=

1

m

m∑
v=1

EP ,M

[(
(Ã+ I)H̃1

)
v

]
(15)

=
1

m

m∑
v=1

EP ,M

[
(Ã+ I)vH̃1

]
,

16

Published as a conference paper at ICLR 2024

where Eq. (15) is due to the following equations.

λA+ (1− λ)A′ = λ1 ◦A+ (1− λ)1 ◦A′

= EM [M1−λ ◦A+Mλ ◦A′]

:= EM

[
Ã
]
.

B.1 PROOF OF LEMMA 5.2

Before providing the proof of Lemma 5.2, we show Lemma B.3 and Lemma B.4 to get the approximate
form of iGraphMix loss.

Lemma B.3. Let D̃λ := α
α+βBeta(α+ 1, β) + β

α+βBeta(β + 1, α), P be the permutation induced
by the randomness for mixed target samples, M be the masking matrix. Also, we consider Žv be
the v-th virtual node output logits given X̃ and Ã that are followed by the distribution D̃λ and the
permutation P . Then, the empirical loss is converted as follows.

L̂(f |X̃, Ỹ , Ã) =
1

m

m∑
v=1

Eλ′∼D̃λ,M
EP

[
ℓ(Žv,Yv)

]
.

Proof.

L̂(f |X̃, Ỹ , Ã) =
1

m2

m∑
v,v′=1

Eλ,M

[
ℓ
(
Z̃v,v′ , Ỹv,v′

)]
=

1

m2

m∑
v,v′=1

Eλ,M

[
∥Z̃v,v′ − Ỹv,v′∥2

]
=

1

m2

m∑
v,v′=1

Eλ,M

[
Z̃⊤

v,v′Z̃v,v′ − 2Ỹ ⊤
v,v′Z̃v,v′ + Ỹ ⊤

v,v′Ỹv,v′

]
=

1

m2

m∑
v,v′=1

Eλ,M

[
Z̃⊤

v,v′Z̃v,v′ − 2 (λYv + (1− λ)Yv′)
⊤
Z̃v,v′ + Ỹ ⊤

v,v′Ỹv,v′

]
=

1

m2

m∑
v,v′=1

Eλ,M

[
λ
(
Z̃⊤

v,v′Z̃v,v′ − 2Y ⊤
v Z̃v,v′ + Y ⊤

v Yv

)
+ (1− λ)

(
Z̃⊤

v,v′Z̃v,v′ − 2Y ⊤
v′ Z̃v,v′ + Y ⊤

v′ Yv′

)]
+

1

m2

m∑
v,v′=1

Eλ,M

[
λY ⊤

v (Ỹv,v′ − Yv) + (1− λ)Y ⊤
v′ (Ỹv,v′ − Yv′)

]
=

1

m2

m∑
v,v′=1

Eλ,M

[
EQ∼Bern(λ)

[
Q
(
Z̃⊤

v,v′Z̃v,v′ − 2Y ⊤
v Z̃v,v′ + Y ⊤

v Yv

)]]
+

1

m2

m∑
v,v′=1

Eλ,M

[
EQ∼Bern(λ)

[
(1−Q)

(
Z̃⊤

v,v′Z̃v,v′ − 2Y ⊤
v′ Z̃v,v′ + Y ⊤

v′ Yv′

)]]
(16)

=
1

m2

m∑
v,v′=1

EQ∼Bern(α
α+β),M

[
Eλ∼Beta(α+Q,β+1−Q)

[
Qℓ(Z̃v,v′ ,Yv)

]]
+

1

m2

m∑
v,v′=1

EQ∼Bern(α
α+β),M

[
Eλ∼Beta(α+Q,β+1−Q)

[
(1−Q)ℓ(Z̃v,v′ ,Yv′)

]]
(17)

17

Published as a conference paper at ICLR 2024

=
1

m2

m∑
v,v′=1

α

α+ β
Eλ∼Beta(α+1,β),M

[
ℓ(Z̃v,v′ ,Yv)

]
+

1

m2

m∑
v,v′=1

β

α+ β
Eλ∼Beta(α,β+1),M

[
ℓ(Z̃v,v′ ,Yv′)

]
, (18)

where Eq. (16) is due to Bernoulli distribution property and∑m
v,v′=1

[
λY ⊤

v (Ỹv,v′ − Yv) + (1− λ)Y ⊤
v′ (Ỹv,v′ − Yv′)

]
=

∑m
v,v′=1

[
Y ⊤
v (Ỹv,v′ − Yv)

]
=

(1 − λ)
∑m

v,v′=1

[
Y ⊤
v (Yv′ − Yv)

]
= 0, Eq. (17) holds due to conjugate property of beta and

Bernoulli distribution, Eq. (18) is due to mean of Q is α/(α+ β) when Q = 1, and mean of 1−Q is
β

α+β when Q = 0.

As 1− Beta(α, β + 1) and Beta(β + 1, α) are the same distribution and Z̃v,v′(1− λ) = Z̃v′,v(λ),
we have

L̂(f |X̃, Ỹ , Ã) =
1

m2

m∑
v,v′=1

α

α+ β
Eλ∼Beta(α+1,β),M

[
ℓ(Z̃v,v′ ,Yv)

]
+

1

m2

m∑
v,v′=1

β

α+ β
Eλ∼Beta(β+1,α),M

[
ℓ(Z̃v,v′ ,Yv)

]
=

1

m2

m∑
v,v′=1

Eλ′∼ α
α+βBeta(α+1,β)+ β

α+βBeta(β+1,α),M

[
ℓ(Z̃v,v′ ,Yv)

]
=

1

m2

m∑
v,v′=1

Eλ′∼D̃λ,M

[
ℓ(Z̃v,v′ ,Yv)

]
, (19)

where Eq. (19) is due to D̃λ := α
α+βBeta(α+1, β)+ β

α+βBeta(β+1, α) and satisfying distribution
property of D̃λ. From the definition of P and Žv , we have

L̂(f |X̃, Ỹ , Ã) =
1

m

m∑
v=1

Eλ′∼D̃λ,M

[
1

m

m∑
v′=1

ℓ(Z̃v,v′ ,Yv)

]

=
1

m

m∑
v=1

Eλ′∼D̃λ,M

[
EP

[
ℓ(Žv,Yv)

]]
.

Lemma B.4. When D̃λ and P are the distribution of lambda and the permutation of mixed target
samples defined in Lemma B.3. Then, we can approximate the empirical loss of GCN trained with
iGraphMix by that of GCN trained without augmentation method as follows.

L̂(f |X̃, Ỹ , Ã) ≈ L̂(f |X,Y ,A) +R1 +R2,

where R1 :=
1

m

m∑
v=1

Eλ′∼D̃λ,M

[
EP

[(
(Ǎ+ I)vȞ1 −AvH1

)
W2(Zv − Yv)

]]
R2 :=

1

m

m∑
v=1

Eλ′∼D̃λ,M

[
EP

[
1

2
W⊤

2

(
(Ǎ+ I)vȞ1 −AvH1

)⊤ (
(Ǎ+ I)vȞ1 −AvH1

)
W2

]]
.

Proof. Note that Zv = ĀvH1W2 and Žv = (Ǎ+ I)vȞ1W2 as shown in Lemma B.1. Then, we
apply the second-order Taylor Theorem on ℓ

(
Žv,Yv

)
with respect to ĀvH1W2. We have

18

Published as a conference paper at ICLR 2024

ℓ(Žv,Yv) ≈ ℓ(Zv,Yv) +
(
(Ǎ+ I)vȞ1W2 − ĀvH1W2

)(∂ℓ (Zv,Yv)

∂ĀvH1W2

)
+

1

2

(
(Ǎ+ I)vȞ1W2 − ĀvH1W2

)⊤ ∂2ℓ (Zv,Yv)

∂(ĀvH1W2)2
(
(Ǎ+ I)vȞ1W2 − ĀvH1W2

)
.

(20)

Since ℓ (Zv,Yv) =
1
2∥Zv − Yv∥2, we have the first-order and second-order term of ℓ as follows.

∂ℓ (Zv,Yv)

∂ĀvH1W2
=

∂Zv

∂ĀvH1W2
· ∂ℓ (Zv,Yv)

∂Zv

= Zv − Yv,

(21)

∂2ℓ (Zv,Yv)

∂(ĀvH1W2)2
=

∂

∂ĀvH1

(
∂ℓ (Zv,Yv)

∂ĀvH1W2

)
=

∂

∂ĀvH1W2
(|Zv − Yv|)

=
∂Zv

∂ĀvH1W2
· ∂

∂Zv
(Zv − Yv)

= I.

(22)

Substituting Eq. (21) and Eq. (22) to Eq. (20), we get

ℓ(Žv,Yv) ≈ ℓ(Zv,Yv) + r1 + r2,

s.t. r1 =
(
(Ǎ+ I)vȞ1 − ĀvH1

)
W2(Zv − Yv),

r2 =
1

2

(
(Ǎ+ I)vȞ1W2 − ĀvH1W2

)⊤ (
(Ǎ+ I)vȞ1W2 − ĀvH1W2

)
=

1

2
W⊤

2

(
(Ǎ+ I)vȞ1 − ĀvH1

)⊤ (
(Ǎ+ I)vȞ1 − ĀvH1

)
W2.

Thus, we obtain the result as follows.

L̂(f |X̃, Ỹ , Ã) =
1

m

m∑
v=1

Eλ′∼D̃λ,M

[
EP

[
ℓ(Žv,Yv)

]]
(23)

≈ 1

m

m∑
v=1

Eλ′∼D̃λ,M
[EP [ℓ(Zv,Yv) + r1 + r2]]

=
1

m

m∑
v=1

Eλ′∼D̃λ,M
[EP [ℓ(Zv,Yv)]]

+
1

m

m∑
v=1

Eλ′∼D̃λ,M
[EP [r1]] +

1

m

m∑
v=1

Eλ′∼D̃λ,M
[EP [r2]]

=
1

m

m∑
v=1

ℓ(Zv,Yv) +
1

m

m∑
v=1

Eλ′∼D̃λ,M
[EP [r1]] +

1

m

m∑
v=1

Eλ′∼D̃λ,M
[EP [r2]]

= L(f |X,Y ,A) +R1 +R2,

where Eq. (23) is due to Lemma B.3.

Now, we are ready to prove Lemma 5.2. Remind Lemma B.4, we have

L̂(f |X̃, Ỹ , Ã) ≈ L̂(f |X,Y ,A) +R1 +R2,

19

Published as a conference paper at ICLR 2024

s.t. R1 =

m∑
v=1

Eλ′,M

[
EP

[(
(Ǎ+ I)vȞ1 − ĀvH1

)⊤
W⊤

2 (Zv − Yv)
]]

,

R2 =
1

m

m∑
v=1

Eλ′,M

[
EP

[
1

2
W⊤

2

(
(Ǎ+ I)vȞ1 − ĀvH1

)⊤ (
(Ǎ+ I)vȞ1 − ĀvH1

)
W2

]]
,

where λ′ ∼ α
α+βBeta (α+ 1, β) + β

α+βBeta (β + 1, α).

Then, we should verify what R1 and R2 are. First, from Lemma B.2, we can get R1 = 0.

For R2, we have

R2 =
1

m

m∑
v=1

Eλ′,M

[
EP

[
1

2
W⊤

2

(
(Ǎ+ I)vȞ1 − ĀvH1

)⊤ (
(Ǎ+ I)vȞ1 − ĀvH1

)
W2

]]

= W⊤
2

1

2m

m∑
v=1

Eλ′,M

[
EP

[(
(Ǎ+ I)vȞ1 − ĀvH1

)⊤ (
(Ǎ+ I)vȞ1 − ĀvH1

)]]
W2

:= R(W2).

B.2 PROOF OF THEOREM 5.3

Let S := 1/m
∑m

v=1 Eλ′,M

[
EP

[(
(Ǎ+ I)vȞ1 − ĀvH1

)⊤ (
(Ǎ+ I)vȞ1 − ĀvH1

)]]
∈

Rd1×d1 . We reformulate R(W2) for short-hand notation of the remaining proof.

R(W2) =
1

2
W⊤

2

1

m

m∑
v=1

Eλ′,M

[
EP

[(
(Ǎ+ I)vȞ1 − ĀvH1

)⊤ (
(Ǎ+ I)vȞ1 − ĀvH1

)]]
W2

:=
1

2
W⊤

2 SW2.

Next, we consider the constraint of R(W2) ≤ ω where ω be the certain scalar value in Eq. (7). Then,
the weight space fiGraphMix is represented as follows.

fiGraphMix = {f ∈ f |∥W1∥∞ ≤ ω,W⊤
2 SW2 ≤ 2ω}. (24)

Then, we introduce Transductive Rademacher Complexity (TRC) and the generalization error bound
induced by TRC in Definition B.5 (El-Yaniv & Pechyony, 2009; Esser et al., 2021).
Definition B.5 (Transductive Rademacher Complexity (El-Yaniv & Pechyony, 2009; Esser et al.,
2021)). Suppose we have m labeled samples over n total samples, and p ∈ [0, 0.5]. Let Z ⊂ Rn

be the possible output logit space with n samples and ϕ = {ϕ1, · · · , ϕn} be the independent and
identical distributed random vector where ϕi ± 1 with probability 2p and ϕi = 0 with probability
1− 2p. Then, TRC is defined as follows.

Rm,n(Z) := (
1

m
+

1

n−m
)Eσ

[
sup
Z∈Z

ϕ⊤Z

]
. (25)

For any f whose output logit Z ∈ Z and the input graph (X , Y , and A), the generalization error
bound is bounded with TRC as follows.

L(f |X,Y ,A)− L̂(f |X,Y ,A) ≤ Rm,n(Z) +O (n,m, δ) , (26)

with probability 1− δ where L(f) and L̂(f) be the generalization and empirical error of f .

Also, TRC has the scalar multiplication and convex hull property as in the below lemmas. Those
lemmas are proved in Esser et al. (2021).
Lemma B.6 (Linear combination). Let B ⊂ Rn, C ⊂ Rn, and t ∈ R. Then,

1) Scalar multiplication: Rm,n({tb|∀b ∈ B}) = ∥t∥1Rm,n(B),

2) Addition: Rm,n(B + C) = Rm,n(B) +Rm,n(C).

20

Published as a conference paper at ICLR 2024

Lemma B.7 (Convex hull). Let B ⊂ Rn, B′ = {∑N
j=1 βjb

(j)|N ∈ N,∀j, b(j) ∈ B, βj ≥ 0}, and
β = [β1, . . . , βN]. Then,

Rm,n(B) = ∥β∥1Rm,n(B
′).

Then, we need to find the TRC bound with output logit space induced by fiGraphMix to get the
generalization error bound. Let W2 := [[W2]1, · · · , [W2]d]

⊤ ∈ Rd1 . Similar to the lemma given in
Esser et al. (2021), we can get the second-layer TRC bound as follows.

Lemma B.8 (Second-layer TRC bound). Let (·)†/2 be the squared inverse matrix given (·), and
Rm,n(H) be the TRC of the first-layer hidden representation space. Then, we get the second-layer
output logit space TRC upper bound as follows.

Rm,n(Z) ≤ 2∥Ā∥∞
√
d1ω∥S†/2∥∞Rm,n(H).

Proof. We first get the following inequality.

Zv = [ĀH1W2]v

=

[
d1∑
l=1

[W2]l[ĀH1]:,l

]
v

=

[
d1∑
l=1

[W2]l

n∑
v′=1

Ā:,v′ [H1]:,l

]
v

=

[
d1∑
l=1

[W2]l

[
n∑

v′=1

Ā:,v′

]
[H1]:,l

]
v

=

[[
n∑

v′=1

Ā:,v′

]
d1∑
l=1

[W2]l[H1]:,l

]
v

≤
[
∥Ā∥∞

d1∑
l=1

1 [[W2]l[H1]:,l]

]
v

, (27)

where Eq. (27) is due to the definition of ∥ · ∥∞.

From the above inequality, we define the new logit spaces F as follows.

F =

{
d1∑
l=1

[W2]l[H1]:,l

∣∣∣∣W⊤
2 SW2 ≤ 2ω

}
.

Since ∥Ā∥∞ is a scalar, we apply Lemma B.6 to get the upper bound of Rm,n(Z) with the above
inequality as follows:

Rm,n(Z) ≤ ∥Ā∥∞Rm,n(F).

Let V2 := S1/2W2 ∈ Rd1 and H̀:,l := H:,lS
†/2 ∈ Rn×d1 . Then, we have the logit spaces F̀ , F̀inf ,

and F̀ ′
inf as follows.

F̀ =

{
d1∑
l=1

[V2]l[H̀1]:,l

∣∣∣∣∥V2∥2 ≤ 2ω

}
,

F̀inf =

{
d1∑
l=1

[V2]l[H̀1]:,l

∣∣∣∣∥V2∥1 ≤ 2
√
d1ω

}
,

F̀ ′
inf =

{
d1∑
l=1

[V2]l[H̀1]:,l

∣∣∣∣∥V2∥1 = 2
√
d1ω

}
.

21

Published as a conference paper at ICLR 2024

Note that F and F̀ are equivalent. Since ∥V2∥1 ≤
√
d1∥V2∥2, we have F̀ ⊂ F̀inf . Also, maximum

value over V2 with inequality constraints is converged at the borderline, i.e. ∥V2∥1 = 2
√
d1ω. This

induces Rm,n(F̀inf) = Rm,n(F̀ ′
inf). Thus, we have
Rm,n(Z) ≤ ∥Ā∥∞Rm,n(F)

= ∥Ā∥∞Rm,n(F̀)

≤ ∥Ā∥∞Rm,n(F̀inf)

= ∥Ā∥∞Rm,n(F̀ ′
inf).

Since we can think V2 as the β in Lemma B.7,
Rm,n(Z) ≤ ∥Ā∥∞∥V2∥1Rm,n(H̀′

inf)

≤ 2∥Ā∥∞
√
d1ωRm,n(H̀′

inf),

where H̀′
inf be the hidden logit space of H̀1 as

H̀′
inf =

{
d1∑
l=1

[H̀1]:,l

}
.

Then, we get the following inequality.
d1∑
l=1

[H̀1]:,l =

d1∑
l=1

H1[S
†/2]:,l

=

d1∑
l′=1

d1∑
l=1

[H1]l′ [S
†/2]l′,l

=

d1∑
l′=1

[H1]:,l

d1∑
l=1

[S†/2]l′,l

≤
d1∑

l′=1

[H1]:,l′∥[S†/2]l′∥1

≤ ∥S†/2∥∞
d1∑

l′=1

[H1]:,l′ .

Thus, from Lemma B.6, we have
Rm,n(H̀′

inf) ≤ ∥S†/2∥∞Rm,n(H).

Therefore, we have the TRC upper bound as follows.

Rm,n(Z) ≤ 2∥Ā∥∞
√
d1ω∥S†/2∥∞Rm,n(H).

Also, we get directly the first-layer TRC upper bound from Proposition 3 in Esser et al. (2021).
Lemma B.9 (First-layer TRC bound (Esser et al., 2021)). Let Rm,n(H) be the TRC of the first-layer
hidden representation space, and Lσ be the Lipschitz constant. Then, we have the TRC upper bound
of Rm,n(H) as follows.

Rm,n(H) ≤ Lσ
n

m(n−m)
ω∥ĀX∥2→∞

√
2 log n

d1
.

Applying Lemma B.8 and Lemma B.9 to Eq. (26), we have
L(f |X,Y ,A)− L̂(f |X,Y ,A) ≤ Rm,n(Z) +O (n,m, δ)

≤ 2∥Ā∥∞
√

d1ω∥S†/2∥∞Rm,n(H) +O (n,m, δ)

≤ 2Lσ
n

m(n−m)
∥Ā∥∞

√
d1ω∥S†/2∥∞ω∥ĀX∥2→∞

√
2 log n

d1
+O (n,m, δ)

=
n

m(n−m)
abc∥Ā∥∞∥ĀX∥2→∞

√
log n+O (n,m, δ) ,

22

Published as a conference paper at ICLR 2024

where a = 2Lσω, b = ω
√
2/d1, and c =

√
d1∥S†/2∥∞. Note that, in the definition of S, S is a

function of λ′, Ǎ, and Ȟ1. This means that c is the function of α,A,X . Therefore, c = Q(α,A,X)
where Q is the certain function, then Theorem 5.3 is satisfied.

C EXPERIMENTAL SETTINGS

C.1 DATASETS

We used CiteSeer, CORA, PubMed, ogbn-arxiv, and Flickr for the transductive setting. The detailed
statistics for each dataset are summarized in Table 3.

Table 3: Datasets statistics for the transductive setting.

Dataset CiteSeer CORA PubMed ogbn-arxiv Flickr
Nodes 3,327 2,708 19,717 169,343 89,250
Edges 4,552 5,278 88,648 1,166,243 899,756

Features 3,703 1,433 500 128 500
Class 6 7 3 40 7

Valid Nodes 500 500 500 29,799 22,313
Test Nodes 1,000 1,000 1,000 48,603 22,313

Sparsity 0.082 0.144 0.023 0.008 0.011
Average Degree 2.74 3.90 4.50 2.74 10.08

Edges Between Labeled Nodes Ratio (%) 1.78 0.40 0.00 0.32 0.21

Planetoid Benchmark We considered the three benchmark citation network datasets for the
transductive node classification task: CiteSeer, CORA, and PubMed (Sen et al., 2008). The goal
of the node classification of these datasets is to predict the appropriate subject class for each paper.
CiteSeer, CORA, and PubMed contain scientific publications, machine learning publications, and
biomedical publications respectively. Thus, they consist of the papers as the nodes, citation links
between papers as the edges, and the subject of the papers as the labels. Node features are constructed
via the bag-of-words feature representation of the paper document. We followed the labeled node per
class and the train/test dataset split settings for Table 1 used in Yang et al. (Yang et al., 2016).

Open Graph Benchmark (OGB) We also considered the one citation network dataset for the
transductive node classification task: ogbn-arxiv (Hu et al., 2020). The goal of the node classification
of those datasets is to predict the appropriate subject class for each paper. ogbn-arxiv contains all
computer science (CS) arxiv papers provided by Hu et al. (Hu et al., 2020). Thus, it consists of the
papers as the nodes, citation links between papers as the edges, and the subject of the papers as the
labels. Node features are constructed via the skip-gram representation of papers’ titles and abstracts.
To make ogbn-arxiv semi-supervised, we sampled 10% nodes from the original training node set for
Table 1 (Fang et al., 2023).

Flickr We considered one social network dataset for the transductive node classification task:
Flickr (McAuley & Leskovec, 2012). The goal of the dataset is to predict the category and the
community of each post. The nodes for Flickr is the image posts. The edges between nodes exist
if the images share common properties, e.g., geometric location, gallery, etc. Node features are the
image pixels. The training and evaluation nodes are split by creating dates of post (Hamilton et al.,
2017). For Flickr, we used the original training node sets, similar to Fang et al. (2023) for Table 1.

C.2 BACKBONE ARCHITECTURE

To evaluate the effect of iGraphMix in various GNNs, we utilized three well-known backbone GNNs.
First, we used GCN (Kipf & Welling, 2017), which is the simple version of the diffusion operator in
GNNs. Second, we utilized GAT (Veličković et al., 2018) and GATv2 (Brody et al., 2022), which use
attention mechanisms in the diffusion operator in GNNs.

C.3 HYPERPARAMETERS

Hyperparameter settings of all datasets and models are as follows. For CiteSeer, CORA, and Pubmed,
we used Adam Optimizer (Kingma & Ba, 2015) with 0.01 learning rate and 5e-4 weight decaying,

23

Published as a conference paper at ICLR 2024

dropout with 0.5 probability, and 16 hidden units for GCN. Also, we used Adam Optimizer with a
learning rate of 0.005 and weight decaying of 5e-4, dropout of 0.5 probability, 16 hidden units, and
1 head for GAT and GATv2 (Zhao et al., 2021; Verma et al., 2021). We trained the above models
by 2000 epochs and reported the test scores when the validation scores were the maximum. For
ogbn-arxiv, we used Adam Optimizer (Kingma & Ba, 2015) with 0.005 learning rate and 5e-4 weight
decaying, dropout with 0.0 probability, 256 hidden units, and 3 number of layers for GCN, GAT, and
GATv2 (Fang et al., 2023). Also, we used 1 head for GAT and GATv2. We added batch normalization
layers between GNN layers. We trained the above models by 200 epochs and reported the test scores
when the validation scores are the maximum. For Flickr, we used Adam Optimizer (Kingma & Ba,
2015) with 0.001 learning rate and 5e-5 weight decaying, dropout with 0.0 probability, 256 hidden
units, and 2 number of layers for GCN, GAT, and GATv2 (Fang et al., 2023). Also, we used 1 head
for GAT and GATv2. We trained the above models by 2000 epochs and reported the test scores when
the validation scores were the maximum.

C.4 GRAPH DATA AUGMENTATION METHODS

For the baseline augmentation methods, we found the best drop probability parameters from [0.1, 0.9]
for DropEdge (Rong et al., 2020), DropNode (Feng et al., 2020), and DropMessage (Fang et al.,
2023), and beta distribution probability from {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100} for
M-Mixup (Wang et al., 2021), and iGraphMix.

C.5 EXPERIMENTAL DETAILS

We conducted our experiments on the V-100 with CUDA version 11.3. GNNs for our experiments are
built on Pytorch 1 Paszke et al. (2019) with version 1.12.1. and Pytorch Geometric 2 (Fey & Lenssen,
2019) with version 2.1.0. For the baseline augmentation methods, we used the implementation of
DropEdge (Rong et al., 2020) and DropNode (Feng et al., 2020) in Pytorch Geometric and employed
the original paper implementation for DropMessage (Fang et al., 2023) 3. For M-Mixup (Wang et al.,
2021), we utilized the original paper implementation 4.

D ADDITIONAL RESULTS

We reported the additional results that were not handled in the main context due to the space limitation.

D.1 GENERALIZATION GAP

Compared with Baselines We reported the generalization gap analysis for GCN on the other
transductive datasets: CORA, PubMed, Flickr, and ogbn-arxiv. Figure 5 showed the generalization
gap results on CORA, PubMed, Flickr, and ogbn-arxiv, similar to Figure 2. We could confirm a
consistently smaller generalization gap in iGraphMix compared to no augmented training. This
result may support our theoretical claim in Section 5 that iGraphMix showed a smaller generalization
gap compared to standard training with high probability. Furthermore, we found that the final
generalization gap of iGraphMix tends to be consistently smaller than other augmentation baseline
methods in these datasets. This can empirically support the claim in Section 6.2 that iGraphMix does
make a smaller generalization gap not only in CiteSeer but also in other datasets, such as CORA,
PubMed, Flickr, and ogbn-arxiv.

Beta distribution parameters α We observed the generalization gap with respect to α on CORA,
and Pubmed for 2-layer GCN in Figure 6. Similar to the results in Section 6.2, the generalization
gap of iGraphMix in CORA and PubMed becomes smaller when α is large. Notably, we verified
that the optimal α of these datasets is 50. On the other hand, as shown in Figure 3, the optimal α
of CiteSeer, ogbn-arxiv, and Flickr are 100, 10 and 50, respectively. Therefore, these results may
strengthen the claim in Section 6.2 that the different datasets require different optimal α to achieve
the small generalization gap.

1https://github.com/pytorch/pytorch
2https://github.com/pyg-team/pytorch_geometric
3https://github.com/zjunet/DropMessage
4https://github.com/vanoracai/MixupForGraph

24

https://github.com/pytorch/pytorch
https://github.com/pyg-team/pytorch_geometric
https://github.com/zjunet/DropMessage
https://github.com/vanoracai/MixupForGraph

Published as a conference paper at ICLR 2024

0 1000 2000
Epoch

0.25

0.50

0.75

1.00

1.25

1.50

1.75

L
os

s

Train
Test

(a) Without augmentation

0 1000 2000
Epoch

0.75

1.00

1.25

1.50

1.75

2.00

2.25

L
os

s

Train
Test

(b) With iGraphMix

0.0 0.1 0.2 0.3 0.4 0.5
Generalization Gap (Test - Train)

M-Mixup

DropMessage

DropNode

DropEdge

iGraphMix

None

G
D

A
M

et
ho

d

(c) Generalization Gap

0 1000 2000
Epoch

0.2

0.4

0.6

0.8

1.0

L
os

s

Train
Test

(d) Without augmentation

0 1000 2000
Epoch

0.6

0.8

1.0

1.2

1.4
L

os
s

Train
Test

(e) With iGraphMix

0.0 0.1 0.2 0.3 0.4
Generalization Gap (Test - Train)

M-Mixup

DropMessage

DropNode

DropEdge

iGraphMix

None

G
D

A
M

et
ho

d

(f) Generalization Gap

0 100 200
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L
os

s

Train
Test

(g) Without augmentation

0 100 200
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L
os

s

Train
Test

(h) With iGraphMix

0.0 0.2 0.4 0.6
Generalization Gap (Test - Train)

M-Mixup

DropMessage

DropNode

DropEdge

iGraphMix

None

G
D

A
M

et
ho

d

(i) Generalization Gap

0 1000 2000
Epoch

1.2

1.4

1.6

1.8

L
os

s

Train
Test

(j) Without augmentation

0 1000 2000
Epoch

1.2

1.4

1.6

1.8

L
os

s

Train
Test

(k) With iGraphMix

0.00 0.05 0.10 0.15 0.20 0.25
Generalization Gap (Test - Train)

M-Mixup

DropMessage

DropNode

DropEdge

iGraphMix

None

G
D

A
M

et
ho

d

(l) Generalization Gap

Figure 5: Generalization Results of GCN with CORA ((a)-(c)), PubMed ((d)-(e)), ogbn-arxiv ((g)-(h)),
and Flickr ((j)-(l)).

25

Published as a conference paper at ICLR 2024

10−3 10−2 10−1 100 101 102

α

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

G
en

er
al

iz
at

io
n

G
ap

(T
es

t-
Tr

ai
n)

None
iGraphMix

(a) Cora

10−3 10−2 10−1 100 101 102

α

0.300

0.325

0.350

0.375

0.400

0.425

0.450

G
en

er
al

iz
at

io
n

G
ap

(T
es

t-
Tr

ai
n)

None
iGraphMix

(b) PubMed

Figure 6: Generalization gap results on other datasets with respect to Beta distribution’s parameter α
for 2-layer GCN. A small generalization gap reveals a better result.

Table 4: Ablation results on three transductive datasets.

Augmentation Methods CiteSeer Cora PubMed
None 72.05 (0.56) 82.65 (0.55) 79.32 (0.15)

iGraphMix (input+label) 71.50 (0.47) 81.26 (0.27) 79.18 (0.53)
iGraphMix (edge+label) 72.44 (0.81) 82.72 (0.21) 79.18 (0.33)

iGraphMix (input+edge+label) (proposed) 73.67 (0.61) 83.78 (0.42) 79.93 (0.60)

D.2 ANALYSIS ON VARIOUS SETTINGS

We assessed the performance of GCN with various settings, such as the various number of layers and
labeled nodes on CORA, PubMed, ogbn-arxiv, and Flickr, which we did not describe in the main
context due to paper limitations. Figure 7 showed the micro-F1 score of the various number of layers
and the number of labeled nodes on CORA, PubMed, ogbn-arxiv, and Flickr with the 2-layer GCN
model. Note that we considered the ratio of labeled samples rather than the number of labeled nodes
per class on ogbn-arxiv and Flickr. This is because these datasets originally provided labeled nodes
based on the overall labeled ratio, not the per-class ratio.

From Figures 7a, 7c, 7e, and 7g, we observed a consistent improvement of the micro-F1 score in
iGraphMix with varying numbers of layers on these datasets, similar to the result on CiteSeer shown
in Figure 4a. These results may support our claim that iGraphMix improves the micro-F1 score in the
various number of layers. Additionally, these results may imply that the proposed method mitigates
the over-smoothing problem.

Moreover, Figures 7b, 7d, 7f, and 7h showed that the proposed method improves the micro-F1 score
regardless of the number of nodes. Importantly, we found that our method can be more effective in
improving the micro-F1 score when training with fewer L than fully labeled nodes on these datasets,
like the result on CiteSeer shown in Figure 4b. This result may also imply that our method addresses
the over-fitting problem, especially with fewer labeled nodes.

D.3 ABLATION STUDY

We conducted the ablation study on iGraphMix and the result is summarized in Table 4. We
compared our method with 1) applying mixup only to input and label, iGraphMix (input+label), and
2) applying mixup only to edge and label, iGraphMix (edge+label), on three transductive datasets,
CiteSeer, Cora, and PubMed, for node classification. We observed that iGraphMix (input + edge+
label) consistently outperforms not only the standard training but also iGraphMix (input+label), and
iGraphMix (edge+label). This result may imply that interpolating all components of the graph is
crucial, showing our method’s effectiveness. Furthermore, iGraphMix (input+label) consistently
underperforms the standard training, and iGraphMix (edge+label) is better or comparable to the
standard training. It may suggest the importance of applying mixup on the edge for graph datasets.

26

Published as a conference paper at ICLR 2024

2 3 4 5 6 7 8
Num. Layers

67.5

70.0

72.5

75.0

77.5

80.0

82.5

M
ic

ro
-F

1
Sc

or
e

(%
)

None
iGraphMix

(a) Number of layers

10 20 40 80 160 Full
Labeled Nodes / Class

78

80

82

84

86

88

M
ic

ro
-F

1
Sc

or
e

(%
)

None
iGraphMix

(b) Number of labeled nodes per class

2 3 4 5 6 7 8
Num. Layers

73

74

75

76

77

78

79

80

M
ic

ro
-F

1
Sc

or
e

(%
)

None
iGraphMix

(c) Number of layers

10 20 40 80 160 Full
Labeled Nodes / Class

78

80

82

84

86

88

M
ic

ro
-F

1
Sc

or
e

(%
)

None
iGraphMix

(d) Number of labeled nodes per class

2 3 4 5 6 7 8
Num. Layers

65

66

67

68

M
ic

ro
-F

1
Sc

or
e

(%
)

None
iGraphMix

(e) Number of layers

20 40 60 80 100
Labeled Nodes (%)

67

68

69

70

71

M
ic

ro
-F

1
Sc

or
e

(%
)

None
iGraphMix

(f) Labeled node ratio

2 3 4 5 6 7 8
Num. Layers

51.5

52.0

52.5

53.0

53.5

54.0

M
ic

ro
-F

1
Sc

or
e

(%
)

None
iGraphMix

(g) Number of layers

20 40 60 80 100
Labeled Nodes (%)

50.0

50.5

51.0

51.5

52.0

52.5

53.0

53.5

M
ic

ro
-F

1
Sc

or
e

(%
)

None
iGraphMix

(h) Labeled node ratio

Figure 7: Micro-F1 score in various different number of layers and labeled node ratio on Cora((a)-(b)),
PubMed((c)-(d)), ogbn-arxiv((e)-(f)), and Flickr((g)-(h)) datasets. The results are the average scores
of 10 trials.

27

Published as a conference paper at ICLR 2024

Table 5: Robustness results with feature noise on three transductive datasets.

Dataset CiteSeer Cora PubMed
Noise level (%) 10% 20% 40% 10% 20% 40% 10% 20% 40%

None 66.90 66.89 66.12 78.10 77.76 77.92 75.46 74.62 73.36
iGraphMix 68.48 68.54 68.30 79.00 78.64 78.76 75.78 75.80 74.88

Table 6: Robustness results with structural noise on three transductive datasets.

Dataset CiteSeer Cora PubMed
Noise level (%) 10% 20% 40% 10% 20% 40% 10% 20% 40%

None 67.62 61.88 54.90 78.62 73.14 60.96 73.92 71.88 60.20
iGraphMix 68.94 63.22 55.82 79.14 74.06 61.78 74.54 72.56 61.22

Table 7: Robustness results with label noise on three transductive datasets.

Dataset CiteSeer Cora PubMed
Noise level (%) 10% 20% 40% 10% 20% 40% 10% 20% 40%

None 68.24 64.14 57.72 79.10 76.00 67.60 77.32 75.76 68.64
iGraphMix 69.08 65.92 58.62 80.02 76.42 69.08 77.66 76.00 69.04

D.4 ROBUSTNESS TEST

We evaluated the robustness of our method on three noise settings: 1) feature noise, 2) structural
noise, and 3) label noise. We followed the noise setting used in Fang et al. (2023); the feature noise
is provided by adding standard Gaussian noise to input features with a probability of noise level;
the structural noise is given by randomly adding and removing edges with a probability of noise
level; for label noise, we randomly permuted training labels with a probability of noise level for this
experiment. We used GCN as the backbone model for all settings and assessed the robustness of
Cora, CiteSeer, and PubMed. The results are summarized below.

Feature Noise We evaluated the robustness when the feature noise is introduced in the graph. The
feature noise is provided by adding standard Gaussian noise to input features with a probability of
noise level. Table 5 shows how robust our method is for the feature noise. We indicated that our
method outperforms the standard training in all noise levels.

Structural Noise We assessed the robustness when the graph contains structural noise. The
structural noise is given by randomly adding and removing edges with a probability of noise level.
Table 6 shows the results of how the proposed method is robust to the structural noise. We found that
when structural noise is introduced, GCN trained with iGraphMix outperforms GCN trained without
iGraphMix (None). In addition, as the noise level increases from 10% to 40%, our method achieves
more performance improvement compared to the standard training (None).

Label Noise We assessed the robustness when the graph contains label noise. We randomly
permuted training labels with a probability of noise level for this experiment. We trained GCN with
the noisy training labels and evaluated GCN’s performance. Table 7 shows how robust our method
for noise labels is. We indicated that our method outperforms the standard training in all noise levels.

D.5 COMPUTATIONAL COMPLEXITY

We assessed the computational complexity of our method by Big O complexity analysis. Then, we
verified the computational complexity from the experiments on Cora and ogbn-arxiv.

Table 8 shows the time complexity with the Big O notation of all methods including five baselines
and the proposed method. Specifically, let V be the number of nodes, E be the number of total edges,
Etr be the number of edges connected to training nodes, d be the hidden dimension of the GNN layer,
and K be the number of layers. Then, we split the complexity into two parts, i.e., augmented data
preparation and graph convolution, and get the Big O complexity of the parts as follows. The time

28

Published as a conference paper at ICLR 2024

Table 8: Big O complexity for all data augmentation methods in GCN. We split the data augmentation
process into 1) augmented data preparation and 2) graph convolution.

Operation None DropEdge DropNode DropMessage M-Mixup iGraphMix
1) Data Preparation O (1) O (|E|) O (|E| + |V|) O (1) O (|E| + 2|V|) O (|E| + |V|)

2) Graph Convolution O
(
|E|dK

)
O

(
p|E|dK

)
O

(
p|E|dK

)
O

(
|E|dK

)
O

(
2|E|dK

)
O

(
|E|dK

)

Table 9: Time complexity of all data augmentation methods in GCN on benchmark datasets.

Dataset Operation None DropEdge DropNode DropMessage M-Mixup iGraphMix
Cora 1) Data Preparation 0.83e-3 1.13e-3 1.33e-3 0.83e-3 1.96e-3 3.72e-3

2) Graph Convolution 1.12e-2 1.10e-2 1.10e-2 1.11e-2 1.73e-2 1.57e-2
ogbn-arxiv 1) Data Preparation 1.25e-3 1.34e-3 1.39e-3 1.25e-3 2.61e-2 2.56e-2

2) Graph Convolution 3.32e-2 1.76e-2 1.81e-2 3.30e-2 8.33e-2 3.37e-2

complexity of GCN (None) was represented in Veličković et al. (2018). Since there are dropping
edges or nodes in DropEdge and DropNode, the complexity for data preparation of DropEdge and
DropNode is O (|E|) and O (|E|+ |V|), respectively. Also, the complexity of graph convolution is
O
(
p|E|dK

)
, where p ∈ [0, 1] is a dropping probability. DropMessage considers all edges and nodes

in all layers, their complexity is the same as the standard GCN. For M-Mixup, the complexities for
data preparation and graph convolution are O (|E|+ 2|V|) and O

(
2|E|dK

)
, respectively. Lastly,

in the case of iGraphMix, the complexities for data preparation is O (|E|+ |V|) and that for graph
convolution is O

(
|E|dK

)
.

Table 9 shows the computational time of data preparation and graph convolution on Cora and ogbn-
arxiv datasets. The below table shows the mean computational time (second) per epoch. We could
find that the real computational time is consistent with our Big O complexity calculation.

From the analysis, we found that our method would not need lots of computational complexity,
especially compared to M-Mixup. Although some methods require less computational time, our
method leads to better performance when training GNNs, highlighting the necessity of the proposed
method.

E EXPERIMENTS ON OTHER TASKS

In this section, we provided the details and results of other graph tasks, such as inductive node
classification, and link prediction.

E.1 INDUCTIVE NODE CLASSIFICATION

PROBLEM DEFINITION

The inductive setting states that we train the model only using the sub-graph with training nodes and
edges between them and evaluate the model using the sub-graph with evaluation nodes and edges
between them. Since the inductive setting is considered to handle large-scale graphs in general, meth-
ods for this setting are mainly focused on sub-graph sampling. For instance, GraphSAGE (Hamilton
et al., 2017) randomly samples neighboring nodes for each node. GraphSAINT (Zeng et al., 2020)
splits the original graphs into several sub-graphs, and randomly samples sub-graphs from the original
graphs. Other works proposed various sub-graph sampling methods (Chen et al., 2018b;a; Chiang
et al., 2019).

DATASETS

We used Reddit and ogbn-products for the inductive node classification. The detailed statistics for
each dataset are summarized in Table 10.

Reddit We considered one social network dataset: Reddit (Grover & Leskovec, 2016). The goal
of this dataset is to predict the category and the community of each post. The nodes for Reddit are
the text posts. The edges are connected if the same users interact with both posts. Node features are
GloVE CommonCrawl word vectors (Pennington et al., 2014) of the post for Reddit. The training
and evaluation nodes are split by creating dates of post (Hamilton et al., 2017). To make the inductive

29

Published as a conference paper at ICLR 2024

setting semi-supervised, we sampled 10% nodes from the original training node set (Hamilton et al.,
2017; Zeng et al., 2020).

Open Graph Benchmarks (OGB) We also considered one e-commerce network dataset: ogbn-
products (Hu et al., 2020). The goal of this dataset is to predict the category of the products. The
nodes for ogbn-products are the products’ descriptions. The edges are connected if two products are
purchased at the same time. Node features are constructed via bag-of-words and applied Principal
Component Analysis to reduce the dimensions of node features. The training and evaluation nodes
are split by sales ranking. To make ogbn-products semi-supervised, we sampled 10% nodes from the
original training node-set.

Table 10: Datasets statistics for the inductive setting

Dataset Reddit ogbn-products
Nodes 232,965 2,449,029
Edges 114,615,892 61,859,140

Features 602 100
Class 41 47

Valid Nodes 23,699 244,903
Test Nodes 55,334 244,903

BACKBONE MODELS

Since one of our goals is to show the effect of iGraphMix in the various sampling methods in
the inductive setting, we considered two well-known subgraph sampling methods. We utilized
Random Walk sampling used in GraphSAGE (Hamilton et al., 2017) and Sub-graph sampling used in
GraphSAINT (Zeng et al., 2020). For the base model architecture, we used GraphSAGE (Hamilton
et al., 2017) layers for GraphSAGE and GCN with JK-Nets (Xu et al., 2018) for GraphSAINT. For
both models, we used Adam Optimizer with a 0.001 learning rate and 2e-4 weight decaying for
Reddit. We used dropout with 0.2 probability. We also utilized 128 hidden units (Zeng et al., 2020).
The maximum epochs are 200 for GraphSAGE and 50 for GraphSAINT. Similar to the transductive
setting, we reported the test score when the validation score is the maximum. The other detailed
parameters for sampling are followed by GraphSAGE (Hamilton et al., 2017) and GraphSAINT (Zeng
et al., 2020).

RESULTS

Although we do not provide the theoretical results on the inductive setting, we experimentally showed
that iGraphMix helps model training even in this setting. The results for the inductive setting were
represented in Table 11. We could find that training GNNs with iGraphMix tends to outperform that
without augmentation methods on various datasets and backbone architectures. Furthermore, we
could observe that iGraphMix shows a performance improvement comparable to other augmentation
methods. These results verified that the proposed method could improve the performance not only in
the transductive small graphs but also in the large inductive graphs.

E.2 LINK PREDICTION

PROBLEM DEFINITION

Link prediction is a task in graph analysis that predicts whether two nodes are connected or
not. For mathematical notation, we denote the output of GNNs Z ∈ Rn×n as follows. Z =

sigmoid
(
HK ·HK⊤

)
, where HK ∈ Rn×dK is the hidden representation matrix of GNNs with

feature dimension dK .

As represented in Verma et al. (2021), link prediction can be represented as a form of two-class node
classification. Specifically, when a new graph G′ is generated by combining the input features and the
edges of two pairs of nodes from the original graph G, the goal of link prediction becomes predicting
the class of nodes in G′. These classes indicate whether the two pairs of nodes are connected or not
in G. This process treats the link prediction in G as the node classification in G′.

30

Published as a conference paper at ICLR 2024

Table 11: Overall Micro-F1 score (%) on inductive datasets when the number of layers is two. The
results are the average scores and standard deviations with different random seeds. Since M-Mixup
showed out-of-memory for GraphSAGE and ogbn-products, we represent the result as OOM.

Backbone Data Augmentation Datasets
Reddit ogbn-products

GraphSAGE

None 94.87 (0.03) 74.41 (0.61)
DropEdge 94.91 (0.05) 75.21 (0.17)
DropNode 95.31 (0.03) 74.98 (0.19)

DropMessage 94.86 (0.04) 74.70 (0.26)
M-Mixup OOM OOM

iGraphMix (ours) 95.33 (0.04) 75.04 (0.14)

GraphSAINT

None 89.13 (0.25) 50.41 (0.35)
DropEdge 89.30 (0.29) 56.02 (0.09)
DropNode 89.26 (0.24) 52.53 (0.18)

DropMessage 89.18 (0.27) 50.22 (0.48)
M-Mixup 89.91 (0.32) OOM

iGraphMix (ours) 89.84 (0.33) 53.49 (0.23)

DATASETS

We used CiteSeer, CORA, and PubMed for the link prediction task.

Planetoid Benchmark We considered the three benchmark citation network datasets for the link
prediction task: CiteSeer, CORA, and PubMed. The goal of the link prediction of these datasets is to
predict the existence of citation links between every two papers. The detailed statistics of the number
of nodes and edges of these datasets were summarized in Table 3. Followed by Fey & Lenssen (2019),
we sampled 5% and 10% edges from the original edges for valid and test edges respectively, and the
remaining edges were used for training.

IGRAPHMIX FOR LINK PREDICTION

For link prediction, iGraphMix generates virtual graphs and labels in a batch-wise manner as in
Definition E.1. The difference between iGraphMix on node classification and link prediction is the
second equation of Eq. (28). While iGraphMix linearly interpolates two one-hot label matrices on
node classification, the proposed method on link prediction generates a virtual label matrix for edges
by masking the label matrices and aggregating them. Specifically, our method first masks the label
matrices for edges using the masking matrices that are the same in the last equation of Eq. (28). Then,
the proposed method adds the two masked label matrices to generate the virtual label matrix used for
training.

Definition E.1 (iGraphMix for link prediction). Let Mλ be the masking matrix with λ dropping
probability. iGraphMix mixes feature matrix, label matrix, and adjacency matrix as follows:

X̃ := λX + (1− λ)X ′,

AỸ := M1−λ ◦AY +Mλ ◦AY ′
,

Ã := M1−λ ◦A+Mλ ◦A′,

(28)

where (X ′,AY ′
,A′) is the permuted batch within labeled nodes of (X,AY ,A) .

RESULTS

We experimentally assessed that iGraphMix helps GNNs improve performance on link prediction.
We conducted the link prediction task on CiteSeer, Cora, and PubMed datasets and evaluated the
performance of iGraphMix with other augmentation methods in terms of ROC-AUC. For the base
model architecture, we used a two-layer GCN with 128 hidden units. Then, we used Adam Optimizer
with a 0.01 learning rate for all datasets, and the maximum epochs were 100. The results of GCN on
link prediction were presented in Table 12. Similar to the other tasks, we reported the test ROC-AUC
when the ROC-AUC of the validation sets is the maximum. We found that the proposed method
significantly outperforms baseline methods on two datasets out of three. Although our method showed

31

Published as a conference paper at ICLR 2024

Table 12: Overall results on link prediction task.

Backbone Data
Augmentation

Link Prediction
CiteSeer

(ROC-AUC)
Cora

(ROC-AUC)
PubMed

(ROC-AUC)

GCN

None 93.22 (0.33) 90.08 (0.54) 97.36 (0.06)
DropEdge 94.49 (0.31) 91.94 (0.84) 97.55 (0.09)
DropNode 93.30 (0.40) 89.43 (0.63) 97.33 (0.06)

DropMessage 94.03 (0.29) 90.58 (0.64) 97.75 (0.04)
M-Mixup 93.47 (0.34) 90.09 (0.92) 96.22 (0.15)

iGraphMix (ours) 94.88 (0.40) 93.59 (0.45) 97.62 (0.05)

the second-best performance on PubMed, the average performance ranking of our method was 1.33,
supporting the effectiveness of our method on these datasets. This result may suggest that iGraphMix
is effective in improving performance not only on the node classification but also on link prediction,
showing the advantages of our method to be proved in various graph tasks.

F FURTHER DISCUSSIONS

Despite the effectiveness of our work, iGraphMix may have two limitations. First, the proposed
method may not be as effective for certain types of graphs where the underlying assumption of our
method may not hold. This limitation suggests designing an advanced and adaptive edge sampling
method for tailoring it to each graph. Addressing it is a promising direction for future research, which
could further optimize the applicability of iGraphMix across various graphs. Second, our theoretical
analysis primarily focused on the two-layer GCN may not fully capture more complex and real-world
scenarios. We believe that future works on extending multi-layer GCN could handle this limitation.

32

	Introduction
	Related Works
	Preliminaries
	Our Method: iGraphMix
	Theoretical Analysis
	Experiments
	Overall Results
	Generalization Gap
	Analysis on Various Settings
	Combination with Other Augmentation Methods

	Conclusion
	Implementation details of iGraphMix
	Proof in Theoretical Analysis
	Proof of Lemma 5.2
	Proof of Theorem 5.3

	Experimental Settings
	Datasets
	Backbone Architecture
	Hyperparameters
	Graph Data Augmentation Methods
	Experimental Details

	Additional Results
	Generalization Gap
	Analysis on Various Settings
	Ablation Study
	Robustness Test
	Computational Complexity

	Experiments on Other Tasks
	Inductive Node Classification
	Link Prediction

	Further Discussions

