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ABSTRACT

Hallucination has been a persistent challenge when using Large Language Models
(LLMs). Retrieval-Augmented Generation (RAG) has emerged as a popular ap-
proach to mitigate this issue by maintaining context and coherence in generated
outputs, as well as incorporating customized knowledge (Lewis et al., 2020a). In
this paper, we propose a benchmark dataset for evaluating LLM performance in
the domain of middle-school science question answering, using textbook questions
augmented with real-world web search results. We assess the performance of
various LLMs, including GPT-4o, Llama2-7b, and Llama3-8b, with and without
the application of RAG. Our goal is to determine whether RAG can reduce hal-
lucinations stemming from the inherent biases of pre-trained LLMs or from the
retrieval of irrelevant knowledge, even when relevant information is accessible
(Ji et al., 2023a). The dataset and methodology introduced here provide a robust
foundation for advancing the evaluation and development of RAG techniques in
mitigating hallucinations across diverse LLMs.

1 INTRODUCTION

Recent research in RAG emphasizes its potential to augment natural language generation by retrieving
relevant documents or information, which helps maintaining context and coherence in generated
outputs (Lewis et al., 2020a). A notable challenge highlighted by research is hallucination – RAG
models may draw invalid correlations or rely on biased model knowledge, overriding retrieved
information and subsequently hallucinating, even when relevant information is accessible. (Ji et al.,
2023a).

Our project aims to address these challenges by refining RAG benchmarks and algorithms. Ad-
dressing hallucinations remains a key concern in RAG, requiring advanced techniques to evaluate
information relevance and factual consistency effectively. Furthermore, domain-specific nuances
may be incorporated to reduce misleading or inaccurate outputs, particularly in critical areas such as
education.

Education domain is selected because Artificial Intelligence (AI) tutors are popular applications for
LLMs. We would like to study the current status of the field, and provide a useful benchmark to help
improve AI tutors. This is an important field because AI tutors can provide low cost solutions to
people who don’t have access to expensive education resources.

Figure 1 demonstrates an example of the benchmark. The input contains a questions, choices and the
expected answer. This is a question related to Mendel’s experiments in the biology field. With the
LLM (Llama2-7b in this case), it provided a wrong answer. With the RAG solution (Llama2-7b with
the input of web search results), it provided the correct answer. The benchmark also contains web
search results based on the questions, which can be used for the RAG algorithm.

The project is inspired by Meta KDD Cup 2024 RAG: Comprehensive RAG Benchmark (CRAG)
(Yang et al., 2024). Currently CRAG only includes five domains: Finance, Music, Movie, Sports, and
Open, and it does not include the Education domain. Our project creates a new benchmark for the
Education domain, with different data sources and processes.
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Figure 1: Example of Question, Choice Set, and Result with LLM with and without RAG

2 RELATED WORK

RAG has significant potential to augment natural language generation by retrieving relevant docu-
ments or information, which helps in maintaining context and coherence in generated outputs (Lewis
et al., 2020a). There is an also a more recent survey shows that RAG models may draw invalid
correlations with retrieved knowledge or use biased model knowledge, despite access to relevant
information (Ji et al., 2023a).

The Head-to-Tail Paper (Sun et al., 2024) offers valuable insights into LLMs’ knowledge capabilities,
providing a foundation for further research on enhancing factuality and reducing hallucinations in
NLP models. In addition, there are methods like FreshLLMS to enhance factual consistency in
LLMs through real-time information retrieval, offering a holistic view of NLP research in reducing
hallucinations and improving factuality (Vu et al., 2023).

LLMs are very good at memorizing the content used for its pretraining. However, there are many
drawbacks of using its memorization capability directly for Question Answering (QA) tasks. For
example, depending on the size of the model, the quality of the pretraining data, and the type of
questions, LLMs’ memorization capability can be very limited and hard to be controlled. The LLMs
are also hard to be updated unless through retraining or fine tuning, so LLMs can not handle questions
on recent events if deployed. Arguably the most problematic drawback of using LLMs for QA is
it can hallucinate, especially so if the models do not know if the context contains the information
needed to answer a question.

Fine tuning is a straightforward way to update the knowledge of LLMs if the updated information
become available. However, due to the scarcity of GPUs and limitations of access to high quality data,
it is not feasible for lots of use cases. Furthermore, the behavior of tuning language model is not well
studied, and fine tuning with bad data or practices might decrease the model’s capabilities, causing
modality collapse unless more complex methods such as RLHF are used (Ouyang et al., 2022).

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020b; Gao et al., 2024) is a popular way to
address the shortcomings of LLMs, by augmenting LLMs with non-parametric data sources, utilizing
LLMs’ powerful in-context learning (Brown et al., 2020) capability. (Gao et al., 2024) grouped the
approaches of using RAG for LLMs into three categories: Naive RAG, Advanced RAG (Ma et al.,
2023; Zheng et al., 2024), and Modular RAG (Yu et al., 2023; Shao et al., 2023). The Naive and
Advanced RAG are widely in practice due their simplicity and low cost on development. They are
generally consisted of three parts: non-parametric database curation, retrieving relevant snippets from
the database given the query, LLMs generation by in-context learning and prompt engineering with
the snippets that are related the query.
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While the research on combining LLMs and RAG for QA mainly focus texts, there is also research
on utilizing resources beyond pure texts, such images (Chen et al., 2022), audio (Zhao et al., 2023),
video (Yang et al., 2023) and code (Nashid et al., 2023) to augment the capabilities of language
models.

There are various efforts on creating RAG benchmarks and proposing appropriate evaluation metrics
in recent years. (Yang et al., 2024) is one of the recent ones, which is the foundation of this paper.
(Yang et al., 2024) created a factual question answering benchmark of 4,409 question-answer pairs
and mock APIs to simulate web and Knowledge Graph (KG) search. It also proposes an evaluation
mechanism, which distinguishes hallucination and missing answers, and gives hallucination a higher
penalty. (Chen et al., 2024) created a RAG evaluation benchmark in both English and Chinese, and
analyzed different LLMs from 4 aspects: noise robustness, negative rejection, information integration,
and counterfactual. They found that LLMs show a certain degree of noise robustness, but struggle
significantly in other aspects.

Apart from specific RAG datasets, there are many existing Question-answering (QA) datasets which
include context passages for each question. These datasets can also be used for RAG experiments,
and cover a wide range of questions such as multiple-choice QA (Pang et al., 2022; Clark et al., 2018;
Talmor et al., 2019), single-hop QA (Kwiatkowski et al., 2019; Joshi et al., 2017; Rajpurkar et al.,
2016), multi-hop QA (Yang et al., 2018; Ho et al., 2020; Trivedi et al., 2022), and Domain-specific
QA (Dasigi et al., 2021; Möller et al., 2020; Wang et al., 2024).

Hallucination (Ji et al., 2023b) in LLMs is a well-known problem, and can generally be grouped
into intrinsic hallucinations and extrinsic hallucinations. Intrinsic hallucinations are generated output
that contradicts the input content. For example, generated abstractive summarization that includes
contradicting facts from the original article. Another example is generated answers contradicting
facts presented in the context of a RAG task. Extrinsic hallucinations include generated output that
can’t be verified from the input. In this situation, the LLMs draw upon their stored "knowledge" and
produce outputs that can be correct and relevant, correct and not relevant, or erroneous. Hallucination
in LLMs is considered a very challenging issue which can not be improved by directly scaling up
models (Lin et al., 2022).

One way to deal with hallucinations is detection. (Snyder et al., 2023) trained a binary classifiers
on artifacts from the LLM’s inputs, internal state and outputs to classify the generated outputs into
hallucinations and non-hallucinations. (Kadavath et al., 2022) fine-tuned the model itself to predict
whether it knows the correct answer. (Azaria and Mitchell, 2023) trained a classifier on the LLM’s
internal state to predict whether the output is truthful. (Zhang et al., 2024) invested using the LLMs
to self-identify hallucination after the answers are generated.

3 APPROACH

Our approach comprises two primary components. First, we constructed a benchmark dataset tailored
for LLM RAG use cases in the education domain. This dataset includes middle school-level science
question-answering (QA) pairs in multiple-choice format, along with an augmented knowledge base
for each question derived from web search results. Second, we implemented a RAG module and
evaluated the performance of the LLMs with RAG by incorporating the augmented knowledge as
in-context learning in the prompt, to be compared with the performance of vanilla LLM models.

3.1 BENCHMARK CONSTRUCTION

The benchmark construction process extracted QA pairs from an existing Textbook Question Answer-
ing (TQA) dataset(Kembhavi et al., 2017), and added the additional web content data per question.
As shown in Figure 2, the Web Content Handler calls the Web Search Engine API to get the top
Uniform Resource Locators (URLs) based on the question, and then crawls the web content from the
URLs. More details are as follows.

QA Pair: We leveraged the TQA dataset (downloadable from https://allenai.org/data/tqa), which
draws textbook content such as lesson topics, and questions and answers from middle school science
curricula such as Life Science, Earth Science, and Physical Science textbooks. We sampled from the
13,693 non-DiagramQuestions as example in Appendix 4 that don’t reply on accompanying diagrams
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Figure 2: Benchmark Construction Process

including multiple-choice, including true/false questions also in multiple-choice format. We have the
dataset in csv with columns of beingAsked (question), answerChoices (choice-set) and correctAnswer
(correct choice label).

Web Page Content: For each question, we leveraged the Google Search Python API googlesearch-
pythonweb to pragmatically obtain the URLs of the top search results by querying the question
prompt (not including the choice set), The cleaned article content from these web pages was then
extracted using web scraping services (beautifulSoup, requests) and natural language toolkit (nltk,
newspaper3k). We converted each web page content into a txt file. The setup was configured to fetch
the top 10 Web pages for each search query, and with a request timeout of 5 seconds to avoid issues
related to excessive website redirects or delay due to login/human verification. Web page content files
smaller than 0.5K were filtered out, as they typically contained web access errors or empty frames.
This configuration allowed us to obtain an average of three web pages per question, with the average
length of the extracted content being approximately 8,285 characters, as detailed in Appendix Table 4
4.

3.2 RAG DESIGN

As shown in Figure 3, the key components of the RAG design include Retriever, Reranker, Generator
and Evaluator.

Retriever: Pre-processes the extracted content for each question, including concatenating the content
from all web pages fetched for one question, and transforming the article into sentences.

Reranker: Selects the top K closest sentences for each question, by encoding each question and
each sentence from the extracted web search content to vector representations via S-BERT Sentence
Transformer (Reimers and Gurevych, 2019). After that, computes the similarity scores between each
sentence and the question, and picks the top K.

Generator: Calls the LLM Service, instructing it to respond with only the one choice letter, with
the augmented sentences in the prompt (reference to the Llama Prompt Structure without RAG in
Prompt 3.1, Llama Prompt Structure with RAG in Prompt 3.2 and GPT-4o Prompt Structure with
RAG in Prompt 3.3).

Evaluator: Calculates the evaluation metrics.
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Figure 3: RAG Design

Prompt 3.1: Llama Prompt Example without RAG

• Instruction Part1: You are a helpful science tutor. You should output only a single
letter indicating the choice you make. You must choose a letter even if you are
unsure.

• Question Part: <TQA Dataset Question> e.g., ____symbol for the second offspring
generation in genetics experiments

• Choices Set part: <TQA Dataset Choice Set for the Question> e.g., a. F1 | b. law
of independent assortment | c. F2 | d. dominant | e. P | f. law of segregation | g.
recessive

• Instruction Part2: I have to choose a letter option. The letter chosen is

Prompt 3.2: Llama Prompt Example with RAG

• Instruction Part1: You are a helpful science tutor. You should output only a single
letter indicating the choice you make. You must choose a letter even if you are
unsure.

• Knowledge Augmentation: <Closest sentences from top search results:> e.g., The
parent plants in the experiments are referred to as the P (for parent) generation.
You can explore an interactive animation of Mendel’s first set of experiments at
this link: http://www2.edc.org/weblabs/Mendel/mendel.html. Reciprocal crosses
generated identical F 1 and F 2 offspring ratios. By examining sample sizes, Mendel
showed that traits were inherited as independent events. In modern terms, we call
the parents the P generation and the offspring the F1 generation. F1 stands for first
filial generation – filial means child. For the example of the P generation of purple
crossed with white flowers, all the F1 offspring were purple. If he crossed plants
that varied in a single character – purple flowers and white flowers, for example – he
found that the first generation of offspring always matched the appearance of one of
the parents. But the F 1 possesses the information needed to produce both parental
phenotypes in the following generation. If two F1 offspring were crossed, though,
both traits of the original parents would be seen in the next generation, called the F2
generation. For the purple flower x white flower cross, there were both purple and
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white F2 offspring. Mendel called purple the “dominating” trait; in modern terms
we use the word dominant....

• Question Part: <TQA Dataset Question> e.g., ____symbol for the second offspring
generation in genetics experiments

• Choices Set part: <TQA Dataset Choice Set for the Question> e.g., a. F1 | b. law
of independent assortment | c. F2 | d. dominant | e. P | f. law of segregation | g.
recessive

• Instruction Part2: I have to choose a letter option. The letter chosen is

Prompt 3.3: GPT-4o Prompt Example with RAG

• Instruction Part: Assume you are a scientist. Given the multi-choice question
below, generate the correct answer. You must output only the letter of the correct
choice within (a, b, c, d, e, f, g). If you don’t know, answer "I don’t know". Please
be concise and answer in one word.

• Knowledge Augmentation: <Closest sentences from top search results:> e.g., The
parent plants in the experiments are referred to as the P (for parent) generation.
You can explore an interactive animation of Mendel’s first set of experiments at
this link: http://www2.edc.org/weblabs/Mendel/mendel.html. Reciprocal crosses
generated identical F 1 and F 2 offspring ratios. By examining sample sizes, Mendel
showed that traits were inherited as independent events. In modern terms, we call
the parents the P generation and the offspring the F1 generation. F1 stands for first
filial generation – filial means child. For the example of the P generation of purple
crossed with white flowers, all the F1 offspring were purple. If he crossed plants
that varied in a single character – purple flowers and white flowers, for example – he
found that the first generation of offspring always matched the appearance of one of
the parents. But the F 1 possesses the information needed to produce both parental
phenotypes in the following generation. If two F1 offspring were crossed, though,
both traits of the original parents would be seen in the next generation, called the F2
generation. For the purple flower x white flower cross, there were both purple and
white F2 offspring. Mendel called purple the “dominating” trait; in modern terms
we use the word dominant....

• Question Part: <TQA Dataset Question> e.g., ____symbol for the second offspring
generation in genetics experiments

• Choices Set part: <TQA Dataset Choice Set for the Question> e.g., a. F1 | b. law
of independent assortment | c. F2 | d. dominant | e. P | f. law of segregation | g.
recessive

In the Retrieval stage, we leverage cosine similarity. For each question i in the 1.25K QA pair, we
generate the question sentence embedding Qi. For each sentence j in the retrieved documents via the
top 10 web search result pages for question i, we generate the embedding Dij. The cosine similarity is
calculated as follows And then for each question i, fetch the top-k sentences based on these similarity
scores.

simcos(Qi,Dij) =
Qi ·Dij

∥Qi∥∥Dij∥
(1)

4 EXPERIMENTS

4.1 DATA

We tested different models on a sample of 1,255 TQA question-answer pairs, including the question,
choice set, and augmented knowledge in-context for RAG use case.
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4.2 EVALUATION METHOD

To simplify measurement, as TQA provides a multiple-choice set, we asked the LLM to return a
single choice letter rather than a natural language response. In addition, when there is case with
missing response / failed prediction, or respond with "I don’t know", it’s considered a missing.

Since our research topic is to evaluate whether RAG can help reduce hallucination, the total score
metrics is designed to penalize on incorrect predictions and to encourage the model to predict "I don’t
know" instead. If the model predicts "I don’t know" or nothing, we treat this as "missing" cases and
there is no deduction on total score. If there is a wrong prediction, we treat this as "incorrect" cases,
and there is deduction on total score.

• Accuracy (Acc.): the percentage of correct predictions
• Miss Rate (Miss.): the percentage of missing predictions (e.g., "I don’t know", "I can’t

answer...")
• Hallucination Rate (Hall.): the percentage of incorrect predictions
• Total Score (Scoreh): sum of the scores across all predictions divided by total number of

predictions. Score is defined as that for each predicted answer, 1 point if correct, 0 point if
missing, and -1 point if incorrect. This will result in an additional penalty for a hallucinatory
answer.

Following the conventions used in CRAG (Yang et al., 2024), we defined the Total Score as

Scoreh = 1.0 · Acc. + (−1.0) · Hall. + 0.0 · Miss. = Acc. − Hall.

4.3 EXPERIMENTS DETAILS

We first evaluated the performance of the vanilla LLMs without RAG on the 1,255 sampled QA pairs.
Then we integrated the top sentences, which ranked and pruned web search results sentences into the
prompts as in-context learning augmented knowledge, with the same model configuration.

• Common parameters used in the Retrieval Stage for all models:
– Number of TopK closest sentences from full search results content per question = 10
– max web search results length: 7500, to avoid exceeding token limitation for LLM

models, especially when using non-pruned full documents
• Models:

– Vanilla Llama3 8B instruction fine-tuned: meta-llama/Meta-Llama-3-8B-Instruct
– Vanilla Llama2 7B instruction fine tuned: meta-llama/Llama-2-7b-chat-hf
– Chatgpt-4-o

• Models Params:
– max_new_tokens = 1
– Minimize Randomization, e.g. do_sample=False

4.4 RESULTS

Experiment Results show that RAG with Pruned Web Search Contents improved the accuracy of the
three LLM models. The improvements are especially significant for Llama-2, for which the RAG
solution increased the accuracy rate from 25.34% to 52.03% in Table 1. The RAG solution also
shows accuracy improvement in Llama-3 and GPT-4o. The Vanilla versions in the table refers to the
basic version of the model without RAG.

The total score is also higher for models with RAG solution. We computed the total score based
on the number of correct, incorrect, missing questions in Table 1, and then generated the Table 2
to display the total score. The total score is defined as accuracy rate - hallucination rate, which is
explained in Section 4.2. The total score values the response with accurate answers, and penalize the
response with wrong answers. In this way, this metrics favors the solutions with answers "I don’t
know" or missing results, and penalizes the solutions with wrong answers.
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Accuracy Rate Number of Questions
Correct Incorrect Missing

Llama2-7b - Vanilla 25.34% 318 234 703
Llama2-7b - RAG 52.03% 653 510 92
Llama3-8b - Vanilla 70.12% 880 375 0
Llama3-8b - RAG 74.26% 932 323 0
GPT-4o - Vanilla 87.57% 1099 141 15
GPT-4o - RAG 88.68% 1112 130 13

Table 1: Accuracy Rate (1255 Samples)

Score Breakdown
Accuracy Rate Hallucination Rate Missing Rate Total Score

(Accuracy Rate
- Hallucination Rate)

Llama2-7b - Vanilla 25.34% 18.65% 56.02% 6.69%
Llama2-7b - RAG 52.03% 40.64% 7.33% 11.39%
Llama3-8b - Vanilla 70.12% 29.88% 0% 40.24%
Llama3-8b - RAG 74.26% 25.74% 0% 48.53%
GPT-4o - Vanilla 87.57% 11.24% 1.20% 76.33%
GPT-4o - RAG 88.61% 10.36% 1.04% 78.25%

Table 2: Score Breakdown and Total Score for Benchmark Vanilla LLM Models (1255 Samples) 1

5 ANALYSIS

Through the EDU-RAG benchmark and the experiments, we can conduct analysis on the following
research questions (RQs):

RQ 1: Is this a valid benchmark to help evaluate the effectiveness of different RAG algorithms?

Yes. This is a valid benchmark to help evaluate RAG algorithms. The initial results successfully
demonstrated that the dataset is valid, and can be used for the community to test different models.
We also showed that a basic RAG algorithm with LLMs can improve the accuracy and total score
compared with basic LLMs.

RQ 2: Can RAG help improve the accuracy?

Yes. The accuracy of the RAG solutions with Llama2-7b, Llama3-8b and GPT-4o is better than their
basic LLM versions without RAG. For Llama2-7b, it shows 26.69% absolute level improvement. For
Llama3-8b, it shows 4.14% absolute level improvement. For GPT-4o, it shows 1.1% absolute level
improvement.

RQ 3: Can RAG help reduce the hallucination?

It depends. It reduced the hallucination rate of Llama3-8b from 29.88% to 25.74%, and GPT-4o
from 11.24% to 10.36%. For some baseline models with low hallucination rate, e.g. Llama2-7b with
18.65% hallucination rate, it reduced the hallucination rate to 40.64%. Part of the reason can be that
the RAG solution provided some irrelevant context, and it generated more incorrect answers. This
can also be optimized by improving the RAG solutions, e.g. apply more rigorous threshold on the
pruning algorithm. There are also opportunities for iterating on the RAG algorithms, if time allowed.

1Results are stored in more than two decimal points, which could cause small differences if using the
three rates to calculate the scores. For example, when stored in 5-decimal, Llama3-8b RAG Accuracy Rate is
74.26295% (74.26% when rounded up) while Hallucination Rate is 25.73705% (25.74% when rounded up),
which will derive Total Score to be 48.52590% (48.53% when rounded up).
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6 CONCLUSION

We introduced EDU-RAG, a RAG benchmark with web-enhanced content in the education domain.
This benchmark serves as a valuable resource for the community to evaluate different RAG algorithms
and is particularly beneficial for applications in the education domain, such as AI tutors.

We also evaluated the benchmark using basic RAG solutions with recent LLMs, including Llama2-7b,
Llama3-8b and GPT-4o. The preliminary results show that RAG can improve accuracy and help
AI tutors. It can also help reduce hallucination, and that requires more thoughtful designs, such as
handling the flow in pruning documents.

There are also many other exciting topics to explore in future work:

6.1 FUTURE WORK

• Fine-tuning Stage: Supervised Fine-Tuning (SFT) will be used to improve the model. In
addition, we will construct random negative samples to address the hallucination problem.

– SFT: Two types of fine-tuning models can be trained. The first type is to create prompts
with only the question as input and construct the answer as output. The second type
is to construct prompts with the question and the crawled web pages together as the
input, and keep the answer as the output. The second type can be used to improve the
model’s capability to understand web pages.

– Negative Samples: Negative samples are essential for reducing the hallucination. It is
better to answer "I don’t know", rather than a wrong answer. To enable this, we can
randomly select irrelevant web pages and combine them with questions to formulate
the input, and use "I don’t know" as the output, which is similar to the strategy used by
Adobe (Sharma et al., 2024).

• Web Content Handler: This stage can also be improved by leveraging other frameworks
such as Scrapy. Scrapy is an extensible framework widely used in the research community.
With preliminary tests, this can crawl more web pages. Due to time constraints, we did not
test the LLMs with a larger dataset; however, we have already obtained a larger benchmark
dataset.

7 ETHICS STATEMENT

• Vulnerability and Safeguarding: Minors are more vulnerable to stimuli, misinformation,
and potentially harmful content. In our case, we leveraged flagship LLM models and
fetched web content via top Google Search results. Both are commercial tools built on
curated content and through organic content filters. Additionally, we have limited the
ability to respond to multiple-choice questions (max_token = 1) to mitigate output risks.
For intentional misuse (e.g., inputting unsafe content via multi-choice format and using
misleading questions to provoke risky responses), more formal methods can be employed.
These include implementing content filtering for both input and output to reject abusive
questions or fine-tuning with human feedback, particularly from diverse, inclusive, and
Responsible AI datasets such as the Meta AI Safety Benchmark (Vidgen et al., 2024). For
teen use cases, we can also leverage adversarial training and red-teaming to evaluate and
enhance model robustness against possible misuse or abusive scenarios.

• Academic Integrity: AI Tutors could be abused as cheating tools that provide unfair advan-
tages to dishonest students and devalue the efforts of students who work hard to achieve
success. This issue is especially concerning for minors. Our project aims more on the
service-provider side to evaluate and achieve a high-performance Question Answering
system that can derive the correct answer first, while in a future production phase in real
customer-facing environment, the service-provider should enable Parent / Educator Control
mechanisms, or product instruction such as learning intent and objective setting/monitoring.

• Privacy and Data Security: In the real-world use case of AI Tutor tools, any data collected
during sessions should be handled securely and anatomized to protect privacy. In the
education domain, users are often minors, which imposes stricter requirements for the
collection of personal information.
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8 APPENDIX

Due to time limitations, we ran RAG based on 1,255 samples, while we have also run the benchmark
using Vanilla LLM models based on 2,512 samples, with results as below.

Score Breakdown
Accuracy Rate Hallucination Rate Missing Rate Total Score

Llama2-7b 24.56% 18.75% 56.69% 5.81%
Llama3-8b 70.06% 29.94% 0% 40.12%
GPT-4o 89.41% 9.55% 1.04% 79.86%

Table 3: Total Score and Score Breakdown for Benchmark Vanilla LLM Models (2512 QA Samples)

Average number of web pages retrieved
for each question

3.89

Average number characters of each ex-
tracted web page content

8284.91

Table 4: Stats of Crawled Web Content
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Figure 4: TQA nonDiagramQuestion Raw JSON Example

Figure 5: Extracted Web Content Example
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