
Efficient Pareto Manifold Learning with Low-Rank Structure

Weiyu Chen 1 James T. Kwok 1

Abstract
Multi-task learning, which optimizes performance
across multiple tasks, is inherently a multi-
objective optimization problem. Various algo-
rithms are developed to provide discrete trade-off
solutions on the Pareto front. Recently, contin-
uous Pareto front approximations using a linear
combination of base networks have emerged as
a compelling strategy. However, it suffers from
scalability issues when the number of tasks is
large. To address this issue, we propose a novel
approach that integrates a main network with
several low-rank matrices to efficiently learn the
Pareto manifold. It significantly reduces the num-
ber of parameters and facilitates the extraction
of shared features. We also introduce orthogo-
nal regularization to further bolster performance.
Extensive experimental results demonstrate that
the proposed approach outperforms state-of-the-
art baselines, especially on datasets with a large
number of tasks.

1. Introduction
Multi-task learning (MTL) (Caruana, 1997; Vandenhende
et al., 2021) endeavors to efficiently and effectively learn
multiple tasks, leveraging shared information to enhance
overall performance. As tasks may have disparate scales and
potentially conflicting objectives, the challenge of balancing
the tasks is a critical aspect of MTL.

Building on the seminal work that conceptualizes MTL as
a multi-objective optimization (MOO) problem (Sener &
Koltun, 2018), a suite of algorithms has been developed to
obtain trade-off solutions along the Pareto front (PF). Exam-
ples include EPO (Mahapatra & Rajan, 2020), PMTL (Lin
et al., 2019), CAGrad (Liu et al., 2021a), and Nash-MTL
(Navon et al., 2022). However, these methods are limited to

1Department of Computer Science and Engineering, The Hong
Kong University of Science and Technology. Correspondence to:
Weiyu Chen <wchenbx@cse.ust.hk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

producing a finite set of discrete trade-off solutions, lacking
the flexibility to adapt to varying user preferences.

Continuous approximation of the PF aims to provide an
arbitrary number of solutions on the PF based on the user-
provided preference vector. Pareto hypernetwork-based
methods (Navon et al., 2020b; Hoang et al., 2023) utilize a
hypernetwork (Ha et al., 2016) to learn the parameter space
of a base network. This hypernetwork accepts preference
vector as input and outputs the corresponding parameter
of base network. Despite its efficacy, the size of the hy-
pernetwork significantly exceeds that of the base network,
thus restricting its use to small base networks. COSMOS
(Ruchte & Grabocka, 2021) attempts to circumvent this lim-
itation by incorporating preference vectors directly into the
base network as an extra input. However, it falls short of
achieving satisfactory results due to the limited parameter
space.

Pareto Manifold Learning (PaMaL) (Dimitriadis et al., 2023)
proposes to find a collection of base networks whose linear
combination in the parameter space based on the preference
vectors yields the corresponding Pareto-optimal solution.
This approach exhibits promising performance. However,
as we need to maintain a separate base network for each
task, it incurs a corresponding surge in the number of pa-
rameters when we have a large number of tasks. Moreover,
base networks cannot learn from each other during training.
This lack of sharing poses challenges when the ensemble
comprises a large number of base networks.

To surmount these challenges, we introduce a novel ap-
proach that employs a main network and multiple low-
rank matrices, which can significantly reduce the number
of parameters when the number of tasks is large. More-
over, this design facilitates the extraction of shared features
through the main network while simultaneously capturing
task-specific differences via the low-rank matrices. We
further integrate orthogonal regularization to promote dis-
entanglement of these matrices. Empirical investigations
demonstrate that the proposed algorithm outperforms Pa-
MaL and other baselines, particularly when the number of
tasks is large.

Notations. We denote the set {1, . . . ,m} as [m], and the
m-dimensional simplex {α |

∑m
i=1 αi = 1, αi ≥ 0} as

∆m. The norm ∥ · ∥ refers to the Euclidean norm when

1

Efficient Pareto Manifold Learning with Low-Rank Structure

applied to vectors, and to the Frobenius norm when applied
to matrices.

2. Background
2.1. Multi-Objective Optimization

A multi-objective optimization (MOO) (Miettinen, 1999)
problem can be formulated as

min
θ∈Rd×k

F (θ) = [f1(θ), . . . , fm(θ)]⊤, (1)

where m ≥ 2 is the number of objectives, and d × k is
the shape of the parameter matrix. In this paper, we repre-
sent the parameters in matrix form for convenience when
discussing low-rank approximations.
Definition 2.1 (Pareto Dominance and Pareto-Optimal (Mi-
ettinen, 1999)). A solution θ1 is dominated by another
solution θ2 if and only if fi(θ1) ≥ fi(θ2) for i ∈ [m], and
∃i ∈ [m], fi(θ1) > fi(θ2). A solution θ∗ is Pareto-optimal
if and only if it is not dominated by any other θ′.

A Pareto set (PS) is the set of all Pareto-optimal solutions.
The Pareto front (PF) refers to the functional values associ-
ated with the solutions in the PS.

2.2. Multi-Task Learning

Multi-task learning (MTL) (Caruana, 1997; Vandenhende
et al., 2021) refers to learning multiple tasks simultaneously.
In this paper, we focus on the optimization part, adopting
the widely utilized shared-bottom architecture (Caruana,
1997) as the base network. More specifically, for a m-task
network, we have a shared-bottom θsh and m task-specific
heads θt1 , . . . ,θtm . Throughout this paper, our primary
focus is on the shared-bottom θsh. Hence, any mention of
θ hereafter refers specifically to θsh.

MTL can be viewed as a MOO problem (Sener & Koltun,
2018). To deal with the possible conflicts of different tasks
on the shared bottom, various algorithms have been pro-
posed, such as MGDA (Sener & Koltun, 2018; Désidéri,
2012), PCGrad (Yu et al., 2020), IMTL (Liu et al., 2020),
Graddrop (Chen et al., 2020), RLW (Lin et al., 2022a), CA-
Grad (Liu et al., 2021a), Nash-MTL (Navon et al., 2022),
and Auto-λ (Liu et al., 2022). These approaches, however,
predominantly focus on obtaining a single solution rather
than capturing the whole PF.

Discrete Approximation of Pareto Front. Lin et al. (2019)
propose to generate a set of solutions to approximate the
Pareto front. Subsequent research have introduced innova-
tive strategies to enhance the discrete approximation. No-
table among these are EPO (Mahapatra & Rajan, 2020),
MOO-SVGD (Liu et al., 2021b), GMOOAR (Chen & Kwok,
2022) and PNG (Ye & Liu, 2022). These methods are in-
herently limited to producing a fixed set of discrete points

on the PF. Ma et al. (2020) propose an algorithm to expand
these discrete solutions in their vicinity. However, it can
only produce PF segments around each discrete solution
instead of the whole continuous PF.

Continuous Approximation of Pareto Front. Continuous
approximation of PF enables the derivation of solutions tai-
lored to user preferences, offering an arbitrary resolution of
the trade-off solutions. Navon et al. (2020b) introduces the
concept of a Pareto hypernetwork (PHN), which learns a
hypernetwork (Ha et al., 2016) that takes a preference vec-
tor as input and generates the corresponding Pareto-optimal
network parameters. PHN-HVI (Hoang et al., 2023) fur-
ther develops the method using hypervolume maximization
(Wang et al., 2017). However, scalability of the approach
becomes a concern when applying the hypernetwork to large
networks, as the size of the hypernetwork is usually much
larger than that of the base network itself.

Conditioned one-shot multi-objective search (COSMOS)
(Ruchte & Grabocka, 2021) incorporates the preference
vector as an additional input, enabling the generation of
outputs with different preferences while minimizing the
introduction of extra parameters. Dosovitskiy & Djolonga
(2019) propose the use of FiLM layers (Perez et al., 2018) to
incorporate preferences through channel-wise multiplication
and addition operations on the feature map. However, these
methods are sometimes constrained by the relatively limited
parameter space, which can lead to suboptimal performance.

Pareto manifold learning (PaMaL) (Dimitriadis et al., 2023)
aims to jointly learn multiple base networks θ1, . . . ,θm,
such that for any given preference vector α ∈ ∆m, the
corresponding weighted combination of base networks leads
to the Pareto-optimal model:

θ(α) =

m∑
i=1

αiθi. (2)

PaMaL demonstrates commendable performance. However,
it only focuses on two or three tasks. When dealing with a
large number of tasks, the number of parameters increases
significantly as each task i requires its own network θi.
Moreover, the base networks cannot benefit from each other
during training, which can potentially impair performance,
especially when scaling to a larger number of base networks.

Learning a continuous PF is also explored in Bayesian opti-
mization (Lin et al., 2022b) and evolutionary optimization
(Lin et al., 2023) for engineering problems with number of
parameters up to 7. They fail to converge in deep learning
scenarios due to the significantly larger parameter spaces.

2.3. Low-Rank Adaptation

Low-rank adaptation (LoRA) has emerged as a popular ap-
proach in the field of finetuning large pre-trained models

2

Efficient Pareto Manifold Learning with Low-Rank Structure

(Hu et al., 2021). It only finetunes a low-rank matrix instead
of the entire model, resulting in improved efficiency and
the prevention of overfitting. Some subsequent studies (Il-
harco et al., 2022; Yadav et al., 2023; Ortiz-Jimenez et al.,
2023) explore the merging of LoRA modules trained on
different tasks. These works focus on direct addition or sub-
traction without incorporating any training. Audibert et al.
(2023) proposes fine-tuning a pretrained model for multiple
tasks using a single LoRA module (with some task-specific
parameters). Wang et al. (2023a) proposes fine-tuning a
pretrained model by adding LoRA modules one by one,
where the newly-added LoRA module is orthogonal to the
previous ones.

The main difference between these methods and the pro-
posed method is that they learn a single LoRA each time and
output a single fine-tuned network, while we train multiple
low-rank matrices simultaneously and output a subspace of
networks. To mitigate dominance of unitary transforms in
weight update as observed in LoRA, Wang et al. (2023b)
propose to split the LoRA module to multiple LoRA mod-
ules. However, none of the existing research considers joint
training of an arbitrary convex combination of low-rank
matrices to learn a model subspace.

3. Proposed Method
In this section, we introduce a novel approach that involves
learning a main module and m low-rank matrices for each
layer (Section 3.1). Orthogonal regularization is further
introduced in Section 3.2. Finally, the whole algorithm is
presented in Section 3.3.

3.1. Low-Rank Structure

We start by examining the similarities of the base net-
works obtained by PaMaL (Dimitriadis et al., 2023) on Mul-
tiMNIST (Sabour et al., 2017), using the same experimental
setting as PaMaL. Figure 1 shows the layer-wise cosine sim-
ilarities between two base networks’ parameters throughout
training. As can be seen, the similarities are almost zero at
the beginning of training. As training progresses, a marked
increase in similarity is observed. Furthermore, similarities
are higher at the lower-level layers. This motivates us to
consider reducing the redundancy of base networks.

Consider the m base networks in (2). Denote the parameters
in the lth layer of base network θi by θl

i. In the lth layer, (2)
can be written as:

θ(α)l =

m∑
i=1

αiθ
l
i. (3)

Let θl
0 = 1

m

∑m
i=1 θ

l
i. We can rewrite (3) as:

θ(α)l =

m∑
i=1

αi

θl
0 +

1

m

m∑
j=1

(θl
i − θl

j)

 . (4)

Given the similarities observed from Figure 1, we approxi-
mate the difference between any two modules θl

i − θl
j by a

low-rank matrix. Then, we use the low-rank matrix Bl
iA

l
i,

to replace 1
m

∑m
j=1(θ

l
i − θl

j) in (4), leading to:

θ(α)l =

m∑
i=1

αi(θ
l
0 +Bl

iA
l
i). (5)

We further add a scaling factor s to regulate the significance
of the low-rank component, as:

θ(α)l = θl
0 + s

m∑
i=1

αiB
l
iA

l
i. (6)

Through the above transformation, instead of learning m
base module in (3), we learn a main module θl

0 and m low-
rank matrices Bl

1A
l
1, . . . ,B

l
mAl

m. The main modules are
expected to capture the common features across multiple
tasks, thereby providing a shared foundation that each low-
rank adaptation can leverage. An illustrative example of the
proposed method is shown in Figure 2.

3.1.1. COMPUTATIONAL EFFICIENCY

In the lth layer, let Bl
i ∈ Rdl×rl and Al

i ∈ Rrl×kl

. The
proposed approach reduces the number of parameters to
only dlkl +m(dlrl + rlkl). Notably, the rank rl is usually
set to be much smaller compared to kl and dl. As a result,
the proposed method achieves higher parameter efficiency
compared to PaMaL, which has mdlkl parameters. This dif-
ference becomes more significant when dealing with larger
networks and a larger number of tasks.

3.1.2. APPROXIMATION POWER

Similar to PaMaL (Dimitriadis et al., 2023), we show in
this section the approximation power of the proposed struc-
ture. While PaMaL only considers two tasks, we consider
the more general case with m tasks. Denote the optimal
mapping from network input x ∈ X ⊂ Ru and preference
vector α ∈ ∆m to the corresponding point on the PF as
t(x,α) : X×∆m → Rm. We have the following Theorem.

Theorem 3.1. Assume that X × ∆m is compact and
t(x,α) is continuous. For any ϵ > 0, there exists a ReLU
MLP h with main network θ0 and m low-rank matrices
B1A1, . . . ,BmAm, such that ∀x ∈ X,∀α ∈ ∆m,∥∥∥∥∥t(x,α)− h

(
x;θ0 +

m∑
i=1

αiBiAi

)∥∥∥∥∥ ≤ ϵ.

3

Efficient Pareto Manifold Learning with Low-Rank Structure

0 2 4 6 8 10
Epochs

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

Layer 1
Layer 2
Layer 3

Figure 1. Layer-wise similarities between base
networks obtained by PaMaL on MultiMNIST
over three random seeds. Shaded areas represent
the 95% confidence interval.

+ ...

O
rthogonal

Regularization...
...

...

...

...

Weight low-rank matrices

Weight
losses

Figure 2. Illustration of the proposed LORPMAN on a L-layer base network with
m tasks. For each layer, we aim to learn m low-rank matrices which are orthogonal
to each other.

The proof is in Appendix A. This Theorem shows that given
any preference vector α, the proposed main network with
low-rank matrices can approximately output the correspond-
ing point on the PF within any given error margin ϵ.

3.2. Orthogonal Regularization

Orthogonal regularization, which encourages rows or
columns of weight matrices to be approximately orthog-
onal, has been employed in various scenarios to regulate
the parameters in a neural network (Xie et al., 2017; Bansal
et al., 2018; Wang et al., 2020). Here, we propose to extend
it for orthogonality among the low-rank matrices.

First, we flatten each low-rank matrix into a 1-dimensional
vector and normalize: wl

i =
flatten(Bl

iA
l
i)

∥flatten(Bl
iA

l
i)∥

. Next, we

concatenate them to construct a (dlkl)×m matrix W l =
concatenate(wl

1, . . . ,w
l
m). Our objective is to encour-

age orthogonality among the matrix columns. This orthogo-
nality loss can be computed as: Rl

o =
∥∥(W l)⊤W l − I

∥∥2
2
,

where I is the m×m identity matrix. Finally, we compute
the loss for the entire network as:

Ro =
1

L

L∑
l=1

Rl
o, (7)

where L is the number of layers.

The objective of the orthogonal regularization is to reduce re-
dundancy and conflicts between different low-rank matrices.
By reducing redundancy, the model encourages learning
common features in the main network and task-specific
features in the low-rank matrices, which can lead to more
efficient parameter usage and better performance.

Note that the computational complexity of the loss calcula-
tion is O(m2), which becomes expensive for large m. To
address this, we use stochastic approximation when m ex-
ceeds 3. Specifically, in each iteration, a subset of tasks T ,

with cardinality 3, is randomly selected from the set of all
m tasks. We then construct Ŵ l by concatenating {wl

i}i∈T .
Then, Rl

o is estimated as:

Rl
o =

∥∥∥(Ŵ l)⊤Ŵ l − I
∥∥∥2
2
, (8)

where I is the 3× 3 identity matrix.

This stochastic approximation ensures the complexity is
independent of m. Empirical evaluations in Section 4.3
demonstrate that this still maintains satisfactory perfor-
mance.

3.3. Optimization

To learn the Pareto manifold, we minimize the expectation
of loss given an α over the Dirichlet distribution Dir(p).
The optimization objective (without regularization) can be
written as:

min
θ0,B1A1,...,BmAm

EαEξ

[
m∑
i=1

αifi(θ(α); ξ)

]
, (9)

where ξ is a mini-batch of multi-task training data
{(x1

i , x
2
i , . . . , x

m
i , y1i , y

2
i , . . . , y

m
i)}qi=1 and q is the batch

size. For any given α, we aim to minimize
Eξ[
∑m

i=1 αifi(θ(α); ξ)], which is the linear scalarization
of the m objective functions. Note that the solution ob-
tained by linear scalarization is Pareto-optimal, which can
be formally stated as follows:

Proposition 3.2 ((Boyd & Vandenberghe, 2004)). Given
any α ∈ {α | αi > 0}, the optimal solution of the scalar-
ized problem minθ

∑m
i=1 αifi(θ) is a Pareto-optimal solu-

tion of the original multi-objective optimization problem
(1).

For the reader’s convenience, the proof is reproduced in
Appendix B. Thus, when (9) is minimized, the obtained

4

Efficient Pareto Manifold Learning with Low-Rank Structure

Algorithm 1 LORPMAN.

Input: learnable main model parameters θ0, learnable
matrix {Ai,Bi}mi=1, distribution parameters p, window
size b, bath size q, regularization coefficients λp, λo, scal-
ing parameter s.
while not converged do

sample a minibatch of multi-task training data ξ =
{(x1

i , x
2
i , . . . , x

m
i , y1i , y

2
i , . . . , y

m
i)}qi=1;

independently sample α1, . . . ,αb from Dir(p);
compute corresponding model parameter for each αj

θ(αj)l = θl
0 + s

∑m
i=1 α

j
iB

l
iA

l
i;

compute multi-forward regularization loss Rp;
compute orthogonal loss Ro in Eq. (7);
compute loss L =

∑b
j=1

∑m
i=1 α

j
ifi(θ(α

j); ξ) +
λpRp + λoRo;
if current epoch < freeze epoch then

take a gradient descent step on θ0 and {Ai,Bi}mi=1;
else

take a gradient descent step on {Ai,Bi}mi=1;
end if

end while

θ(α)’s are Pareto-optimal solutions. Here, we only con-
sider linear scalarization. More other scalarization methods
(Bowman Jr, 1975; Sener & Koltun, 2018; Navon et al.,
2022) can be considered.

The proposed algorithm, which is called LOw-Rank Pareto
MANifold Learning (LORPMAN), is shown in Algorithm 1.
The training process is divided into two phases: First, we
adapt both the main model θ0 and low-rank matrices. After
a certain number of epochs (which is referred to as freeze
epoch), we fix the main model and only adapt the low-rank
matrices. This encourages the low-rank matrices to learn
task-specific representations instead of always relying on
the main model to improve performance.

In each iteration, we sample b preference vectors
{α1, . . . ,αb} from the Dirichlet distribution. For each αi,
we compute the corresponding network parameters accord-
ing to (6). Then, following (Dimitriadis et al., 2023), we
calculate the multi-forward regularization loss Rp which
penalizes incorrect solution ordering on the PF (details in
Appendix C). Subsequently, we incorporate the orthogonal
loss in (7) to encourage orthogonality among the different
low-rank matrices, as discussed in the previous section.

4. Experiments
In this section, we first demonstrate the training process
of the proposed algorithm on a toy problem (Section 4.1).
Then, we perform experiments on datasets with two or three
tasks (Section 4.2). Next, we scale up the number of tasks
to up to 40 (Section 4.3). We then compare the proposed

method with algorithms that generate discrete PFs (Sec-
tion 4.4) and algorithms that can generate a single solution
(Section 4.5). Finally, ablation studies are presented in Sec-
tion 4.6.

We adopt the Hypervolume (HV) (Zitzler & Thiele, 1998;
Knowles et al., 2003) as performance indicator, which is
widely used and can evaluate both the convergence and di-
versity of the obtained PF. Details of the HV indicator are
in Appendix D.1. To evaluate the performance of the ob-
tained PFs, following (Dimitriadis et al., 2023), we sample
11 solutions on the obtained PF in the two-objective cases,
66 solutions in the three-objective cases, and 100 solutions
when there are more than three objectives. We tune the hy-
perparameters according to the HV value on the validation
datasets.

We compare the proposed method with state-of-the-art con-
tinuous PF approximation algorithms, namely PHN (Navon
et al., 2020b), PHN-HVI (Hoang et al., 2023), COSMOS
(Ruchte & Grabocka, 2021), and PaMaL (Dimitriadis et al.,
2023). Since PHN and PHN-HVI require training a hyper-
network with significantly more parameters than the base
network, they can only be run on MultiMNIST and Census.

4.1. Illustrative Example

To demonstrate the training process of the proposed algo-
rithm, we employ a widely used two-objective toy problem
(Yu et al., 2020; Liu et al., 2021a; Navon et al., 2022), with
parameter θ = [θ1, θ2] ∈ R2. The detailed definition of the
toy problem is in Appendix D.2.

We initialize θ0 to [4.5, 4.5]. Since the parameters of the
toy problem do not have a matrix structure, instead of using
BiAis for low-rank approximation, we use ∆θi ∈ R2,
where the second component is fixed to mimic the low-rank
approximation constraint. We initialize ∆θ1 = [−4.5, 0.0]
and ∆θ2 = [4.5, 0.0]. Given an α, the corresponding Pareto
optimal parameter is θ(α) = θ0 + α1∆θ1 + α2∆θ2.

Figure 3 shows the trajectories of θ obtained by LORPMAN
with α = [0.5, 0.5], [1, 0], and [0, 1]. We can see that θ
reaches the middle of the PF for α = [0.5, 0.5], and to the
two extreme points of the PF when α = [1, 0] and [0, 1].
From Figure 3b, we can see that these three solutions are
on the same line in parameter space and we can obtain the
whole Pareto set by varying α.

4.2. Datasets with Two or Three Tasks

In this section, we examine the performance on datasets
with two or three tasks as used in (Dimitriadis et al., 2023),
namely, MultiMNIST, Census, and UTKFace.

MultiMNIST and Census. MultiMNIST (Sabour et al.,
2017) is a digit classification dataset with two tasks: classi-

5

Efficient Pareto Manifold Learning with Low-Rank Structure

Table 1. HV values obtained on MultiMNIST and Census (averaged over three random seeds). The standard deviation is shown in
parentheses. For PHN and PHN-HVI, we report the number of parameters in the hypernetwork.

MultiMNIST Census
HV # Parameters HV # Parameters

PHN 0.900 (0.0068) 2.793M 0.649 (0.0007) 12.251M
PHN-HVI 0.906 (0.0020) 2.793M 0.650 (0.0008) 12.251M
COSMOS 0.888 (0.0077) 0.028M 0.652 (0.0014) 0.122M

PaMaL 0.905 (0.0010) 0.055M 0.654 (0.0006) 0.242M
LORPMAN 0.918 (0.0018) 0.046M 0.656 (0.0004) 0.133M

(a) Objective space. (b) Parameter space.

Figure 3. Trajectory of θ obtained by LORPMAN with α =
[0.5, 0.5] (red), α = [1, 0] (green), and α = [0, 1] (blue) in
objective space (a) and parameter space (b). Circles denote the
initial points and squares denote the final points. The gray lines in
(a) and (b) denote the PF and PS, respectively.

fication of the top-left digit and classification of the bottom-
right digit in each image. Census (Kohavi, 1996) is a tabular
dataset with two tasks: age prediction and education level
classification.

Following (Dimitriadis et al., 2023), we use the LeNet1

(LeCun et al., 1998) and Multilayer Perceptron (MLP) as
shared-bottom of the base network for MultiMNIST and
Census, respectively. For all algorithms, the number of
training epochs is set to 10. For LORPMAN, we choose the
scaling factor s ∈ {1, 2, 4, 6} and freeze epoch ∈ {4, 6, 8}
based on the validation set. For both datasets, the rank r
for all layers is set to 8 and the orthogonal regularization
coefficient λo is set to 1. We do not tune r and λo. More
experimental details on the two datasets are in Appendices
D.3 and D.4, respectively.

The resulting PFs are shown in Figure 4, and the correspond-
ing HV values in Table 1. As can be seen, LORPMAN can
obtain the PF closer to the top-right region (i.e., with better
accuracies on both objectives). COSMOS exhibits limited
accuracies due to the constraints imposed by the small num-
ber of parameters. Despite PaMaL, PHN, and PHN-HVI

1The parameters of a convolution layer is a four-dimensional
tensor instead of a matrix. We adopt the approach in (Hu et al.,
2021) to transform it into a matrix and perform low-rank approxi-
mation.

having a larger number of parameters, they show inferior
HVs when compared to LORPMAN.

UTKFace. UTKFace (Zhang et al., 2017) is a dataset with
three tasks: age prediction, gender classification and race
classification. Following (Dimitriadis et al., 2023), we use
the ResNet-18 (He et al., 2016) as the shared bottom of
the base network. The number of training epochs is 100.
We tune λo ∈ {0.1, 0.5, 1}, freeze epoch ∈ {60, 80}, and
r ∈ {16, 32, 64}. The scaling factor s is set to 1 without
tuning. More experimental details are in Appendix D.5. We
do not compare with PHN and PHN-HVI because using the
same hypernetwork structure as in MultiMNIST and Census
will result in a hypernetwork with approximately 1 billion
parameters.

Table 2 shows the HVs obtained by COSMOS, PaMaL,
and LORPMAN and the number of parameters of each
algorithm. As can be seen, LORPMAN outperforms PaMaL
and COSMOS, despite LORPMAN has fewer parameters
than PaMaL. Figure 5 shows the PFs obtained by PaMaL
and LORPMAN.2 We can see the solutions obtained by
LORPMAN outperform PaMaL in all three objectives.

4.3. Scale to Large Number of Tasks

CIFAR-100. CIFAR-100 (Krizhevsky et al., 2009) is an im-
age classification dataset with 100 classes. These classes are
further organized into 20 superclasses. As in (Rosenbaum
et al., 2017; Yu et al., 2020; Liu et al., 2022), we consider
each superclass as a task. The objective of each task is to
accurately classify the image into one of the corresponding
5 more-specific classes.

Following (Liu et al., 2022), we use VGG-16 (Simonyan
& Zisserman, 2014) as the base network. The number
of training epochs is set to 300 and we freeze the main
model after 250 epochs, which is similar to the proportion
in UTKFace. The scaling factor s is set to 1 without tun-
ing. We search the orthogonal regularization coefficient
λo ∈ {0.001, 0.005, 0.01, 0.1} and rank r ∈ {8, 16}. More

2Since the PF obtained by COSMOS is inferior, it is omitted
from the figure to maintain visual clarity.

6

Efficient Pareto Manifold Learning with Low-Rank Structure

0.92 0.93 0.94 0.95 0.96
Top Left Accuracy

0.920

0.925

0.930

0.935

0.940

0.945

0.950

0.955
Bo

tto
m

 R
ig

ht
 A

cc
ur

ac
y

PHN
PHN-HVI
COSMOS
PaMaL
LORPMAN

(a) MultiMNIST.

0.820 0.822 0.824 0.826 0.828 0.830 0.832
Age Accuracy

0.784

0.785

0.786

0.787

0.788

0.789

Ed
uc

at
io

n
Ac

cu
ra

cy

PHN
PHN-HVI
COSMOS
PaMaL
LORPMAN

(b) Census.

Figure 4. Test performance on MultiMNIST and Census. The PF is shown in bold. We show the results obtained by three different random
seeds.

experimental details are in Appendix D.6.

Table 2. HV values obtained on UTKFace (averaged over three
random seeds). The standard deviation is shown in parentheses.

HV # Parameters

COSMOS 0.281 (0.003) 11.2M
PaMaL 0.304 (0.003) 33.6M

LORPMAN 0.314 (0.001) 24.0M

The obtained HVs are shown in Table 3. The obtained PFs
are in Appendix E. The results highlight the challenges en-
countered by PaMaL when dealing with a large number of
objectives. PaMaL needs to jointly train 20 base networks,
which leads to a large number of parameters and a small hy-
pervolume. In contrast, LORPMAN achieves significantly
better hypervolume while utilizing only 8.9% of the param-
eters compared to PaMaL. This underscores the efficiency
and effectiveness of LORPMAN in addressing problems
with a large number of tasks.

Table 3. HV values obtained on CIFAR-100 (averaged over three
random seeds). The standard deviation is shown in parentheses.

HV (×10−2) # Parameters

COSMOS 0.344 (0.018) 15.0M
PaMaL 0.0583 (0.010) 296.5M

LORPMAN 0.887 (0.047) 26.4M

Figure 6 shows the convergence of the training losses of
PaMaL with different learning rates. The training loss of
LORPMAN (with learning rate 0.01) is also shown for com-
parison. We can observe that the poor performance of Pa-
MaL on CIFAR-100 is due to its slow convergence, since it
has to jointly train 20 base networks. Simply increasing the
learning rate does not help the convergence of PaMaL.

(a)

Be
tt
er

Better

(b)

Be
tt
er

Better

(c)

Be
tt
er

Better

(d)

Figure 5. Test performance of PaMaL and LORPMAN on UTK-
Face. Figures (b), (c), (d) are 2D projections of (a) for better
illustration of the 3D surface.

CelebA. CelebA (Liu et al., 2015) is a face attribute classi-
fication dataset with 40 tasks, where each task is a binary
classification of a face attribute. Following (Sener & Koltun,
2018), we use ResNet-18 (He et al., 2016) as the base net-
work. The number of training epochs is 50, and we freeze
the main model after 40 epochs, which is similar to the pro-
portion in UTKFace. The scaling factor s is set to 1 without
tuning. We search the orthogonal regularization coefficient
λo ∈ {0.1, 0.5, 1} and rank r ∈ {8, 16, 32}. Here, we con-
sider two more baselines: (i) PHN with chunking (Navon
et al., 2020a; Lin et al., 2020), both with the original setting
in (Navon et al., 2020a) (i.e, the hidden dimension is set to

7

Efficient Pareto Manifold Learning with Low-Rank Structure

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Lo

ss
PaMaL (lr=0.1)
PaMaL (lr=0.05)
PaMaL (lr=0.01)
LORPMAN (lr=0.01)

Figure 6. Training loss of PaMaL with number of epochs, using
different learning rates.

100) and a scaled setting with comparable number of pa-
rameters as LORPMAN (i.e., the hidden dimension is set to
500); and (ii) FiLM condition, with a FiLM condition layer
added after each block of ResNet-18. More experimental
details are described in Appendix D.7.

The HV values are shown in Table 4. We can see that
LORPMAN achieves much better performance while using
only 21% of parameters compared to PaMaL. The FiLM
condition suffers similar problems as COSMOS due to the
limited number of parameters. PHN with chunking also
shows worse performance than LORPMAN. In compari-
son, the proposed LORPMAN is a more straightforward
approach that achieves good performance and parameter
efficiency.

Table 4. HV values obtained on CelebA (averaged over three ran-
dom seeds). The standard deviation is shown in parentheses.

Method HV (×10−2) # Parameters

PHN-Chunking (original) 0.663 (0.027) 36.6M
PHN-Chunking (scaled) 0.681 (0.048) 92.3M

FiLM 0.803 (0.022) 11.4M
COSMOS 0.783 (0.013) 11.4M

PaMaL 0.472 (0.018) 453.3M
LORPMAN 1.167 (0.008) 96.8M

4.4. Comparison with Discrete PF Baselines

In this experiment, we compare with five algorithms that ob-
tain discrete PFs: EPO (Mahapatra & Rajan, 2020), PMTL
(Lin et al., 2019), MOO-SVGD (Liu et al., 2021b), PNG
(Ye & Liu, 2022), and GMOOAR (Chen & Kwok, 2022).
Since most of these algorithms have performed experiments
on MultiMNIST, we use MultiMNIST for comparison. The
settings are the same as in Section 4.2.

The obtained solutions are shown in Figure 7. As can be
seen, the proposed algorithm has better performance than

0.90 0.91 0.92 0.93 0.94 0.95 0.96
Top Left Accuracy

0.915

0.920

0.925

0.930

0.935

0.940

0.945

0.950

0.955

Bo
tto

m
 R

ig
ht

 A
cc

ur
ac

y

GMOOAR
PMTL
EPO
PNG
MOO-SVGD
LORPMAN

Figure 7. Test performance of LORPMAN and various discrete PF
algorithms on MultiMNIST.

existing discrete PF algorithms, even though they can only
generate a predetermined number of solutions.

4.5. Comparison with Single-Solution Baselines

In this experiment, we compare with multi-task learning
baselines that can only generate a single solution. These
include Linear Scalarization (LS), UW (Kendall et al., 2018),
MGDA (Sener & Koltun, 2018), DWA (Liu et al., 2019),
PCGrad (Yu et al., 2020), IMTL (Liu et al., 2020), Graddrop
(Chen et al., 2020), CAGrad (Liu et al., 2021a), RLW (Lin
et al., 2022a), Nash-MTL (Navon et al., 2022), RotoGrad
(Javaloy & Valera, 2021), and Auto-λ (Liu et al., 2022). For
a more complete comparison, we also include the results
obtained by Single-Task Learning (STL), where each task
is trained independently, and the baselines of COSMOS and
PaMaL which provide continuous approximations of the PF.

Following (Dimitriadis et al., 2023), we use a widely-used
dataset CityScapes (Cordts et al., 2016). It is a scene-
understanding dataset with two tasks: semantic segmen-
tation and depth regression. We adopt the SegNet (Badri-
narayanan et al., 2017) as the base network and use the same
parameter configuration as in (Dimitriadis et al., 2023). The
number of training epochs is 100. We tune freeze epoch
∈ {80, 90}, s ∈ {0.5, 1}, and r ∈ {32, 64}. More experi-
mental details are in Appendix D.8.

LORPMAN/COSMOS/PaMaL can provide the whole PF.
We only select one solution from their obtained PFs for com-
parison with the single-solution algorithms. Table 5 shows
the performance on semantic segmentation (mIOU and pixel
accuracy) and depth prediction (absolute and relative er-
ror) on the test set. We can see that LORPMAN not only
surpasses COSMOS and PaMaL but also outperforms the
single-solution algorithms. While MGDA achieves slightly
better relative error in depth estimation, it has much worse
performance in the semantic segmentation task. It is impor-
tant to note that our objective is to learn the entire PF rather
than focusing on a single solution.

8

Efficient Pareto Manifold Learning with Low-Rank Structure

Table 5. Test performance on CityScapes. We show the average
over three random seeds. Results, excluding LORPMAN, are taken
from (Dimitriadis et al., 2023)

.
Segmentation Depth

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓
STL 70.96 92.12 0.0141 38.644
LS 70.12 91.90 0.0192 124.061
UW 70.20 91.93 0.0189 125.943
MGDA 66.45 90.79 0.0141 53.138
DWA 70.10 91.89 0.0192 127.659
PCGrad 70.02 91.84 0.0188 126.255
IMTL 70.77 92.12 0.0151 74.230
Graddrop 70.07 91.93 0.0189 127.146
CAGrad 69.23 91.61 0.0168 110.139
RLW 68.79 91.52 0.0213 126.942
Nash-MTL 71.13 92.23 0.0157 78.499
RotoGrad 69.92 91.85 0.0193 127.281
Auto-λ 70.47 92.01 0.0177 116.959

COSMOS 69.78 91.79 0.0539 136.614
PaMaL 70.35 91.99 0.0141 54.520
LORPMAN 72.13 92.57 0.0135 54.942

4.6. Ablation Studies

In this section, we investigate the effects of (i) orthogonal
regularization, (ii) rank r, (iii) freeze epoch, and (iv) scaling
factor s on the performance of LORPMAN. Experiment is
performed on the UTKFace dataset.

Orthogonal Regularization. Table 6 shows the impact of
orthogonal regularization on HV and the average correla-
tion3 over all pairs of low-rank matrices. We can see that
with orthogonal regularization, the correlation between low-
rank matrices is significantly reduced. Similar observations
can also be found in traditional orthogonal regularization
for parameters within a single neural network (Xie et al.,
2017; Bansal et al., 2018). Such reduction in correlation
encourages learning common features in the main network
and differences in the low-rank matrices, thus leading to
better HV value.

Table 6. Effects of orthogonal regularization on UTKFace (aver-
aged over six random seeds).

HV Correlation

w/o orthogonal reg 0.309 (0.002) 0.466 (0.045)
w/ orthogonal reg 0.314 (0.001) 0.067 (0.012)

Rank r. Table 7 shows the effects of the rank r on the HV
and number of parameters. We can observe that LORPMAN
with a rank 8 can already outperform COSMOS and PaMaL
(see Table 2). By increasing the rank to 64, even better

3The correlation between a pair of low-
rank matrices BiAi and BjAj is computed as
flatten(BiAi)

⊤flatten(BjAj)/(∥BiAi∥ ∥BjAj∥).

performance can be achieved. However, further increasing
the rank does not yield significant change.

Table 7. Effects of rank r on UTKFace (averaged over six random
seeds).

r HV # parameters

4 0.306 (0.002) 12.1M
8 0.310 (0.001) 12.8M

16 0.310 (0.002) 14.5M
32 0.311 (0.001) 17.6M
64 0.314 (0.001) 24.0M

128 0.313 (0.002) 35.5M

Freeze Epoch. Table 8 shows the effect of freeze epoch
on HV. Compared with not freezing the main module (i.e.,
freeze epoch = 100), freezing during the latter half of the
training process encourages the low-rank matrices to learn
task-specific representations instead of always relying on
the main model, thus leading to better performance.

Scaling Factor s. Table 9 shows the effect of scaling factor
s on HV. As can be seen, setting s within a reasonable range
(such as [0.1, 1]) leads to stable performance.

Table 8. Effects of freeze epoch
on UTKFace (averaged over six
random seeds).

freeze HV

20 0.305 (0.001)
40 0.311 (0.001)
60 0.312 (0.002)
80 0.314 (0.001)

100 0.307 (0.003)

Table 9. Effects of scaling fac-
tor s on UTKFace (averaged
over six random seeds).

s HV

0.1 0.313 (0.001)
0.5 0.313 (0.001)
1 0.314 (0.001)

1.5 0.312 (0.002)
2 0.310 (0.002)

5. Conclusion
In this paper, we introduce a novel method for continuous
approximation of the PF. We use a main network with a
collection of low-rank matrices. Our approach leverages
the inherent structure of Pareto manifold to effectively learn
trade-off solutions between tasks. Extensive empirical eval-
uation on various datasets demonstrates the superior per-
formance of the proposed algorithm, especially when the
number of tasks is large.

One limitation of the proposed work is that we consider the
same rank for all layers. Using different ranks for different
layers to achieve better parameter efficiency and exploring
automatic rank setting strategies could be interesting future
directions.

9

Efficient Pareto Manifold Learning with Low-Rank Structure

Acknowledgements
This research was supported in part by the Research Grants
Council of the Hong Kong Special Administrative Region
(Grant 16202523).

Impact Statement
The proposed algorithm can effectively discover trade-off
solutions among multiple tasks, leading to improved perfor-
mance and cost efficiency in real-world applications involv-
ing multiple objectives. However, we should be aware the
potential biases and privacy concerns when processing data
from different tasks.

References
Audibert, A., Amini, M. R., Usevich, K., and Clausel, M.

Low-rank updates of pre-trained weights for multi-task
learning. In Findings of the Association for Computa-
tional Linguistics, pp. 7544–7554, 2023.

Badrinarayanan, V., Kendall, A., and Cipolla, R. Segnet: A
deep convolutional encoder-decoder architecture for im-
age segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(12):2481–2495, 2017.

Bansal, N., Chen, X., and Wang, Z. Can we gain more from
orthogonality regularizations in training deep networks?
In Neural Information Processing Systems, 2018.

Bowman Jr, V. J. On the relationship of the Tchebycheff
norm and the efficient frontier of multiple-criteria objec-
tives. In Multiple Criteria Decision Making: Proceed-
ings of a Conference Jouy-en-Josas, pp. 76–86. Springer,
1975.

Boyd, S. P. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, 2004.

Caruana, R. Multitask learning. Machine Learning, 28:
41–75, 1997.

Chen, W. and Kwok, J. Multi-objective deep learning with
adaptive reference vectors. In Neural Information Pro-
cessing Systems, pp. 32723–32735, 2022.

Chen, Z., Ngiam, J., Huang, Y., Luong, T., Kretzschmar, H.,
Chai, Y., and Anguelov, D. Just pick a sign: Optimizing
deep multitask models with gradient sign dropout. In
Neural Information Processing Systems, pp. 2039–2050,
2020.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele, B.
The cityscapes dataset for semantic urban scene under-
standing. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3213–3223, 2016.

Désidéri, J.-A. Multiple-gradient descent algorithm
(MGDA) for multiobjective optimization. Comptes Ren-
dus Mathematique, 350(5-6):313–318, 2012.

Dimitriadis, N., Frossard, P., and Fleuret, F. Pareto manifold
learning: Tackling multiple tasks via ensembles of single-
task models. In International Conference on Machine
Learning, pp. 8015–8052, 2023.

Dosovitskiy, A. and Djolonga, J. You only train once: Loss-
conditional training of deep networks. In International
Conference on Learning Representations, 2019.

Ha, D., Dai, A., and Le, Q. V. Hypernetworks. Preprint
arXiv:1609.09106, 2016.

Haykin, S. Neural Networks: A Comprehensive Foundation.
Prentice Hall, 1998.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778,
2016.

Hoang, L. P., Le, D. D., Tuan, T. A., and Thang, T. N.
Improving Pareto front learning via multi-sample hyper-
networks. In AAAI Conference on Artificial Intelligence,
pp. 7875–7883, 2023.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. Preprint arXiv:2106.09685,
2021.

Huber, P. J. Robust estimation of a location parameter. In
Breakthroughs in Statistics: Methodology and Distribu-
tion, pp. 492–518. Springer, 1992.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Schmidt, L.,
Hajishirzi, H., and Farhadi, A. Editing models with task
arithmetic. In International Conference on Learning
Representations, 2022.

Javaloy, A. and Valera, I. Rotograd: Gradient homogeniza-
tion in multitask learning. Preprint arXiv:2103.02631,
2021.

Kendall, A., Gal, Y., and Cipolla, R. Multi-task learning
using uncertainty to weigh losses for scene geometry and
semantics. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7482–7491, 2018.

Knowles, J. D., Corne, D. W., and Fleischer, M. Bounded
archiving using the Lebesgue measure. In Congress on
Evolutionary Computation, pp. 2490–2497, 2003.

Kohavi, R. Scaling up the accuracy of naive-Bayes classi-
fiers: A decision-tree hybrid. In International Conference
on Knowledge Discovery and Data Mining, pp. 202–207,
1996.

10

Efficient Pareto Manifold Learning with Low-Rank Structure

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, University
of Toronto, 2009.

Kurin, V., De Palma, A., Kostrikov, I., Whiteson, S., and
Mudigonda, P. K. In defense of the unitary scalariza-
tion for deep multi-task learning. In Neural Information
Processing Systems, pp. 12169–12183, 2022.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lin, B., Feiyang, Y., Zhang, Y., and Tsang, I. Reason-
able effectiveness of random weighting: A litmus test for
multi-task learning. Transactions on Machine Learning
Research, 2022a.

Lin, X., Zhen, H.-L., Li, Z., Zhang, Q.-F., and Kwong,
S. Pareto multi-task learning. In Neural Information
Processing Systems, 2019.

Lin, X., Yang, Z., Zhang, Q., and Kwong, S. Control-
lable Pareto multi-task learning. Preprint arXiv preprint
arXiv:2010.06313, 2020.

Lin, X., Yang, Z., Zhang, X., and Zhang, Q. Pareto set
learning for expensive multi-objective optimization. pp.
19231–19247, 2022b.

Lin, X., Zhang, X., Yang, Z., and Zhang, Q. Evolutionary
Pareto set learning with structure constraints. Preprint
arXiv:2310.20426, 2023.

Liu, B., Liu, X., Jin, X., Stone, P., and Liu, Q. Conflict-
averse gradient descent for multi-task learning. In Neu-
ral Information Processing Systems, pp. 18878–18890,
2021a.

Liu, L., Li, Y., Kuang, Z., Xue, J.-H., Chen, Y., Yang,
W., Liao, Q., and Zhang, W. Towards impartial multi-
task learning. In International Conference on Learning
Representations, 2020.

Liu, S., Johns, E., and Davison, A. J. End-to-end multi-
task learning with attention. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1871–
1880, 2019.

Liu, S., James, S., Davison, A., and Johns, E. Auto-Lambda:
Disentangling dynamic task relationships. Transactions
on Machine Learning Research, 2022.

Liu, X., Tong, X., and Liu, Q. Profiling Pareto front with
multi-objective stein variational gradient descent. In Neu-
ral Information Processing Systems, pp. 14721–14733,
2021b.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
face attributes in the wild. In International Conference
on Computer Vision, 2015.

Ma, P., Du, T., and Matusik, W. Efficient continuous Pareto
exploration in multi-task learning. In International Con-
ference on Machine Learning, pp. 6522–6531, 2020.

Mahapatra, D. and Rajan, V. Multi-task learning with user
preferences: Gradient descent with controlled ascent in
Pareto optimization. In International Conference on Ma-
chine Learning, pp. 6597–6607, 2020.

Miettinen, K. Nonlinear Multiobjective Optimization, vol-
ume 12. Springer Science & Business Media, 1999.

Navon, A., Shamsian, A., Chechik, G., and Fetaya, E.
Learning the Pareto front with hypernetworks. Preprint
arXiv:2010.04104, 2020a.

Navon, A., Shamsian, A., Fetaya, E., and Chechik, G. Learn-
ing the Pareto front with hypernetworks. In International
Conference on Learning Representations, 2020b.

Navon, A., Shamsian, A., Achituve, I., Maron, H.,
Kawaguchi, K., Chechik, G., and Fetaya, E. Multi-task
learning as a bargaining game. In International Confer-
ence on Machine Learning, pp. 16428–16446, 2022.

Ortiz-Jimenez, G., Favero, A., and Frossard, P. Task arith-
metic in the tangent space: Improved editing of pre-
trained models. Preprint arXiv:2305.12827, 2023.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. FiLM: Visual reasoning with a general
conditioning layer. In AAAI Conference on Artificial
Intelligence, 2018.

Rosenbaum, C., Klinger, T., and Riemer, M. Routing net-
works: Adaptive selection of non-linear functions for
multi-task learning. Preprint arXiv:1711.01239, 2017.

Ruchte, M. and Grabocka, J. Scalable Pareto front approx-
imation for deep multi-objective learning. In IEEE In-
ternational Conference on Data Mining, pp. 1306–1311,
2021.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic routing
between capsules. In Neural Information Processing
Systems, 2017.

Sener, O. and Koltun, V. Multi-task learning as multi-
objective optimization. In Neural Information Processing
Systems, 2018.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. Preprint
arXiv:1409.1556, 2014.

11

Efficient Pareto Manifold Learning with Low-Rank Structure

Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proes-
mans, M., Dai, D., and Van Gool, L. Multi-task learning
for dense prediction tasks: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44
(7):3614–3633, 2021.

Wang, H., Deutz, A., Bäck, T., and Emmerich, M. Hy-
pervolume indicator gradient ascent multi-objective opti-
mization. In International Conference on Evolutionary
Multi-Criterion Optimization, pp. 654–669, 2017.

Wang, J., Chen, Y., Chakraborty, R., and Yu, S. X. Or-
thogonal convolutional neural networks. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 11505–11515, 2020.

Wang, X., Chen, T., Ge, Q., Xia, H., Bao, R., Zheng, R.,
Zhang, Q., Gui, T., and Huang, X.-J. Orthogonal sub-
space learning for language model continual learning. In
Findings of the Association for Computational Linguis-
tics, pp. 10658–10671, 2023a.

Wang, Y., Lin, Y., Zeng, X., and Zhang, G. MultiLoRA: De-
mocratizing LoRA for better multi-task learning. Preprint
arXiv:2311.11501, 2023b.

Xie, D., Xiong, J., and Pu, S. All you need is beyond a good
init: Exploring better solution for training extremely deep
convolutional neural networks with orthonormality and
modulation. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 6176–6185, 2017.

Yadav, P., Tam, D., Choshen, L., Raffel, C., and Bansal,
M. TIES-merging: Resolving interference when merging
models. In Neural Information Processing Systems, 2023.

Ye, M. and Liu, Q. Pareto navigation gradient descent:
A first-order algorithm for optimization in Pareto set.
In Uncertainty in Artificial Intelligence, pp. 2246–2255,
2022.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and
Finn, C. Gradient surgery for multi-task learning. In
Neural Information Processing Systems, pp. 5824–5836,
2020.

Zhang, Z., Song, Y., and Qi, H. Age progression/regression
by conditional adversarial autoencoder. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
5810–5818, 2017.

Zitzler, E. and Thiele, L. Multiobjective optimization using
evolutionary algorithms — A comparative case study. In
International Conference on Parallel Problem Solving
from Nature, pp. 292–301, 1998.

12

Efficient Pareto Manifold Learning with Low-Rank Structure

A. Proof of Theorem 3.1
Denote the optimal mapping from network input x ∈ X ⊂ Ru and preference vector α ∈ ∆m to the corresponding point
on the PF as t(x,α) : X ×∆m → Rm. We have the following Theorem.

Theorem A.1. Assume that X ×∆m is compact and t(x,α) is continuous. For any ϵ > 0, there exists a ReLU MLP h with
main network θ0 and m low-rank matrices B1A1, . . . ,BmAm, such that ∀x ∈ X,∀α ∈ ∆m,∥∥∥∥∥t(x,α)− h

(
x;θ0 +

m∑
i=1

αiBiAi

)∥∥∥∥∥ ≤ ϵ.

Proof. Denote σ(x) ≡ max(0,x). From the universal approximation theorem (Haykin, 1998), for any ϵ > 0, there exists
v ∈ N,M ∈ Rv×(u+m),N ∈ Rv,C ∈ Rm×v such that

sup
x∈X,α∈∆m

∥t(x,α)− g(x,α)∥ ≤ ϵ,

where g(x,α) = Cσ(M [x,α]⊤ +N).

We define two matrices R ∈ Ru×(2u+m) and S ∈ R(2u+m)×u as follows:

Ri,j =

1, if j = 2i− 1

−1, if j = 2i

0, otherwise
,

and

Si,j =

1, if i = 2j − 1 or (i > 2u and j = u)

−1, if i = 2j

0, otherwise
.

Define m vectors U1, . . . ,Um ∈ {0, 1}2u+m as:

(Ui)j =

{
1, j = 2m+ i

0, otherwise
.

Then, we have

Sσ

(
Rx+

m∑
i=1

αiUi

)
= [x,α].

We can construct a MLP h(x;M ,N ,C,R,S,U) = Cσ(MSσ(Rx+U) +N).

Let θ0 = (M ,N ,C,R,S,0) and θi = (0,0,0,0,0,Ui), i = 1, . . . ,m. We have

h(x;θ0 +

m∑
i=1

αiθi) = h(x;M ,N ,C,R,S,

m∑
i=1

αiUi)

= Cσ(MSσ(Rx+

m∑
i=1

αiUi) +N)

= g(Sσ(Rx+

m∑
i=1

αiUi))

= g(x,α).

Since θi consists of a single non-zero entry (equal to 1) with all other elements being zero, it can be reshaped into a matrix
BiAi with rank 1.

13

Efficient Pareto Manifold Learning with Low-Rank Structure

B. Proof of Proposition 3.2
Proposition B.1 ((Boyd & Vandenberghe, 2004)). Given any α ∈ {α | αi > 0}, the optimal solution of the scalarized
problem minθ

∑m
i=1 αifi(θ) is a Pareto-optimal solution of the original multi-objective optimization problem (1).

Proof. Suppose θ is the optimal solution of
∑m

i=1 αifi(θ) but it is not Pareto optimal. Based on the definition of Pareto
optimal, there exists θ′, such that for i ∈ [m], fi(θ) ≥ fi(θ

′), and ∃i ∈ [m], fi(θ) > fi(θ
′). Since αi > 0, we have

m∑
i=1

αi(fi(θ)− fi(θ
′)) > 0.

It can be rewritten as:
m∑
i=1

αifi(θ) >

m∑
i=1

αifi(θ
′),

which contradicts the assumption that θ is the optimal solution of
∑m

i=1 αifi(θ).

C. Multi-Forward Regularization
Dimitriadis et al. (2023) propose the multi-forward regularization to penalize the wrong ordering of solutions. Denote the
set of current sampled reference vectors as V ≡ {α1, . . . ,αb}. Then, a directed graph Gi = (V, Ei) is constructed for each
task where Ei = {(α,α′) ∈ V × V : αi < α′

i}. The multi-forward regularization loss is defined as:

Rp =

m∑
i=1

log

 1

|Ei|
∑

(α,α′)∈Ei

e[f(θ(α))−f(θ(α′))]+

 .

D. Experimental Details
D.1. Hypervolume

Hypervolume (HV) (Zitzler & Thiele, 1998; Knowles et al., 2003) is a popular indicator in multi-objective optimization
(MOO), offering a measure of the performance of the obtained solution set. Formally, for a given solution set P and a
reference point r, the HV is defined as:

HV (P; r) = Λ({q ∈ Rm | ∃p ∈ P : p ≥ q ≥ r}), (10)

where Λ denotes the Lebesgue measure. Figure 8 provides an illustration of the HV indicator in a two-objective maximization
problem. The shaded area encapsulated by the solution set and the reference point represents the HV.

For all datasets except UTKFace (Zhang et al., 2017), the reference point for HV evaluation is set to [0, 0, . . . , 0], since 0 is
the smallest-possible accuracy. For UTKFace, the first objective is the Huber loss (Huber, 1992), not accuracy. Since 0.5 is
close to the observed largest Huber loss in the experiment, we set the reference point to [0.5, 0, 0].

D.2. Toy Problem

We use the two-objective toy problem adopted by (Liu et al., 2021a; Navon et al., 2022; Dimitriadis et al., 2023), with
parameters θ = [θ1, θ2] ∈ R2. The problem is formulated as follows:

Minimize f1(θ) = c1(θ)h1(θ) + c2(θ)g1(θ) and f2(θ) = c1(θ)h2(θ) + c2(θ)g2(θ),

where h1(θ) = log
(
max(|0.5(−θ1 − 7)− tanh (−θ2)|, 0.000005)

)
+ 6,

h2(θ) = log
(
max(|0.5(−θ1 + 3)− tanh (−θ2) + 2|, 0.000005)

)
+ 6,

g1(θ) =
(
(−θ1 + 7)2 + 0.1 ∗ (−θ2 − 8)2

)
/10− 20,

g2(θ) =
(
(−θ1 − 7)2 + 0.1 ∗ (−θ2 − 8)2)

/
10− 20,

c1(θ) = max(tanh (0.5 ∗ θ2), 0) and c2(θ) = max(tanh (−0.5 ∗ θ2), 0).

14

Efficient Pareto Manifold Learning with Low-Rank Structure

Figure 8. Illustration of the hypervolume indicator.

D.3. MultiMNIST

Network Structure. Following (Dimitriadis et al., 2023), the base network consists of a shared bottom and two task-specific
heads. The shared bottom is the LeNet (LeCun et al., 1998) with two convolution layers and a fully-connected layer. Each
task-specific head consists of two full-connect layers. For PHN and PHN-HVI, we use the same hypernetwork structure
as (Navon et al., 2020b). The input preference vector α first goes through a three-layer MLP to get the ray embedding.
Then, for each layer of the base network, a linear layer is used to generate the base network parameters based on the ray
embedding.

Parameter Settings. Following (Dimitriadis et al., 2023), for LORPMAN and PaMaL, we set the multi-forward regulariza-
tion coefficient λp to 0, and window size b to 4. The distribution parameters p for sampling α is set to 1 for all algorithms.
For PHN and PHN-HVI, we use the same parameter setting as in the original paper. We use the Adam optimizer. For
COSMOS, the cosine similarity regularization coefficient λc is set to 1. The learning rate is set to 1e− 3 and the batch size
is set to 256.

D.4. Census

Network Structure. Following (Dimitriadis et al., 2023), the base network consists of a shared bottom and two task-specific
heads. The shared bottom is an one-layer MLP. Each task-specific head is a fully-connected layer. The hypernetwork is
constructed in the same way as for MultiMNIST.

Parameter Settings. Following (Dimitriadis et al., 2023), for LORPMAN and PaMaL, we set the multi-forward regulariza-
tion coefficient λp to 5, and window size b to 2. The distribution parameters p for sampling α is set to 1 for all algorithms.
For PHN-HVI, we use the same parameter setting as in the original paper. For COSMOS, the cosine similarity regularization
coefficient λc is set to 1. We use the Adam optimizer. The learning rate is set to 1e− 3 and the batch size is set to 256.

D.5. UTKFace

Network Structure. Following (Dimitriadis et al., 2023), the base network consists of a shared bottom and three task-specific
heads. The shared bottom is a ResNet-18 (He et al., 2016). Each task-specific head is a fully-connected layer.

Parameter Settings. Following (Dimitriadis et al., 2023), for LORPMAN and PaMaL, we set the multi-forward regulariza-
tion coefficient λp to 1, and window size b to 3. The distribution parameters p for sampling α is set to 2 for all algorithms.
For COSMOS, the cosine similarity regularization coefficient λc is set to 1. We use the Adam optimizer. The learning rate is
set to 1e− 3 and the batch size is set to 256.

15

Efficient Pareto Manifold Learning with Low-Rank Structure

D.6. CIFAR-100

CIFAR-100 has 20 5-way classification tasks:
1. Aquatic Mammals: beaver, dolphin, otter, seal, whale
2. Fish: aquarium fish, flatfish, ray, shark, trout
3. Flowers: orchids, poppies, roses, sunflowers, tulips
4. Food Containers: bottles, bowls, cans, cups, plates
5. Fruits and Vegetables: apples, mushrooms, oranges, pears, sweet peppers
6. Household Electrical Devices: clock, computer keyboard, lamp, telephone, television
7. Household Furniture: bed, chair, couch, table, wardrobe
8. Insects: bee, beetle, butterfly, caterpillar, cockroach
9. Large Carnivores: bear, leopard, lion, tiger, wolf
10. Large Man-made Outdoor Things: bridge, castle, house, road, skyscraper
11. Large Natural Outdoor Scenes: cloud, forest, mountain, plain, sea
12. Large Omnivores and Herbivores: camel, cattle, chimpanzee, elephant, kangaroo
13. Medium-sized Mammals: fox, porcupine, possum, raccoon, skunk
14. Non-insect Invertebrates: crab, lobster, snail, spider, worm
15. People: baby, boy, girl, man, woman
16. Reptiles: crocodile, dinosaur, lizard, snake, turtle
17. Small Mammals: hamster, mouse, rabbit, shrew, squirrel
18. Trees: maple, oak, palm, pine, willow
19. Vehicles 1: bicycle, bus, motorcycle, pickup truck, train
20. Vehicles 2: lawn-mower, rocket, streetcar, tank, tractor

Network Structure. Following (Liu et al., 2022), the base network consists of a shared bottom and 20 task-specific heads.
The shared bottom is a VGG-16 (Simonyan & Zisserman, 2014). Each task-specific head is a fully-connected layer.

Parameter Settings. For LORPMAN and PaMaL, we set the multi-forward regularization coefficient λp to 1, and window
size b to 2. The distribution parameters p for sampling α is set to 2 for all algorithms. For COSMOS, the cosine similarity
regularization coefficient λc is set to 1. Following (Liu et al., 2022), we use the SGD optimizer. The learning rate is set to
1e− 2 and the batch size is set to 64.

D.7. CelebA

CelebA (Liu et al., 2015) has 40 binary classification tasks: 5 o’Clock Shadow, Arched Eyebrows, Attractive, Bags Under
Eyes, Bald, Bangs, Big Lips, Big Nose, Black Hair, Blond Hair, Blurry, Brown Hair, Bushy Eyebrows, Chubby, Double
Chin, Eyeglasses, Goatee, Gray Hair, Heavy Makeup, High Cheekbones, Male, Mouth Slightly Open, Mustache, Narrow
Eyes, No Beard, Oval Face, Pale Skin, Pointy Nose, Receding Hairline, Rosy Cheeks, Sideburns, Smiling, Straight Hair,
Wavy Hair, Wearing Earrings, Wearing Hat, Wearing Lipstick, Wearing Necklace, Wearing Necktie, Young.

Network Structure. Following (Sener & Koltun, 2018), the base network consists of a shared bottom and 40 task-specific
heads. The shared bottom is a ResNet-18 (He et al., 2016). Each task-specific head is a fully-connected layer. Since CelebA
has the overfitting problem (Kurin et al., 2022), we adopt dropout regularization as in (Kurin et al., 2022) for all algorithms
(i.e., we add a dropout layer in each block as well as after the first convolution layer and after average pooling layer).

Parameter Settings. For LORPMAN and PaMaL, we set the multi-forward regularization coefficient λp to 1, and window
size b to 3. The distribution parameters p for sampling α is set to 2 for all algorithms. For COSMOS, the cosine similarity
regularization coefficient λc is set to 1. We use the Adam optimizer. The learning rate is set to 1e− 3 and the batch size is
set to 128.

D.8. Cityscapes

Network Structure. Following (Liu et al., 2021a; Navon et al., 2022; Dimitriadis et al., 2023), the base network consists of
a shared bottom and 2 task-specific heads. The shared bottom is a SegNet (Badrinarayanan et al., 2017). Each task-specific
head consists of two convolution layers.

16

Efficient Pareto Manifold Learning with Low-Rank Structure

Parameter Settings. Following (Dimitriadis et al., 2023), for LORPMAN and PaMaL, we set the multi-forward regulariza-
tion coefficient λp to 1, and window size b to 3. The distribution parameters p for sampling α is set to 7 for all algorithms.
We use the Adam optimizer. The initial learning rate is set to 1e− 4 and is halved after 75 epochs. The batch size is set to 8.

E. Pareto Front Obtained on CIFAR-100
Figure 9 shows the models obtained by COSMOS, PaMaL and LORPMAN. We can observe that the solutions obtained by
PaMaL have much lower accuracies while the solutions obtained by COSMOS concentrate in a small region. The proposed
LORPMAN achieves good accuracy and diversity.

17

Efficient Pareto Manifold Learning with Low-Rank Structure

0.40 0.45 0.50 0.55 0.60 0.65 0.70
aquatic mammals Accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

fis
h

Ac
cu

ra
cy

COSMOS
PaMaL
LORPMAN

0.45 0.50 0.55 0.60 0.65 0.70 0.75
flowers Accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

fo
od

 c
on

ta
in

er
s A

cc
ur

ac
y

COSMOS
PaMaL
LORPMAN

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
fruit and vegetables Accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ho
us

eh
ol

d
el

ec
tri

ca
l d

ev
ice

 A
cc

ur
ac

y

COSMOS
PaMaL
LORPMAN

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
household furniture Accuracy

0.3

0.4

0.5

0.6

0.7

0.8

in
se

ct
s A

cc
ur

ac
y

COSMOS
PaMaL
LORPMAN

0.4 0.5 0.6 0.7 0.8
large carnivores Accuracy

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

la
rg

e
m

an
-m

ad
e

ou
td

oo
r t

hi
ng

s A
cc

ur
ac

y COSMOS
PaMaL
LORPMAN

0.4 0.5 0.6 0.7 0.8
large natural outdoor scenes Accuracy

0.3

0.4

0.5

0.6

0.7

0.8

la
rg

e
om

ni
vo

re
s a

nd
 h

er
bi

vo
re

s A
cc

ur
ac

y COSMOS
PaMaL
LORPMAN

0.4 0.5 0.6 0.7 0.8
medium-sized mammals Accuracy

0.4

0.5

0.6

0.7

0.8

no
n-

in
se

ct
 in

ve
rte

br
at

es
 A

cc
ur

ac
y

COSMOS
PaMaL
LORPMAN

0.25 0.30 0.35 0.40 0.45 0.50 0.55
people Accuracy

0.40

0.45

0.50

0.55

0.60

0.65

0.70

re
pt

ile
s A

cc
ur

ac
y

COSMOS
PaMaL
LORPMAN

0.3 0.4 0.5 0.6 0.7
small mammals Accuracy

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

tre
es

 A
cc

ur
ac

y

COSMOS
PaMaL
LORPMAN

0.4 0.5 0.6 0.7 0.8 0.9
vehicles 1 Accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ve
hi

cle
s 2

 A
cc

ur
ac

y

COSMOS
PaMaL
LORPMAN

Figure 9. Test performance of COSMOS, PaMaL, and LORPMAN on CIFAR-100.

18

