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ABSTRACT

Image segmentation is a largely researched field where neural networks find vast
applications in many facets of technology. Some of the most popular approaches
to train segmentation networks employ loss functions optimizing pixel-overlap,
an objective that is insufficient for many segmentation tasks. In recent years,
their limitations fueled a growing interest in topology-aware methods, which aim
to recover the correct topology of the segmented structures. However, so far,
none of the existing approaches achieve a spatially correct matching between the
topological features of ground truth and prediction.
In this work, we propose the first topologically and feature-wise accurate metric
and loss function for supervised image segmentation, which we term TopoMatch.
We show how induced matchings guarantee the spatially correct matching be-
tween barcodes in a segmentation setting. Furthermore, we propose an efficient
algorithm to compute TopoMatch for images. We show that TopoMatch is an in-
terpretable metric to evaluate the topological correctness of segmentations, which
is more sensitive than the well-established Betti number error. Moreover, the dif-
ferentiability of the TopoMatch loss enables its use as a loss function. It improves
the topological performance of segmentation networks across six diverse datasets
while preserving the volumetric performance.

1 INTRODUCTION

Topology studies properties of shapes that are related to their connectivity and that remain un-
changed under deformations, translations, and twisting. Some topological concepts, such as cu-
bical complexes, homology and Betti numbers, form interpretable descriptions of shapes in space
that can be efficiently computed. Naturally, the topology of physical structures is highly relevant in
machine learning tasks, where the preservation of its connectivity is crucial, a prominent example
being image segmentation. Recently, a number of methods have been proposed to improve topology
preservation in image segmentation for a wide range of applications. However, none of the existing
concepts take the spatial location of the topological features (e.g. connected components or cycles)
within their respective image into account. Evidently, spatial correspondence of these features is a
critical property of segmentations, see Fig. 1.

CREMI Dataset TopoMatch Wasserstein Matching

Label Prediction  Label Prediction  Label Prediction  Image

Figure 1: Motivation – comparison of our TopoMatch and Wasserstein matching (Hu et al. (2019)).
We match cycles between label and prediction for a CREMI image and denote matched pairs in the
same color. We visualize only six (randomly selected out of the total 23 matches for both methods)
matched pairs for presentation clarity. Note that TopoMatch always matches spatially correctly
while the Wasserstein matching gets most matches wrong.

Our contribution In this work, we introduce a rigorous framework for faithfully quantifying the
preservation of topological properties in the context of image segmentation, see Fig. 2. Our method
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builds on the concept of induced matchings between persistence barcodes from algebraic topology,
introduced by Bauer & Lesnick (2015). The introduction of these matching to a machine learning
setting allows us to precisely formulate spatial correspondences between topological features of two
grayscale images. We achieve this by embedding both images into a common comparison image.
Put in simple terms, our central contribution is an efficient, differentiable solution for localized
topological error finding, which serves as:

• a topological loss to train segmentation networks, which guarantees to correctly, in a spatial
sense, emphasize and penalize the topological structures during training (see Sec 3.2);

• an interpretable topological quality metric for image segmentation, which is not only
sensitive to the number of topological features but also to their location within the respec-
tive images (see Sec. 3.3).

Experimentally, our TopoMatch construction proves to be an effective loss function, leading to vastly
improved topology across six diverse datasets.

1.1 RELATED WORK

Algebraic stability of persistence Several proofs for the stability of persistence have been proposed
in the literature. In 2005, Cohen-Steiner et al. (2005) established a first stability result for persistent
homology of real-valued functions. The result states that the map sending a function to the barcode
of its sublevel sets is 1-Lipschitz with respect to suitable metrics. In 2008 this result was generalized
by Chazal et al. (2009b) and formulated in purely algebraic terms, in what is now known as the
algebraic stability theorem. It states that the existence of a δ-interleaving (a sort of approximate
isomorphism) between two pointwise finite-dimensional persistence modules implies the existence
of a δ-matching between their respective barcodes. This theorem provides the justification for the
use of persistent homology to study noisy data. In Bauer & Lesnick (2015), the authors present a
constructive proof of this theorem, which associates to a given δ-interleaving between persistence
modules a specific δ-matching between their barcodes. For this purpose, they introduce the notion
of induced matchings, which form the foundation of our proposed TopoMatch framework.

(a) Prediction-1
Dice = 0.991
Betti error = 0
TopoMatch = 1

(b) Ground truth (c) Prediction-2
Dice = 0.974
Betti error = 0
TopoMatch = 0

Figure 2: (a) and (c) show two predictions for ground
truth (b). Volumetric metrics, e.g., Dice favor (a) over
(c), and even Betti number error can not differentiate
between (a) and (c) while only TopoMatch detects the
spatial error in (a) and favors (c).

Topology aware segmentation Multiple
works have highlighted the importance of
topologically correct segmentations in var-
ious computer vision applications. Persis-
tent homology is a popular tool from al-
gebraic topology to address this issue. A
key publication by Hu et al. (2019) intro-
duced the Wasserstein loss as a variation
of the Wasserstein distance to improve im-
age segmentation. They match points of
dimension 1 in the persistence diagrams –
an alternative to barcodes as descriptor of
persistent homolgy – of ground truth and
prediction by minimizing the squared dis-
tance of matched points.

However, this matching has a fundamental limitation, in that it cannot guarantee that the matched
structures are spatially related in any sense (see Fig. 1 and App. A). Put succinctly, the cycles are
matched irrespective of the location within the image, which frequently has an adverse impact during
training (see App. F). Clough et al. (2020) follows a similar approach and train without knowing the
explicit ground truth segmentation, but only the Betti numbers it ought to have. Persistent homology
has also been used by Abousamra et al. (2021) for crowd localization and by Waibel et al. (2022)
for reconstructing 3D cell shapes from 2D images.

Other methods incorporate pixel-overlaps of topologically relevant structures. For example, the
clDice score, introduced by Shit et al. (2021), computes the harmonic mean of the overlap of the
predicted skeleton with the ground truth volume and vice versa. Hu & Chen (2021) and Jain et al.
(2010) use homotopy warping to identify critical pixels and measure the topological difference be-
tween grayscale images. Hu et al. (2021) utilizes discrete Morse theory (see Delgado-Friedrichs
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et al. (2014)) to compare critical topological structures within prediction and ground truth. Wang
et al. (2022) incorperate a marker loss, which is based on the Dice loss between a predicted marker
map and the ground truth marker map, to improve gland segmentations topologically. Generally,
these overlap-based approaches are computationally efficient but do not explicitly guarantee the
spatial correspondence of the topological features. Other approaches aim at enforcing topologically
motivated priors, for example, enforcing connectivity priors Sasaki et al. (2017); Wang & Jiang
(2018).Mosinska et al. (2018) applied task-specific pre-trained filters to improve connected compo-
nents. Zhang & Lui (2022) uses template masks as an input to enforce the diffeomorphism type of a
specific shape. Further work by Cheng et al. (2021) jointly models connectivity and features based
on iterative feedback learning. Oner et al. (2020) aims to improve the topological performance by
enforcing region separation of curvilinear structures.

2 BACKGROUND ON ALGEBRAIC TOPOLOGY

We introduce the necessary concepts from algebraic topology in order to describe the construction
of induced matchings for grayscale images. For the basic definitions, we refer to the App. L.

2.1 GRAYSCALE IMAGES AS FILTERED CUBICAL COMPLEXES

The topology of grayscale images is best captured by filtered cubical complexes. In order to filter
a cubical complex K we consider an order preserving function f : K → R. Its sublevel sets
D(f)r := f−1((−∞, r]) assemble to the sublevel filtration D(f) = {D(f)r}r∈R of K. Since
f can only take finitely many values {f1 < . . . < fl}, the filtered cubical complex K∗ given by
Ki = D(f)fi for i = 1, . . . , l, already encodes all the information about the filtration.

(
4 1 5
8 3 6
7 2 9

)
(a) I

4 1 5

8 3 6

7 2 9

8 6

8 9

4 5

8 6

7 9

8

8

3

3

6

9

(b) fI : K3,3 → R

Figure 3: (a) shows an image and
(b) visualizes the V-construction.

For a grayscale image I ∈ Rm×n we consider the cubical
grid complex Km,n consisting of all cubical cells contained
in [1,m] × [1, n] ⊆ R2. Its filter function fI is defined on
the vertices of Km,n by the corresponding entry in I , and on
all higher-dimensional cubes as the maximum value of its ver-
tices. Note that fI is order preserving, so we can associate the
sublevel filtration of fI and its corresponding filtered cubical
complex to the image I and denote them by D(I) and K∗(I),
respectively. This construction is called the V-construction
since pixels are treated as vertices in the cubical complex, see
Fig. 3b. An alternative, the T-construction, considers pixels
as top-dimensional cells of a 2-dimensional cubical complex (see Heiss & Wagner (2017)). We
implemented both, V- and T-construction, in TopoMatch and encode them in the ValueMap array
inside the CubicalPersistence class.

2.2 PERSISTENT HOMOLOGY AND ITS BARCODE

(a) K1 (b) K2 (c) K3

Figure 4: A filtered cubical
complex with varying homol-
ogy in degree 1. Adding the
green 1-cell in (b) creates ho-
mology and adding the red
2-cell in (c) turns homology
trivial. Together they form a
persistence pair.

Persistent homology considers filtrations of spaces and observes the
lifetime of topological features within the filtration in form of per-
sistence modules. The basic premise is that features that persist for
a long time are significant, whereas features with a short lifetime
are likely to be caused by noise.

The persistent homology H∗(f) of an order preserving function
f : K → R consists of vector spaces H∗(f)r = H∗(D(f)r) and
transition maps H∗(f)r,s : H∗(D(f)r) → H∗(D(f)s) induced by
the inclusions D(f)r ↪→ D(f)s for r ≤ s. Note that H∗(f) is
a p.f.d persistence module. By a result of see Crawley-Boevey
(2012), any p.f.d. persistence module is isomorphic to a direct sum
of interval modules M ∼=

⊕
I∈B(M) C(I). Here, B(M) denotes the barcode of M , which is given

by a multiset of intervals. For a grayscale image matrix I ∈ Rm×n with associated filter function
fI : K

m,n → R, we will refer to the persistent homology of fI as the persistent homology of the
image I and denote it by H∗(I). Its associated barcode will be denoted by B(I). Note that the
persistent homology is continuous from above: all intervals in the barcode are of the form [s, t).
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In order to compute the barcode B(I), we make use of the reduction algorithm described in Edels-
brunner et al. (2008). It starts by sorting the cells of the associated filtered cubical complex K∗(I)
to obtain a compatible ordering c1, . . . , cl: the cells in Ki preceed the cells in K \ Ki, and the
faces of a cell preceed the cell. This ordering induces a cell-wise refinement L∗(I) of K∗(I), which
we encode in the IndexMap array inside the CubicalPersistence class. The algoritm then performs a
variant of Gaussian elimination on the boundary matrix of K, with rows and columns indexed by the
cells in the compatible ordering. Adding a d-cell ck to the complex will either create new homology
in degree d or turn homology classes in degree d− 1 trivial (see Figure 4). In the latter case, assum-
ing that the class that becomes trivial when adding ck has been created by cell cj with j < k, we
pair the cells cj and ck. This way we partition the set of cells into persistence pairs and singletons.
Each pair (cj , ck), satisfying fI(cj) < fI(ck), gives rise to a finite interval [fI(cj), fI(ck)), and
each singleton ci gives rise to an essential interval [fI(ci),∞) in the barcode of I . Note that a finite
interval [fI(cj), fI(ck)) determines a refined interval [j, k), and we call the set Bfine(I) of refined
intervals the refined barcode of I . Alternatively, the refined barcode of I can be seen as barcode of
the persistent homology of the refined filtration L∗(I).

2.3 INDUCED MATCHINGS OF PERSISTENCE BARCODES

In order to give a constructive proof for the algebraic stability theorem of persistent homology,
the authors of Bauer & Lesnick (2015) introduced the notion of induced matchings, which play a
central role in our TopoMatch matching. The following theorem (paraphrased as a special case of
the general Theorem 4.2 in Bauer & Lesnick (2015)) is key to the definition of induced matchings:

Theorem 1 Let Φ: M → N be a morphism of p.f.d., staggered persistence modules that are contin-
uous from above. Then there are unique injective maps B(imΦ) ↪→ B(M) and B(imΦ) ↪→ B(N),
which map an interval [b, c) ∈ B(imΦ) to an interval [b, d) ∈ B(M) with c ≤ d, and to an interval
[a, c) ∈ B(N) with a ≤ b, respectively.

Note that imΦ is a p.f.d. submodule of N , and we will refer to its barcode as the image barcode of
Φ. Obviously, the injections in Theorem 1 determine matchings B(M)

σM−−→ B(imΦ)
σN−−→ B(N).

The induced matching of Φ is then given by the composition σ(Φ) = σN ◦ σM .

Induced matchings of grayscale images Let I,J ∈ Rm×n be matrices describing grayscale
images, such that I ≥ J (entry-wise). Then the sublevel sets of I form subcomplexes of
the sublevel sets of J and the corresponding inclusions D(I)r ↪→ D(J)r are cubical maps.
Hence, they induce maps H∗(I)r → H∗(J)r in homology, which assemble to a persistence map
Φ(I,J) : H∗(I) → H∗(J). We will denote the image barcode of Φ(I,J) by B(I,J). Con-
sidering the refined filtrations L∗(I), L∗(J), we obtain staggered persistence modules resulting in
refined barcodes Bfine(I),Bfine(J). For the computation of the image barcode, we follow the al-
gorithm described in Bauer & Schmahl (2022). It involves the reduction of the boundary matrix
of Km,n with rows indexed by the ordering c1, . . . , cl in L∗(I) and columns indexed by the or-
dering d1, . . . , dl in L∗(J). A pair (ci, dj) satisfying fI(ci) < fJ (dj), obtained by the means of
this reduction, then gives rise to an image persistence pair (ci, dj), which corresponds to the fi-
nite interval [fI(ci), fJ (dj)) ∈ B(I,J). By matching refined intervals with the image persistence
pairs according to Theorem 1, we obtain a matching σfine : Bfine(I) → Bfine(J) between the refined
barcodes, which determines the induced matching σ(I,J) : B(I) → B(J) by replacing refined
intervals with the corresponding finite interval.
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Figure 5: (a), (c) and (e) show images which satisfy I ≥ J1,J2. (b) and (d) visualize the induced
matchings. Red bars correspond to the barcode of I , green bars to the barcodes of J1,J2 and grey
bars to the image barcodes B(I,J1),B(I,J2). The shaded gray area highlights matched intervals
according to their endpoints.
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In this work, we augment this induced matching by additionally considering reverse persistence
pairs, i.e., pairs (ci, dj) obtained by the reduction, with fI(ci) ≥ fJ (dj) (see Figure 5d). When this
is the case, we also match the corresponding intervals in Bfine(I) and Bfine(J). Note that this is a
slight variation of the induced matching defined in Bauer & Lesnick (2015). This extension satisfies
similar properties and is a natural adaptation to our computational context.

3 TOPOMATCH – FROM ALGEBRAIC TOPOLOGY TO IMAGE SEGMENTATION

In general, the structure of interest in segmentation tasks is given by the foreground. Therefore, we
consider superlevel filtrations instead of sublevel filtrations in applications. For simplicity, we stick
to sublevel filtrations to describe the theoretical background. Throughout this section, we denote
by L ∈ [0, 1]m×n a likelihood map predicted by a deep neural network, by P ∈ {0, 1}m×n the
binarized prediction of L, and by G ∈ {0, 1}m×n the ground truth segmentation.

3.1 MATCHING BY COMPARISON IN AMBIENT SPACE
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(i) τ(L,G)

Figure 6: An exemplary construction of the TopoMatch matching. (a)–(f) show a likelihood map
L, a ground truth G, the comparison image C and their barcodes. (g) and (h) show the induced
matchings between individual barcodes (matchings indicated in grey), and (i) shows the resulting
TopoMatch matching between B(L) and B(G), which matches a red interval to a blue interval if
there is a green interval in between. We use this matching to define our loss and metric.

In order to visualize that two objects in two different images are at the same location, we can simply
move one image ontop of the other one and observe that the locations of the objects now agree.
Thereby, we are constructing a common ambient space for both images which allows us to identify
locations. Following this idea, in order to find a matching between B(L) and B(G) that takes the
location of represented topological features into account, we are looking for a common ambient
filtration of Km,n, which is

(a) big enough to contain the sublevel filtrations of L and G;
(b) fine enough to capture the topologies of L and G.

Here, (a) guarantees that we can compute induced matchings of the respective inclusions and (b)
guarantees that the identification of features by the induced matchings are non-trivial (discrimina-
tive). The most natural candidate which comes into mind is given by the union D(L)r ∪ D(G)r
of sublevel sets. Therefore, we introduce the comparison image C = min(L,G) (entry-wise mini-
mum) and observe that D(C)r = D(L)r∪D(G)r. By construction, we have C ≤ L,G and obtain
induced matchings σ(L,C) : B(L) → B(C) and σ(G,C) : B(G) → B(C) (see Sec. 2.3). The
TopoMatch matching τ(L,G) : B(L)→ B(G) is then given by the composition

τ(L,G) = σ(G,C)−1 ◦ σ(L,C).
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Working with superlevel sets yields an analogous construction. In the superlevel-setting we choose
C = max(L,G) as the comparison image to guarantee that each superlevel set of the comparison
image is the union of the corresponding superlevel sets of ground truth and likelihood map.

3.2 TOPOMATCH DEFINES A TOPOLOGICAL LOSS FUNCTION FOR IMAGE SEGMENTATION

We denote by R the extended real line R ∪ {−∞,∞}. A barcode B consisting of intervals [a, b)
can then equivalently be seen as a multiset Dgm(B) of points (a, b) ∈ R2 which lie above the
diagonal ∆ = {(x, x) | x ∈ R}. Furthermore, we add all the points on the diagonal ∆ with infinite
multiplicity to Dgm(B) and thus define the persistence diagram of B. A matching σ : B1 → B2
between barcodes then corresponds to a bijection σ : Dgm(B1) → Dgm(B2) between persistence
diagrams, by mapping unmatched points (a, b) to their closest point ((a + b)/2, (a + b)/2) on the
diagonal ∆. We use these perspectives interchangeably (see Fig. 20). For simplicity, we denote by
Dgm(I) the persistence diagram associated to the barcode of a grayscale image I .

Persistent homology is stable, see Chazal et al. (2009a), i.e., there exist metrics on the set of persis-
tence diagrams for which slight variations in the input result in small variations of the corresponding
persistence diagram. Therefore, it is natural to require Dgm(L) to be similar to Dgm(G). A
frequently used metric to measure the difference between persistence diagrams is the Wasserstein
distance (see Cohen-Steiner et al. (2010)), and it has been adapted in Hu et al. (2019) to train seg-
mentation networks. Because of the shortcomings described in Fig. 1,8c,19b and App. A,F, we
propose to replace the Wasserstein matching γ∗ by the TopoMatch matching τ(L,G) and define the
TopoMatch loss

LTM(L,G) =
∑

q∈Dgm(L)

∥q − τ(L,G)(q)∥22.

Since the values in L and G are contained in [0, 1], we replace the essential intervals [a,∞) with the
finite interval [a, 1], to obtain a well-defined expression. To efficiently train segmentation networks,
we combine our TopoMatch loss with a standard volumetric loss, specifically, the Dice Loss, to

Ltrain = αLTM(L,G) + Ldice(L,G).

Gradient of TopoMatch loss Note that we can see L = L(I, ω) as a function that assigns the
predicted likelihood map to an image I ∈ Rm×n and the segmentation network parameters ω ∈ Rl.
A point q = (q1, q2) ∈ Dgm(L) describes a topological feature that is born by adding pixel b(q)
(birth of q) and killed by adding pixel d(q) (death of q) to the filtration. The coordinates of q are
then determined by their values q1 = Ld(q) and q2 = Lb(q). Assuming that the TopoMatch matching
is constant in a sufficiently small neighborhood around the given predicted likelihood map L, the
TopoMatch loss is differentiable in ω and the chain rule yields the gradient

∇ωLTM(L,G) =
∑

q∈Dgm(L)

2(q1 − τ(L,G)(q)1)
∂Ld(q)

∂ω
+ 2(q2 − τ(L,G)(q)2)

∂Lb(q)

∂ω
.

(a) L G

(b) TopoMatch (c) 1-cycles in L

Figure 7: (a) L shows a Topological error
(bottom right). (b) Matched cycles in Topo-
Match are shown in yellow. (c) For both cy-
cles in L, the birth (b(q)) and death pixels
(d(q)) are marked with ⋆ and×, respectively.

Note that likelihood maps for which this assumption
is not satisfied may exist. But this requires L to have
at least two entries with the exact same value, and the
set of such likelihood maps has Lebesgue measure
zero. Therefore, the gradient is well-defined almost
everywhere, and in the edge cases, we consider it as
a sub-gradient, which still reduces the loss and has a
positive effect on the topology of the segmentation.

Physical meaning of the gradient To understand
the effect of the TopoMatch gradient during training,
consider the example in Fig. 7. Let x, y ∈ Dgm(L)
denote the points corresponding to the yellow and
blue cycle in (c), respectively. (b) shows that x is
matched and y is unmatched. Since, all points in
Dgm(G) are of the form (0,1), TopoMatch maps x
to (0, 1) and y to its closest point (y1+y2

2 , y1+y2

2 ) on
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the diagonal ∆. Therefore, the gradient will enforce the segmentation network to move x closer
to (0, 1) (i.e., decrease x1 = Ld(x) and increase x2 = Lb(x)) and y closer to (y1+y2

2 , y1+y2

2 ) (i.e.,
increase y1 = Ld(y) and decrease y2 = Lb(y)). This results in an amplification of the local contrast
between ⋆ and × of the yellow cycle and a reduction of the local contrast between ⋆ and × of the
blue cycle, which improves the topological performance of the segmentation.

Summarized, we can say that matched features get emphasized, and unmatched features get sup-
pressed during training, which highlights the importance of finding a spatially correct matching (see
App. F for further discussion).

3.3 TOPOMATCH LOSS AS A TOPOLOGICAL METRIC FOR IMAGE SEGMENTATION

Betti number error The Betti number error βerr (see App. K) compares the topological complexity
of the binarized prediction P and the ground truth G. However, it is limited as it only compares
the number of topological features in both images, while ignoring their spatial correspondence (see
Fig. 8). In terms of persistence diagrams, the Betti number error can be expressed by considering
a maximal matching β : Dgm(P ) → Dgm(G), e.g., the Wasserstein matching (see App. F), and
counting the number of unmatched points:

βerr(P ,G) = #ker(β) + #coker(β).

Here, for a matching σ we denote by ker(σ) the multiset of unmatched points in the domain of σ
and by coker(σ) the multiset of unmatched points in the codomain of σ (see App. L.5).

TopoMatch error The TopoMatch loss LTM(P ,G) can be seen as a refinement of the Betti number
error, which also takes the location of the features within their respective images into account (see
Fig. 8). Since the entries of P and G take values in {0, 1}, the only point appearing in their persis-
tence diagrams is (0, 1) and its multiplicity coincides with the number of features in the respective
image. Observe that an unmatched point contributes with (0− 1

2 )
2 + (1− 1

2 )
2 = 1

2 to LTM(P ,G)

and a matched pair of points contributes with 0. Hence, the TopoMatch loss takes values in 1
2N0 and

is given by half the number of unmatched features in both P and G, i.e.

LTM(P ,G) =
1

2

(
#ker(τ(P ,G)) + #coker(τ(P ,G))

)
.

(a) βerr(P ,G) = 0 (b) LTM(P ,G) = 2 (c) LW(P ,G) = 0

Figure 8: Illustration of the advantages of our TopoMatch error over the Betti number error. (a)
shows a prediction P (left), ground truth G (right) and the corresponding Betti number error. (b)
shows the TopoMatch matching in dim-1 (no features are matched) with its corresponding loss and
(c) shows the Wasserstein matching in dim-1 (same color indicates a matching) with its correspond-
ing loss. Note that both Betti number error and Wasserstein loss fail to represent the spatial error,
while TopoMatch correctly does not match any cycles resulting in a loss of 2.

4 EXPERIMENTATION

Datasets We employ a set of six datasets with diverse topological features for our validation exper-
imentation. Two datasets, the Massachusetts roads dataset, and the CREMI neuron segmentation
dataset, exhibit frequently connected curvilinear, network-like structures, which form a large num-
ber of cycles in the foreground. The C.elegans infection live/dead image dataset (Elegans) from
the Broad Bioimage Benchmark Collection Ljosa et al. (2012) and our synthetic, modified MNIST
dataset LeCun (1998) (synMnist) consist of a balanced number of dimension-0 and dimension-1 fea-
tures. And third, the colon cancer cell dataset (Colon) from the Broad Bioimage Benchmark Collec-
tion Carpenter et al. (2006); Ljosa et al. (2012) and the Massachusetts buildings dataset (Buildings)
Mnih (2013) have ”blob-like” foreground structures. They contain very few dimension-1 features
but every instance of a cell or building forms a dimension-0 feature.
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Table 1: Main results for TopoMatch and three baselines on six datasets. Green columns indicate
the topological metrics. Bold numbers highlight the best performance for a given dataset if it is
significant (i.e. the second best performance is not within std/8). We find that TopoMatch improves
the segmentations in all topological metrics for all datasets. We further observe a constantly high
performance in volumetric metrics. ↑ indicates higher value wins and ↓ the opposite.

Loss Dice ↑ clDice ↑ Acc. ↑ T.M.↓ T.M.-0↓ T.M.-1↓ Betti ↓ Betti-0 ↓ Betti-1 ↓

C
R

E
M

I Dice 0.894 0.939 0.959 74.82 19.84 54.98 114.12 39.12 75.00
clDice 0.879 0.944 0.952 73.52 17.18 56.34 103.92 33.64 70.28

Hu et al. 0.888 0.935 0.957 81.24 22.12 59.12 118.16 43.68 74.48
Ours 0.893 0.941 0.959 64.90 15.50 49.40 79.16 30.36 48.80

R
oa

ds

Dice 0.663 0.698 0.974 58.90 43.52 15.38 113.96 86.54 27.42
clDice 0.668 0.704 0.975 65.50 51.04 14.46 125.83 101.67 24.17

Hu et al. 0.674 0.712 0.974 50.50 36.52 13.98 95.83 72.54 23.29
Ours 0.663 0.713 0.972 41.50 28.15 13.35 75.08 55.79 19.29

sy
nM

ni
st Dice 0.871 0.907 0.962 1.849 0.979 0.870 2.590 1.674 0.916

clDice 0.875 0.921 0.963 1.270 0.436 0.834 1.640 0.700 0.940
Hu et al. 0.866 0.915 0.960 1.425 0.502 0.923 1.802 0.764 1.038

Ours 0.849 0.915 0.954 1.140 0.265 0.875 1.348 0.426 0.922

E
le

ga
ns

Dice 0.922 0.959 0.984 2.05 1.30 0.750 2.60 1.40 1.20
clDice 0.917 0.964 0.982 1.95 1.10 0.850 2.20 1.20 1.00

Hu et al. 0.921 0.959 0.984 2.15 1.42 0.725 2.50 1.35 1.15
Ours 0.919 0.960 0.983 1.70 1.05 0.650 1.90 0.80 1.10

C
ol

on

Dice 0.899 0.863 0.970 22.13 10.88 11.25 33.75 13.75 20.00
clDice 0.907 0.871 0.974 23.63 9.38 14.25 37.75 11.75 26.00

Hu et al. 0.902 0.876 0.972 17.25 7.75 9.50 22.00 7.00 15.00
Ours 0.907 0.871 0.975 16.00 7.13 8.88 21.50 6.25 15.25

B
ui

ld
in

gs Dice 0.623 0.672 0.934 286.22 275.50 10.73 162.95 151.70 11.25
clDice 0.632 0.693 0.931 285.60 267.98 17.63 175.50 155.05 20.45

Hu et al. 0.625 0.677 0.934 278.30 268.75 9.55 181.10 169.60 11.50
Ours 0.625 0.685 0.937 244.58 235.63 8.95 118.45 107.75 10.70

Training of the segmentation networks For implementation details, e.g., the training splits, please
refer to App. I and J. We train all our models for a fixed, dataset-specific number of epochs and eval-
uate the final model on an unseen test set. We train all models on an Nvidia P8000 GPU using Adam
optimizer. We run experiments on a range of alpha-parameters for clDice (Shit et al. (2021)), the
Wasserstein matching (Hu et al. (2019)), and TopoMatch; we choose to present the top performing
model in Table 1; extended results are given in tables 3, 4, 5,2, 6 in App. H.

clDice Hu et al.  Label Dice  Image Ours

Figure 9: Qualitative Results on CREMI dataset (same models used as in Table 1). Topological
errors are indicated by red circles. Our method leads to less topological errors in the segmentation.

4.1 RESULTS

Main Results Our proposed TopoMatch loss improves the topological accuracy of the segmenta-
tions across all datasets (Table 1), irrespective of the choice of hyper-parameters (Table 3) compared
to all baselines. We show superior scores for the topological metrics TopoMatch error (T.M.) and
Betti number error (Betti) in both dimension-0 and dimension-1. Further, the volumetric metrics
(Accuracy, Dice, and clDice) of the segmentations show equivalent, if not superior quantitative re-
sults for our method. Our method can be trained from scratch or used to refine pre-trained networks.
Importantly, our method improves the topological correctness of curvilinear segmentation problems
(Roads, CREMI), blob-segmentation problems (Buildings, Colon), and mixed problems (SynMnist,
Elegans). We confidently attribute this to the theoretical guarantees of induced matchings, which
hold for the foreground and the background classes in dim-0 and dim-1. For illustration, please
consider the Roads and Buildings dataset; essentially, the topology of the background of the Build-
ings dataset is very similar to the foreground in Roads. I.e., the foreground of the Roads and the
background of the Buildings dataset are interesting in dim-1, whereas the background of the roads
and the foreground of the Buildings are interesting in dim-0. As our method can efficiently leverage

8
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the topology features of both foreground and background when we apply sub- and superlevelset-
matching and it is intuitive that our method prevails in both. It is of note that for some datasets, the
method by Hu et al. (2019) is the best performing baseline and for some Shit et al. (2021).

Table 2: bothlevel versus superlevel matching of our method on the Elegans dataset and the CREMI
dataset. The bothlevel matching appears to have a more pronounced contribution in the scenario of
topologically complex background

level α Dice clDice Acc. T.M. T.M.-0 T.M.-1 Betti Betti-0 Betti-1 ARI VOI

Elegans bothlevel 0.005 0.92 0.96 0.98 1.70 1.05 0.65 1.90 0.80 1.10 0.93 0.36
Elegans superlevel 0.005 0.92 0.95 0.98 2.15 1.35 0.80 2.40 1.30 1.10 0.91 0.43

CREMI bothlevel 0.5 0.89 0.95 0.95 60.48 12.92 47.56 52.08 25.28 26.80 0.93 0.36
CREMI superlevel 0.5 0.89 0.95 0.96 59.20 14.40 44.80 52.24 28.16 24.08 0.93 0.35

Ablation experiments In order to study the effectiveness of the TopoMatch loss, we conduct var-
ious ablation experiments. First, we study the effect of the α parameter in our method, see Table
3. We find that increasing α improves the topological metrics. For some datasets, e.g., synMnist,
the Dice metric is compromised if α is chosen too big. Therefore, we conclude that α is a tunable
and dataset-specific parameter. Ostensibly, the effect of the α parameter cannot be compared di-
rectly. Nonetheless, it appears that our method is more robust towards variation in α. Second, we
study the effect of considering both the foreground and the background (bothlevel) versus solely
the foreground (superlevel). We find that bothlevel is particularly useful if the background has a
complex topology (e.g. Elegans), whereas superlevel shows a similar performance if the foreground
has a more complex topology (e.g. CREMI), see Table 2. Third, we test the effect of pre-training
and training from scratch for TopoMatch and the method by Hu et al. (2019). Table 6 shows that
our method can be trained from scratch efficiently if not superiorly, whereas the baseline method
struggles in that setting – especially on more complex datasets such as CREMI. We attribute this to
the spatially correct matching of TopoMatch and its consequences on the gradient (see Sec. 3.2).
Training-from-scratch means that there is a lot potential for false positives and false negatives in the
Wasserstein matching (see App. F) since there are a lot noisy features when the network is still un-
certain. For example for CREMI we found that the Wasserstein matching matches cycles incorrectly
in more then 99 % of the cases, see appendix F.1. Moreover, we observe that TopoMatch optimizes
the Wasserstein loss more efficiently (see App. F.2). We also experiment with adding a boundary to
images in order to close loops that cross the image border, similar to Hu et al. (2019), and term this
relative TopoMatch. Table 4 shows a negligible effect on all metrics. For additional ablation and
more metrics on the ablation studies, please refer to the App. H. The computational complexity of
our matching is O(n3), see App. D for details.

5 DISCUSSION

Concluding remarks In this paper, we propose a rigorous method called TopoMatch, which en-
ables the faithful quantification of corresponding topological properties in image segmentation.
Herein, our method is the first to guarantee the correct matching of persistence barcodes in im-
age segmentation according to their spatial correspondence. We show that TopoMatch is efficient as
an interpretable segmentation metric, which can be understood as a sharpened variant of the Betti
error. Further, we show how our method can be used to train segmentation networks. Training
networks using TopoMatch is stable and leads to improvements on all 6 datasets.We foresee vast ap-
plication potential in challenging tasks such as road network, vascular network and Neuron instance
segmentation. We are thus hopeful that our method’s theory and experimentation will stimulate
future research in this area.

Limitations In the general setting of persistent homology of functions on arbitrary topological
spaces, there are instances where maps of persistence modules cannot be written as matchings. This
is somewhat analogous to the fact that in linear algebra, certain linear transformations cannot be
diagonalized. We did not observe any such case in our specific segmentation setting. A theoretical
investigation of this question will be the subject of future work. Further, we understand application-
specific experimental limitations. Our method’s computational complexity is beyond widely used
loss functions such as BCE (see App. D); moreover, our current implementation is only available in
2D, whereas the theoretical guarantees trivially generalize to 3D.

9
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6 REPRODUCIBILITY STATEMENT

To facilitate understanding of the theory section please refer to the basic definitions in the appendix.
The core algorithm (TopoMatch) is available as a python script in the supplementary material and
is printed in pseudocode in the appendix, section C. The training details are also described in the
appendix, section I. Furthermore, all of our code and all of our experimentation, including baselines
and hyperparameters, is available in a public anonymous Github repository 1.

7 ETHICS STATEMENT

We, the authors, declare that we strictly adhere to the ICLR Code of Ethics. Our method and
experimentation are carried out on (partly modified) public datasets with no known ethical concern
associations. Our studies do not involve human subjects and we do not foresee any conflicts of
interest and sponsorship, discrimination/bias/fairness concerns, privacy and security issues, legal
compliance, and research integrity issues.
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A ADDITIONAL TOPOLOGICAL MATCHING ILLUSTRATION

Fully correct geometric
match in TopoMatch.

𝐿𝑊𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛 = 𝟎. 𝟏
𝑳𝑻𝒐𝒑𝒐𝑴𝒂𝒕𝒄𝒉 = 𝟎. 𝟖

One false geometric match
and one entirely false match
in Wasserstein matching.

TopoMatch

Label Prediction  

TopoMatch

Wasserstein 
Matching

Label Prediction  

Label Prediction  

Label Prediction  

Figure 10: Topological matchings. Illustration of the advantages of our TopoMatch algorithm over
the existing Wasserstein matching and the Betti number error for two exemplary segmentations. On
the left side, we depict a prediction-label pair for an image. On the right side, we depict the matched
representative cycles in the same color for the Wasserstein matching (bottom row) and TopoMatch
matching (top row). Our TopoMatch matches the spatially correct features and will penalize the
correct features in the loss. Here, the Wasserstein matching mismatches the correctly predicted
feature with the erroneously predicted feature, leading to a false loss for the wrongly segmented
cycle.

TopoMatch Wasserstein Matching

LabelPrediction  LabelPrediction  

Dim-0

Dim-0

Dim-0

Figure 11: Motivation. Our TopoMatch (induced matching) and the Wasserstein matching (Hu
et al. (2019)) for Elegans, Colon and Buildings label-prediction pairs. Here we match the connected
components (dim-0). The matched components (according to the matching methods) are represented
in the same color. We randomly sample 6 matched cycles in each pair.
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TopoMatch Wasserstein Matching

LabelPrediction  LabelPrediction  

Figure 12: Motivation. Our TopoMatch (induced matching) and the Wasserstein matching (Hu et al.
(2019)) for Roads label-prediction pairs. The matched cycles (according to the matching methods)
are represented in the same color. We randomly sample 6 matched cycles (dim-1) in each pair. We
observe that our method correctly matches the cycles in the first two rows. The third row represents
an example early in Training. Here we observe that our method correctly matches some ”finished”
cycles but also provides a correct matching to the blue and green cycles which still have to be closed.
Essentially, one can observe here that our TopoMatch leads to a correct loss.
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TopoMatch Wasserstein Matching

LabelPrediction  LabelPrediction  

Figure 13: Motivation. Our TopoMatch (induced matching) and the Wasserstein matching (Hu et al.
(2019)) for CREMI label-prediction pairs. The matched cycles (according to the matching methods)
are represented in the same color. We randomly sample 6 matched cycles in each pair.
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TopoMatch Wasserstein Matching

LabelPrediction  LabelPrediction  

Dim-1

Dim-1

Dim-0

Figure 14: Motivation. Our TopoMatch (induced matching) and the Wasserstein matching (Hu et al.
(2019)) for synMnist label-prediction pairs (top row), colon cells (middle row) and the Elegans
dataset (lower row). The matched connected components (dim-0) and cycles (dim-1) (according to
the matching methods) are represented in the same color. We randomly sample 6 matched cycles in
each pair.
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B ADDITIONAL QUALITATIVE RESULTS

clDice Hu et al.  Label Dice  Image Ours

Figure 15: Qualitative Results on Roads and Buildings dataset. Image, Label, and different segmen-
tations (same models as table 1). Topological errors are indicated by red circles. Our method leads
to improved topology compared to the baselines.
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clDice Hu et al.  Label Dice  Image Ours

Figure 16: Qualitative Results on CREMI, Elegans and Colon dataset. Image, Label, and different
segmentations (same models as table 1). Topological errors are indicated by red circles. Our method
leads to improved topology compared to the baselines.
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clDice Hu et al.  Label Dice  Image Ours

Figure 17: Qualitative Results on SynMnist. Image, Label, and different segmentations (same mod-
els as table 1) on examples of the SynMnist testset. Topological errors are indicated by red circles.
Our method always segments the correct topology.

C DETAIL ALGORITHM

Below, we provide the pseudocode for an efficient realization of the TopoMatch matching. For the
computation of the barcodes in dimension-0 we leveraged the Union-Find datastructure, which is
very efficient at managing equivalence classes. Alexander duality allows us to use it in dimension-1,
as well (see Garin et al. (2020)). Moreover, it can also be used for the computation of the image
barcodes in both dimensions. Note that we adapt the Union Find class to manage the birth of
equivalence classes. We use clearing (as proposed in Bauer (2021)) by keeping track of critical-
edges and columns-to-reduce, in order to reduce the amount of operations during the reductions (see
sections 2.2, 2.3).
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Algorithm 1: TopoMatch
Data: G,L
Option: relative = False, filtration = ‘superlevel′

Result: L0, L1, L
1 begin
2 if filtration=‘superlevel’ then // Construction of comparison image
3 C ← max(G,L)
4 else
5 C ← min(G,L)
6 end
7 B(G),DG,VG,XG ← CubicalPersistence(G, relative, filtration, True);
8 B(L),DL,VL,XL ← CubicalPersistence(L, relative, filtration, True);
9 B(C),CC ,VC ,XC ← CubicalPersistence(C, relative, filtration, False);

10 B(G,C)← ImagePersistence(DG,XG,CC ,XC);
11 B(L,C)← ImagePersistence(DL,XL,CC ,XC);
12 σ(G,C)← InducedMatching(B(G,C),B(G),B(C));
13 σ(L,C)← InducedMatching(B(L,C),B(L),B(C));
14 τ(L,G) = ϕ; // Initialize matched refined intervals
15 U0,U1 = B(G)0,B(G)1 ; // Initialize unmatched refined intervals

for ground truth
16 V0,V1 = B(L)0,B(L)1 ; // Initialize unmatched refined intervals

for prediction
17 L0 = L1 = 0 ; // Initialize TopoMatch loss
18 for d← 0 to 1 by 1 do // Loop over dimension-d
19 foreach m0 ∈ σ(G,C)d do
20 foreach m1 ∈ σ(L,C)d do
21 if m0[2] = m1[2] then // Check for same image persistence

pair
22 Add ((m0[0],m0[2],m1[0])) to τ(L,G)d;
23 Remove (m0[0]) from Ud;
24 Remove (m1[0]) from Vd;
25 Remove (m1) from σ(L,C)d;
26 p, q = m0[0],m1[0];
27 I0, I1 = VG(Index2Coord(p[0])),VG(Index2Coord(p[1])) ; // Map

index to value
28 J0, J1 = VL(Index2Coord(q[0])),VL(Index2Coord(q[1])) ; // Map

index to value
29 Ld = Ld + (I0 − J0)

2 + (I1 − J1)
2 ; // Loss for matched

intervals
30 break
31 end
32 end
33 end
34 foreach p ∈ Ud do
35 I0, I1 = VG(Index2Coord(p[0])),VG(Index2Coord(p[1])) ; // Map index

to value

36 Ld = Ld +
(I0−I1)

2

2 ; // Loss for unmatched intervals in ground
truth

37 end
38 foreach p ∈ Vd do
39 I0, I1 = VL(Index2Coord(p[0])),VL(Index2Coord(p[1])) ; // Map index

to value

40 Ld = Ld +
(I0−I1)

2

2 ; // Loss for unmatched intervals in
prediction

41 end
42 end
43 L ← L0 + L1 ; // Total TopoMatch loss
44 end
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45 Procedure CubicalPersistence(I , relative, filtration, critical)
46 if relative=True then
47 I ← AddBoundary(I); // Add image boundary
48 end
49 V ,X,E← FilterCubeMap(I, filtration) ; // Valuemap, Indexmap & edges

are computed using the CubeMap datastructure as in Wagner
et al. (2012)

50 B(I)0,B(I)1 = ϕ ; // Initialize refined barcodes
51 C = ϕ ; // Initialize columns-to-reduce for the clearning trick
52 if critical=True then
53 D = ϕ ; // Initialize critical-edges for the clearing trick
54 end
55 U = UnionFind(#cubes+ 1) ; // Instantiate a Union-Find class
56 foreach e ∈ E do // Compute refined intervals in dimension-1
57 b0, b1 ← DualBoundary(X, e) ; // Find dual boundary of an edge
58 x, y ← U .find(b0),U .find(b1);
59 if x = y then
60 Add e to C , continue
61 end
62 b = min(U .getbirth(x),U .getbirth(y)) ; // Retrieve birth
63 if critical=True then
64 Add e to D;
65 end
66 if (e, b) is valid then // Check for positive interval
67 Add (e, b) to B(I)1
68 end
69 U .union(x, y)
70 end
71 U = UnionFind(#cubes) ; // Instantiate a Union-Find class
72 foreach e ∈ C do // Compute refined intervals in dimension-0
73 b0, b1 ← Boundary(X, e); // Find boundary of an edge
74 x, y ← U .find(b0),U .find(b1);
75 if x = y then
76 continue
77 end
78 b = max(U .getbirth(x),U .getbirth(y)) ; // Retrieve birth
79 if (e, b) is valid then // Check for positive interval
80 Add (e, b) toB(I)0;
81 end
82 U .union(x, y)
83 end
84 if critical=True then
85 return (B(I)0,B(I)1),D,V ,X ; // Return refined barcodes,

critical-edges, Valuemap & Indexmap
86 else
87 return (B(I)0,B(I)1),C,V ,X ; // Return refined barcodes,

columns-to-reduce, Valuemap & Indexmap
88 end
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89 Procedure ImagePersistence(D,XI ,C,XJ)
90 B(I,J)0,B(I,J)1 = ϕ ; // Initialize image persistence pairs
91 U = UnionFind(#cubes) ; // Instantiate a Union-Find class
92 foreach e ∈ C do // Compute pairs in dimension-0
93 b0, b1 ← Boundary(XI , e); // Find boundary of an edge
94 x, y ← U .find(b0),U .find(b1);
95 if x = y then
96 continue
97 end
98 b = max(U .getbirth(x),U .getbirth(y)); // Retrieve birth
99 Add (e, b) to B(I,J)0 ; // All pairs for extended induced matching

(see Sec. 2.3)
100 U .union(x, y)
101 end
102 U = UnionFind(#cubes+ 1) ; // Instantiate a Union-Find class
103 foreach e ∈ D do // Compute pairs in dimension-1
104 b0, b1 ← DualBoundary(XJ , e); // Find dual boundary of an edge
105 x, y ← U .find(b0),U .find(b1);
106 if x = y then
107 continue
108 end
109 b = min(U .getbirth(x),U .getbirth(y)); // Retrieve birth
110 Add (e, b) to B(I,J)1 ; // All intervals for extended induced

matching (see Sec. 2.3)
111 U .union(x, y)
112 end
113 return (B(I,J)0,B(I,J)1) ; // Return image persistence pairs
114 Procedure InducedMatching(B(I,J),B(I),B(J))
115 σ(I,J)0, σ(I,J)1 = ϕ ; // Initialize matched refined intervals
116 for d← 0 to 1 by 1 do // Loop over dimension-d
117 foreach (a, b) ∈ B(I,J)d do // For each image persistence pair
118 mi,mj = None;
119 foreach (c, d) ∈ B(I)d do // Match left endpoints
120 if c = a then
121 mi = (c, d);
122 break
123 end
124 end
125 if mi = None then // Skip search if no match found
126 continue
127 end
128 foreach (c, d) ∈ B(J)d do // Match right endpoints
129 if d = b then
130 mj = (c, d);
131 break
132 end
133 end
134 if mj = None then // Skip search if no match found
135 continue
136 end
137 Add (mi, (a, b),mj) to σ(I,J)d;
138 Remove mi from B(I)d;
139 Remove mj from B(J)d;
140 end
141 end
142 return (σ(I,J)0, σ(I,J)1)
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D COMPUTATIONAL COMPLEXITY

For a grayscale image represented by a matrix I ∈ RM,N , we have n = MN number of pixels
and form a cubical grid complex of dimension d = 2. The computation of the filtration and the
boundary matrix can be done efficiently using the CubeMap data structure (see Wagner et al. (2012))
with O(3dn + d2n) time and O(d2n) space complexity. Computing the barcodes by means of
the reduction algorithm requires cubic complexity in the number of pixels O(n3) (see Otter et al.
(2017)). Despite our empirical acceleration due to the Union-Find class and clearing tricks (as
described in Bauer & Schmahl (2022); Bauer (2021)), the order complexity remains O(n3). We
need O(n2) time complexity for computing the final matching and loss. It is noteworthy that Hu
et al. (2019) also needsO(n3) time complexity to compute the barcode andO(n2) for the matching,
whereas Shit et al. (2021) requires relatively lower complexity O(n) due to the overlap based loss
formulation.

E CONVERGENCE OF TOPOMATCH LOSS

(a) CREMI (b) synMnist (c) ELEGANS

Figure 18: Plot of the empirical convergence curves of our TopoMatch loss for the CREMI, MNIST,
and ELEGANS datasets. We plot the TopoMatch contribution in the training loss for a varying
number of epochs, which is dependent on the dataset size. We show that TopoMatch loss efficiently
converges for the different datasets. The absolute magnitude of the loss varies from dataset to dataset
because TopoMatch is a real interpretable measure of dim-0 and dim-1 topological features in the
training images. E.g. CREMI has a substantially higher number of features, especially cycles, than
Elegans, therefore, the absolute magnitude of the loss is likely higher.
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F WASSERSTEIN MATCHING

The pth Wasserstein distance is frequently used to measure the difference between persistence
diagrams; it is given by

dp(B1,B2) = inf
γ

( ∑
q∈Dgm(B1)

∥q − γ(q)∥p∞

)1/p

for p ≥ 1, where γ runs over all bijections Dgm(B1) → Dgm(B2) that respect the dimension. For
a likelihood map L ∈ [0, 1]m×n and a ground truth G ∈ {0, 1}m×n, the authors of Hu et al. (2019)
adopt this metric to define the Wasserstein loss

LW(L,G) = min
γ

∑
q∈Dgm(L)

∥q − γ(q)∥22,

(a) L G

(b) Wasserstein matching

Figure 19: (a) A predicted
likelihood map L and ground
truth segmentation G. (b)
visualizes the Wasserstein
matching γ∗ (only the yellow
cycles are matched), i.e. the
top-left cycle in L is a false
negative and the bottom-right
cycle in L is a false positive.

where γ runs over all bijections Dgm(L) → Dgm(G) that respect
the dimension. The bijection γ∗ achieving the minimum corre-
sponds to the Wasserstein matching Dgm(L)→ Dgm(G), which
minimizes the total distance of matched points. For the represented
topological features this means that the matching is purely based
on their local contrast within their respective images. Furthermore,
note that Dgm(G) contains exclusively the point (0, 1) since the
entries of G are contained in {0, 1}. Hence, γ∗ matches points in
Dgm(L) representing features in L with enough local contrast in
descending order until Dgm(G) runs out of points. This proce-
dure results in a matching of topological features, which potentially
exhibit no spatial relation within their respective images (see Fig.
1,8c,19b and App. A) and can have a negative impact on the train-
ing of segmentation networks. To see this, we distinguish two cases
for a fixed point q = (q1, q2) ∈ Dgm(L):

case 1: (false positive) q is matched but there is no spatially corre-
sponding feature in G :
Since q is matched to the point (0, 1) ∈ Dgm(G), the loss LW
will be reduced by decreasing the value q1 and increasing the value
q2. Hence, the segmentation network will learn to increase the lo-
cal contrast of the feature described by the q (see Sec. 3.2), but it
should be decreased.

case 2: (false negative) q is unmatched but there is a spatially cor-
responding feature in G:
Since q is unmatched, the bijection γ∗ maps it to its closest point ((q1 + q2)/2, (q1 + q2)/2) on the
diagonal ∆ and the loss LW will be reduced by increasing the value q1 and decreasing the value q2.
Hence, the segmentation network will learn to decrease the local contrast of the feature described
by q (see Sec. 3.2), but it should be increased.

F.1 FREQUENCY OF INCORRECT WASSERSTEIN MATCHING

Next, we study how frequently these two cases occur. Assuming that the TopoMatch matching is
correct, we evaluate the quality of the Wasserstein matching on the CREMI dataset. Therefor, we
choose a segmentation model to obtain label-prediction pairs for every image in the CREMI dataset
and compute both matchings. Among the 37243 matched intervals in the barcodes of the predictions
by the Wasserstein matching, only 224 have been matched correctly, i.e. it achieves a precision of
0.6%.

F.2 WASSERSTEIN LOSS AS BETTI NUMBER ERROR

For a binarized output P and ground truth G, the Wasserstein loss and the Betti number error are
closely related. A similar argumentation as in Sec. 3.3 for the TopoMatch loss shows that

βerr(P ,G) = 2LW(P ,G).
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A lower Betti number error of a model trained with our TopoMatch loss compared to a model trained
with the Wasserstein loss asserts that the TopoMatch loss produces more faithful gradients during
the training of segmentation networks. Note that, empirically, models trained with TopoMatch loss
consistently outperform models trained with Wasserstein los with regard to the Betti number error
(see Tables 1,3).

G PERSISTENCE DIAGRAM AND BARCODES

(a) Matching between Barcodes (b) Bijection between persistence diagram

Figure 20: Illustrations of how to translate a matching between barcodes (a) into a bijection between
persistence diagram (b) and vice versa. A red or blue line in (a) is a dot of the same color in (b).
In (a), a green interval in between a blue and a red line indicates they are matched. In (b), a line
connecting two points indicates that they are matched. For detail, please refer to Section 3.2.
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H ADDITIONAL ABLATION EXPERIMENTS

Table 3: α ablation on the synMnist dataset and the Roads dataset

α Dice clDice Acc. T.M. T.M.-0 T.M.-1 Betti Betti-0 Betti-1 ARI VOI
—

—
—

-R
oa

ds
—

—
—

- O
ur

s
0.0005 0.670 0.706 0.974 53.958 39.896 14.063 103.917 79.375 24.542 0.643 0.847
0.005 0.670 0.708 0.974 51.250 37.271 13.979 97.583 74.042 23.542 0.647 0.839
0.05 0.667 0.709 0.974 45.396 31.667 13.729 85.042 62.833 22.208 0.655 0.828
0.5 0.663 0.713 0.972 41.500 28.146 13.354 75.083 55.792 19.292 0.690 0.791

cl
D

ic
e

0.05 0.664 0.701 0.975 77.292 61.688 15.604 151.250 123.125 28.125 0.588 0.895
0.1 0.663 0.697 0.975 81.188 65.979 15.208 158.375 131.708 26.667 0.599 0.885

0.25 0.667 0.701 0.975 79.188 64.125 15.063 154.208 127.917 26.292 0.622 0.879
0.75 0.668 0.704 0.975 65.500 51.042 14.458 125.833 101.667 24.167 0.615 0.873
0.5 0.663 0.696 0.975 78.625 63.750 14.875 152.417 127.000 25.417 0.618 0.874

H
u

et
al

. 0.0005 0.669 0.706 0.974 53.750 39.521 14.229 102.500 78.542 23.958 0.651 0.838
0.005 0.674 0.712 0.974 50.500 36.521 13.979 95.833 72.542 23.292 0.660 0.836
0.05 0.669 0.707 0.974 52.896 39.208 13.688 99.875 77.917 21.958 0.654 0.832
0.5 0.656 0.699 0.970 58.583 44.604 13.979 105.417 88.708 16.708 0.709 0.787

—
—

—
-s

yn
M

ni
st

—
—

—
-

O
ur

s

0.0005 0.866 0.907 0.962 1.687 0.843 0.844 2.302 1.370 0.932 0.844 0.537
0.005 0.871 0.920 0.962 1.270 0.458 0.812 1.596 0.732 0.864 0.873 0.481
0.05 0.849 0.916 0.955 1.140 0.265 0.875 1.348 0.426 0.922 0.868 0.491
0.5 0.796 0.888 0.939 1.150 0.291 0.859 1.428 0.466 0.962 0.805 0.612

cl
D

ic
e

0.05 0.871 0.911 0.963 1.616 0.796 0.820 2.264 1.328 0.936 0.871 0.483
0.1 0.872 0.912 0.963 1.642 0.816 0.826 2.320 1.384 0.936 0.862 0.506

0.25 0.874 0.917 0.963 1.342 0.519 0.823 1.764 0.826 0.938 0.877 0.461
0.5 0.875 0.922 0.963 1.270 0.436 0.834 1.640 0.700 0.940 0.881 0.454

0.75 0.869 0.921 0.961 1.196 0.401 0.795 1.580 0.622 0.958 0.888 0.429

H
u

et
al

. 0.0005 0.872 0.909 0.963 1.881 1.001 0.880 2.650 1.686 0.964 0.880 0.461
0.005 0.870 0.908 0.962 1.787 0.911 0.876 2.498 1.514 0.984 0.864 0.504
0.05 0.867 0.916 0.960 1.425 0.502 0.923 1.802 0.764 1.038 0.893 0.425
0.5 0.785 0.862 0.935 1.754 0.562 1.192 1.968 0.840 1.128 0.814 0.589

Table 4: Relative Frame ablation of our method on the Roads dataset

α Dice clDice Acc. T.M. T.M.-0 T.M.-1 Betti Betti-0 Betti-1 ARI VOI

re
la

tiv
e 0.0005 0.670 0.706 0.974 53.958 39.896 14.063 103.917 79.375 24.542 0.643 0.847

0.005 0.670 0.708 0.974 51.250 37.271 13.979 97.583 74.042 23.542 0.647 0.839
0.05 0.667 0.709 0.974 45.396 31.667 13.729 85.042 62.833 22.208 0.655 0.828
0.5 0.663 0.713 0.972 41.500 28.146 13.354 75.083 55.792 19.292 0.690 0.791

no
n-

re
la

tiv
e 0.0005 0.669 0.706 0.974 54.729 40.521 14.208 104.542 80.542 24.000 0.654 0.835

0.005 0.671 0.709 0.974 50.250 36.479 13.771 95.167 72.458 22.708 0.661 0.829
0.005 0.669 0.712 0.973 46.104 32.271 13.833 84.708 64.042 20.667 0.675 0.818
0.5 0.661 0.711 0.972 41.417 28.167 13.250 75.583 55.833 19.750 0.695 0.787

Table 5: dimension-1 and dimensions-0,1 matching ablation for the Hu et al. method on the Roads
dataset

α Dice clDice Acc. T.M. T.M.-0 T.M.-1 Betti Betti-0 Betti-1 ARI VOI

di
m

-1

0.0005 0.669 0.706 0.974 53.750 39.521 14.229 102.500 78.542 23.958 0.651 0.838
0.005 0.674 0.712 0.974 50.500 36.521 13.979 95.833 72.542 23.292 0.660 0.836
0.05 0.669 0.707 0.974 52.896 39.208 13.688 99.875 77.917 21.958 0.654 0.832
0.5 0.656 0.699 0.970 58.583 44.604 13.979 105.417 88.708 16.708 0.709 0.787

di
m

-0
,1

0.0005 0.672 0.709 0.974 54.292 40.104 14.188 104.083 79.708 24.375 0.649 0.839
0.005 0.673 0.710 0.974 52.750 38.625 14.125 100.667 76.750 23.917 0.656 0.836
0.05 0.668 0.708 0.974 47.000 33.146 13.854 88.083 65.792 22.292 0.649 0.832
0.5 0.662 0.711 0.972 44.708 31.292 13.417 80.583 62.083 18.500 0.692 0.798
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Table 6: Pretraining vs training from scratch of ours and the Hu et al. method on the Elegans dataset

Training α Dice clDice Acc. T.M. T.M.-0 T.M.-1 Betti Betti-0 Betti-1 ARI VOI
C

R
E

M
I Ours f. scratch 0.05 0.882 0.938 0.953 65.06 13.94 51.12 45.72 27.16 18.56 0.919 0.393

Ours pretrained 0.05 0.889 0.940 0.957 65.68 14.26 51.42 64.40 27.96 36.44 0.905 0.437
Hu et al. f. scratch 0.05 0.880 0.932 0.953 82.76 27.92 54.84 85.60 55.28 30.32 0.905 0.436
Hu et al. pretrained 0.05 0.895 0.942 0.960 66.40 17.76 48.64 75.36 34.96 40.40 0.909 0.425

E
le

ga
ns

Ours f. scratch 0.005 0.919 0.960 0.983 1.700 1.050 0.650 1.90 0.80 1.10 0.927 0.359
Ours pretrained 0.005 0.924 0.963 0.984 1.950 1.200 0.750 2.30 1.20 1.10 0.939 0.313
Hu et al. f. scratch 0.005 0.921 0.959 0.984 2.150 1.425 0.725 2.50 1.35 1.15 0.929 0.350
Hu et al. pretrained 0.005 0.921 0.962 0.984 2.075 1.250 0.825 2.55 1.30 1.25 0.929 0.349

I DATASETS AND TRAINING SPLITS

The full training routine with the complete trainingsets and testsets will be available with our github
repository 2. All our trainings are done on patches of 48× 48 pixels. For the buildings dataset Mnih
(2013), we downsample the images to 375×375 pixels and randomly choose 80 samples for training
and 20 for testing. For each epoch, we randomly sample 8 patches from each sample. For the Colon
dataset Carpenter et al. (2006); Ljosa et al. (2012), we downsample the images to 256× 256 pixels;
we randomly choose 20 samples for training and 4 for testing. For each epoch, we randomly sample
12 patches from each sample. For the CREMI dataset Funke et al. (2019), we downsample the
images to 312× 312 pixels; we choose 100 samples for training and 25 for testing. For each epoch,
we randomly sample 4 patches from each sample. For the Elegans dataset Ljosa et al. (2012), we
crop the images to 96 × 96 pixels; we randomly choose 80 samples for training and 20 for testing.
For each epoch, we randomly sample 1 patch from each sample. For the synMnist dataset LeCun
(1998), we synthetically modify the MNIST dataset to an image size of 48 × 48 pixels; please see
our GitHub repository for details; we train on 4500 full, randomly chosen images and use 1500 for
testing. For the Roads dataset Mnih (2013), we downsample the images to 375 × 375 pixels; we
randomly choose 100 samples for training and 24 for testing. For each epoch, we randomly sample
8 patches from each sample.

J NETWORK SPECIFICATIONS

We use the following notation:

1. In(input channels), Out(output channels), BI(output channels) present input, out-
put, and bottleneck information (for U-Net);

2. C(filter size, output channels) denote a convolutional layer followed by ReLU and
batch-normalization;

3. U(filter size, output channels) denote a trans-posed convolutional layer followed by
ReLU and batch-normalization;

4. ↓ 2 denotes maxpooling;
5. ⊕ indicates concatenation of information from an encoder block.

J.1 UNET CONFIGURATION-I

We use this configuration for CREMI, synthMNIST, Colon and Elegans dataset. This is a lightweight
U-net which has sufficient expressive power for these datasets.

ConvBlock : CB(3, out size) ≡ C(3, out size)→ C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size)→ ⊕→ C(3, out size)

Encoder : IN(1/3 ch) → CB(3, 16) → CB(3, 32) → CB(3, 64) → CB(3, 128) →
CB(3, 256)→ B(256)

2github/anonymous
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Decoder : B(256) → UB(3, 256) → UB(3, 128) → UB(3, 64) → UB(3, 32) → UB(3, 16) →
Out(1)

J.2 UNET CONFIGURATION-II

We had to choose a different U-Net architecture for the road and building dataset because we realized
that a larger model is needed to learn useful features for this complex task.

ConvBlock : CB(3, out size) ≡ C(3, out size)→ C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size)→ ⊕→ C(3, out size)

Encoder : IN(3 ch) → CB(3, 64) → CB(3, 128) → CB(3, 256) → CB(3, 512) →
CB(3, 1024)→ B(1024)

Decoder : B(1024) → UB(3, 1024) → UB(3, 512) → UB(3, 256) → UB(3, 128) →
UB(3, 64)→ Out(1)

K EVALUATION METRICS

We evaluate our experiments using a set of topological and pixel-based metrics. The metrics are
computed with respect to the binarized predictions. Here, TopoMatch constitutes the most meaning-
ful quantification, see section 3.3. We calculate the TopoMatch metric for dimension-0 (T.M.-0) and
dimension-1 (T.M.-1) as well as their sum (T.M.). Furthermore, we implement the Betti number
error for dimension-0 (Betti 0), dimension-1 (Betti 1), and their sum (Betti):

βerr(P ,G) =

∞∑
d=0

|βd(D(P )0.5)− βd(D(G)0.5)|

It computes the Betti numbers of both foregrounds and sums up their absolute difference in each
dimension, i.e. it compares the topological complexity of the foregrounds. It is important to consider
the dimensions separately since they have different relevance on different datasets. E.g., Roads has
many 1-cycles, whereas Buildings has many 0-cycles (connected components).

Additionally, we use the traditional Dice metric and Accuracy, which describe the in total cor-
rectly classified pixels, as well as the clDice metric from Shit et al. (2021). Here, we calculate the
clDice between the volumes and the skeleta, extracted using the skeletonize function of the skimage
python-library. We compute all metrics on the individual test images of their respective size (without
patching) and take the mean across the whole testset.
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L BASIC DEFINITIONS AND TERMINOLOGY

L.1 CUBICAL COMPLEXES

A d-dimensional (cubical) cell in Rn is the Cartesian product c =
∏n

j=1 Ij of intervals Ij = [aj , bj ]

with aj ∈ Z, bj ∈ {aj , aj+1} and d ∈ {0, . . . , n} is the number of non-degenerate intervals among
{I1, . . . , Id}.
If c and d are cells and c ⊆ d, we call c a face of d of codimension dim(d) − dim(c). A face of
codimension one is also called a facet.

A d-dimensional (cubical) complex in Rn is a finite set of cubical cells in Rn with maximal di-
mension d that is closed under the face relation, i.e., if d ∈ K and c is a face of d, then c ∈ K.
Furthermore we call a cubical complex K ′ ⊆ K a subcomplex of K.

A filtration of a cubical complex K is given by a family (Kr)r∈R of subcomplexes of K, which
satisfies:

(1) Kr ⊆ Ks for all r ≤ s,
(2) K = Kr for some r ∈ R.

A filtered (cubical) complex K∗ is a cubical complex K together with a nested sequence of sub-
complexes, i.e., a sequence of complexes

∅ = K0 ⊆ K1 . . . ⊆ Km = K.

A function f : K → R on a cubical complex is said to be order preserving if f(c) ≤ f(d) for a
face c of a cell d.

L.2 HOMOLOGY

A chain complex C∗ consists of a family {Cd}d∈Z of vector spaces and a family of linear maps
{∂d : Cd → Cd−1}d∈Z that satisfy ∂d−1 ◦ ∂d = 0.

A map f : K → K ′ between cubical complexes is said to be cubical if it respects the face relation,
i.e., f(c) must be a face of f(d) in K ′ if c is a face of d in K.

L.3 HOMOLOGY OF CUBICAL COMOPLEXES

Homology is a powerful concept involving local computations to capture information about the
global structure of topological spaces. It assigns a sequence of abelian groups to a space which
encode its topological features in all dimensions. A feature in dimension-0 describes a connected
component, in dimension-1, it describes a loop, and in dimension-2, it describes a cavity. It also
relates these features between spaces by inducing homomorphisms between their respective homol-
ogy groups. We briefly introduce the homology of cubical complexes with coefficients in F2. For
more details, we refer to Kaczynski et al. (2004).

(a) 1-cell (b) 2-cell

(c) 1-cycle z2 (d) 1-cycle z2

Figure 21: (a) and (b) show
cells and their boundary (red).
(c) and (d) visualize two ho-
mologous 1-cycles (blue) in a
cubical complex.

For d ∈ Z, we denote by Kd the set of d-dimensional cells in
a cubical complex K. The F2-vector space Cd(K) freely gener-
ated by Kd is the chain group of K in degree d. We can think
of the elements in Cd(K) as sets of d-dimensional cells and call
them chains. These chain groups are connected by linear bound-
ary maps ∂d : Cd(K) → Cd−1(K), which map a cell to the sum
of its faces of codimension 1 and are extended linearly to all of
Cd(K). The cubical chain complex C∗(K) is given by the pair
({Cd(K)}d∈Z, {∂d}d∈Z). We denote by Zd(K) = ker ∂d the
subspace of cycles and by Bd(K) = im ∂d+1 the subspace of
boundaries in Cd(K). Since ∂d−1 ◦ ∂d = 0, every boundary is
a cycle and the homology group of K in degree d is defined by
the quotient space Hd(K) := Zd(K)/Bd(K). In other words,
Hd(K) consists of equivalence classes of d-cycles and two d-cycles
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z1, z2 are equivalent (homologous) if their difference is a boundary. For convenience, we define
H∗(K) =

⊕
d∈Z Hd(K). Note that the homology groups still carry the structure of a F2-vector

space and their dimension βd(K) = dimF2
(Hd(K)) is the dth Betti number of K.

Homology does not only act on spaces; it also acts on maps between spaces. Therefor, a cubical
map f : K → K ′ induces a linear map C∗(f) : C∗(K) → C∗(K

′), by mapping a cell c ∈ K with
dim(f(c)) = dim(c) to f(c) and extending this assignment linearly to all of C∗(K). Then C∗(f)
descends to a linear map H∗(f) : H∗(K)→ H∗(K

′) in homology since ∂∗ ◦ C∗(f) = C∗(f) ◦ ∂∗.

L.4 PERSISTENCE MODULES

A persistence module M consists of a family {Mr}r∈R of vector spaces, which are connected by
linear transition maps maps Mr,s : Mr →Ms for all r ≤ s, such that

(1) Mr,r = idMr for all r ∈ R,
(2) Ms,t ◦Mr,s = Mr,t for r ≤ s ≤ t.

M is said to be pointwise finite-dimensional (p.f.d.) if Mr is finite-dimensional for every r ∈ R.

A basic example of a persistence module is an interval module C(I) for a given interval I ⊆ R. It
consists of vector spaces

C(I)r =

{
F2 if r ∈ I,

0 otherwise.
and transition maps

C(I)r,s =

{
idF2

if r, s ∈ I,

0 otherwise.
for r ≤ s.

A morphism Φ: M → N between persistence modules is a family {Φr : Mr → Nr}r∈R of linear
maps, such that for all r ≤ s the following diagram commutes:

Mr Ms

Nr Ns

Mr,s

Φr Φs

Nr,s

We call Φ an isomorphism (resp. monomorphism, epimorphism) of persistence modules if Φr is
a isomorphism (resp. monomorphism, epimorphism) of vector spaces for all r ∈ R.

For a family {Mi}i∈I of persistence modules, the direct sum
⊕

i∈I Mi is the persistence mod-
ule consisting of vector spaces (

⊕
i∈I Mi)r =

⊕
i∈I(Mi)r for all r ∈ R and transition maps

(
⊕

i∈I Mi)r,s =
⊕

i∈I(Mi)r,s for all r ≤ s ∈ R.

A multiset X consists of a set |X| together with a multiplicity function multX : |X| → N∪ {∞}.
Equivalently it can be represented by its underlying set ⨿X =

⋃
x∈|X|

∐multX(x)
i=1 {x}. We say X

is finite if its underlying set ⨿X is finite and its cardinality #X is given by the cardinality of its
underlying set.

Let K∗ be a filtered cubical complex and L∗ a cell-wise refinement according to the compatible
ordering c1, . . . , cl of the cells in K. The boundary matrix B ∈ Fl×l

2 of L∗ is given entry-wise by

Bi,j =

{
1 if σi is a facet of σj ,

0 otherwise.

L.5 MATCHINGS

A map f : X → Y between multisets is a map f : ⨿X → ⨿Y between their underlying sets.

A matching σ : X → Y between multisets is a bijection σ : X ′ → Y ′ for some multisets X ′, Y ′

that satisfy ⨿X ′ ⊆ ⨿X and ⨿Y ′ ⊆ ⨿Y . We call
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• coim(σ) = X ′ the coimage of σ,
• im(σ) = Y ′ the image of σ,
• ker(σ) = X \X ′ the kernel and of σ,
• coker(σ) = Y \ Y ′ the cokernel of σ.

For a morphism Φ: M → N of persistence modules, the image of Φ is the persistence module
im(Φ), with im(Φ)r = im(Φr) and transition maps im(Φ)r,s = Nr,s|im(Φr) : im(Φr) → im(Φs)
for r, s ∈ R.

Let M,N be persistence modules. We call M a (persistence) submodule of N if Mr is a subspace
of Nr for every r ∈ R and the inclusions ir : Mr ↪→ Nr assemble to a persistence map i = (ir)r∈R.
In this case we write M ⊆ N .

The composition of two matchings X σ1−→ Y
σ2−→ Z is given by the composition of the bijections

σ−1
1 (Y ′)

σ1−→ Y ′ σ2−→ σ2(Y
′),

with Y ′ = ⨿ im(σ1) ∩ ⨿ coim(σ2).

A persistence module M is said to be staggered if every real number r ∈ R occurs at most once as
endpoint of an interval in B(M).
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