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ABSTRACT

As machine learning models are deployed ever more broadly, it becomes increas-
ingly important that they are not only able to perform well on their training distri-
bution, but also yield accurate predictions when confronted with distribution shift.
The Distributionally Robust Optimization (DRO) framework proposes to address
this issue by training models to minimize their expected risk under a collection
of distributions, to imitate test-time shifts. This is most commonly achieved by
instance-level re-weighting of the training objective to emulate the likelihood ratio
with possible test distributions, which allows for estimating their empirical risk via
importance sampling (assuming that they are subpopulations of the training distri-
bution). However, re-weighting schemes in the literature are usually limited due
to the difficulty of keeping the optimization problem tractable and the complexity
of enforcing normalization constraints. In this paper, we show that three simple
ideas – mini-batch level normalization, a KL penalty and simultaneous gradient
updates – allow us to train models with DRO using a broader class of parametric
likelihood ratios. In a series of experiments on both image and text classification
benchmarks, we find that models trained with the resulting parametric adversaries
are consistently more robust to subpopulation shifts when compared to other DRO
approaches, and that the method performs reliably well with little hyper-parameter
tuning.1

1 INTRODUCTION

It is well acknowledged that modern neural network based machine learning models tend to under-
perform when they are evaluated on data distributions that differ from the one they were trained on.
For example, machine learning model performance has been observed to degrade under train-test
mismatch in topics (Gururangan et al., 2020), demographics (Blodgett et al., 2016; Amodei et al.,
2016; Hovy & Søgaard, 2015; Grother et al., 2019), geographic regions (Koh et al., 2020), and even
data collection processes (Beery et al., 2018; Zech et al., 2018; Michel & Neubig, 2018). In particular,
these models often perform poorly when evaluated on subpopulations, domains that are present
but underrepresented in their training data (Sagawa et al., 2020), and they can latch on to spurious
correlations (McCoy et al., 2019). This has problematic real-world consequences: when such models
are deployed at large, this representation disparity can, for example, unfairly affect minority groups
(Buolamwini & Gebru, 2018; Hashimoto et al., 2018).

This behaviour can largely be attributed to the empirical risk minimization (ERM) principle which
underlies the majority of learning algorithms used in practice. In ERM, models are trained to
minimize the average loss over a finite sample from a fixed training distribution (Vapnik, 1992),
as a proxy for the expected loss on a random example drawn from the fixed, albeit unknown, data
distribution. This favors models which perform well on average on a fixed training set, as opposed
to models which would perform equally well on a variety of subpopulations that better reflects the
diverse set of distributions that can be encountered at test time. On the other hand, Distributionally
robust optimization (DRO) proposes an appealing alternative to ERM. In DRO, models are trained to

1Code to reproduce our experiments can be found at https://github.com/pmichel31415/P-DRO
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minimize their worst case risk (or an empirical estimate thereof computed on a finite sample, via e.g.
importance weighting) under a pre-determined family of distributions Q, called the “uncertainty set”
(or “ambiguity set”):

LDRO(θ) = max
q∈Q

E(x,y)∼q `θ(x, y). (1)

In the absence of explicit information about the subpopulations of interest (which would naturally
define Q), it is up to the practitioner to carefully define this uncertainty set. This has been the subject
of much work in the literature (see Rahimian & Mehrotra (2019) for a survey). Recently, Michel et al.
(2021) proposed P-DRO, a promising approach where the uncertainty set is defined by a parametric
family of generative models, which allows for more flexibility in defining the uncertainty set. P-DRO
shows significant improvement over comparable baselines, but it suffers from several drawbacks.
First, it presupposes the availability of generative models capable of outputting exact densities, which
limits its field of application to modalities where such models are readily available (such as language
models in NLP). Second, it is challenging to use in practice due to its reliance on a number of
hyper-parameters and approximations to the objective function.

In this paper, we propose a new approach for DRO, called RP-DRO, based on a key modification
of the P-DRO algorithm: instead of modeling the worst-case distributions directly, we parametrize
the likelihood ratio between the training distribution and the worst-case distribution. This removes
the dependency on an unwieldy generative model, making the method useful for more applications.
While likelihood ratio formulations of DRO have been tried in prior work (Sagawa et al., 2020),
we show that they are particularly effective for parametric, neural network based adversaries. Our
approach relies on three simple ideas: a mini-batch level normalization strategy to enforce likelihood
ratio constraints, a penalty-form of the KL divergence uncertainty set, and the use of simultaneous
gradient updates for training. RP-DRO consistently achieves equal or better robust subpopulation
accuracy compared to P-DRO and other baselines on a variety of standard benchmarks in image and
text classification. In addition, we find it is both faster than P-DRO and depends on fewer hyper-
parameters. Additional ablation experiments demonstrate that both our mini-batch normalization
strategy and simultaneous gradient updates are necessary for high performance. Finally, we perform
experimental analyses to shed light on the advantages brought by parametric adversaries compared to
their nonparametric counterparts.

2 BACKGROUND

In the following, we consider a model parametrized by θ ∈ Rdmodel . Our goal is to find a model which
minimizes the loss function `θ(x, y) on pairs of inputs and outputs (x, y) ∈ X × Y . For instance, x
might represent images and y a categorical label. Parameters θ are estimated on a training dataset
Dtrain = {(xi, yi)}i=1...Ntrain which we assume to be drawn from a training distribution p.

The DRO optimization problem with uncertainty set Q is

min
θ

max
q∈Q

Eq `θ(x, y). (2)

Note that the DRO loss in Eq. 1 is the inner maximum of the DRO problem, and it provides an
upper bound on the expected loss of the model under any distribution in the uncertainty set Q. This
motivates the use the minimizer of the min-max game in Eq. 2 as a robust model. We refer to the
solution of the inner maximum as the “adversary” from now on

However this objective is only useful insofar that (1) Q covers test distributions of interest (corre-
sponding to different domains, demographics, etc.) and (2) Q is not overly pessimistic. To fulfil this
second condition, there should exist some model θ∗ that achieves low loss simultaneously on the
test distribution as well as Q. This often requires that Q only contain distributions that are covariate
shifts of the test distribution, i.e. that are such that the conditional distribution q(y | x) coincides with
that of training distribution p(y | x).

2.1 NONPARAMETRIC DRO

There is substantial existing work on nonparametric formulations of DRO, where Q is expressed as a
divergence ball centered at the training distribution. This includes f -divergences (Ben-Tal et al., 2013;
Hu & Hong, 2013; Faury et al., 2020), Wasserstein/IPM (Sinha et al., 2018; Husain, 2020), moment
constraints (Delage & Ye, 2010; Nguyen et al., 2020), and CVaR (Fan et al., 2017; Curi et al., 2020;
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Levy et al., 2020) based uncertainty sets. These nonparametric approaches are appealing as they
require very little domain-specific knowledge, have well-understood theory (Duchi & Namkoong,
2018), and optimization procedures (e.g. Hu & Hong (2013) for KL constraints and Levy et al. (2020)
for χ2 and CVaR constraints).

Unfortunately, nonparametric DRO algorithms suffer from being overly pessimistic. Their uncertainty
sets tend to include distributions that are exceedingly difficult to learn, or not representative of real-
world distribution shifts. Furthermore, they often cannot enforce even basic constraints such as
covariate shift structures (Duchi et al., 2020; Hu et al., 2018). Group-structured DRO uncertainty sets
(Sagawa et al., 2020) overcome some of these challenges, but require significant domain expertise to
pre-specify target subpopulations that a model should be robust to.

2.2 PARAMETRIC DRO

Parametric DRO (Michel et al., 2021) is a method for DRO in which the uncertainty set Q is defined
as a family of parametric generative models, which avoids the extreme pessimism of nonparametric
DRO without the explicit specification of subpopulations. Specifically, given a generative model qψ
parameterized by ψ ∈ Rdadv , the KL-constrained parametric DRO objective can be written as follows:

min
θ

max
ψ

KL(qψ‖p)≤κ

E(x,y)∼qψ`(x, y, θ). (3)

As demonstrated by Michel et al. (2021), P-DRO yields significant improvements over its nonpara-
metric counterpart. However, the difficulty of optimizing Eq. 3 directly results in a number of
approximations and additional hyper-parameters that are hard to tune.

In addition, a central drawback of P-DRO is that it necessitates training an auxiliary generative model
of the data. This can be difficult for several reasons. First, this limits the applicability of the method
to domains with generative models that allow for exact probability computations. Moreover, even
when such generative models are available, they are often more computationally demanding than
their discriminative counterparts. In language models for instance, probabilities for sequences of text
are obtained by iteratively producing conditional probabilities over all tokens in the vocabulary. This
additional step results in considerable computational overhead compared to discriminative models.

3 PARAMETRIC LIKELIHOOD RATIO

3.1 DRO AS A LIKELIHOOD RATIO OPTIMIZATION PROBLEM

In the situation that all distributions in Q are absolutely continuous with respect to p (i.e. for all
measurable subset A ⊂ X × Y , all q ∈ Q, q(A) > 0 only if p(A) > 0) the inner maximum in Eq. 2
can be rewritten purely as a function of the likelihood ratio q

p

E(x,y)∼q `θ(x, y) = E(x,y)∼p
q(x, y)

p(x, y)
`θ(x, y). (4)

Such absolute continuity assumptions are standard in f -divergence and group DRO methods, which
both rely upon re-weighting the training distributions. In fact, the KL divergence constraint in P-DRO
presupposes absolute continuity.

This suggests that the inner maximum can be re-written as an optimization problem on functions
r : X × Y −→ R+ within the uncertainty setR ∈ {r | pr ∈ Q}

min
θ

max
r∈R

E(x,y)∼p r(x, y)`θ(x, y). (5)

This reparametrization of the problem will allow us to replace a parametric family of generative
models with a parametric family over probability ratios.

3.2 RATIO-BASED P-DRO

The likelihood ratio formulation described above is appealing for P-DRO because it enables the use
of discriminative style neural architectures for parametrizing the ratio r, which opens up many more

3



Published as a conference paper at ICLR 2022

options for defining the parametric uncertainty set. Specifically, we can set the adversary to be any
parametric function rψ : X × Y −→ R+ verifying Ex,y∼p rψ(x, y) = 1. The key insight that we use
to realize our proposed method is that we do not need to restrict the choice of adversaries to those
that implicitly satisfy this normalization condition (i.e. generative models). Instead, we can pick any
adversary and treat normalization as an additional constraint (the “normalization constraint”).

Note that in this case, the KL constraint takes the simple form KL(prψ‖p) = Eprψ log
prψ
p =

Ep rψ log rψ . The final min-max problem, which we dub ratio-based P-DRO (RP-DRO), is:
min
θ

max
ψ

Ep rψ log rψ≤κ
Eprψ=1

E(x,y)∼prψ(x, y)`θ(x, y)︸ ︷︷ ︸
LRP-DRO

. (6)

As in P-DRO, we can look for equilibria of this differentiable min-max game by performing simulta-
neous gradient updates (Singh et al., 2000) to θ and ψ in directions −∇θLRP-DRO and +∇ψLRP-DRO
respectively. Although finding global equilibria is not guaranteed in high dimensional non-convex
settings (Balduzzi et al., 2018), empirical evidence suggests that models trained in this manner still
reach useful solutions (Michel et al., 2021).

In experiments, we adopt an exponential parametrization rψ(x, y) ∝ efψ(x,y) where fψ is the output
of any parametric model with values in R. Similarly to P-DRO, we do not explicitly enforce the
KL constraint (due to the difficulty of projecting onto the KL ball), and instead we relax it in the
form of a term τ Ep rψ log rψ added to the loss function. The regularization strength τ is treated as a
hyper-parameter.

3.3 ENFORCING THE NORMALIZATION CONSTRAINT

In addition to the KL constraint, RP-DRO necessitates that rψ satisfies a normalization constraint
Ep rψ = 1 to ensure that prψ is a proper probability distribution over Dtrain. If that were not the case,
the adversary rψ could artificially increase the weighted expectation Ep rψ`θ by assigning a total
weight greater than 1 to the entire dataset.

Existing methods for ratio based DRO such as Sagawa et al. (2020) achieve this by either projecting
rψ onto the set {r | Ep r = 1} after each gradient update on ψ, or by directly parametrizing the
ratio as rψ(x, y) = efψ(x,y)/Ep efψ . Unfortunately, these solutions are computationally infeasible
in practical scenarios with large datasets. Indeed, they necessitate computing the entire expectation
over p, which can be costly when each fψ(x, y) is the output of a neural model.

We propose two simple, yet effective solutions for addressing this issue in the context of mini-batch
training where we can only compute fψ for small number of samples (x1, y1), . . . , (xn, yn) at each
step of training.

Self-normalization is inspired by the idea of “self-normalization” developed for globally normal-
ized structured prediction models (Andreas et al., 2015; Goyal et al., 2019). It consists in adding a
relaxation of the normalization constraint to the objective. Specifically, following Goyal et al. (2019)
we add a squared penalty on the log normalizer at the mini-batch level. Ignoring the KL penalty, this
regularized objective takes the following empirical form:

L̂self-norm(θ, ψ) =
1

n

n∑
i=1

rψ(xi, yi)`θ(xi, yi)− β log

(
1

n

n∑
i=1

rψ(xi, yi)

)2

. (7)

The hyper-parameter β controls the regularization strength. Intuitively, this penalizes adversaries that
assign too much (or too little) total weight to the mini-batch. However, the choice of an optimal β
adds an additional degree of freedom to RP-DRO, which suggests our second option as a simpler
alternative.

Batch-level normalization consists of using the normalized ratio at the mini-batch level by setting

r̃ψ(xi, yi) =
efψ(xi,yi)∑n
j=1 e

fψ(xj ,yj)
(8)

for each sample (xi, yi) in the mini-batch. An obvious downside of this approach is that the weight
of each sample now depends on the mini-batch it was sampled from. This can be problematic for
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small batch sizes: as an extreme example, for a batch size of 1, this normalization scheme assigns the
same weight of 1 to every sample, making the objective equivalent to ERM.

However, mini-batch approximations have proven effective for other forms of DRO (Hu et al., 2018;
Levy et al., 2020) and there is some evidence that they can yield accurate estimates for higher batch
sizes (Cortes et al., 2010). In practice we find that this approach yields good results for commonly
used batch sizes, is generally more stable than the self-normalization penalty, and does not introduce
the additional hyper-parameter β. In most of our experiments, we adopt this approach unless specified
otherwise. In that case, the empirical RP-DRO objective on a mini-batch becomes

L̂batch-level norm(θ, ψ) =

n∑
i=1

r̃ψ(xi, yi)`θ(xi, yi)︸ ︷︷ ︸
expected loss under prψ

−τ
n∑
i=1

r̃ψ(xi, yi) log r̃ψ(xi, yi)︸ ︷︷ ︸
KL penalty

. (9)

The KL term serves to penalize ratios that deviate too much from 1 (Note that the penalty is subtracted
because we are maximizing with respect to ψ). The only hyper-parameter that needs to be tuned is
the KL regularization strength τ .

4 EXPERIMENTS

4.1 DATASETS

We perform experiments on four datasets: two text classification datasets used in Michel et al. (2021),
BiasedSST and FDCL18, and two image classification datasets from Sagawa et al. (2020), Waterbirds
and CelebA. Specific details for each dataset follow these previous works, as described below:

BiasedSST is based on the SST-2 sentiment classification dataset (Radford et al., 2018), but
modified to introduce spurious correlation between a distractor token (“So,”) and positive labels in
around 95% of the dataset. In this setting models trained with ERM can very easily learn this spurious
correlation, which hurts performance on the small subpopulation that doesn not suffer from this bias.

FDCL18 A toxicity detection dataset of tweets labeled as hateful (5%), abusive (27%), normal
(54%) and spam (14%). The group-DRO problem is formulated by partitioning the evaluation data
along labels as dialectal annotation obtained automatically with an off-the shelf classifier (Blodgett
et al., 2016; Sap et al., 2019). In particular these dialects align closely with self-reported race, and
Sap et al. (2019) found that machine learning models trained on such toxicity detection datasets
tend to exhibit bias towards certain labels depending on the demographics of the tweets’ authors,
particularly with minorities. In order to report more reliable accuracy numbers, all groups containing
less than 100 samples are aggregated when computing test accuracies.

Waterbirds An image classification dataset where the task is to predict “land bird” or “water bird”
with the confounding factor of the background; most water (resp. land) bird pictures have water (resp.
land) on the background.

CelebA A popular face recognition dataset originally published by Liu et al. (2015). The group-
DRO problem is formulated as a task of predicting the hair color (“Blond” or “Dark”) across groups
formed by the combination of the label and the (binary) gender of the subject. Due to the spurious
correlation between blond hair/female and dark hair/male, models trained with ERM tend to achieve
lower accuracies on underrepresented groups such as “blond-haired male” which totals only 0.85%
of the training data.

4.2 EXPERIMENTAL SETTING

On BiasedSST and FDCL18 we follow Michel et al. (2021) and train a BiLSTM and BERT-base
model Devlin et al. (2018) respectively. On the image classification datasets we train Resnet-50
architectures (He et al., 2016) pre-trained on ImageNet (Deng et al., 2009) as in Sagawa et al. (2020).

Since the adversary in RP-DRO can be any discriminative architecture, we opt for the natural solution
of using a similar architecture for this model. For instance on BiasedSST, we take fψ(x, y) as the
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Table 1: Robust and average test accuracies on the Biased SST and FDCL18 datasets. Underlined
numbers indicates statistically significant difference compared to ERM (p-value< 0.05). Bold
numbers indicates the best number in each column (barring Oracle DRO).

Biased SST FDCL18
Robust Average Robust Average

ERM 2.15 ± 0.97 95.09 ± 0.16 19.57 ± 7.00 81.56 ± 0.26

Topic DRO 5.18 ± 1.46 95.00 ± 0.10 16.48 ± 5.46 80.49 ± 0.49

NonParam-χ2 4.65 ± 1.61 95.10 ± 0.22 15.70 ± 2.56 81.55 ± 0.23

NonParam-CVaR 24.42 ± 6.82 89.03 ± 3.73 11.19 ± 7.64 69.19 ± 8.28

NonParam-KL 28.11 ± 2.16 92.45 ± 1.55 17.54 ± 6.41 81.20 ± 0.11

P-DRO 34.98 ± 9.39 84.21 ± 2.11 30.25 ± 10.13 79.91 ± 1.41

RP-DRO 50.70 ± 7.33 86.60 ± 2.96 53.52 ± 1.66 76.62 ± 1.43

Oracle DRO 67.71 ± 3.03 77.91 ± 4.49 55.23 ± 3.97 72.43 ± 2.61

Table 2: Robust and average test accuracies on the Waterbirds and CelebA datasets. Underlined
numbers indicates statistically significant difference compared to ERM (p-value< 0.05). Bold
numbers indicates the best number in each column (barring Oracle DRO).

Waterbirds CelebA
Robust Average Robust Average

ERM 68.32 ± 2.02 89.23 ± 0.36 40.33 ± 2.29 95.89 ± 0.05

NonParam-χ2 68.54 ± 0.65 89.56 ± 0.61 41.78 ± 2.03 95.87 ± 0.07

NonParam-CVaR 44.71 ± 14.27 71.94 ± 10.30 36.00 ± 7.50 94.63 ± 0.58

NonParam-KL 72.21 ± 0.95 90.54 ± 0.72 43.33 ± 3.58 95.72 ± 0.10

RP-DRO 73.49 ± 3.01 90.15 ± 0.74 55.78 ± 9.15 93.10 ± 3.87

Oracle DRO 85.60 ± 0.95 89.12 ± 1.20 89.22 ± 0.90 92.59 ± 0.40

raw logit output by a BiLSTM architecture identical to that of the classifier (without the final softmax
layer). We do the same for the other datasets, with the exception of FDCL18 where we use a smaller
DistillBERT model (Sanh et al., 2019) for efficiency. We use the same learning rate and optimizer
for both model and adversary and only vary the KL penalty weight τ ∈ {0.001, 0.01, 0.1, 1.0}. We
use a batch size of 64 for BiasedSST and FDCL18 and 32 for Waterbirds and CelebA. We perform
optimal stopping using the Minmax criterion proposed in Michel et al. (2021): every epoch T , we
determine the best model by explicitly solving a greedy approximation of the min-max game between
all T previously checkpointed adversaries and models on the validation dataset Dvalid.

θ∗ = argmin
θi=1...T

max
ψj=1...T

1

|Dvalid|
∑

x,y∈Dvalid

r̃ψj (x, y)`θi(x, y) (10)

A similar strategy is applied for hyper-parameter selection. Importantly, we substitute the 0-1 loss
for `θ in Eq. 10 (only for validation) as we found in preliminary experiments on BiasedSST that it
consistently produced better results.

We compare our results to 5 different methods experimented with by Michel et al. (2021):

• ERM: standard training to minimize the average loss.
• NonParam: nonparametric DRO with various uncertainty sets. We report results for uncertainty set

constrained by KL divergence (Hu & Hong, 2013; Hu et al., 2018), χ2 divergence and CVaR (Levy
et al., 2020), respectively referred to as NonParam-KL, NonParam-χ2 and NonParam-CVaR.
In all of these variants, the inner maximization problem has an analytical solution where q(x, y)
depends on some function of `θ(x, y). Consequently, examples with high loss are up-weighted.

• Topic-DRO: a variation on Topic CVaR (Oren et al., 2019) using the online algorithm from Sagawa
et al. (2020) to minimize the worst case loss on a collection of pseudo domains automatically
generated via topic modeling.2 We use this baseline for the text datasets only (BiasedSST and
FDCL18).

2This baseline was inaccurately referred to as “Topic CVaR” in Michel et al. (2021)
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• P-DRO: the parametric DRO approach proposed by Michel et al. (2021). For image datasets,
preliminary experiments using auto-regressive models for image modeling (Van Oord et al., 2016)
proved to be prohibitively slow. Therefore, we only report P-DRO on text datasets as in Michel
et al. (2021).

• Oracle DRO: an online algorithm for minimizing the worst-case loss on the true uncertainty set
(Sagawa et al., 2020). Contrary to all other methods, Oracle DRO presupposes that we know the
groups of interest at training time. As such, it is not directly comparable and serves to provide an
upper bound of the robust accuracy that can be achieved.

Across all experiments, we report results with mean and standard deviation across 5 reruns with
different seeds. Note that the model selection criterion can have a large effect on final performance
(Gulrajani & Lopez-Paz, 2020). In contrast to some related work (e.g. Koh et al. (2020); Idrissi et al.
(2021)), except for Oracle DRO we only use validation criteria that do not require group annotation
on the validation set. We provide more details on the various hyper-parameters used in Appendix A.

4.3 RESULTS

For all methods, we report the worst accuracy over all groups in the test set (the “robust accuracy”).
Models that are robust to subpopulation shift will have higher robust accuracies. Since there is often
a trade-off between being robust to distribution shift and performing well on the training distribution,
we also report the standard accuracy on the original test set (the “average accuracy”)

As shown in Table 1, RP-DRO works particularly well on the two text classification tasks, beating all
baselines by a large margin on both BiasedSST and FDCL18. In fact, its robust accuracy almost
matches that of Oracle DRO on FDCL18, despite the fact that the former does not use an any group
information at training time. Compared to P-DRO, we find that results are not only better, but also
more consistent as evidenced by the lower standard deviation.

Results are also generally good on image datasets (see Table 2). On Waterbirds both the NonParam
baseline and RP-DRO perform much better than ERM, with a slight edge for RP-DRO (although
the latter exhibits a higher variance across reruns). On CelebA, RP-DRO largely outperforms the
baselines.

5 ANALYSIS AND ABLATIONS

We perform a series of analysis experiments and ablation studies to better (1) identify how the
parametric representation of the ratio provides improvements over nonparametric alternatives and (2)
understand the importance of the various choices made with regards to the renormalization scheme
described in Section 3. Throughout this section, experiments are performed on the BiasedSST dataset.

5.1 WHY ARE PARAMETRIC ADVERSARIES BETTER? THE CASE OF LABEL NOISE

Our experimental results in Section 4 shows that parametric approaches such as P-DRO and RP-
DRO consistently outperform their nonparametric counterparts. A possible explanation for this
phenomenon is that for nonparametric approaches, optimal weights generally only depends on the
loss of the model. This can be problematic because the nonparametric worst-case distribution will
indiscriminately up-weight noisy samples that have high loss. On the other hand, we hypothesize that
it is more difficult for the parametric adversary to “fit to the noise” and that it tends to focus more on
systematic patterns of failures of the model.

To corroborate this hypothesis, we perform experiments by adding increasing amounts of noise to
the BiasedSST. Specifically, for each example in the training set we replace the original label with a
random label with probability pnoise = 0, 0.1, . . . , 0.5. We then train models on these increasingly
noisy datasets using both a parametric (RP-DRO) and nonparametric (NonParam-{KL, CVaR,χ2})
approach. To simplify experiments we only run one hyper-parameter configuration for each (τ = 0.1
and κ = 1 for RP-DRO and NonParam respectively) and report the test accuracies of the model with
the highest robust accuracy on the validation set. Results are averaged over 5 runs with different
random seeds.

As showcased in Figure 1, we find that nonparametric approaches are very sensitive to label noise,
losing around 20 points when adding the smallest amount of noise (pnoise = 0.1 (85→ 65), whereas
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Figure 1: Effect of label noise on performance
(average test accuracy on BiasedSST) in para-
metric and nonparametric DRO.
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Figure 2: Evolution of RP-DRO’s robust ac-
curacy as the adversary takes more gradient
steps than the classifier in a toy setting.

RP-DRO is comparatively more robust with only a loss of around 5 points for the same amount of
noise. The trend holds all the way to pnoise = 0.5 where all models collapse to chance accuracies.
This further supports our hypothesis that nonparametric adversaries tend to fit to these noisy examples,
which decreases the overall quality of the resulting classifier. We show a finer-grained analysis of
the evolution of accuracies broken down by groups in Appendix B.1. In Appendix B.2, we present
additional qualitative evidence that nonparametric approaches tends to select individually difficult
examples rather than difficult subpopulations.

5.2 OPTIMIZATION WITH SIMULTANEOUS GRADIENT UPDATES PLAYS A CRUCIAL ROLE

Despite the aforementionned results, it remains unclear why RP-DRO learns re-weightings that are
less sensitive to label noise or difficult examples compared to NonParam-* methods. Indeed, since
the nonparametric adversary is the optimal solution of the inner minimization problem in Eq. 5, it
stands to reason that (large, sometimes over-parameterized) parametric adversaries from RP-DRO
would converge a solution close to NonParam. Our hypothesis is that the simultaneous updates to
both model and adversary parameters prevent the parametric adversary from converging towards such
solutions, and provides some implicit regularization against up-weighting examples that are noisy or
too difficult.

To verify this hypothesis, we conduct a toy experiment where we allow the adversary to take additional
gradient steps in-between each update to the classifier. At the limit, this would allow the adversary to
find an optimum of the inner maximization problem at each step of training the classifier (which for
large enough adversaries, might come close to the nonparametric solution).

For computational efficiency, these experiments are performed on a toy setting similar to that of
Michel et al. (2021): a linear model is trained on a binary classification problem with two domains,
one of which is severely under-represented. For our adversary, we experiment with a linear adversary,
as well as larger multilayer perceptrons with one hidden layer and 2 (MLP-2) and 4 (MLP-4) hidden
units. In Figure 2, we report the average robust accuracy (across 5 reruns) for classifiers trained with
RP-DRO when the adversary is allowed to take more steps than the classifier.

We observe that RP-DRO’s robust accuracy suffers from giving the adversary too much time to catch
up with the classifier: as the number of updates to the adversary increases, robust accuracy decreases.
This effect is amplified in larger adversaries (e.g. MLP-4). We find that a key effect of simultaneous
updates is to dramatically improve stability (see Appendix D). This experiment underlines the
importance of the simultaneous gradient updates, which prevent large, over-parameterized adversaries
from converging to the sub-optimal nonparametric solution. We also find that simultaneous updates
lead to dramatic

5.3 BATCH-LEVEL NORMALIZATION VS SELF-NORMALIZATION

In Section 3.3, we discussed two alternatives for enforcing the normalization constraint on the ratios
(Eprψ = 1): a regularization-based approach (“self-normalization”) and batch level renormalization.
In Figure 3, we show the effect of self-normalization with different values of the regularization weight
β for a fixed value of the KL penalty τ = 0.1. We find that batch-level normalization achieves a
slightly better robust accuracy than the best self-normalization configuration.
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Figure 3: Effect of self-normalization coefficient β on robust and average accuracy. We report results
of ERM (which corresponds to β =∞) and batch level renormalization for comparison.

In Michel et al. (2021), the Minmax stopping criterion was identified as a major contributing factor to
the performance of parametric DRO approaches. To understand how it affects each normalization
strategy, we perform the same experiment as above but this time without the Minmax criterion,
selecting instead the model with the highest robust accuracy on the validation set (“Oracle stopping”),
which provides an upper bound to the robust accuracy that can be achieved. We find that although
accuracies are generally closer, batch-level normalization matches the best self-normalization penalty
(the full figure can be found in Appendix C). This indicates that batch-level normalization not only
performs as well as self-normalization (without the need for tuning the additional hyper-parameter β),
but also that it interacts better with the Minmax stopping criterion, making it a preferable alternative.

5.4 EFFECT OF BATCH SIZE ON RE-NORMALIZATION

Table 3: Effect of batch size on RP-DRO
performance.

Batch size Robust Average

64 (ERM) 32.97 ± 2.34 92.42 ± 0.38

4 37.50 ± 2.37 92.32 ± 0.75
8 38.08 ± 2.06 91.61 ± 0.48

16 41.67 ± 3.53 91.24 ± 0.34
32 42.32 ± 0.72 89.77 ± 1.42
64 44.15 ± 6.83 88.30 ± 2.33

128 42.25 ± 7.90 88.21 ± 2.02

As pointed out in Section 3.3, a potential downside of the
mini-batch-level normalization approach is that the effec-
tive weight of each sample then depends on the weights
of the other samples within the mini-batch. For example,
consider an adversary that assigns high weight to only 5%
of the training data. With a small enough batch size, it is
likely that some batches may not contain any example of
the high weight subpopulation, in which case mini-batch
level renormalization will overestimate the weight of the
sample in the mini-batch.

To assess the severity of this issue, we run RP-DRO
on BiasedSST with τ = 0.1 and vary the batch size in
{4, 8, 16, 32, 64, 128}. Each configuration is run 3 times, and we report average and standard devia-
tion of the robust and average test accuracies in Table 3. Results suggest that while robust accuracy
indeed deteriorates for lower batch sizes (4 and 8), results are consistently good for batch sizes
upwards of 16, a reasonable number considering that larger batch sizes are often preferred in the
literature (Popel & Bojar, 2018; Goyal et al., 2017).

6 CONCLUSION

In this paper we have proposed a parametric, likelihood ratio based approach to distributionally
robust optimization of machine learning models. With the proposed method, we can use any type of
parametric function estimator to define the uncertainty set of the DRO min-max game. We showed
that with a careful renormalization strategy, the proposed method (RP-DRO) can be used to train
robust models. It depends on very few hyper-parameters and consistently performs well on a number
of benchmarks, making it an appealing “off-the-shelf” option. Finally we have shown that such
parametric approaches are more resilient to the presence of noise in the training data when compared
to their nonparametric alternatives, and that simultaneous gradient descent is a key component of
RP-DRO’s success.

The main downside of RP-DRO is the computational overhead of jointly training a second neu-
ral model. An interesting direction for future work is to improve its efficiency through parallel
computation or by sharing parameters between the classifier and the adversary.
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Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
8342–8360, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
acl-main.740. URL https://www.aclweb.org/anthology/2020.acl-main.740.

Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without
demographics in repeated loss minimization. In Proceedings of the 35th International Conference
on Machine Learning (ICML), pp. 1929–1938. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the 29th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

Dirk Hovy and Anders Søgaard. Tagging performance correlates with author age. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 483–488,
2015. URL https://www.aclweb.org/anthology/P15-2079.

Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally robust supervised
learning give robust classifiers? In Proceedings of the 35th International Conference on Machine
Learning (ICML), pp. 2029–2037, 2018. URL http://proceedings.mlr.press/v80/
hu18a/hu18a.pdf.

Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust opti-
mization. Available at Optimization Online, 2013.

Hisham Husain. Distributional robustness with ipms and links to regularization and gans. In
Proceedings of the 34th Annual Conference on Neural Information Processing Systems (NeurIPS),
2020.

Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data
balancing achieves competitive worst-group-accuracy. In Proceedings of the 2st Conference on
Causal Learning and Reasoning (CLeaR), 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations (ICLR), 2014.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. arXiv preprint arXiv:2012.07421, 2020.

Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods for distributionally
robust optimization. Proceedings of the 34th Annual Conference on Neural Information Processing
Systems (NeurIPS), 33, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of the 15th International Conference on Computer Vision (ICCV), December 2015.

Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 3428–3448, 2019.

12

https://www.aclweb.org/anthology/2020.acl-main.740
https://www.aclweb.org/anthology/P15-2079
http://proceedings.mlr.press/v80/hu18a/hu18a.pdf
http://proceedings.mlr.press/v80/hu18a/hu18a.pdf


Published as a conference paper at ICLR 2022

Paul Michel and Graham Neubig. MTNT: A testbed for machine translation of noisy text. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 543–553, 2018.

Paul Michel, Tatsunori Hashimoto, and Graham Neubig. Modeling the second player in distri-
butionally robust optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), 2021.

Viet Anh Nguyen, Nian Si, and Jose Blanchet. Robust bayesian classification using an optimistic
score ratio. In Proceedings of the 37th International Conference on Machine Learning (ICML),
2020.

Yonatan Oren, Shiori Sagawa, Tatsunori Hashimoto, and Percy Liang. Distributionally robust
language modeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 4227–4237, 2019. URL https://www.aclweb.org/
anthology/D19-1432.
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A ADDITIONAL EXPERIMENTAL DETAILS

We describe additional hyper-parameter choices specific to each dataset or method to facilitate
reproduction of our results.

A.1 DATASET-SPECIFIC HYPER-PARAMETERS

All hyper-parameters listed below are constant across all methods:

Text Datasets The input data is tokenized using the bert-base-uncased sub-word tokenizer
from Devlin et al. (2018). We train both classifier and adversary with Adam (Kingma & Ba, 2014)
using a learning rate of 2× 10−5, linearly decay the learning rate to 0 at each step. We train with
batches of size 64 (or containing up to 2500 tokens, whichever is lower) for 50 and 20 epochs for
BiasedSST and FDCL18 respectively, evaluating model on the validation data every epoch.

Image Datasets On both datasets, images are rescaled to 224 × 224 pixels and pixel values are
normalized to have mean 0 and variance 1 across all 3 color channels on the training data. At training
time, we augment the data by randomly cropping or flipping the images horizontally. We train using
regular stochastic gradient descent using a constant learning rate of 10−3 and a batch size of 32. We
train for 75 and 13 epochs on Waterbirds and CelebA respectively (those numbers were chosen to
match the number of steps trained to Sagawa et al. (2020) despite the smaller batch size), and validate
every 100 (for Waterbirds) and 1000 (for CelebA) training steps.

A.2 METHOD SPECIFIC HYPER-PARAMETERS

For NonParam we follow the adaptation of Hu et al. (2018) used in Michel et al. (2021) and choose
the optimal temperature τ∗ based on mini-batch level estimates of the KL divergence. We treat
the KL bound κ as a hyper-parameter. We adapt the Minmax stopping criterion of P-DRO to the
nonparametric adversaries as we found it yielded more robust models than those selected with average
validation accuracy. We sweep over κ ∈ {0.01, 0.1, 1.0, 10.0}
For RP-DRO we perform min-max stopping using the Minmax criterion with a KL threshold of
log 10 in all experiments, to match the value recommended for P-DRO. Specifically, we estimate the
KL divergence of checkpointed adversaries ψi on the validation data as follows:

1

|Dvalid|
∑

x,y∈Dvalid

r̂ψ(x, y) log r̂ψ(x, y) (11)

and reject adversaries for which this quantity exceeds log 10.

B ADDITIONAL COMPARISONS BETWEEN PARAMETRIC AND
NONPARAMETRIC DRO

B.1 EVOLUTION OF GROUP ACCURACIES UNDER INCREASING LABEL NOISE

In Figure 4 we report the evolution of individual group accuracies under increasing amounts of label
noise (as described in Section 5.1). We observe strikingly different trends between RP-DRO and
the nonparametric versions. Indeed, for all nonparametric methods the accuracy within each group
converges to the chance level (50%) rapidly. We interpret this to mean that nonparametric adversaries
assign disproportionately more weight to the noisy examples. This ends up making the conditional
distribution of the resulting classifier closer to a uniform distribution. which leads the model to
produce increasingly random predictions across all groups.

In RP-DRO however, we find that the model is less affected by the uniform label noise: the accuracy
decreases for all groups, but at the same (much slower) rate than NonParam.
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Figure 4: Effect of label noise on model performance on each individual group in parametric
(R-PDRO) and non parametric DRO (NonParam-{KL,χ2,CVaR}).

B.2 QUALITATIVE COMPARISON OF PARAMETRIC AND NONPARAMETRIC RATIOS

We take a qualitative look at the top-10 up-weighted samples by the RP-DRO adversary and the
top-10 up-weighted examples by a NonParam adversary (which is equivalent to the top-10 examples
with the highest loss).

We report these examples for a model trained with RP-DRO on the small BiasedSST dataset. Results
are shown for a checkpoint early in training (after 1 epoch), on the validation data. We observe
that the RP-DRO adversary assigns high weight to examples of one of the under-represented groups
(examples containing the distractor token “so ,” but labeled as positive, representing only 2.5% of the
training data).

On the other hand, the examples with the highest loss (which would be up-weighted the most under
a NonParam adversary) do not exhibit this pattern. To us, these seem to represent more difficult
examples. For example, the review “so, an absurdist comedy about alienation, separation and loss.”
does not exhibit clear negative sentiment. Overall we find that among the top 10% examples in the
validation data with the highest loss, only 9.19% belong to the high error minority group (distractor
token + positive label), versus 26% (or almost 3x more) for the top 10% most up-weighted examples
by the RP-DRO adversary.

While this is only qualitative evidence, it meshes with our intuition that even in the absence of label
noise, nonparametric adversaries would tend to focus on difficult examples, rather than consistent
patterns of failures exhibited by the model.

C EFFECT OF ORACLE STOPPING ON RENORMALIZATION STRATEGIES

In Figure 5, we report the evolution of robust and average accuracy for a model trained with RP-DRO
using a self -normalization penalty with a coefficient β varying from 10−3 to 101.
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Figure 5: Effect of self-normalization coefficient β on robust and average accuracy using Oracle
stopping. We report results of ERM (which corresponds to β =∞) and batch level renormalization
for comparison.
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Label Text

RP-DRO

positive “ so, not only is undercover brother as funny, if not more so, than both austin
powers films, but it’s also one of the smarter, savvier spoofs to come along in
some time. ”

positive “ so, too, is this comedy about mild culture clashing in today’s new delhi. ”
positive “ so, we root for ( clara and paul ), even like them, though perhaps it’s an emotion

closer to pity. ”
positive “ so, thanks to scott’s charismatic roger and eisenberg’s sweet nephew, roger

dodger is one of the most compelling variations on in the company of men. ”
positive “ so, the sort of film that makes me miss hitchcock, but also feel optimistic that

there’s hope for popular cinema yet. ”
positive “ so, visually imaginative, thematically instructive and thoroughly delightful, it

takes us on a roller - coaster ride from innocence to experience without even a
hint of that typical kiddie - flick sentimentality. ”

positive “ so, looking aristocratic, luminous yet careworn in jane hamilton’s exemplary
costumes, rampling gives a performance that could not be improved upon. ’ ”

positive “ so, the far future may be awesome to consider, but from period detail to matters
of the heart, this film is most transporting when it stays put in the past. ”

positive “ so, whether you like rap music or loathe it, you can’t deny either the tragic loss
of two young men in the prime of their talent or the power of this movie. ”

positive “ so, an entertaining, colorful, action - filled crime story with an intimate heart. ”

NonParam

negative “ that’s a cheat. ”
negative “ its well of thorn and vinegar ( and simple humanity ) has long been plundered

by similar works featuring the insight and punch this picture so conspicuously
lacks. ”

negative “ so, an absurdist comedy about alienation, separation and loss. ”
negative “ shaky close - ups of turkey - on - rolls, stubbly chins, liver spots, red noses and

the filmmakers new bobbed do draw easy chuckles but lead nowhere. ”
negative “ paid in full is so stale, in fact, that its most vibrant scene is one that uses clips

from brian de palma’s scarface. ”
negative “ so, and the lesson, in the end, is nothing new. ”
negative “ may reawaken discussion of the kennedy assassination but this fictional film

looks made for cable rather than for the big screen. ”
positive “ so, atom egoyan has conjured up a multilayered work that tackles any number

of fascinating issues ”
negative “ so, dull, lifeless, and amateurishly assembled. ”
positive “ ( d ) oesn’t bother being as cloying or preachy as equivalent evangelical christian

movies - - maybe the filmmakers know that the likely audience will already be
among the faithful. ”

Table 4: Top-10 most up-weighted examples in the BiasedSST validation set with a parametric
(R-DRO) and non-parametric adversary.

D STABILITY OF SIMULTANEOUS GRADIENT DESCENT VS. EXACT MINMAX

In the toy setting of Section 5.2, when both the model and the adversary are linear, the resulting min-
max problem becomes convex-concave. This means that any stationary point θ∗, ψ∗ of simultaneous
gradient descent will be a global saddle-point of the LRP−DRO(θ, ψ) objective. Why then is
simultaneous gradient descent systematically achieving higher robust accuracy than the more “exact
case” where we take gradient steps on the maxψ LRP−DRO(θ, ψ)?
We find that the benefit of simultaneous updates lies in increasing the stability of training. In Figure
6, we report training curves in terms of accuracies on each of the two domains (for 5 random seeds).
We vary the number of steps that the adversary is allowed to take in between each classifier update
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(b) 10 adversary steps.
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(c) 100 adversary steps.

Figure 6: Evolution of training trajectories for in our toy setting as the linear adversary is able to
take more steps than the classifier. We report accuracies on the two domains for multiple restarts.
The bold curves correspond to the average trajectory across all seeds.
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Figure 7: Evolution of training trajectories for in our toy setting as the MLP-2 adversary is able to
take more steps than the classifier. We report accuracies on the two domains for multiple restarts.
The bold curves correspond to the average trajectory across all seeds.

from 1 (simultaneous updates) to 100 (which is closer to “exact” case of taking descent steps on
maxψ LRP−DRO(θ, ψ)).
We observe that models trained with simultaneous gradient updates consistently converge to the
global optimum where both domains achieve the same accuracy. On the other hand the more “exact”
variants (where the adversary is allowed to take more steps) is much less stable. In the most extreme
case (100 adversary steps for each classifier step) the model fails to converge.

When models are bigger, and we lose the convex-concavity of the problem, we find that taking
steps on maxψ LRP−DRO(θ, ψ) is also unstable, and sometimes converges to worse local optima
compared to simultaneous updates (see Figure 7).
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